Sample records for nonlinear contrast source

  1. Computation of nonlinear ultrasound fields using a linearized contrast source method.

    PubMed

    Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A

    2013-08-01

    Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.

  2. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America

  3. Nonlinear dynamics of cortical responses to color in the human cVEP.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  4. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  5. Optimal wavefront estimation of incoherent sources

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler

    2014-08-01

    Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

  6. Separation of the low-frequency atmospheric variability into non-Gaussian multidimensional sources by Independent Subspace Analysis

    NASA Astrophysics Data System (ADS)

    Pires, Carlos; Ribeiro, Andreia

    2016-04-01

    An efficient nonlinear method of statistical source separation of space-distributed non-Gaussian distributed data is proposed. The method relies in the so called Independent Subspace Analysis (ISA), being tested on a long time-series of the stream-function field of an atmospheric quasi-geostrophic 3-level model (QG3) simulating the winter's monthly variability of the Northern Hemisphere. ISA generalizes the Independent Component Analysis (ICA) by looking for multidimensional and minimally dependent, uncorrelated and non-Gaussian distributed statistical sources among the rotated projections or subspaces of the multivariate probability distribution of the leading principal components of the working field whereas ICA restrict to scalar sources. The rationale of that technique relies upon the projection pursuit technique, looking for data projections of enhanced interest. In order to accomplish the decomposition, we maximize measures of the sources' non-Gaussianity by contrast functions which are given by squares of nonlinear, cross-cumulant-based correlations involving the variables spanning the sources. Therefore sources are sought matching certain nonlinear data structures. The maximized contrast function is built in such a way that it provides the minimization of the mean square of the residuals of certain nonlinear regressions. The issuing residuals, followed by spherization, provide a new set of nonlinear variable changes that are at once uncorrelated, quasi-independent and quasi-Gaussian, representing an advantage with respect to the Independent Components (scalar sources) obtained by ICA where the non-Gaussianity is concentrated into the non-Gaussian scalar sources. The new scalar sources obtained by the above process encompass the attractor's curvature thus providing improved nonlinear model indices of the low-frequency atmospheric variability which is useful since large circulation indices are nonlinearly correlated. The non-Gaussian tested sources (dyads and triads, respectively of two and three dimensions) lead to a dense data concentration along certain curves or surfaces, nearby which the clusters' centroids of the joint probability density function tend to be located. That favors a better splitting of the QG3 atmospheric model's weather regimes: the positive and negative phases of the Arctic Oscillation and positive and negative phases of the North Atlantic Oscillation. The leading model's non-Gaussian dyad is associated to a positive correlation between: 1) the squared anomaly of the extratropical jet-stream and 2) the meridional jet-stream meandering. Triadic sources coming from maximized third-order cross cumulants between pairwise uncorrelated components reveal situations of triadic wave resonance and nonlinear triadic teleconnections, only possible thanks to joint non-Gaussianity. That kind of triadic synergies are accounted for an Information-Theoretic measure: the Interaction Information. The dominant model's triad occurs between anomalies of: 1) the North Pole anomaly pressure 2) the jet-stream intensity at the Eastern North-American boundary and 3) the jet-stream intensity at the Eastern Asian boundary. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz.

  7. Modeling of Nonlinear Beat Signals of TAE's

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  8. Nonlinear effective theory of dark energy

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to parametrize cosmological perturbations beyond linear order for general dark energy and modified gravity models characterized by a single scalar degree of freedom. We derive the full nonlinear action, focusing on Horndeski theories. In the quasi-static, non-relativistic limit, there are a total of six independent relevant operators, three of which start at nonlinear order. The new nonlinear couplings modify, beyond linear order, the generalized Poisson equation relating the Newtonian potential to the matter density contrast. We derive this equation up to cubic order in perturbations and, in a companion article [1], we apply it to compute the one-loop matter power spectrum. Within this approach, we also discuss the Vainshtein regime around spherical sources and the relation between the Vainshtein scale and the nonlinear scale for structure formation.

  9. Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin

    Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.

  10. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  11. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  12. Characterisation and calculation of nonlinear vibrations in gas foil bearing systems-An experimental and numerical investigation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Robert; Liebich, Robert

    2018-01-01

    This paper states a unique classification to understand the source of the subharmonic vibrations of gas foil bearing (GFB) systems, which will experimentally and numerically tested. The classification is based on two cases, where an isolated system is assumed: Case 1 considers a poorly balance rotor, which results in increased displacement during operation and interacts with the nonlinear progressive structure. It is comparable to a Duffing-Oscillator. In contrast, for case 2 a well/perfectly balanced rotor is assumed. Hence, the only source of nonlinear subharmonic whirling results from the fluid film self-excitation. Experimental tests with different unbalance levels and GFB modifications confirm these assumptions. Furthermore, simulations are able to predict the self-excitations and synchronous and subharmonic resonances of the experimental test. The numerical model is based on a linearised eigenvalue problem. The GFB system uses linearised stiffness and damping parameters by applying a perturbation method on the Reynolds Equation. The nonlinear bump structure is simplified by a link-spring model. It includes Coulomb friction effects inside the elastic corrugated structure and captures the interaction between single bumps.

  13. Modeling Elastic Wave Propagation from an Underground Chemical Explosion Using Higher Order Finite Difference Approximation: Theory, Validation and Application to SPE

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.

    2016-12-01

    Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.

  14. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

    PubMed Central

    Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi

    2017-01-01

    Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098

  15. Enhancement of temporal contrast of high-power laser pulses in an anisotropic medium with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Kuz'mina, M. S.; Khazanov, E. A.

    2015-05-01

    We consider the methods for enhancing the temporal contrast of super-high-power laser pulses, based on the conversion of radiation polarisation in a medium with cubic nonlinearity. For a medium with weak birefringence and isotropic nonlinearity, we propose a new scheme to enhance the temporal contrast. For a medium with anisotropic nonlinearity, the efficiency of the temporal contrast optimisation is shown to depend not only on the spatial orientation of the crystal and B-integral, but also on the type of the crystal lattice symmetry.

  16. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  17. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    NASA Astrophysics Data System (ADS)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  18. Aerofoil broadband and tonal noise modelling using stochastic sound sources and incorporated large scale fluctuations

    NASA Astrophysics Data System (ADS)

    Proskurov, S.; Darbyshire, O. R.; Karabasov, S. A.

    2017-12-01

    The present work discusses modifications to the stochastic Fast Random Particle Mesh (FRPM) method featuring both tonal and broadband noise sources. The technique relies on the combination of incorporated vortex-shedding resolved flow available from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale turbulence FRPM solution generated via the stochastic velocity fluctuations in the context of vortex sound theory. In contrast to the existing literature, our method encompasses a unified treatment for broadband and tonal acoustic noise sources at the source level, thus, accounting for linear source interference as well as possible non-linear source interaction effects. When sound sources are determined, for the sound propagation, Acoustic Perturbation Equations (APE-4) are solved in the time-domain. Results of the method's application for two aerofoil benchmark cases, with both sharp and blunt trailing edges are presented. In each case, the importance of individual linear and non-linear noise sources was investigated. Several new key features related to the unsteady implementation of the method were tested and brought into the equation. Encouraging results have been obtained for benchmark test cases using the new technique which is believed to be potentially applicable to other airframe noise problems where both tonal and broadband parts are important.

  19. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    PubMed

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  1. Long Coherence Length 193 nm Laser for High-Resolution Nano-Fabrication

    DTIC Science & Technology

    2008-06-27

    in the non-linear optical up-converter, as well as specifying their interaction lengths, phase -matching angles, coatings, temperatures of operation...when optical path differences between interfering beams become comparable to the temporal coherence length of the source, the fringe contrast diminishes...switched, intracavity frequency doubled Nd:YAG laser drives an optical parametric oscillator (OPO) running at 710 nm. A portion of the 532 nm light

  2. Nonlinear Dynamics of Turbulent Thermals in Shear Flow

    NASA Astrophysics Data System (ADS)

    Ingel, L. Kh.

    2018-03-01

    The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.

  3. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.

  4. Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Rickel, Dwight

    1989-06-01

    Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.

  5. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  6. Nonlinear and dissipative constitutive equations for coupled first-order acoustic field equations that are consistent with the generalized Westervelt equation

    NASA Astrophysics Data System (ADS)

    Verweij, Martin D.; Huijssen, Jacob

    2006-05-01

    In diagnostic medical ultrasound, it has become increasingly important to evaluate the nonlinear field of an acoustic beam that propagates in a weakly nonlinear, dissipative medium and that is steered off-axis up to very wide angles. In this case, computations cannot be based on the widely used KZK equation since it applies only to small angles. To benefit from successful computational schemes from elastodynamics and electromagnetics, we propose to use two first-order acoustic field equations, accompanied by two constitutive equations, as an alternative basis. This formulation quite naturally results in the contrast source formalism, makes a clear distinction between fundamental conservation laws and medium behavior, and allows for a straightforward inclusion of any medium inhomogenities. This paper is concerned with the derivation of relevant constitutive equations. We take a pragmatic approach and aim to find those constitutive equations that represent the same medium as implicitly described by the recognized, full wave, nonlinear equations such as the generalized Westervelt equation. We will show how this is achieved by considering the nonlinear case without attenuation, the linear case with attenuation, and the nonlinear case with attenuation. As a result we will obtain surprisingly simple constitutive equations for the full wave case.

  7. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  8. Inducing in situ, nonlinear soil response applying an active source

    USGS Publications Warehouse

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  9. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes (positive and negative phases of the Arctic Oscillation and of the North Atlantic Oscillation). Triads are also likely in the QG model but of weaker expression than dyads due to the imposed shape and dimension. The study emphasizes the existence of nonlinear dyadic and triadic nonlinear teleconnections.

  10. Effect of the presence and size of a localized nonlinear source in concrete.

    PubMed

    Zardan, J-P; Payan, C; Garnier, V; Salin, J

    2010-07-01

    The aim of the present letter is to identify the contribution of a macroscopic source of elastic nonlinearity in concrete, a medium which by nature is nonlinear, and belongs to the nonlinear mesoscopic class of materials. The influence of real, localized macro-cracks is characterized with respect to the intrinsic nonlinearity of the material. The influence of the size of the source on the amplitude of the measured nonlinearity is qualitatively demonstrated. A comparison is made between the changes in linear and nonlinear parameters.

  11. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  12. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".

    PubMed

    Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico

    2014-06-01

    Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    PubMed

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  14. Introducing Nonlinear Pricing into Consumer Choice Theory.

    ERIC Educational Resources Information Center

    DeSalvo, Joseph S.; Huq, Mobinul

    2002-01-01

    Describes and contrasts nonlinear and linear pricing in consumer choice theory. Discusses the types of nonlinear pricing: block-declining tariff, two-part tariff, three-part tariff, and quality discounts or premia. States that understanding nonlinear pricing enhances student comprehension of consumer choice theory. Suggests teaching the concept in…

  15. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  16. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  17. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    PubMed

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  18. Cosmological signatures of ultralight dark matter with an axionlike potential

    NASA Astrophysics Data System (ADS)

    Cedeño, Francisco X. Linares; González-Morales, Alma X.; Ureña-López, L. Arturo

    2017-09-01

    Nonlinearities in a realistic axion field potential may play an important role in the cosmological dynamics. In this paper we use the Boltzmann code class to solve the background and linear perturbations evolution of an axion field and contrast our results with those of CDM and the free axion case. We conclude that there is a slight delay in the onset of the axion field oscillations when nonlinearities in the axion potential are taken into account. Besides, we identify a tachyonic instability of linear modes resulting in the presence of a bump in the power spectrum at small scales. Some comments are in turn about the true source of the tachyonic instability, how the parameters of the axionlike potential can be constrained by Ly-α observations, and the consequences in the stability of self-gravitating objects made of axions.

  19. High contrast imaging through adaptive transmittance control in the focal plane

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  20. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  1. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  2. Pump-probe nonlinear phase dispersion spectroscopy.

    PubMed

    Robles, Francisco E; Samineni, Prathyush; Wilson, Jesse W; Warren, Warren S

    2013-04-22

    Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed.

  3. Pump-probe nonlinear phase dispersion spectroscopy

    PubMed Central

    Robles, Francisco E.; Samineni, Prathyush; Wilson, Jesse W.; Warren, Warren S.

    2013-01-01

    Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed. PMID:23609646

  4. Thermodynamics of charged black holes with a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian

    2009-11-15

    We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shownmore » that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.« less

  5. Binocular contrast discrimination needs monocular multiplicative noise

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370

  6. Binocular contrast discrimination needs monocular multiplicative noise.

    PubMed

    Ding, Jian; Levi, Dennis M

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.

  7. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    PubMed

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Bilinear modeling and nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas A. W., III; Karray, Fakhreddine; Bennett, William H.

    1989-01-01

    New methods are illustrated for online nonlinear estimation applied to the lateral deflection of an elastic beam on board measurements of angular rates and angular accelerations. The development of the filter equations, together with practical issues of their numerical solution as developed from global linearization by nonlinear output injection are contrasted with the usual method of the extended Kalman filter (EKF). It is shown how nonlinear estimation due to gyroscopic coupling can be implemented as an adaptive covariance filter using off-the-shelf Kalman filter algorithms. The effect of the global linearization by nonlinear output injection is to introduce a change of coordinates in which only the process noise covariance is to be updated in online implementation. This is in contrast to the computational approach which arises in EKF methods arising by local linearization with respect to the current conditional mean. Processing refinements for nonlinear estimation based on optimal, nonlinear interpolation between observations are also highlighted. In these methods the extrapolation of the process dynamics between measurement updates is obtained by replacing a transition matrix with an operator spline that is optimized off-line from responses to selected test inputs.

  9. Second-harmonic generation in shear wave beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  10. SU-F-J-71: Improving CT Quality for Radiation Therapy Planning and Delivery Guidance Using a Non-Linear Contrast Enhancement Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Tai, A; Li, X

    2016-06-15

    Purpose: Advanced image post-processing techniques which enhance soft-tissue contrast in CT have not been widely employed for RT planning or delivery guidance. The purpose of this work is to assess the soft-tissue contrast enhancement from non-linear contrast enhancing filters and its impact in RT. The contrast enhancement reduces patient alignment uncertainties. Methods: Non-linear contrast enhancing methods, such as Best Contrast (Siemens), amplify small differences in X-ray attenuation between two adjacent structure without significantly increasing noise. Best Contrast (BC) separates a CT into two frequency bands. The low frequency band is modified by a non-linear scaling function before recombination with themore » high frequency band. CT data collected using a CT-on-rails (Definition AS Open, Siemens) during daily CT-guided RT for 6 prostate cancer patients and an image quality phantom (The Phantom Laboratory) were analyzed. Images acquired with a standard protocol (120 kVp, 0.6 pitch, 18 mGy CTDIvol) were processed before comparison to the unaltered images. Contrast and noise were measured in the the phantom. Inter-observer variation was assessed by placing prostate contours on the 12 CT study sets, 6 enhanced and 6 unaltered, in a blinded study involving 8 observers. Results: The phantom data demonstrate that BC increased the contrast between the 1.0% supra-slice element and the background substrate by 46.5 HU while noise increased by only 2.3 HU. Thus the contrast to noise ratio increased from 1.28 to 6.71. Furthermore, the variation in centroid position of the prostate contours was decreased from 1.3±0.4 mm to 0.8±0.3 mm. Thus the CTV-to-PTV margin was reduced by 1.1 mm. The uncertainty in delineation of the prostate/rectum edge decreased by 0.5 mm. Conclusion: As demonstrated in phantom and patient scans the BC filter accentuates soft-tissue contrast. This enhancement leads to reduced inter-observer variation, which should improve RT planning and delivery. Supported by Siemens.« less

  11. Second-order processing of four-stroke apparent motion.

    PubMed

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  12. A novel model incorporating two variability sources for describing motor evoked potentials

    PubMed Central

    Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.

    2014-01-01

    Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287

  13. Optical coherence tomography and non-linear microscopy for paintings - a study of the complementary capabilities and laser degradation effects.

    PubMed

    Liang, Haida; Mari, Meropi; Cheung, Chi Shing; Kogou, Sotiria; Johnson, Phillip; Filippidis, George

    2017-08-07

    This paper examines for the first time the potential complementary imaging capabilities of Optical coherence tomography (OCT) and non-linear microscopy (NLM) for multi-modal 3D examination of paintings following the successful application of OCT to the in situ, non-invasive examination of varnish and paint stratigraphy of historic paintings and the promising initial studies of NLM of varnish samples. OCT provides image contrast through the optical scattering and absorption properties of materials, while NLM provides molecular information through multi-photon fluorescence and higher harmonics generation (second and third harmonic generation). OCT is well-established in the in situ non-invasive imaging of the stratigraphy of varnish and paint layers. While NLM examination of transparent samples such as fresh varnish and some transparent paints showed promising results, the ultimate use of NLM on paintings is limited owing to the laser degradation effects caused by the high peak intensity of the laser source necessary for the generation of non-linear phenomena. The high intensity normally employed in NLM is found to be damaging to all non-transparent painting materials from slightly scattering degraded varnish to slightly absorbing paint at the wavelength of the laser excitation source. The results of this paper are potentially applicable to a wide range of materials given the diversity of the materials encountered in paintings (e.g. minerals, plants, insects, oil, egg, synthetic and natural varnish).

  14. 3D imaging of hematoxylin and eosin stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based nonlinear microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Ting; Wei, Ming-Liang; Liao, Yi-Hua; Sun, Chi-Kuang

    2017-02-01

    Intraoperative assessment of excision tissues during cancer surgery is clinically important. The assessment is used to be guided by the examination for residual tumor with frozen pathology, while it is time consuming for preparation and is with low accuracy for diagnosis. Recently, reflection confocal microscopy (RCM) and nonlinear microscopy (NLM) were demonstrated to be promising methods for surgical border assessment. Intraoperative RCM imaging may enable detection of residual tumor directly on skin cancers patients during Mohs surgery. The assessment of benign and malignant breast pathologies in fresh surgical specimens was demonstrated by NLM. Without using hematoxylin and eosin (H and E) that are common dyes for histopathological diagnosis, RCM was proposed to image in vivo by using aluminum chloride for nuclear contrast on surgical wounds directly, while NLM was proposed to detect two photon fluorescence nuclear contrast from acrdine orange staining. In this paper, we propose and demonstrate 3D imaging of H and E stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based NLM. With a 1260 nm femtosecond Cr:forsterite laser as the excitation source, the hematoxylin will strongly enhance the third-harmonic generation (THG) signals, while eosin will illuminate strong fluorescence under three photon absorption. Compared with previous works, the 1260 nm excitation light provide high penetration and low photodamage to the exercised tissues so that the possibility to perform other follow-up examination will be preserved. The THG and three-photon process provides high nonlinearity so that the super resolution in 3D is now possible. The staining and the contrast of the imaging is also fully compatible with the current clinical standard on frozen pathology thus facilitate the rapid intraoperative assessment of excision tissues. This work is sponsored by National Health Research Institutes and supported by National Taiwan University Hospital.

  15. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  16. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.

    PubMed

    Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng

    2011-11-29

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.

  17. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska

    PubMed Central

    Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng

    2011-01-01

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085

  18. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    PubMed Central

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  19. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  20. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  1. Chiral-selective nonlinear optical generation and emission control with plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.

  2. Detecting determinism with improved sensitivity in time series: rank-based nonlinear predictability score.

    PubMed

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  3. Detecting determinism with improved sensitivity in time series: Rank-based nonlinear predictability score

    NASA Astrophysics Data System (ADS)

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G.

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  4. Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast.

    PubMed

    Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun

    2013-08-14

    Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  6. Envelope of coda waves for a double couple source due to non-linear elasticity

    NASA Astrophysics Data System (ADS)

    Calisto, Ignacia; Bataille, Klaus

    2014-10-01

    Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.

  7. Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison

    PubMed Central

    Wallis, Thomas S. A.; Dorr, Michael; Bex, Peter J.

    2015-01-01

    Sensitivity to luminance contrast is a prerequisite for all but the simplest visual systems. To examine contrast increment detection performance in a way that approximates the natural environmental input of the human visual system, we presented contrast increments gaze-contingently within naturalistic video freely viewed by observers. A band-limited contrast increment was applied to a local region of the video relative to the observer's current gaze point, and the observer made a forced-choice response to the location of the target (≈25,000 trials across five observers). We present exploratory analyses showing that performance improved as a function of the magnitude of the increment and depended on the direction of eye movements relative to the target location, the timing of eye movements relative to target presentation, and the spatiotemporal image structure at the target location. Contrast discrimination performance can be modeled by assuming that the underlying contrast response is an accelerating nonlinearity (arising from a nonlinear transducer or gain control). We implemented one such model and examined the posterior over model parameters, estimated using Markov-chain Monte Carlo methods. The parameters were poorly constrained by our data; parameters constrained using strong priors taken from previous research showed poor cross-validated prediction performance. Atheoretical logistic regression models were better constrained and provided similar prediction performance to the nonlinear transducer model. Finally, we explored the properties of an extended logistic regression that incorporates both eye movement and image content features. Models of contrast transduction may be better constrained by incorporating data from both artificial and natural contrast perception settings. PMID:26057546

  8. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  9. Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Xie, Zhixing; Fabiilli, Mario; Wang, Xueding

    2015-03-01

    We developed a simple and effective contrast for tissue characterization based on the recently proposed dual-pulse nonlinear photoacoustic technology. The new contrast takes advantage of the temperature dependence of Grüneisen parameter of tissue and involves a dual-pulse laser excitation process. A short pulse first heats the sample and causes a temperature jump, which then leads to the change of Grüneisen parameter and amplitude of the photoacoustic signal of the second pulse. For different tissues, the induced rate or trend of change is expected to be different, which constitutes the basis of the new contrast. Preliminary phantom experiment in blood and lipid mixtures and in vitro experiment in fatty rat liver have demonstrated that the proposed contrast has the capability of fast characterization of lipid-rich and blood-rich tissues.

  10. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  11. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  12. Rational variety mapping for contrast-enhanced nonlinear unsupervised segmentation of multispectral images of unstained specimen.

    PubMed

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-08-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    PubMed

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  15. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection.

    PubMed

    Thibierge, C; L'Hôte, D; Ladieu, F; Tourbot, R

    2008-10-01

    We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz < or = f < or = 3x10(4) Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10(-7). We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.

  16. Stationary states of extended nonlinear Schrödinger equation with a source

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Smagin, V. V.; Tankeev, A. P.

    2007-02-01

    Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.

  17. A circuit model for nonlinear simulation of radio-frequency filters using bulk acoustic wave resonators.

    PubMed

    Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya

    2008-04-01

    This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.

  18. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm

    NASA Astrophysics Data System (ADS)

    Thapa, Rajesh; Rhonehouse, Dan; Nguyen, Dan; Wiersma, Kort; Smith, Chris; Zong, Jie; Chavez-Pirson, Arturo

    2013-10-01

    Mid-infrared sources are a key enabling technology for various applications such as remote chemical sensing, defense communications and countermeasures, and bio-photonic diagnostics and therapeutics. Conventional mid-IR sources include optical parametric amplifiers, quantum cascade lasers, synchrotron and free electron lasers. An all-fiber approach to generate a high power, single mode beam with extremely wide (1μm-5μm) and simultaneous wavelength coverage has significant advantages in terms of reliability (no moving parts or alignment), room temperature operation, size, weight, and power efficiency. Here, we report single mode, high power extended wavelength coverage (1μm to 5μm) supercontinuum generation using a tellurite-based dispersion managed nonlinear fiber and an all-fiber based short pulse (20 ps), single mode pump source. We have developed this mid IR supercontinuum source based on highly purified solid-core tellurite glass fibers that are waveguide engineered for dispersion-zero matching with Tm-doped pulsed fiber laser pumps. The conversion efficiency from 1922nm pump to mid IR (2μm-5μm) supercontinuum is greater than 30%, and approaching 60% for the full spectrum. We have achieved > 1.2W covering from 1μm to 5μm with 2W of pump. In particular, the wavelength region above 4μm has been difficult to cover with supercontinuum sources based on ZBLAN or chalcogenide fibers. In contrast to that, our nonlinear tellurite fibers have a wider transparency window free of unwanted absorption, and are highly suited for extending the long wavelength emission above 4μm. We achieve spectral power density at 4.1μm already exceeding 0.2mW/nm and with potential for higher by scaling of pump power.

  19. Estimating contrast transfer function and associated parameters by constrained non-linear optimization.

    PubMed

    Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W

    2009-03-01

    The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.

  20. Model of visual contrast gain control and pattern masking

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Solomon, J. A.

    1997-01-01

    We have implemented a model of contrast gain and control in human vision that incorporates a number of key features, including a contrast sensitivity function, multiple oriented bandpass channels, accelerating nonlinearities, and a devisive inhibitory gain control pool. The parameters of this model have been optimized through a fit to the recent data that describe masking of a Gabor function by cosine and Gabor masks [J. M. Foley, "Human luminance pattern mechanisms: masking experiments require a new model," J. Opt. Soc. Am. A 11, 1710 (1994)]. The model achieves a good fit to the data. We also demonstrate how the concept of recruitment may accommodate a variant of this model in which excitatory and inhibitory paths have a common accelerating nonlinearity, but which include multiple channels tuned to different levels of contrast.

  1. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  2. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less

  3. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    NASA Astrophysics Data System (ADS)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  4. Nonlinear response of lipid-shelled microbubbles to coded excitation: implications for noninvasive atherosclerosis imaging

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Doyley, Marvin M.

    2013-03-01

    Nonlinear (subharmonic/harmonic) imaging with ultrasound contrast agents (UCA) could characterize the vasa vasorum, which could help assess the risk associated with atherosclerosis. However, the sensitivity and specificity of high-frequency nonlinear imaging must be improved to enable its clinical translation. The current excitation scheme employs sine-bursts — a strategy that requires high-peak pressures to produce strong nonlinear response from UCA. In this paper, chirp-coded excitation was evaluated to assess its ability to enhance the subharmonic and harmonic response of UCA. Acoustic measurements were conducted with a pair of single-element transducers at 10-MHz transmit frequencies to evaluate the subharmonic and harmonic response of Targestar-P® (Targeson Inc., San Diego, CA, USA), a commercially available phospholipid-encapsulated contrast agent. The results of this study demonstrated a 2 - 3 fold reduction in the subharmonic threshold, and a 4 - 14 dB increase in nonlinear signal-to-noise ratio, with chirp-coded excitation. Therefore, chirp-coded excitation could be well suited for improving the imaging performance of high-frequency harmonic and subharmonic imaging.

  5. Weak gravitational lensing effects on the determination of Omega_mega_m and Omega_mega Lambda from SNeIa

    NASA Astrophysics Data System (ADS)

    Valageas, P.

    2000-02-01

    In this article we present an analytical calculation of the probability distribution of the magnification of distant sources due to weak gravitational lensing from non-linear scales. We use a realistic description of the non-linear density field, which has already been compared with numerical simulations of structure formation within hierarchical scenarios. Then, we can directly express the probability distribution P(mu ) of the magnification in terms of the probability distribution of the density contrast realized on non-linear scales (typical of galaxies) where the local slope of the initial linear power-spectrum is n=-2. We recover the behaviour seen by numerical simulations: P(mu ) peaks at a value slightly smaller than the mean < mu >=1 and it shows an extended large mu tail (as described in another article our predictions also show a good quantitative agreement with results from N-body simulations for a finite smoothing angle). Then, we study the effects of weak lensing on the derivation of the cosmological parameters from SNeIa. We show that the inaccuracy introduced by weak lensing is not negligible: {cal D}lta Omega_mega_m >~ 0.3 for two observations at z_s=0.5 and z_s=1. However, observations can unambiguously discriminate between Omega_mega_m =0.3 and Omega_mega_m =1. Moreover, in the case of a low-density universe one can clearly distinguish an open model from a flat cosmology (besides, the error decreases as the number of observ ed SNeIa increases). Since distant sources are more likely to be ``demagnified'' the most probable value of the observed density parameter Omega_mega_m is slightly smaller than its actual value. On the other hand, one may obtain some valuable information on the properties of the underlying non-linear density field from the measure of weak lensing distortions.

  6. Design of HIFU transducers for generating specified nonlinear ultrasound fields

    PubMed Central

    Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.

    2016-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904

  7. Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging.

    PubMed

    Kelly, Greg

    2006-12-01

    Body temperature is a complex, non-linear data point, subject to many sources of internal and external variation. While these sources of variation significantly complicate interpretation of temperature data, disregarding knowledge in favor of oversimplifying complex issues would represent a significant departure from practicing evidence-based medicine. Part 1 of this review outlines the historical work of Wunderlich on temperature and the origins of the concept that a healthy normal temperature is 98.6 degrees F (37.0 degrees C). Wunderlich's findings and methodology are reviewed and his results are contrasted with findings from modern clinical thermometry. Endogenous sources of temperature variability, including variations caused by site of measurement, circadian, menstrual, and annual biological rhythms, fitness, and aging are discussed. Part 2 will review the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can influence body temperature, as well as temperature findings in disease states.

  8. A new theoretical basis for numerical simulations of nonlinear acoustic fields

    NASA Astrophysics Data System (ADS)

    Wójcik, Janusz

    2000-07-01

    Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.

  9. Dark energy simulacrum in nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  10. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  11. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-07

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  12. Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities

    DOE PAGES

    Wang, Feng; Martinson, Alex B. F.; Harutyunyan, Hayk

    2017-04-03

    Since their discovery in the 1960s, nonlinear optical effects have revolutionized optical technologies and laser industry. Development of efficient nanoscale nonlinear sources will pave the way for new applications in photonic circuitry, quantum optics and biosensing. However, nonlinear signal generation at dimensions smaller than the wavelength of light brings new challenges. The fundamental difficulty of designing an efficient nonlinear source is that some of the contributing factors involved in nonlinear wave-mixing at the nanoscale are often hard to satisfy simultaneously. Here, we overcome these limitations by developing a new type of nonplanar plasmonic metasurfaces, which can greatly enhance the secondmore » harmonic generation (SHG) at visible frequencies and achieve conversion efficiency of ~6 × 10 -5 at a peak pump intensity of ~0.5 GW/cm 2. This is 4-5 orders of magnitude larger than the efficiencies observed for nonlinear thin films and doubly resonant plasmonic antennas. The proposed metasurface consists of an array of metal-dielectric-metal (MDM) nanocavities formed by conformally cross-linked nanowires separated by an ultrathin nonlinear material layer. The nonplanar MDM geometry minimizes the destructive interference of nonlinear emission into the far-field, provides strongly enhanced independently tunable resonances both for fundamental and harmonic frequencies, a good mutual overlap of the modes and a strong interaction with the nonlinear spacer. Lastly, our findings enable the development of efficient nanoscale single photon sources, integrated frequency converters, and other nonlinear devices.« less

  13. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    NASA Astrophysics Data System (ADS)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  14. Manipulating acoustic wave reflection by a nonlinear elastic metasurface

    NASA Astrophysics Data System (ADS)

    Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent

    2018-03-01

    The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.

  15. Optical pump-probe microscopy for biomedicine and art conservation

    NASA Astrophysics Data System (ADS)

    Fischer, Martin

    2013-03-01

    Nonlinear optical microscopy can provide contrast in highly heterogeneous media and a wide range of applications has emerged, primarily in biology, medicine, and materials science. Compared to linear microscopy methods, the localized nature of nonlinear interactions leads to high spatial resolution, optical sectioning, and larger possible imaging depth in scattering media. However, nonlinear contrast (other than fluorescence, harmonic generation or CARS) is generally difficult to measure because it is overwhelmed by the large background of detected illumination light. This background can be suppressed by using femtosecond pulse or pulse train shaping to encode nonlinear interactions in background-free regions of the frequency spectrum. We have developed this shaping technology to study novel intrinsic structural and molecular contrast in biological tissue, generally using less power than a laser pointer. For example we have recently been able to sensitively measure detailed transient absorption dynamics of melanin sub-types in a variety of skin lesions, showing clinically relevant differences of melanin type and distribution between cancerous and benign tissue.[1] Recently we have also applied this technology to paint samples and to historic artwork in order to provide detailed, depth-resolved pigment identification. Initial studies in different inorganic and organic pigments have shown a rich and pigment-specific nonlinear absorption signature.[2] Some pigments, for example lapis lazuli (natural ultramarine), even show marked differences in signal depending on its geographic origin and on age, demonstrating the potential of this technique to determine authenticity, provenance, technology of manufacture, or state of preservation of historic works of art.

  16. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: Implications for high-frequency nonlinear imaging

    PubMed Central

    Shekhar, Himanshu; Doyley, Marvin M.

    2013-01-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417

  17. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: implications for high-frequency nonlinear imaging.

    PubMed

    Shekhar, Himanshu; Doyley, Marvin M

    2013-05-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.

  18. Laser-induced generation of surface periodic structures in media with nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.

    2017-12-01

    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  19. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  20. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  1. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  2. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  3. Optimal nonlinear codes for the perception of natural colours.

    PubMed

    von der Twer, T; MacLeod, D I

    2001-08-01

    We discuss how visual nonlinearity can be optimized for the precise representation of environmental inputs. Such optimization leads to neural signals with a compressively nonlinear input-output function the gradient of which is matched to the cube root of the probability density function (PDF) of the environmental input values (and not to the PDF directly as in histogram equalization). Comparisons between theory and psychophysical and electrophysiological data are roughly consistent with the idea that parvocellular (P) cells are optimized for precision representation of colour: their contrast-response functions span a range appropriately matched to the environmental distribution of natural colours along each dimension of colour space. Thus P cell codes for colour may have been selected to minimize error in the perceptual estimation of stimulus parameters for natural colours. But magnocellular (M) cells have a much stronger than expected saturating nonlinearity; this supports the view that the function of M cells is mainly to detect boundaries rather than to specify contrast or lightness.

  4. Nonlinear parity readout with a microwave photodetector

    NASA Astrophysics Data System (ADS)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  5. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  6. The role of pulvinar in the transmission of information in the visual hierarchy.

    PubMed

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning.

  7. The Role of Pulvinar in the Transmission of Information in the Visual Hierarchy

    PubMed Central

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly from cortical connections: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning. PMID:22654750

  8. Resolving contradictory reconstructions of Alpine climate in 1540 - Using Nonlinearities in Tree Growth Response to Climate

    NASA Astrophysics Data System (ADS)

    Werner, J.; Tolwinski-ward, S. E.

    2013-12-01

    Reconstructions of Swiss climate based on documentary data suggest that the year 1540 was anomalously hot and dry (Wetter and Pfister 2013, Wetter et al in prep). They stand in stark contrast to reconstructions from tree ring data (Casty et al. 2005) in which 1540 climate is within the range of average conditions. In this contribution we combine documentary and dendrochronological sources of information and account for potential nonlinearities in the response of the tree ring signal to climate in order to resolve this apparent contradiction. Our reconstruction uses a Bayesian hierarchical model, with a nonlinear, mechanisms-based model for tree-ring data (Tolwinski-Ward et al. 2010) and a multinomial model for the documentary data. The results show that the extreme heat conditions documented in written crop records of 1540 cross a biological threshold above which the formation of latewood density is not limited by temperature. We thus demonstrate that the tree ring and documentary data for 1540 are in fact consistent within the ranges of uncertainty used to interpret each source of information, and together indicate anomalously hot and dry conditions in that year, although to a lesser extend as reconstructed by Wetter and Pfister (2013). Casty et al. "Temperature and precipitation variability in the European Alps since 1500", Int. J. Climatol. 25, 1855-1880 (2005) Tolwinski-Ward et al. "An efficient forward model of the climate controls on interannual variation in tree-ring width", Clim. Dyn. 36, 2419--2439 (2010) Werner and Tolwinski-Ward, in prep. Wetter and Pfister "An underestimated record breaking event: why summer 1540 was very likely warmer than 2003", Clim. Past 9, 41-56 (2013) Wetter et al. "The European Mega-drought of 1540 - an evidence-based Worst Case Scenario" (in prep.)

  9. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  10. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei

    2018-05-12

    Angle beam wedge transducers are widely used in nonlinear Rayleigh wave experiments as they can generate Rayleigh wave easily and produce high intensity nonlinear waves for detection. When such a transducer is used, the spurious harmonics (source nonlinearity) and wave diffraction may occur and will affect the measurement results, so it is essential to fully understand its acoustic nature. This paper experimentally investigates the nonlinear Rayleigh wave beam fields generated and received by angle beam wedge transducers, in which the theoretical predictions are based on the acoustic model developed previously for angle beam wedge transducers [S. Zhang, et al., Wave Motion, 67, 141-159, (2016)]. The source of the spurious harmonics is fully characterized by scrutinizing the nonlinear Rayleigh wave behavior in various materials with different driving voltages. Furthermore, it is shown that the attenuation coefficients for both fundamental and second harmonic Rayleigh waves can be extracted by comparing the measurements with the predictions when the experiments are conducted at many locations along the propagation path. A technique is developed to evaluate the material nonlinearity by making appropriate corrections for source nonlinearity, diffraction and attenuation. The nonlinear parameters of three aluminum alloy specimens - Al 2024, Al 6061 and Al 7075 - are measured, and the results indicate that the measurement results can be significantly improved using the proposed method. Copyright © 2018. Published by Elsevier B.V.

  11. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  12. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  13. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  14. Transformation of nonlinear behaviors: from bright- to dark-gap soliton in a one-dimensional photonic crystal containing a nonlinear indefinite metamaterial defect.

    PubMed

    Zhang, Wei; Chen, Yuanyuan; Hou, Peng; Shi, Jielong; Wang, Qi

    2010-12-01

    Nonlinear propagation characteristics are investigated theoretically in a one-dimensional photonic band-gap structure doped with a nonlinear indefinite metamaterial defect for five distinct frequency intervals. It is found from the electric field distribution that there exists the bright gap solitonlike when the nonlinear indefinite metamaterial defect is a cut-off medium, while the dark gap solitonlike can appear in the nonlinear never cut-off defect layer. It is also found that there exists corresponding bistable lateral shift the properties of which are strongly dependent on the permittivity and permeability of nonlinear indefinite metamaterials. Moreover, in contrast to the switch-down threshold value, the switch-up threshold value is more sensitive to the incident frequency.

  15. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  16. Multi-frequency Defect Selective Imaging via Nonlinear Ultrasound

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Busse, Gerd

    The concept of defect-selective ultrasonic nonlinear imaging is based on visualization of strongly nonlinear inclusions in the form of localized cracked defects. For intense excitation, the ultrasonic response of defects is affected by mechanical constraint between their fragments that makes their vibrations extremely nonlinear. The cracked flaws, therefore, efficiently generate multiple new frequencies, which can be used as a nonlinear "tag" to detect and image them. In this paper, the methodologies of nonlinear scanning laser vibrometry (NSLV) and nonlinear air-coupled emission (NACE) are applied for nonlinear imaging of various defects in hi-tech and constructional materials. A broad database obtained demonstrates evident advantages of the nonlinear approach over its linear counterpart. The higher-order nonlinear frequencies provide increase in signal-to-noise ratio and enhance the contrast of imaging. Unlike conventional ultrasonic instruments, the nonlinear approach yields abundant multi-frequency information on defect location. The application of image recognition and processing algorithms is described and shown to improve reliability and quality of ultrasonic imaging.

  17. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals.

    PubMed

    Miniaci, M; Gliozzi, A S; Morvan, B; Krushynska, A; Bosia, F; Scalerandi, M; Pugno, N M

    2017-05-26

    The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.

  18. Multimodal fiber source for nonlinear microscopy based on a dissipative soliton laser

    PubMed Central

    Lamb, Erin S.; Wise, Frank W.

    2015-01-01

    Recent developments in high energy femtosecond fiber lasers have enabled robust and lower-cost sources for multiphoton-fluorescence and harmonic-generation imaging. However, picosecond pulses are better suited for Raman scattering microscopy, so the ideal multimodal source for nonlinear microcopy needs to provide both durations. Here we present spectral compression of a high-power femtosecond fiber laser as a route to producing transform-limited picosecond pulses. These pulses pump a fiber optical parametric oscillator to yield a robust fiber source capable of providing the synchronized picosecond pulse trains needed for Raman scattering microscopy. Thus, this system can be used as a multimodal platform for nonlinear microscopy techniques. PMID:26417497

  19. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torello, David; Kim, Jin-Yeon; Qu, Jianmin

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. Thesemore » experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.« less

  20. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  1. A new mode of contrast in biological second harmonic generation microscopy.

    PubMed

    Green, Nicola H; Delaine-Smith, Robin M; Askew, Hannah J; Byers, Robert; Reilly, Gwendolen C; Matcher, Stephen J

    2017-10-17

    Enhanced image contrast in biological second harmonic imaging microscopy (SHIM) has previously been reported via quantitative assessments of forward- to epi-generated signal intensity ratio and by polarization analysis. Here we demonstrate a new form of contrast: the material-specific, wavelength-dependence of epi-generated second harmonic generation (SHG) excitation efficiency, and discriminate collagen and myosin by ratiometric epi-generated SHG images at 920 nm and 860 nm. Collagen shows increased SHG intensity at 920 nm, while little difference is detected between the two for myosin; allowing SHIM to characterize different SHG-generating components within a complex biological sample. We propose that momentum-space mapping of the second-order non-linear structure factor is the source of this contrast and develop a model for the forward and epi-generated SHG wavelength-dependence. Our model demonstrates that even very small changes in the assumed material fibrillar structure can produce large changes in the wavelength-dependency of epi-generated SHG. However, in the case of forward SHG, although the same changes impact upon absolute intensity at a given wavelength, they have very little effect on wavelength-dependency beyond the expected monotonic fall. We also propose that this difference between forward and epi-generated SHG provides an explanation for many of the wavelength-dependency discrepancies in the published literature.

  2. Modelling Nonlinear Ultrasound Propagation in Bone

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.; Johnson, Paul A.; Muller, Marie; Talmant, Maryline; Padilla, Frederic; Laugier, Pascal

    2006-05-01

    Simulations have been carried out to assess the possibility for detecting the nonlinear properties of bone in vivo. We employed a time domain solution to the KZK equation to determine the nonlinear field generated by an unfocussed circular transducer in both cancellous and cortical bone. The results indicate that determining nonlinear properties from the generation of higher harmonics is challenging in both bone types (for propagation distances and source amplitudes appropriate in the body). In cancellous bone this is because the attenuation length scale is very short (about 5 mm) and in cortical bone because the high sound speed and density result in long nonlinear length scales (hundreds of millimeters). An alternative approach to determine the nonlinear properties was considered using self-demodulation of sound. For cancellous bone this may result in a detectable signal although the predicted amplitude of the self-demodulation signal was almost 90 dB below the source level (1 MPa). In cortical bone the self-demodulated signal was even weaker that in cancellous bone (˜110 dB down) and, for a practical length signal, was not easy to separate from the components associated with the source.

  3. Finite size and geometrical non-linear effects during crack pinning by heterogeneities: An analytical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent

    2016-04-01

    Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.

  4. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    PubMed

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  5. Center/surround organization of retinal bipolar cells: High correlation of fundamental responses of center and surround to sinusoidal contrasts

    PubMed Central

    Burkhardt, Dwight A.; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2012-01-01

    Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse. PMID:21439110

  6. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  7. Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms

    NASA Astrophysics Data System (ADS)

    Zhong, Shuya; Pantelous, Athanasios A.; Beer, Michael; Zhou, Jian

    2018-05-01

    Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.

  8. Source apportionment and sensitivity analysis: two methodologies with two different purposes

    NASA Astrophysics Data System (ADS)

    Clappier, Alain; Belis, Claudio A.; Pernigotti, Denise; Thunis, Philippe

    2017-11-01

    This work reviews the existing methodologies for source apportionment and sensitivity analysis to identify key differences and stress their implicit limitations. The emphasis is laid on the differences between source impacts (sensitivity analysis) and contributions (source apportionment) obtained by using four different methodologies: brute-force top-down, brute-force bottom-up, tagged species and decoupled direct method (DDM). A simple theoretical example to compare these approaches is used highlighting differences and potential implications for policy. When the relationships between concentration and emissions are linear, impacts and contributions are equivalent concepts. In this case, source apportionment and sensitivity analysis may be used indifferently for both air quality planning purposes and quantifying source contributions. However, this study demonstrates that when the relationship between emissions and concentrations is nonlinear, sensitivity approaches are not suitable to retrieve source contributions and source apportionment methods are not appropriate to evaluate the impact of abatement strategies. A quantification of the potential nonlinearities should therefore be the first step prior to source apportionment or planning applications, to prevent any limitations in their use. When nonlinearity is mild, these limitations may, however, be acceptable in the context of the other uncertainties inherent to complex models. Moreover, when using sensitivity analysis for planning, it is important to note that, under nonlinear circumstances, the calculated impacts will only provide information for the exact conditions (e.g. emission reduction share) that are simulated.

  9. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  10. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  11. Dynamics of chromatic visual system processing differ in complexity between children and adults.

    PubMed

    Boon, Mei Ying; Suttle, Catherine M; Henry, Bruce I; Dain, Stephen J

    2009-06-30

    Measures of chromatic contrast sensitivity in children are lower than those of adults. This may be related to immaturities in signal processing at or near threshold. We have found that children's VEPs in response to low contrast supra-threshold chromatic stimuli are more intra-individually variable than those recorded from adults. Here, we report on linear and nonlinear analyses of chromatic VEPs recorded from children and adults. Two measures of signal-to-noise ratio are similar between the adults and children, suggesting that relatively high noise is unlikely to account for the poor clarity of negative and positive peak components in the children's VEPs. Nonlinear analysis indicates higher complexity of adults' than children's chromatic VEPs, at levels of chromatic contrast around and well above threshold.

  12. BLUES function method in computational physics

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Müller-Nedebock, Kristian K.

    2018-04-01

    We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.

  13. Melanin-targeted nonlinear microscopy for label-free molecular diagnosis and staining (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Warren, Warren S.

    2017-02-01

    Visible absorption in tissue is dominated by a very small number of chromophores (hemoglobins and melanins) with broad optical spectra; for melanins in particular, the optical absorption spectrum is typically featureless. In addition, scattering limits penetration depth. As a result, the most common microscopy application by far is with excised tissue, which can be stained. However, nonlinear optical methods have the additional advantages of greater penetration depth and reduced sensitivity to scattering. Traditional nonlinear microscopy relies on mechanisms which produce light of a different color than the irradiating lasers, such as second harmonic generation or two photon induced fluorescence, and this contrast is sparse in biological issue without expressing or injecting different chromophores. Recently, stable laser sources and pulse shaping/pulse train modulation methods have made it possible to detect a much wider range of nonlinear molecular signatures, even at modest laser powers (much less than a laser pointer). Here we show the utility of a variety of such signatures (pump-probe, pulse-shaped stimulated Raman, cross-phase modulation) to quantitatively image the biochemical composition of transparent or pigmented tissue in a variety of applications, ranging from thin, unstained tissue sections to live knockout mice. The rich biochemical information provided by this method can be used as an indicator of melanocyte activity, which in turn (for example) reflects the status of melanocytic lesions. Comparisons with model systems (synthetic melanin nanoparticles, sepia melanin) and analysis of melanin degradation pathways in vivo have led to a quantitative understanding of the molecular basis of these changes.

  14. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using Time-Averaged Wave Envelope approach: comparison of numerical simulations and experimental results

    PubMed Central

    Wójcik, J.; Kujawska, T.; Nowicki, A.; Lewin, P.A.

    2008-01-01

    The primary goal of this work was to verify experimentally the applicability of the recently introduced Time-Averaged Wave Envelope (TAWE) method [1] as a tool for fast prediction of four dimensional (4D) pulsed nonlinear pressure fields from arbitrarily shaped acoustic sources in attenuating media. The experiments were performed in water at the fundamental frequency of 2.8 MHz for spherically focused (focal length F = 80 mm) square (20 × 20 mm) and rectangular (10 × 25 mm) sources similar to those used in the design of 1D linear arrays operating with ultrasonic imaging systems. The experimental results obtained with 10-cycle tone bursts at three different excitation levels corresponding to linear, moderately nonlinear and highly nonlinear propagation conditions (0.045, 0.225 and 0.45 MPa on-source pressure amplitude, respectively) were compared with those yielded using the TAWE approach [1]. The comparison of the experimental results and numerical simulations has shown that the TAWE approach is well suited to predict (to within ± 1 dB) both the spatial-temporal and spatial-spectral pressure variations in the pulsed nonlinear acoustic beams. The obtained results indicated that implementation of the TAWE approach enabled shortening of computation time in comparison with the time needed for prediction of the full 4D pulsed nonlinear acoustic fields using a conventional (Fourier-series) approach [2]. The reduction in computation time depends on several parameters, including the source geometry, dimensions, fundamental resonance frequency, excitation level as well as the strength of the medium nonlinearity. For the non-axisymmetric focused transducers mentioned above and excited by a tone burst corresponding to moderately nonlinear and highly nonlinear conditions the execution time of computations was 3 and 12 hours, respectively, when using a 1.5 GHz clock frequency, 32-bit processor PC laptop with 2 GB RAM memory, only. Such prediction of the full 4D pulsed field is not possible when using conventional, Fourier-series scheme as it would require increasing the RAM memory by at least 2 orders of magnitude. PMID:18474387

  15. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.

  16. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  17. Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Sun, L.; Yu, X. Q.

    2010-01-15

    Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.

  18. Adaptive enhancement for nonuniform illumination images via nonlinear mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Huang, Qian; Hu, Jing

    2017-09-01

    Nonuniform illumination images suffer from degenerated details because of underexposure, overexposure, or a combination of both. To improve the visual quality of color images, underexposure regions should be lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between underexposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarcation value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that our method produces good contrast and vivid color for both nonuniform illumination images and images with normal illumination.

  19. Guided wave methods and apparatus for nonlinear frequency generation

    DOEpatents

    Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.

    2000-01-01

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  20. A new ultrasonic transducer for improved contrast nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Bouakaz, Ayache; ten Cate, Folkert; de Jong, Nico

    2004-08-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of such a transducer design for improved contrast detection.

  1. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

    PubMed

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-14

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  2. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

    NASA Astrophysics Data System (ADS)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-01

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  3. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  4. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  6. On the numerical treatment of nonlinear source terms in reaction-convection equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.

  7. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane beingmore » supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.« less

  8. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  9. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  10. Linear and nonlinear schemes applied to pitch control of wind turbines.

    PubMed

    Geng, Hua; Yang, Geng

    2014-01-01

    Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.

  11. Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.

    PubMed

    Müller, Viktor; Lindenberger, Ulman

    2012-07-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.

  12. Short-Time Nonlinear Effects in the Exciton-Polariton System

    NASA Astrophysics Data System (ADS)

    Guevara, Cristi D.; Shipman, Stephen P.

    2018-04-01

    In the exciton-polariton system, a linear dispersive photon field is coupled to a nonlinear exciton field. Short-time analysis of the lossless system shows that, when the photon field is excited, the time required for that field to exhibit nonlinear effects is longer than the time required for the nonlinear Schrödinger equation, in which the photon field itself is nonlinear. When the initial condition is scaled by ɛ ^α , it is found that the relative error committed by omitting the nonlinear term in the exciton-polariton system remains within ɛ for all times up to t=Cɛ ^β , where β =(1-α (p-1))/(p+2). This is in contrast to β =1-α (p-1) for the nonlinear Schrödinger equation. The result is proved for solutions in H^s(R^n) for s>n/2. Numerical computations indicate that the results are sharp and also hold in L^2(R^n).

  13. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  14. Suite of Benchmark Tests to Conduct Mesh-Convergence Analysis of Nonlinear and Non-constant Coefficient Transport Codes

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F. A.

    2014-12-01

    Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.

  15. Multimodal nonlinear nanophotonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kivshar, Yuri S.

    2017-05-01

    Nonlinear nanophotonics is a rapidly developing field of research with many potential applications for the design of nonlinear nanoantennas, light sources, nanolasers, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for the subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. To engineer nonlinear scattering from resonant nanoscale elements, both modal and multipolar control of the nonlinear response are widely exploited for enhancing the near-field interaction and optimizing the radiation directionality. Motivated by the recent progress of all-dielectric nanophotonics, where the electric and magnetic multipolar contributions may become comparable, here we review the advances in the recently emerged field of multipolar nonlinear nanophotonics, starting from earlier relevant studies of metallic and metal-dielectric structures supporting localized plasmonic resonances to then discussing the latest results for all-dielectric nanostructures driven by Mie-type multipolar resonances and optically induced magnetic response. These recent developments suggest intriguing opportunities for a design of nonlinear subwavelength light sources with reconfigurable radiation characteristics and engineering large effective optical nonlinearities at the nanoscale, which could have important implications for novel nonlinear photonic devices operating beyond the diffraction limit.

  16. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation

    ERIC Educational Resources Information Center

    Hinton, Geoffrey; Osindero, Simon; Welling, Max; Teh, Yee-Whye

    2006-01-01

    We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of…

  17. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  18. Fringe projection profilometry with portable consumer devices

    NASA Astrophysics Data System (ADS)

    Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin

    2018-01-01

    A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.

  19. Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry

    NASA Technical Reports Server (NTRS)

    Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.

    2014-01-01

    Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.

  20. Nonlinear magneto-plasmonics

    DOE PAGES

    Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...

    2015-10-19

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less

  1. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-05-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  2. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-02-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  3. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    PubMed

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  4. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  5. Fatigue crack detection by nonlinear spectral correlation with a wideband input

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sohn, Hoon

    2017-04-01

    Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.

  6. On some nonlinear effects in ultrasonic fields

    PubMed

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  7. Modeling source-filter interaction in belting and high-pitched operatic male singing

    PubMed Central

    Titze, Ingo R.; Worley, Albert S.

    2009-01-01

    Nonlinear source-filter theory is applied to explain some acoustic differences between two contrasting male singing productions at high pitches: operatic style versus jazz belt or theater belt. Several stylized vocal tract shapes (caricatures) are discussed that form the bases of these styles. It is hypothesized that operatic singing uses vowels that are modified toward an inverted megaphone mouth shape for transitioning into the high-pitch range. This allows all the harmonics except the fundamental to be “lifted” over the first formant. Belting, on the other hand, uses vowels that are consistently modified toward the megaphone (trumpet-like) mouth shape. Both the fundamental and the second harmonic are then kept below the first formant. The vocal tract shapes provide collective reinforcement to multiple harmonics in the form of inertive supraglottal reactance and compliant subglottal reactance. Examples of lip openings from four well-known artists are used to infer vocal tract area functions and the corresponding reactances. PMID:19739766

  8. Statistical physics of vaccination

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Bauch, Chris T.; Bhattacharyya, Samit; d'Onofrio, Alberto; Manfredi, Piero; Perc, Matjaž; Perra, Nicola; Salathé, Marcel; Zhao, Dawei

    2016-12-01

    Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination-one of the most important preventive measures of modern times-is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research.

  9. Improved CT Detection of Acute Herpes Simplex Virus Type 1 Encephalitis Based on a Frequency-Selective Nonlinear Blending: Comparison With MRI.

    PubMed

    Bongers, Malte Niklas; Bier, Georg; Ditt, Hendrik; Beck, Robert; Ernemann, Ulrike; Nikolaou, Konstantin; Horger, Marius

    2016-11-01

    The purpose of this study is to compare the diagnostic efficacy of a new CT postprocessing tool based on frequency-selective nonlinear blending (best-contrast CT) with that of standard linear blending of unenhanced head CT in patients with herpes simplex virus type 1 and herpes simplex virus encephalitis (HSE), using FLAIR MRI sequences as the standard of reference. Fifteen consecutive patients (six women and nine men; mean [± SD] age, 60 ± 19 years) with proven HSE (positive polymerase chain reaction results from CSF analysis and the presence of neurologic deficits) were retrospectively enrolled. All patients had undergone head CT and MRI (mean time interval, 2 ± 2 days). After standardized unenhanced head CT scans were read, presets of the best-contrast algorithm were determined (center, 30 HU; delta, 5 HU; slope, 5 nondimensional), and resulting images were analyzed. Contrast enhancement was objectively measured by ROI analysis, comparing contrast-to-noise ratios (CNRs) of unenhanced CT and best-contrast CT. FLAIR and DWI MRI sequences were analyzed, and FLAIR was considered as the standard of reference. For assessment of disease extent, a previously reported 50-point score (HSE score) was used. CNR values for unenhanced head CT (CNR, 5.42 ± 2.77) could be statistically significantly increased using best-contrast CT (CNR, 9.62 ± 4.28) (p = 0.003). FLAIR sequences yielded a median HSE score of 9.0 (range, 6-17) and DWI sequences yielded HSE scores of 6.0 (range, 5-17). By comparison, unenhanced head CT resulted in a median HSE score of 3.5 (range, 1-6). The median best-contrast CT HSE score was 7.5 (range, 6-10). Agreement between FLAIR and unenhanced CT was 54.44%, that between DWI and best-contrast CT was 95.36%, and that between FLAIR and best-contrast CT was 85.21%. The most frequently overseen findings were located at the level of the upper part of the mesencephalon and at the subthalamic or insular level. Frequency-selective nonlinear blending significantly increases contrast and detects brain parenchymal involvement in HSE more sensitively compared with unenhanced CT. The sensitivity of best-contrast CT seems to be equal to that of DWI and almost as good as that of FLAIR.

  10. Nonlinear dynamics in low permittivity media: the impact of losses.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, M

    2013-12-02

    Slabs of materials with near-zero permittivity display enhanced nonlinear processes. We show that field enhancement due to the continuity of the longitudinal component of the displacement field drastically enhances harmonic generation. We investigate the impact of losses with and without bulk nonlinearities and demonstrate that in the latter scenario surface, magnetic and quadrupolar nonlinear sources cannot always be ignored.

  11. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  12. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  13. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  14. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  15. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  16. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    NASA Astrophysics Data System (ADS)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  17. Nonlinear acoustic detection of weathered, low compliance landmines

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.; Alberts, W. C. Kirkpatrick; Korman, Murray S.

    2005-09-01

    Two potential impediments to acoustic landmine detection are soil weathering processes and low compliance landmines. To bury landmines, the soil within a mine diameter is removed and replaced such that bulk density, compression, and shear strength all decrease, leaving an acoustic scar detectable with the linear acoustic measurement technique. After a few soil wetting and drying cycles, this contrast is reduced. Linear acoustic mine detection measurements were made on a low impedance contrast landmine before the first rainfall on several occasions over the subsequent 5 years. During this period of time, both the spatial and frequency resolution had to be increased to maintain an on/off target velocity ratio that allowed detection. In some cases, the landmine remains undetectable. To address this, two-tone nonlinear acoustic measurements have been made on these landmines. When the landmine is detectable with linear acoustics, two tones are broadcast at the frequency where the on/off target velocity ratio is the largest. For the cases when the landmine is undetectable, a two-tone sweep is performed and the operator observes the real-time velocity FFT, noting nonlinear sidebands. Next, two-tone tests are conducted at these sidebands to determine nonlinear velocity profiles. [Work supported by U.S. Army RDECOM, NVESD.

  18. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    NASA Astrophysics Data System (ADS)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  19. Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength

    PubMed Central

    Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer

    2016-01-01

    Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles. PMID:27783656

  20. Evolution of diffraction and self-diffraction phenomena in thin films of Gelite Bloom/Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar

    2017-09-01

    In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.

  1. Correlation techniques to determine model form in robust nonlinear system realization/identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1991-01-01

    The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  2. Nonlinear damage detection in composite structures using bispectral analysis

    NASA Astrophysics Data System (ADS)

    Ciampa, Francesco; Pickering, Simon; Scarselli, Gennaro; Meo, Michele

    2014-03-01

    Literature offers a quantitative number of diagnostic methods that can continuously provide detailed information of the material defects and damages in aerospace and civil engineering applications. Indeed, low velocity impact damages can considerably degrade the integrity of structural components and, if not detected, they can result in catastrophic failure conditions. This paper presents a nonlinear Structural Health Monitoring (SHM) method, based on ultrasonic guided waves (GW), for the detection of the nonlinear signature in a damaged composite structure. The proposed technique, based on a bispectral analysis of ultrasonic input waveforms, allows for the evaluation of the nonlinear response due to the presence of cracks and delaminations. Indeed, such a methodology was used to characterize the nonlinear behaviour of the structure, by exploiting the frequency mixing of the original waveform acquired from a sparse array of sensors. The robustness of bispectral analysis was experimentally demonstrated on a damaged carbon fibre reinforce plastic (CFRP) composite panel, and the nonlinear source was retrieved with a high level of accuracy. Unlike other linear and nonlinear ultrasonic methods for damage detection, this methodology does not require any baseline with the undamaged structure for the evaluation of the nonlinear source, nor a priori knowledge of the mechanical properties of the specimen. Moreover, bispectral analysis can be considered as a nonlinear elastic wave spectroscopy (NEWS) technique for materials showing either classical or non-classical nonlinear behaviour.

  3. Masking effects of low-frequency sinusoidal gratings on the detection of contrast modulation in high-frequency carriers

    NASA Astrophysics Data System (ADS)

    Henning, G. Bruce

    2004-04-01

    A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.

  4. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses.

    PubMed

    Didenko, N V; Konyashchenko, A V; Lutsenko, A P; Tenyakov, S Yu

    2008-03-03

    Experiment and modeling show that the refractive index nonlinearity can significantly degrade the contrast of a chirped-pulse amplifier seeded with a pulse and a single postpulse. Multiple powerful non-equidistant pre- and postpulses are generated. For a Gaussian pulse and a hat-top beam, an incident postpulse of energy W results in a prepulse of energy 0.58B(2)W, where B is the nonlinear phase (B-integral) of the main pulse. Calculations show that level of satellites due to gain saturation is negligibly small. Experimental results for Ti:Sapphire regenerative and multipass amplifiers and prepulse generation in fused silica agree well with the theory.

  5. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  6. Nonlinear susceptibility and dynamic hysteresis loops of magnetic nanoparticles with biaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.

    2013-02-01

    The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.

  7. Electromagnetically-induced-absorption resonance with high contrast and narrow width in the Hanle configuration

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2014-12-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  8. Finite-amplitude, pulsed, ultrasonic beams

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Frøysa, Kjell-Eivind

    An analytical, approximate solution of the inviscid KZK equation for a nonlinear pulsed sound beam radiated by an acoustic source with a Gaussian velocity distribution, is obtained by means of the renormalization method. This method involves two steps. First, the transient, weakly nonlinear field is computed. However, because of cumulative nonlinear effects, that expansion is non-uniform and breaks down at some distance away from the source. So, in order to extend its validity, it is re-written in a new frame of co-ordinates, better suited to following the nonlinear distorsion of the wave profile. Basically, the nonlinear coordinate transform introduces additional terms in the expansion, which are chosen so as to counterbalance the non-uniform ones. Special care is devoted to the treatment of shock waves. Finally, comparisons with the results of a finite-difference scheme turn out favorable, and show the efficiency of the method for a rather large range of parameters.

  9. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.

    PubMed

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih

    2015-03-24

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.

  10. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  11. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  12. Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation.

    PubMed

    Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek

    2012-07-30

    The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.

  13. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.

  14. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  15. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  16. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  17. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  18. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2012-08-01

    An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.

  19. Self-phase modulation and two-photon absorption imaging of cells and active neurons

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Liu, Henry; Piletic, Ivan R.; Ye, Tong; Yasuda, Ryohei; Warren, Warren S.

    2007-02-01

    Even though multi-photon fluorescence microscopy offers higher resolution and better penetration depth than traditional fluorescence microscopy, its use is restricted to the detection of molecules that fluoresce. Two-photon absorption (TPA) imaging can provide contrast in non-fluorescent molecules while retaining the high resolution and sectioning capabilities of nonlinear imaging modalities. In the long-wavelength water window, tissue TPA is dominated by the endogenous molecules melanin and hemoglobin with an almost complete absence of endogenous two-photon fluorescence. A complementary nonlinear contrast mechanism is self-phase modulation (SPM), which can provide intrinsic signatures that can depend on local tissue anisotropy, chemical environment, or other structural properties. We have developed a spectral hole refilling measurement technique for TPA and SPM measurements using shaped ultrafast laser pulses. Here we report on a microscopy setup to simultaneously acquire 3D, high-resolution TPA and SPM images. We have acquired data in mounted B16 melanoma cells with very modest laser power levels. We will also discuss the possible application of this measurement technique to neuronal imaging. Since SPM is sensitive to material structure we can expect SPM properties of neurons to change during neuronal firing. Using our hole-refilling technique we have now demonstrated strong novel intrinsic nonlinear signatures of neuronal activation in a hippocampal brain slice. The observed changes in nonlinear signal upon collective activation were up to factors of two, unlike other intrinsic optical signal changes on the percent level. These results show that TPA and SPM imaging can provide important novel functional contrast in tissue using very modest power levels suitable for in vivo applications.

  20. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  1. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  2. Contrast and Intensity upgrades to the Texas Petawatt laser for hadron generation and non-linear QED experiments

    NASA Astrophysics Data System (ADS)

    Hegelich, Bjorn M.; Arefiev, Alexey; Ditmire, Todd; Donovan, Michael E.; Dyer, Gillis; Gaul, Erhard; Labun, Lance; Luedtke, Scott; Martinez, Mikael; McCarry, Edward; Stark, David; Pomerantz, Ishay; Tiwari, Ganesh; Toncian, Toma

    2015-11-01

    Advances in laser-based hadron generation, especially with respect to particle energy, as well as reaching the new regime of radiation dominated plasmas and non-linear QED, require laser fields of Petavolts per meter that preferably interact with very high density, overcritical plasmas. To achieve these conditions we are upgrading the Texas Petawatt Laser both respect to on-target laser intensity and laser-contrast, aiming to reach intensities of ~ 5x1022 W/cm2 and pulse contrast parameters allowing the interaction with overcritical, yet ultrathin, sub-micron targets. We will report on the planned experiments aimed at ion acceleration, neutron generation and the first experimental measurement of radiation reactions to motivate the chosen upgrade parameters. We will further report on the technical changes to the laser and present first measurements of the achieved intensity and contrast parameters. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014), the Air Force Office of Scientific Research (FA9550-14-1-0045) and the National Institute of Health SBIR.

  3. Z-scan measurements using femtosecond continuum generation

    NASA Astrophysics Data System (ADS)

    de Boni, Leonardo; Andrade, Acácio A.; Misoguti, Lino; Mendonça, Cléber R.; Zilio, Sérgio Carlos

    2004-08-01

    We present a single beam Z-scan technique using an intense, broadband, white-light continuum (WLC) beam for the direct measurement of nonlinear absorption spectra. In order to demonstrate the validity of our technique, we compared the results of tetraaniline and Sudan 3 solutions obtained with WLC and conventional single wavelength light sources. Both approaches lead to the same nonlinear spectrum, indicating that the association of the Z-scan technique and the WLC source results in an useful method for the measurement of nonlinear spectra of both absorbing (saturable absorption or reverse saturable absorption) and transparent (two-photon absorption) samples.

  4. Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation

    NASA Astrophysics Data System (ADS)

    Lim, Woei Chet; Regis, Marco; Clarkson, Chris

    2013-10-01

    We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.

  5. Investigation of broadband terahertz generation from metasurface

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E. I.; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M.

    2018-05-01

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.

  6. Investigation of broadband terahertz generation from metasurface.

    PubMed

    Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E I; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M

    2018-05-28

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.

  7. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats

    PubMed Central

    Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.

    2011-01-01

    Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661

  8. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  9. Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Zemon, Vance; Schechter, Isaac; Saperstein, Alice M.; Hoptman, Matthew J.; Lim, Kelvin O.; Revheim, Nadine; Silipo, Gail; Javitt, Daniel C.

    2005-01-01

    Background Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-d-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. Objectives To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. Design, Setting, and Participants Between-group study at an inpatient state psychiatric hospital and out-patient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. Main Outcome Measures (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. Results Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P=.001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P=.001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P=.002), which was in turn related to deficits in complex visual processing (P≤.04). Both evoked potential (P≤.04) and contrast sensitivity (P=.01) measures significantly predicted community functioning. Conclusions These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits. PMID:15867102

  10. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.

    PubMed

    Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong

    2011-09-01

    In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.

  11. Inverting Monotonic Nonlinearities by Entropy Maximization

    PubMed Central

    López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261

  12. Inverting Monotonic Nonlinearities by Entropy Maximization.

    PubMed

    Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.

  13. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  14. High-order rogue waves in vector nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Guo, Boling; Zhao, Li-Chen

    2014-04-01

    We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.

  15. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Electromagnetic diode based on photonic crystal cavity with embedded highly dispersive meta-interface

    NASA Astrophysics Data System (ADS)

    Chen, Yongqiang; Dong, Lijuan; Xu, Xiaohu; Jiang, Jun; Shi, Yunlong

    2017-12-01

    In this paper, we propose a scheme for subwavelength electromagnetic diodes by employing a photonic crystal (PC) cavity with embedded electromagnetically induced-transparency (EIT)-like highly dispersive meta-interface. A nonreciprocal response, with 21.5 dB transmission light contrast and 12.3 dBm working power, is conceptually demonstrated in a microstrip transmission line system with asymmetric absorption and nonlinear medium inclusion. Such high-contrast transmission and relatively low-threshold diode action stem from the composite PC-EIT mechanism. This mechanism not only possesses a large quality factor and strong localization of fields but also does not enlarge the device volume and drastically reduce transmittance. Our findings should be beneficial for the design of new and practical metamaterial-enabled nonlinear devices.

  17. Synchronization between two coupled direct current glow discharge plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  18. Sound transmission in ducts containing nearly choked flows

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Myers, M. K.

    1979-01-01

    The nonlinear theory previously developed by the authors (1977, 1978) is used to obtain numerical results for sound transmission through a nearly choked throat in a variable-area duct. Parametric studies are performed for different source locations, strengths and frequencies. It is shown that the nonlinear interactions in the throat region generate superharmonics of the fundamental (source) frequency throughout the duct. The amplitudes of these superharmonics increase as the source parameters (frequency and strength) are increased toward values leading to acoustic shocks. For a downstream source, superharmonics carry about 20% of the total acoustic power as shocking conditions are approached. For the source strength levels and frequencies considered, streaming effects are negligible.

  19. Nonlinear Spectroscopy.

    DTIC Science & Technology

    1985-03-20

    Finally, the (linear) .response of a Fabry - Perot cavity to a phase modulated light wave is considered because of its relevance to phase locking a laser...prepared and therefore doesn’t contribute. This effect provides the remaining factor of two. IV. FABRY - PEROT We now calculate the response of a plane...mirror Fabry - Perot cavity to a phase-modulated laser beam. This linear problem, which contrasts with the nonlinear atomic case, is the basis of an

  20. Stationary variational estimates for the effective response and field fluctuations in nonlinear composites

    NASA Astrophysics Data System (ADS)

    Ponte Castañeda, Pedro

    2016-11-01

    This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.

  1. Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.

    2018-03-01

    We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.

  2. Investigation of broadband terahertz generation from metasurface

    DOE PAGES

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...

    2018-01-01

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  3. Investigation of broadband terahertz generation from metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  4. Investigation of broadband terahertz generation from metasurface

    DOE PAGES

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...

    2018-05-21

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  5. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  6. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  7. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

    PubMed

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.

  8. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers.

    PubMed

    Mertiri, Alket; Altug, Hatice; Hong, Mi K; Mehta, Pankaj; Mertz, Jerome; Ziegler, Lawrence D; Erramilli, Shyamsunder

    2014-08-20

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4'-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump-probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs.

  9. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers

    PubMed Central

    2015-01-01

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump–probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs. PMID:25541620

  10. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acousticmore » waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.« less

  11. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  12. Comparing in vivo pump–probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions

    PubMed Central

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Mitropoulos, Tanya; Simpson, Mary Jane; Zhang, Jennifer Y.; Warren, Warren S.

    2014-01-01

    Abstract. We demonstrate a multimodal approach that combines a pump–probe with confocal reflectance and multiphoton autofluorescence microscopy. Pump–probe microscopy has been proven to be of great value in analyzing thin tissue sections of pigmented lesions, as it produces molecular contrast which is inaccessible by other means. However, the higher optical intensity required to overcome scattering in thick tissue leads to higher-order nonlinearities in the optical response of melanin (e.g., two-photon pump and one-photon probe) that present additional challenges for interpreting the data. We show that analysis of pigment composition in vivo must carefully account for signal terms that are nonlinear with respect to the pump and probe intensities. We find that pump–probe imaging gives useful contrast for pigmented structures over a large range of spatial scales (100  μm to 1 cm), making it a potentially useful tool for tracking the progression of pigmented lesions without the need to introduce exogenous contrast agents. PMID:25415567

  13. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.

  14. A Nonlinear Calibration Algorithm Based on Harmonic Decomposition for Two-Axis Fluxgate Sensors

    PubMed Central

    Liu, Shibin

    2018-01-01

    Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm is validated and compared with a classical calibration algorithm by experiments. The experimental results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of heading is corrected from 1.86° to 0.07°, which is approximately 11% in contrast with 0.62° after the classical calibration. The results suggest an effective way to improve the calibration performance of two-axis fluxgate sensors. PMID:29789448

  15. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  16. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  17. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  18. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parametersmore » were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.« less

  19. Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces

    NASA Astrophysics Data System (ADS)

    Dai, Gaole; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2018-03-01

    We propose and investigate a class of structural surfaces (metasurfaces). We develop the perturbation theory and the effective medium theory to study the thermal properties of the metasurface. We report that the coefficient of temperature-dependent (nonlinear) item in thermal conductivity can be enhanced under certain conditions. Furthermore, the existence of nonlinear item helps to generate high-order harmonic frequencies of heat flux in the presence of a heat source with periodic temperature. This work paves a different way to control and manipulate the transfer of heat, and it also makes it possible to develop nonlinear thermotics in the light of nonlinear optics.

  20. Single-point nonlinearity indicators for the propagation of high-amplitude acoustic signals

    NASA Astrophysics Data System (ADS)

    Falco, Lauren E.

    In the study of jet noise, prediction schemes and impact assessment models based on linear acoustic theory are not always sufficient to describe the character of the radiated noise. Typically, a spectral comparison method is employed to determine whether nonlinear effects are important. A power spectral density recorded at one propagation distance is extrapolated to a different distance using linear theory and compared with a measurement at the second distance. Discrepancies between the measured and extrapolated spectra are often attributed to nonlinearity. There are many other factors that can influence the outcome of this operation, though, including meteorological factors such as wind and temperature gradients, ground reflections, and uncertainty in the source location. Therefore, an improved method for assessing the importance of nonlinearity that requires only a single measurement is desirable. This work examines four candidate single-point nonlinearity indicators derived from the quantity Qp2 p found in the work of Morfey and Howell. These include: Qneg/Qpos, a ratio designed to test for conservation of energy; Qpos/p3rms , a bandlimited quantity that describes energy lost from a certain part of the spectrum due to nonlinearity; the spectral Gol'dberg number Gamma s, a dimensionless quantity whose sign indicates the direction of nonlinear energy transfer and whose magnitude can be used to compare the relative importance of linear and nonlinear effects; and the coherence indicator gamma Q, which also denotes the direction of nonlinear energy transfer and which is bounded between -1 and 1. Two sets of experimental data are presented. The first was recorded in a plane wave tube built of 2" inner-diameter PVC pipe with four evenly-spaced microphones flush-mounted with the inside wall of the tube. One or two compression drivers were used as the sound source, and an anechoic termination made of fiberglass served to minimize reflections from the far end of the tube. Both single-frequency signals and band-limited noise were used as sources, and waveforms were recorded at all four propagation distances. The second set of data was obtained at the model-scale jet facility at the University of Mississippi's National Center for Physical Acoustics. A computer controlled microphone boom was constructed to hold an array of six microphones. The array was rotated about the presumed location of the acoustic source center (4 jet diameters downstream of the nozzle exit), and two stationary microphones were mounted on the walls. Measurements were made for several jet conditions; data presented here represent Mach 0.85 and Mach 2 conditions. Application of the four candidate nonlinearity indicators to the experimental data reveals that each indicator has advantages and disadvantages. Qneg/Qpos does not detect the presence of shocks as postulated, but it does conform to expectations in the shock-free region and support the use of Qpos as an indicator. The main advantage of Qpos/p3rms is that it can be used for band-limited measurements. Increased indicator values are seen for signals with higher source frequencies and amplitudes that are expected to undergo stronger nonlinear evolution. However, no physical meaning can yet be derived from the numerical value of the indicator. The spectral Gol'dberg number Gammas is the most promising of the candidate quantities. It has the ability to indicate the direction of nonlinear energy transfer as well as provide a comparison between the strengths of linear and nonlinear effects. These attributes allow it to be used to qualitatively predict the evolution of a spectrum. The coherence indicator gammaQ also specifies the direction of nonlinear energy transfer, but its numerical value holds less meaning. However, it is bounded between -1 and 1, so values near zero denote very weak or no nonlinearity, and values near -1 or 1 denote strong nonlinearity. Further, because it is bounded, it does not become unstable for spectral components beneath the system noise floor.

  1. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  2. gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang Viet; Patra, Jagdish Chandra; Emmanuel, Sabu

    2006-12-01

    A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.

  3. Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dual-flip defects

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie

    2017-08-01

    We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.

  4. Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission.

    PubMed

    Werblin, Frank S

    2010-03-01

    Early retinal studies categorized ganglion cell behavior as either linear or nonlinear and rectifying as represented by the familiar X- and Y-type ganglion cells in cat. Nonlinear behavior is in large part a consequence of the rectifying nonlinearities inherent in synaptic transmission. These nonlinear signals underlie many special functions in retinal processing, including motion detection, motion in motion, and local edge detection. But linear behavior is also required for some visual processing tasks. For these tasks, the inherently nonlinear signals are "linearized" by "crossover inhibition." Linearization utilizes a circuitry whereby nonlinear ON inhibition adds with nonlinear OFF excitation or ON excitation adds with OFF inhibition to generate a more linear postsynaptic voltage response. Crossover inhibition has now been measured in most bipolar, amacrine, and ganglion cells. Functionally crossover inhibition enhances edge detection, allows ganglion cells to recognize luminance-neutral patterns with their receptive fields, permits ganglion cells to distinguish contrast from luminance, and maintains a more constant conductance during the light response. In some cases, crossover extends the operating range of cone-driven OFF ganglion cells into the scotopic levels. Crossover inhibition is also found in neurons of the lateral geniculate nucleus and V1.

  5. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nonlinear Dynamics of the Nearshore Boundary Layer of a Large Lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea A.; Lemmin, U.; Bouffard, D.; Barry, D. A.

    2018-02-01

    We examine nearshore and pelagic current variability in Lake Geneva, a large and deep lake in western Europe, using observations from several measurement locations and a three-dimensional numerical model for the period 2014-2016. Linear internal seiche modes excited by wind forcing clearly appear as peaks in the energy spectra for measurements in offshore locations. In contrast, spectra from the nearshore data, where currents interact with the lake bed, reveal a negligible contribution of internal seiches to the total kinetic energy. A similar contrast is seen in the spectra obtained from the numerical model at the same locations. Comparing the contribution of the different terms in the vertically averaged momentum equation from the modeling results shows that the nonlinear advective term dominates in the nearshore boundary layer. Its contribution decays with distance from shore. The width of this nearshore boundary layer, which may extend for several kilometers, seems to be mainly determined by local topography. Both field measurements and modeling results indicate that nonlinear dynamics are of primary importance in the nearshore boundary layer.

  7. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control.

    PubMed

    Palese, Stephen; Cheung, Eric; Goodno, Gregory; Shih, Chun-Ching; Di Teodoro, Fabio; McComb, Timothy; Weber, Mark

    2012-03-26

    Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

  8. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  9. Contrast Enhancement of the LOASIS CPA Laser and Effects on Electron Beam Performance of LWFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Csaba; Gonsalves, Anthony J.; Panasenko, Dmitriy

    2009-01-22

    A nonlinear optical pulse cleaning technique based on cross-polarized wave (XPW) generation filtering [1] has been implemented to improve laser pulse contrast, and consequently to control pre-ionization in laser-plasma accelerator experiments. Three orders of magnitude improvement in pre-pulse contrast has been achieved, resulting in 4-fold increase in electron charge and improved stability of both the electron beam energy and THz radiation generated as a secondary process in the gas-jet-based LWFA experiments.

  10. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  11. Wavepacket dynamics in a family of nonlinear Fibonacci lattices

    NASA Astrophysics Data System (ADS)

    Pandey, Mohit; Campbell, David

    We examine the dynamics of a quantum particle in a variety of one-dimensional Fibonacci lattices (which are shifted from each other) in the presence of interaction. To describe the nonlinear interactions we employ the discrete nonlinear Schrödinger (DNLS) equation. Using a single-site localized state in the lattice as our initial condition, we evolve the wavepacket numerically using DNLS equation. We compute the root-mean-square width of the wavepacket as it evolves in time and show how the ``global location'' of initial wavepacket affects the dynamics. We compare and contrast our results with earlier studies of related but distinct models.

  12. The CHARIS Integral Field Spectrograph with SCExAO: Data Reduction and Performance

    NASA Astrophysics Data System (ADS)

    Kasdin, N. Jeremy; Groff, Tyler; Brandt, Timothy; Currie, Thayne; Rizzo, Maxime; Chilcote, Jeffrey K.; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Norris, Barnaby; Tamura, Motohide

    2018-01-01

    We summarize the data reduction pipeline and on-sky performance of the CHARIS Integral Field Spectrograph behind the SCExAO Adaptive Optics system on the Subaru Telescope. The open-source pipeline produces data cubes from raw detector reads using a Χ^2-based spectral extraction technique. It implements a number of advances, including a fit to the full nonlinear pixel response, suppression of up to a factor of ~2 in read noise, and deconvolution of the spectra with the line-spread function. The CHARIS team is currently developing the calibration and postprocessing software that will comprise the second component of the data reduction pipeline. Here, we show a range of CHARIS images, spectra, and contrast curves produced using provisional routines. CHARIS is now characterizing exoplanets simultaneously across the J, H, and K bands.

  13. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  14. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    PubMed

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  15. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    PubMed

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  16. Bifurcations in two-image photometric stereo for orthogonal illuminations

    NASA Astrophysics Data System (ADS)

    Kozera, R.; Prokopenya, A.; Noakes, L.; Śluzek, A.

    2017-07-01

    This paper discusses the ambiguous shape recovery in two-image photometric stereo for a Lambertian surface. The current uniqueness analysis refers to linearly independent light-source directions p = (0, 0, -1) and q arbitrary. For this case necessary and sufficient condition determining ambiguous reconstruction is governed by a second-order linear partial differential equation with constant coefficients. In contrast, a general position of both non-colinear illumination directions p and q leads to a highly non-linear PDE which raises a number of technical difficulties. As recently shown, the latter can also be handled for another family of orthogonal illuminations parallel to the OXZ-plane. For the special case of p = (0, 0, -1) a potential ambiguity stems also from the possible bifurcations of sub-local solutions glued together along a curve defined by an algebraic equation in terms of the data. This paper discusses the occurrence of similar bifurcations for such configurations of orthogonal light-source directions. The discussion to follow is supplemented with examples based on continuous reflectance map model and generated synthetic images.

  17. Age differences in loneliness from late adolescence to oldest old age.

    PubMed

    Luhmann, Maike; Hawkley, Louise C

    2016-06-01

    Contrary to common stereotypes, loneliness is not restricted to old age but can occur at any life stage. In this study, we used data from a large, nationally representative German study (N = 16,132) to describe and explain age differences in loneliness from late adolescence to oldest old age. The age distribution of loneliness followed a complex nonlinear trajectory, with elevated loneliness levels among young adults and among the oldest old. The late-life increase in loneliness could be explained by lower income levels, higher prevalence of functional limitations, and higher proportion of singles in this age group. Consistent with an age-normative perspective, the association of income, relationship status, household size, and work status with loneliness differed between different age groups. In contrast, indicators of the quantity of social relationships (social engagement, number of friends, contact frequency) were universally associated with loneliness regardless of age. Overall, these findings show that sources of loneliness in older adults are well understood. Future research should focus on understanding the specific sources of loneliness in middle-aged adults. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Nonlinear Optical Properties of Traditional and Novel Materials

    NASA Astrophysics Data System (ADS)

    Krupa, Sean J.

    Nonlinear optical processes are an excellent candidate to provide the heralded, indistinguishable, or entangled photons necessary for development of quantum mechanics based technology which currently lack bright sources of these photons. In order to support these technologies, and others, two classes of materials: traditional and novel, were investigated via optical characterization methods with goal of gaining insight into which materials and experimental conditions yield the greatest nonlinear optical effects. Optical characterization of periodically poled lithium niobate (PPLN) helped support the development of a simple, efficient photon pair source that could be easily integrated into optical networks. Additionally, an in-situ measurement of the 2nd order nonlinear optical coefficient was developed to aid in the characterization of PPLN pair sources. Lastly, an undergraduate demonstration of quantum key distribution was constructed such that students could see the primary application for PPLN photon pair sources in an affordable, approachable demonstration. A class of novel optical materials known as 2D materials has been identified as potential replacements to the traditional nonlinear optical materials discussed in Part I. Through optical characterization of second harmonic generation (SHG) the ideal conditions for spontaneous parametric downconversion were established as well as signal thresholds for successful detection. Attempts to observe SPDC produces hints that weak generate SPDC may be present in WS2 samples however this is incredibly difficult to confirm. As growth techniques of 2D materials improve, a photonic device constructed from these materials may be possible, however it will need some mechanism e.g. stacking, a cavity, etc. to help enhance the SPDC signal.

  19. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    DTIC Science & Technology

    2013-01-01

    Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  20. Acoustic fingerprints of photoacoustic contrast agents for molecular imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2007-02-01

    Protein nanospheres capable of frequency controlled oscillation in response to laser stimulation are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by dye-labeled protein nanospheres causes thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and greater than 2 orders of magnitude increase in signal amplitude subsequent to converting labeled proteins into nanospheres. Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of protein nanospheres in phantom vessels show enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  1. Erratum: Sources of Image Degradation in Fundamental and Harmonic Ultrasound Imaging: A Nonlinear, Full-Wave, Simulation Study

    PubMed Central

    Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.

    2015-01-01

    A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul A.

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less

  3. The real evidence of effects from source to freefield as base for nonlinear seismology

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen-; -Florinela Manea, Elena

    2014-05-01

    Authors developed in last time the concept of "Nonlinear Seismology-The Seismology of the XXI Century". Prof. P. M. Shearer, California Univ. in last book:(i) Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii) The shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii) This is an active area of research in strong motion and engineering seismology. Aki: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think. Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification (Tectonophysics, 218, 93-111, 1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and splitting up (if it is possible…and if it is necessary!) the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the free field response spectra which are the last in this chain and they are the ones who are taken into account in seismic design of all structures. Soils from last part of this system(source-freefield) exhibit a strong nonlinear behaviour under cyclic loading conditions and although have many common mechanical properties require the use of different models to describe behavior differences. Sands typically have low rheological properties and can be modeled with an acceptable linear elastic model and clays which frequently presents significant changes over time can be modeled by a nonlinear viscoelastic model The real evidence of site effects from source to freefield analysis was conducted by using spectral amplification factors for last strong and deep Vrancea earthquakes (March 04,1977;MW =7.5;h=94.5 km; August 30,1986;MW=7.1;h=134.5 km; May 30 1009;MW=6.0;h=90.9 km; May 31, 1990; MW=6.4 ;h=86.9 km).The amplification factors decrease with increasing the magnitudes of strong Vrancea earthquakes and these values are far of that given by Regulatory Guide 1.60 of the U. S. Atomic Energy Commission and IAEA Vienna. The concept was used for last Stress Test asked by IAEA Vienna for Romanian Cernavoda Nuclear Power Plant.. The spectral amplification factors were: SAF= 4.07 (MW =7.1); 4.74(MW=6.9) and 5.78 (MW=6.4), unction of earthquake magnitude. The analysis indicates that the effect of nonlinearity could be very important and if the analysis is made for peak accelerations, it is 48.87% smaller assuming that response of soil to earthquake with MW=6.4, it is still in elastic domain. In other 25 seismic stations here are values between 14.2% and 55.4%. The authors are coming with new quantitative real and recorded data in extra-Carpathian area with large alluvial deposits / sediments, thick Quaternary layers etc.

  4. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  5. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  6. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  7. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    PubMed

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  8. Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

    PubMed

    Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2015-05-15

    We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

  9. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    PubMed Central

    Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation. PMID:27118899

  10. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  11. Numerical simulation of incoherent optical wave propagation in nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Fernandez, Arnaud; Balac, Stéphane; Mugnier, Alain; Mahé, Fabrice; Texier-Picard, Rozenn; Chartier, Thierry; Pureur, David

    2013-11-01

    The present work concerns the study of pulsed laser systems containing a fiber amplifier for boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending on the characteristics of the optical source emitted by the master laser. However, it has not yet been possible to determine from the experimental data if the statistics of the photons is alone responsible for the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the observed nonlinear effects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  12. Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.

    PubMed

    Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M

    2011-02-01

    Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Deforming black hole and cosmological solutions by quasiperiodic and/or pattern forming structures in modified and Einstein gravity

    NASA Astrophysics Data System (ADS)

    Bubuianu, Laurenţiu; Vacaru, Sergiu I.

    2018-05-01

    We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.

  14. Nonlinearly driven harmonics of Alfvén modes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  15. Full spectrum optical safeguard

    DOEpatents

    Ackerman, Mark R.

    2008-12-02

    An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

  16. Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng

    2016-04-15

    In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less

  17. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    NASA Astrophysics Data System (ADS)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  18. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  19. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    NASA Astrophysics Data System (ADS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  20. Nonlinear degradation of a visible-light communication link: A Volterra-series approach

    NASA Astrophysics Data System (ADS)

    Kamalakis, Thomas; Dede, Georgia

    2018-06-01

    Visible light communications can be used to provide illumination and data communication at the same time. In this paper, a reverse-engineering approach is presented for assessing the impact of nonlinear signal distortion in visible light communication links. The approach is based on the Volterra series expansion and has the advantage of accurately accounting for memory effects in contrast to the static nonlinear models that are popular in the literature. Volterra kernels describe the end-to-end system response and can be inferred from measurements. Consequently, this approach does not rely on any particular physical models and assumptions regarding the individual link components. We provide the necessary framework for estimating the nonlinear distortion on the symbol estimates of a discrete multitone modulated link. Various design aspects such as waveform clipping and predistortion are also incorporated in the analysis. Using this framework, the nonlinear signal-to-interference is calculated for the system at hand. It is shown that at high signal amplitudes, the nonlinear signal-to-interference can be less than 25 dB.

  1. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.

    PubMed

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin; Bache, Morten

    2012-11-19

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency. Numerical results show that compressed pulses with less than three-cycle duration can be achieved even when the compression factor is very large, and in contrast to standard soliton compression, these compressed pulses have minimal pedestal and high quality factor.

  2. Implementation and evaluation of PM2.5 source contribution ...

    EPA Pesticide Factsheets

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambient levels and deposited amounts of primary and secondary inorganic PM2.5. Confidence in this approach is established by comparing ISAM source contribution estimates to emissions zero-out simulations recognizing that these approaches are not always expected to provide the same answer. The comparisons are expected to be most similar for more linear processes such as those involving primary emissions of PM2.5 and most different for non-linear systems like ammonium nitrate formation. Primarily emitted PM2.5 (e.g. elemental carbon), sulfur dioxide, ammonia, and nitrogen oxide contribution estimates compare well to zero-out estimates for ambient concentration and deposition. PM2.5 sulfate ion relationships are strong, but nonlinearity is evident and shown to be related to aqueous phase oxidation reactions in the host model. ISAM and zero-out contribution estimates are less strongly related for PM2.5 ammonium nitrate, resulting from instances of non-linear chemistry and negative responses (increases in PM2.5 due to decreases in emissions). ISAM is demonstrated in the context of an annual simulation tracking well characterized emissions source sectors and boundary conditions shows source contri

  3. Analyzing the relationships between reflection source DPOAEs and SFOAEs using a computational model

    NASA Astrophysics Data System (ADS)

    Wen, Haiqi; Bowling, Thomas; Meaud, Julien

    2018-05-01

    Distortion product otoacoustic emissions (DPOAEs) are sounds generated by the cochlea in response to a stimulus that consists of two primary tones. DPOAEs consist of a mixture of emissions arising from two different mechanisms: nonlinear distortion and coherent reflection. Stimulus Frequency Otoacoustic Emissions (SFOAEs) are sounds generated by the cochlea in response to a pure tone; SFOAEs are commonly hypothesized to be generated due to coherent reflection. Nonlinearity of the outer hair cells (OHCs) provides nonlinear amplification to the traveling wave while reflections occur due to pre-existing micromechanical impedance perturbations. In this work, DPOAEs are obtained from a time domain computational model coupling a lumped parameter middle ear model with a multiphysics mechanical-electrical-acoustical model of cochlea. Cochlear roughness is intro-duced by perturbing the value of the OHC electromechanical coupling coefficient to account for the putative inhomogeneities inside the cochlea. The DPOAEs emitted in the ear canal are decomposed into distortion source and reflection source components. The reflection source component of DPOAEs is compared to SFOAEs obtained using a frequency-domain implementation of the model, to help us understand how distortion source and reflection source contributes to total DPOAEs. Moreover, the group delays of reflection sources OAEs are compared to group delays in the basilar membrane velocity to clarify the relationship between basilar membrane and OAE group delays.

  4. Pump-probe microscopy of respiratory chain pigments: towards non-fluorescent label-free metabolic imaging

    NASA Astrophysics Data System (ADS)

    Domingue, Scott R.; Chicco, Adam J.; Bartels, Randy A.; Wilson, Jesse W.

    2017-02-01

    Current label-free metabolic microscopy techniques are limited to obtaining contrast from fluorescent molecules NAD(P)H and FAD+, and are unable to determine redox state along the mitochondrial respiratory chain itself. The respiratory chain electron carriers do not fluoresce, but some are heme proteins that have redox-dependent absorption spectra. The most prominent of these, cytochrome c, has been extensively characterized by transient absorption spectroscopy, which suggests that pump-probe measurements in the vicinity of 450 - 600 nm can provide strong contrast between its redox states. Motivated by the success of pump-probe microscopy targeting another heme protein, hemoglobin, we seek to extend the technique to the cytochromes, with the ultimate goal of dissecting respiratory chain function of individual cells in live tissue. To that end, we have developed a new optical system producing ultrafast, visible, independently-tunable pulse pairs via sum-frequency generation of nonlinearly broadened pulses in periodically-poled lithium niobate. The system is pumped by a homebuilt fiber-based oscillator/amplifier emitting 1060 nm pulses at 1.3 W (63 MHz repetition rate), and produces tunable pulses in the vicinity of 488 and 532 nm. Pump-probe spectroscopy of cytochrome c with this source reveals differences in excited-state absorption relaxation times between redox states. Though redox contrast is weak with this setup, we argue that this can be improved with a resonant galvo-scanning microscope. Moreover, pump-probe images were acquired of brown adipose tissue (which contains dense mitochondria), demonstrating label-free contrast from excited-state absorption in respiratory chain hemes.

  5. Amplitude-dependent topological edge states in nonlinear phononic lattices

    NASA Astrophysics Data System (ADS)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  6. Fusion of infrared and visible images based on BEMD and NSDFB

    NASA Astrophysics Data System (ADS)

    Zhu, Pan; Huang, Zhanhua; Lei, Hai

    2016-07-01

    This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.

  7. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Šantić, Neven; Fusaro, Adrien; Salem, Sabeur; Garnier, Josselin; Picozzi, Antonio; Kaiser, Robin

    2018-02-01

    The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to be valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive long interaction lengths.

  8. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  9. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

    PubMed Central

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586

  10. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2005-01-01

    In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.

  11. Dynamic Time Expansion and Compression Using Nonlinear Waveguides

    DOEpatents

    Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi

    2004-06-22

    Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  12. Dynamic time expansion and compression using nonlinear waveguides

    DOEpatents

    Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2004-06-22

    Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  13. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Liu, Yunqiao; Wang, Qianxi

    2016-11-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent, collapsing EMBs to cells and tissues in clinical practice have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The EMB system modeled consists of the external liquid, membrane, and internal gases. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow, and elasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency. This enriched acoustic spectrum can enhance blood-tissue contrast and improve sonographic image quality. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the EMB, thereby improving the efficacy and safety of contrast-enhanced agents.

  14. High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation

    DTIC Science & Technology

    2016-10-17

    plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of...achieved the main goals of our research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG...research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of

  15. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  16. Problems in Nonlinear Acoustics: Parametric Receiving Arrays, Focused Finite Amplitude Sound, & Noncollinear Tone-Noise Interactions

    DTIC Science & Technology

    1987-07-01

    fields (see also Chapter 4 of Ref. 22). Like our investigation, theirs is based on the Khokhlov-Zabolotskaya-Kuznetsov ( KZK ) equa- tion [23,24...25,26], also based on the KZK e(iualiou, is limited to weakly nonlinear systems. However, the practical case of a focused circular source with gain of...iment. The demonstrated abihty of the KZK equation to accurately model focused sound fields from reahstic sources [i.e., having abrupt edges and

  17. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  18. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  19. Perturbed invariant subspaces and approximate generalized functional variable separation solution for nonlinear diffusion-convection equations with weak source

    NASA Astrophysics Data System (ADS)

    Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng

    2018-03-01

    In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.

  20. A Reevaluation of Airborne HO(x) Observations from NASA Field Campaigns

    NASA Technical Reports Server (NTRS)

    Olson, Jennifer; Crawford, James H.; Chen, Gao; Brune, William H.; Faloona, Ian C.; Tan, David; Harder, Hartwig; Martinez, Monica

    2006-01-01

    In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.

  1. Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Smith, F. T.

    1988-01-01

    The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically for a boundary layer at high Reynolds number. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types 1-3, are found. Each can start from secondary instability and then become nonlinear, Type 1 proving to be relatively benign but able to act as a pre-cursor to the Types 2, 3 which turn out to be very powerful nonlinear interactions. Type 2 involves faster stream-wise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear 3-D triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type 3 involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the meanflow profile, on a more global scale. Streak-like formations in which there is localized concentration of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant changes in the flow structure downstream. The powerful nonlinear 3-D interactions 2, 3 are potentially very relevant to experimental findings in transition.

  2. Inflammatory activity in Crohn disease: ultrasound findings.

    PubMed

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  3. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  4. Terahertz emission from ultrafast spin-charge current at a Rashba interface

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel

    Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.

  5. Infrasound in the middle stratosphere measured with a free-flying acoustic array

    NASA Astrophysics Data System (ADS)

    Bowman, Daniel C.; Lees, Jonathan M.

    2015-11-01

    Infrasound recorded in the middle stratosphere suggests that the acoustic wavefield above the Earth's surface differs dramatically from the wavefield near the ground. In contrast to nearby surface stations, the balloon-borne infrasound array detected signals from turbulence, nonlinear ocean wave interactions, building ventilation systems, and other sources that have not been identified yet. Infrasound power spectra also bore little resemblance to spectra recorded on the ground at the same time. Thus, sensors on the Earth's surface likely capture a fraction of the true diversity of acoustic waves in the atmosphere. Future studies building upon this experiment may quantify the acoustic energy flux from the surface to the upper atmosphere, extend the capability of the International Monitoring System to detect nuclear explosions, and lay the observational groundwork for a recently proposed mission to detect earthquakes on Venus using free-flying microphones.

  6. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  7. A theoretical and experimental investigation of nonlinear propagation of ultrasound through tissue mimicking media

    NASA Astrophysics Data System (ADS)

    Rielly, Matthew Robert

    An existing numerical model (known as the Bergen code) is used to investigate finite amplitude ultrasound propagation through multiple layers of tissue-like media. This model uses a finite difference method to solve the nonlinear parabolic KZK wave equation. The code is modified to include an arbitrary frequency dependence of absorption and transmission effects for wave propagation across a plane interface at normal incidence. In addition the code is adapted to calculate the total intensity loss associated with the absorption of the fundamental and nonlinearly generated harmonics. Measurements are also taken of the axial nonlinear pressure field generated from a circular focused, 2.25 MHz source, through single and multiple layered tissue mimicking fluids, for source pressures in the range from 13 kPa to 310 kPa. Two tissue mimicking fluids are developed to provide acoustic properties similar to amniotic fluid and a typical soft tissue. The values of the nonlinearity parameter, sound velocity and frequency dependence of attenuation for both fluids are presented, and the measurement procedures employed to obtain these characteristics are described in detail. These acoustic parameters, together with the measured source conditions are used as input to the numerical model, allowing the experimental conditions to be simulated. Extensive comparisons are made between the model's predictions and the axial pressure field measurements. Results are presented in the frequency domain showing the fundamental and three subsequent harmonic amplitudes on axis, as a function of axial distance. These show that significant nonlinear distortion can occur through media with characteristics typical of tissue. Time domain waveform comparisons are also made. An excellent agreement is found between theory and experiment indicating that the model can be used to predict nonlinear ultrasound propagation through multiple layers of tissue-like media. The numerical code is also used to model the intensity loss through layered tissue mimics and results are presented illustrating the effects of altering the layered medium on the magnitude and spatial distribution of intensity loss.

  8. Soil thaw effects on river discharge recessions of a subarctic catchment

    NASA Astrophysics Data System (ADS)

    Ploum, Stefan; Lyon, Steve; Teuling, Ryan; van der Velde, Ype

    2017-04-01

    Thawing permafrost in circumpolar regions is likely to change subsurface hydrology. In high latitude areas continuous permafrost is expected to partially thaw leading to sporadic permafrost with deeper groundwater flow paths. Moreover, freeze-thaw cycles of the shallow subsurface are likely to increase. River discharge recession analysis can be particularly useful to understand the hydrological effects of a thawing Arctic. Here we examine river discharge recessions of the Abiskojokka, a 560 km2 watershed with sporadic permafrost, using a river discharge record of 30 years (1985 - 2015). Snow observation records were used to separate river recessions in snowmelt and snowfree periods. We found significant differences between recessions during the snowmelt and snowfree seasons. During the snowmelt, recessions were close to linear (b=1.11), while during the snowfree period, recessions were more non-linear (b=1.54). Typically, non-linearity has been found to increase with discharge magnitude, while we observed the opposite (snowfree periods tend to have lower discharges than the snowmelt periods). We explain these contrasting results by hypothesizing that increased connectivity (increasing magnitude and number of water flow paths) between groundwater and stream leads to higher non-linearity. In temperate catchments without frozen soils, connectivity tends to increase with increasing discharge. In contrast, in Arctic systems, where soils are frozen, connectivity between groundwater and stream is limited. Therefore, thawing of frozen soils is expected to increase connectivity and thus non-linearity of river discharges. We tested this hypothesis with a detailed analysis of all spring flood recessions. Years with cold soil temperatures (b=1.08) and years with a below median snowpack depth were found to have progressively linear slopes (b=1.08 and 1.01 respectively). On the other hand, years with warm soil conditions show increasingly non-linear recessions (b=1.67). Although limited in spatial extent, these results further support our connectivity hypothesis, which predicts increasing non-linearity of river discharges (higher discharge peaks and lower low flows under the same precipitation regime) as permafrost thaws.

  9. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.

    PubMed

    Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).

  10. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  11. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators

    NASA Astrophysics Data System (ADS)

    Ferretti, S.; Savona, V.; Gerace, D.

    2013-02-01

    We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.

  12. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  13. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    PubMed

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic driving pulse.

  14. The use of normal forms for analysing nonlinear mechanical vibrations

    PubMed Central

    Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea

    2015-01-01

    A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917

  15. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  16. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    PubMed

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  17. Thermo-optic coefficient and nonlinear refractive index of silicon oxynitride waveguides

    NASA Astrophysics Data System (ADS)

    Trenti, A.; Borghi, M.; Biasi, S.; Ghulinyan, M.; Ramiro-Manzano, F.; Pucker, G.; Pavesi, L.

    2018-02-01

    Integrated waveguiding devices based on silicon oxynitride (SiON) are appealing for their relatively high refractive index contrast and broadband transparency. The lack of two photon absorption at telecom wavelengths and the possibility to fabricate low loss waveguides make SiON an ideal platform for on-chip nonlinear optics and for the realization of reconfigurable integrated quantum lightwave circuits. Despite this, very few studies on its linear and nonlinear optical properties have been reported so far. In this work, we measured the thermo-optic coefficient dn/dT and the nonlinear refractive index n2 of relatively high (n ˜ 1.83 at a wavelength of 1.55 μm) refractive index SiON by using racetrack resonators. These parameters have been determined to be d/n d T =(1.84 ±0.17 ) × 10-5 K-1 and n2 = (7 ± 1) × 10-16 cm2W-1.

  18. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  19. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  20. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: A case studya

    PubMed Central

    Zañartu, Matías; Mehta, Daryush D.; Ho, Julio C.; Wodicka, George R.; Hillman, Robert E.

    2011-01-01

    Different source-related factors can lead to vocal fold instabilities and bifurcations referred to as voice breaks. Nonlinear coupling in phonation suggests that changes in acoustic loading can also be responsible for this unstable behavior. However, no in vivo visualization of tissue motion during these acoustically induced instabilities has been reported. Simultaneous recordings of laryngeal high-speed videoendoscopy, acoustics, aerodynamics, electroglottography, and neck skin acceleration are obtained from a participant consistently exhibiting voice breaks during pitch glide maneuvers. Results suggest that acoustically induced and source-induced instabilities can be distinguished at the tissue level. Differences in vibratory patterns are described through kymography and phonovibrography; measures of glottal area, open∕speed quotient, and amplitude∕phase asymmetry; and empirical orthogonal function decomposition. Acoustically induced tissue instabilities appear abruptly and exhibit irregular vocal fold motion after the bifurcation point, whereas source-induced ones show a smoother transition. These observations are also reflected in the acoustic and acceleration signals. Added aperiodicity is observed after the acoustically induced break, and harmonic changes appear prior to the bifurcation for the source-induced break. Both types of breaks appear to be subcritical bifurcations due to the presence of hysteresis and amplitude changes after the frequency jumps. These results are consistent with previous studies and the nonlinear source-filter coupling theory. PMID:21303014

  1. Acoustic signatures of sound source-tract coupling.

    PubMed

    Arneodo, Ezequiel M; Perl, Yonatan Sanz; Mindlin, Gabriel B

    2011-04-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced "frequency jumps," enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. ©2011 American Physical Society

  2. Acoustic signatures of sound source-tract coupling

    PubMed Central

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2014-01-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. PMID:21599213

  3. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    NASA Astrophysics Data System (ADS)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  4. Noninvasive label-free monitoring of cosmetics and pharmaceuticals in human skin using nonlinear optical microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Osseiran, Sam; Wang, Hequn; Evans, Conor L.

    2017-02-01

    Over the past decade, nonlinear optical microscopy has seen a dramatic rise in its use in research settings due to its noninvasiveness, enhanced penetration depth, intrinsic optical sectioning, and the ability to probe chemical compounds with molecular specificity without exogenous contrast agents. Nonlinear optical techniques including two-photon excitation fluorescence (2PEF), fluorescence lifetime imaging microscopy (FLIM), second harmonic generation (SHG), coherent anti-Stokes and stimulated Raman scattering (CARS and SRS, respectively), as well as transient and sum frequency absorption (TA and SFA, respectively), have been widely used to explore the physiology and microanatomy of skin. Recently, these modalities have shed light on dermal processes that could not have otherwise been observed, including the spatiotemporal monitoring of cosmetics and pharmaceuticals. However, a challenge quickly arises when studying such chemicals in a dermatological context: many exogenous compounds have optical signatures that can interfere with the signals that would otherwise be acquired from intact skin. For example, oily solvents exhibit strong signals when probing CH2 vibrations with CARS/SRS; chemical sun filters appear bright in 2PEF microscopy; and darkly colored compounds readily absorb light across a broad spectrum, producing strong TA/SFA signals. Thus, this discussion will first focus on the molecular contrast in skin that can be probed using the aforementioned nonlinear optical techniques. This will be followed by an overview of strategies that take advantage of the exogenous compounds' optical signatures to probe spatiotemporal dynamics while preserving endogenous information from skin.

  5. Effect of absorption on nonlinear propagation of short ultrasound pulses generated by rectangular transducers

    NASA Astrophysics Data System (ADS)

    Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.

    2002-11-01

    A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.

  6. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  7. Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.

    PubMed

    Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Soneson, Joshua E; Myers, Matthew R

    2013-11-01

    A method is introduced for using measurements made in water of the nonlinear acoustic pressure field produced by a high-intensity focused ultrasound transducer to compute the acoustic pressure and temperature rise in a tissue medium. The acoustic pressure harmonics generated by nonlinear propagation are represented as a sum of modes having a Gaussian functional dependence in the radial direction. While the method is derived in the context of Gaussian beams, final results are applicable to general transducer profiles. The focal acoustic pressure is obtained by solving an evolution equation in the axial variable. The nonlinear term in the evolution equation for tissue is modeled using modal amplitudes measured in water and suitably reduced using a combination of "source derating" (experiments in water performed at a lower source acoustic pressure than in tissue) and "endpoint derating" (amplitudes reduced at the target location). Numerical experiments showed that, with proper combinations of source derating and endpoint derating, direct simulations of acoustic pressure and temperature in tissue could be reproduced by derating within 5% error. Advantages of the derating approach presented include applicability over a wide range of gains, ease of computation (a single numerical quadrature is required), and readily obtained temperature estimates from the water measurements.

  8. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Borland, Michael

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  9. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  10. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  11. Music, pandas, and muggers: on the affective psychology of value.

    PubMed

    Hsee, Christopher K; Rottenstreich, Yuval

    2004-03-01

    This research investigated the relationship between the magnitude or scope of a stimulus and its subjective value by contrasting 2 psychological processes that may be used to construct preferences: valuation by feeling and valuation by calculation. The results show that when people rely on feeling, they are sensitive to the presence or absence of a stimulus (i.e., the difference between 0 and some scope) but are largely insensitive to further variations of scope. In contrast, when people rely on calculation, they reveal relatively more constant sensitivity to scope. Thus, value is nearly a step function of scope when feeling predominates and is closer to a linear function when calculation predominates. These findings may allow for a novel interpretation of why most real-world value functions are concave and how the processes responsible for nonlinearity of value may also contribute to nonlinear probability weighting. ((c) 2004 APA, all rights reserved)

  12. Contrast gain control: a bilinear model for chromatic selectivity.

    PubMed

    Singer, B; D'Zmura, M

    1995-04-01

    We report the results of psychophysical experiments on color contrast induction. In earlier work [Vision Res. 34, 3111 (1994)], we showed that modulating the spatial contrast of an annulus in time induces an apparent modulation of the contrast of a central disk, at isoluminance. Here we vary the chromatic properties of disk and annulus systematically in a study of the interactions among the luminance and the color-opponent channels. Results show that induced contrast depends linearly on both disk and annulus contrast, at low and moderate contrast levels. This dependence leads us to propose a bilinear model for color contrast gain control. The model predicts the magnitude and the chromatic properties of induced contrast. In agreement with experimental results, the model displays chromatic selectivity in contrast gain control and a negligible effect of contrast modulation at isoluminance on the appearance of achromatic contrast. We show that the bilinear model for chromatic selectivity may be realized as a feed-forward multiplicative gain control. Data collected at high contrast levels are fit by embellishing the model with saturating nonlinearities in the contrast gain control of each color channel.

  13. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    PubMed

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  14. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration.

    PubMed

    Chen, Yunjin; Pock, Thomas

    2017-06-01

    Image restoration is a long-standing problem in low-level computer vision with many interesting applications. We describe a flexible learning framework based on the concept of nonlinear reaction diffusion models for various image restoration problems. By embodying recent improvements in nonlinear diffusion models, we propose a dynamic nonlinear reaction diffusion model with time-dependent parameters (i.e., linear filters and influence functions). In contrast to previous nonlinear diffusion models, all the parameters, including the filters and the influence functions, are simultaneously learned from training data through a loss based approach. We call this approach TNRD-Trainable Nonlinear Reaction Diffusion. The TNRD approach is applicable for a variety of image restoration tasks by incorporating appropriate reaction force. We demonstrate its capabilities with three representative applications, Gaussian image denoising, single image super resolution and JPEG deblocking. Experiments show that our trained nonlinear diffusion models largely benefit from the training of the parameters and finally lead to the best reported performance on common test datasets for the tested applications. Our trained models preserve the structural simplicity of diffusion models and take only a small number of diffusion steps, thus are highly efficient. Moreover, they are also well-suited for parallel computation on GPUs, which makes the inference procedure extremely fast.

  15. Dynamic weight evolution network with preferential attachment

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Xie, Qi; Li, Lei

    2014-12-01

    A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.

  16. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.

    PubMed

    Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza

    2013-03-01

    Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Porous elastic system with nonlinear damping and sources terms

    NASA Astrophysics Data System (ADS)

    Freitas, Mirelson M.; Santos, M. L.; Langa, José A.

    2018-02-01

    We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.

  18. Rogue Wave Modes for the Long Wave-Short Wave Resonance and the Derivative Nonlinear Schrödinger Models

    NASA Astrophysics Data System (ADS)

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-11-01

    Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.

  19. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  20. Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

    PubMed Central

    Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal

    2011-01-01

    Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968

  1. Measurement of Nonlinear Coefficients of Crystals at Terahertz Frequencies via High Field THz at the FELIX FEL

    DTIC Science & Technology

    2017-04-02

    field terahertz, felix free electron laser, nonlinear crystal coefficients, EOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...the Felix free electron laser. Measurements of these properties, which are crucial for designing of efficient nonlinear optical frequency...Currently, only free electron lasers are the source that can readily meet those requirements in the THz range, see Fig 2. Fig. 2 Power and tunability of the

  2. Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects

    DTIC Science & Technology

    2017-02-22

    AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing   data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0183 5c.  PROGRAM

  3. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  4. Nonlinear dissipative devices in structural vibration control: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin

    2018-06-01

    Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.

  5. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  6. Effect of spectral sampling on the temporal coherence analysis of a broadband source in a SFG interferometer.

    PubMed

    Darré, Pascaline; Szemendera, Ludovic; Grossard, Ludovic; Delage, Laurent; Reynaud, François

    2015-10-05

    In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines. We show that joined effects of quasi-phase matching and spectral sampling lead to an original coherence behavior.

  7. Nonlinear Epigenetic Variance: Review and Simulations

    ERIC Educational Resources Information Center

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  8. Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

    NASA Astrophysics Data System (ADS)

    Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.

    2017-12-01

    A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.

  9. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    NASA Astrophysics Data System (ADS)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  10. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2017-09-01

    Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (˜ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (˜ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  11. Comparison of fundamental, second harmonic, and superharmonic imaging: a simulation study.

    PubMed

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Verweij, Martin D; Demi, Libertario; Voormolen, Marco M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral band as that of the emitted pulse. The transmission frequency determines the trade-off between penetration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic of the emitted frequency band to construct images. Recently, superharmonic imaging (SHI) has been introduced, which uses the third to the fifth (super) harmonics. The harmonic level is determined by two competing phenomena: nonlinear propagation and frequency dependent attenuation. Thus, the transmission frequency yielding the optimal trade-off between the spatial resolution and the penetration depth differs for THI and SHI. This paper quantitatively compares the concepts of fundamental, second harmonic, and superharmonic echocardiography at their optimal transmission frequencies. Forward propagation is modeled using a 3D-KZK implementation and the iterative nonlinear contrast source (INCS) method. Backpropagation is assumed to be linear. Results show that the fundamental lateral beamwidth is the narrowest at focus, while the superharmonic one is narrower outside the focus. The lateral superharmonic roll-off exceeds the fundamental and second harmonic roll-off. Also, the axial resolution of SHI exceeds that of FI and THI. The far-field pulse-echo superharmonic pressure is lower than that of the fundamental and second harmonic. SHI appears suited for echocardiography and is expected to improve its image quality at the cost of a slight reduction in depth-of-field.

  12. Proton imaging of stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.

    2017-12-01

    Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and nonlinear injective regimes we show that the magnetic-energy spectrum can be obtained under a further statistical assumption of isotropy. This is not the case in the caustic or diffusive regimes. We discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, which can encompass many contrast regimes, as well as limitations currently placed by experimental capabilities on one's ability to extract magnetic-field statistics. The results presented in this paper are of consequence in providing a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of proton-flux images.

  13. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Wang, Jigang

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  14. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE PAGES

    Luo, Liang; Wang, Jigang

    2016-01-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  15. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  16. Nonlinear filtering for character recognition in low quality document images

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2014-09-01

    Optical character recognition in scanned printed documents is a well-studied task, where the captured conditions like sheet position, illumination, contrast and resolution are controlled. Nowadays, it is more practical to use mobile devices for document capture than a scanner. So as a consequence, the quality of document images is often poor owing to presence of geometric distortions, nonhomogeneous illumination, low resolution, etc. In this work we propose to use multiple adaptive nonlinear composite filters for detection and classification of characters. Computer simulation results obtained with the proposed system are presented and discussed.

  17. Dark solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S

    2010-05-01

    The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell's law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter.

  18. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  19. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    2015-12-10

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  20. Generalized Grueneisen tensor from solid nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1980-01-01

    Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.

  1. OPEN PROBLEM: Turbulence transition in pipe flow: some open questions

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno

    2008-01-01

    The transition to turbulence in pipe flow is a longstanding problem in fluid dynamics. In contrast to many other transitions it is not connected with linear instabilities of the laminar profile and hence follows a different route. Experimental and numerical studies within the last few years have revealed many unexpected connections to the nonlinear dynamics of strange saddles and have considerably improved our understanding of this transition. The text summarizes some of these insights and points to some outstanding problems in areas where valuable contributions from nonlinear dynamics can be expected.

  2. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  3. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    PubMed

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  4. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control

    NASA Astrophysics Data System (ADS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-10-01

    Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.

  5. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.

  6. A six-color four-laser mobile platform for multi-spectral fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Black, John F.; Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Utzinger, Urs; Barton, Jennifer

    2015-03-01

    The properties of multi-spectral fluorescence imaging using deep-UV-illumination have recently been explored using a fiber-coupled thermal source at 280 nm. The resulting images show a remarkable level of contrast thought to result from the signal being overwhelmingly generated in the uppermost few cell layers of tissue, making this approach valuable for the study of diseases that originate in the endothelial tissues of the body. With a view to extending the technique with new wavelengths, and improving beam quality for efficient small core fiber coupling we have developed a mobile self-contained tunable solid-state laser source of deep UV light. An alexandrite laser, lasing at around 750 nm is frequency doubled to produce 375 nm and then tripled to produce 250 nm light. An optical deck added to the system allows other laser sources to be incorporated into the UV beam-line and a lens system has been designed to couple these sources into a single delivery fiber with core diameters down to 50 microns. Our system incorporates five wavelengths [250 nm, 375 nm, 442 nm (HeCd), 543 nm (HeNe) and 638 nm (diode laser)] as the illumination source for a small diameter falloposcope designed for the study of the distal Fallopian tube origins of high grade serous ovarian cancer. The tunability of alexandrite offers the potential to generate other wavelengths in the 720-800, 360-400 and 240-265 nm ranges, plus other non-linear optical conversion techniques taking advantage of the high peak powers of the laser.

  7. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi

    2017-04-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.

  8. (2 + 1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mazharimousavi, S. Habib; Halilsoy, M.

    2018-02-01

    Radiative extensions of BTZ metric in 2 + 1 dimensions are found which are sourced by nonlinear Maxwell fields and a null current. This may be considered as generalization of the problem formulated long go by Vaidya and Bonnor. The mass and charge are functions of retarded/advanced null coordinate apt for decay/inflation. The new solutions are constructed through a Theorem that works remarkably well for any nonlinear electrodynamic model. Hawking temperature is analyzed for the case of the Born-Infeld electrodynamics.

  9. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  10. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  11. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  12. TEMPERATURE SENSITIVITY OF SOIL RESPIRATION AND ITS EFFECTS ON ECOSYSTEM CARBON BUDGET: NONLINEARITY BEGETS SURPRISES. (R827676)

    EPA Science Inventory

    Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...

  13. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    NASA Astrophysics Data System (ADS)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  14. Investigation of focused and unfocused transducer beam patterns in moderately nonlinear absorbing media

    NASA Astrophysics Data System (ADS)

    Kharin, Nikolay A.

    2001-05-01

    The novel solution of the KZK equation for acoustic pressure of the second harmonic in slightly focused beam of a circular transducer was obtained in a closed form for moderately nonlinear absorbing media (Gol'dberg numbers ~ 1). The solution is based on the method of slowly changing wave profile in combination with the method of successive approximations. Two pairs of transducers (Valpey-Fisher Corp.) Were compared to investigate the influence of focusing on the applicability of the moderate nonlinearity approach. The first pair was of 0.25' diameter and the second was of 0.5' diameter. Both pairs has one transducer with flat surface and the other geometrically focused at 4'. The central frequency for all transducers was 5 MHz. Measurements were undertaken in the blood-mimicking solution of water and glycerine. The results demonstrated that for slightly focused transducers with circular apertures, the moderate nonlinearity approach is still valid, as it was proved for flat sources with the same source level, despite the higher pressures in the focal region. The peak pressure for the weakly focused system occurs at a shorter range than focal length.

  15. Jet crackle: skewness transport budget and a mechanistic source model

    NASA Astrophysics Data System (ADS)

    Buchta, David; Freund, Jonathan

    2016-11-01

    The sound from high-speed (supersonic) jets, such as on military aircraft, is distinctly different than that from lower-speed jets, such as on commercial airliners. Atop the already loud noise, a higher speed adds an intense, fricative, and intermittent character. The observed pressure wave patterns have strong peaks which are followed by relatively long shallows; notably, their pressure skewness is Sk >= 0 . 4 . Direct numerical simulation of free-shear-flow turbulence show that these skewed pressure waves occur immediately adjacent to the turbulence source for M >= 2 . 5 . Additionally, the near-field waves are seen to intersect and nonlinearly merge with other waves. Statistical analysis of terms in a pressure skewness transport equation show that starting just beyond δ99 the nonlinear wave mechanics that add to Sk are balanced by damping molecular effects, consistent with this aspect of the sound arising in the source region. A gas dynamics description is developed that neglects rotational turbulence dynamics and yet reproduces the key crackle features. At its core, this mechanism shows simply that nonlinear compressive effects lead directly to stronger compressions than expansions and thus Sk > 0 .

  16. Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing

    NASA Astrophysics Data System (ADS)

    Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline

    2017-11-01

    Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.

  17. Ultrabright continuously tunable terahertz-wave generation at room temperature

    PubMed Central

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-01-01

    The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269

  18. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    PubMed

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  19. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources.

    PubMed

    Yoon, Seung Ju; Lee, Jungmin; Han, Sangyoon; Kim, Chang-Kyu; Ahn, Chi Won; Kim, Myung-Ki; Lee, Yong-Hee

    2018-06-07

    Detection of single nanoparticles or molecules has often relied on fluorescent schemes. However, fluorescence detection approaches limit the range of investigable nanoparticles or molecules. Here, we propose and demonstrate a non-fluorescent nanoscopic trapping and monitoring platform that can trap a single sub-5-nm particle and monitor it with a pair of floating nonlinear point sources. The resonant photon funnelling into an extremely small volume of ~5 × 5 × 7 nm 3 through the three-dimensionally tapered 5-nm-gap plasmonic nanoantenna enables the trapping of a 4-nm CdSe/ZnS quantum dot with low intensity of a 1560-nm continuous-wave laser, and the pumping of 1560-nm femtosecond laser pulses creates strong background-free second-harmonic point illumination sources at the two vertices of the nanoantenna. Under the stable trapping conditions, intermittent but intense nonlinear optical spikes are observed on top of the second-harmonic signal plateau, which is identified as the 3.0-Hz Kramers hopping of the quantum dot trapped in the 5-nm gap.

  20. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2016-04-01

    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  1. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE PAGES

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma; ...

    2017-01-01

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  2. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  3. A nonlinear circuit architecture for magnetoencephalographic signal analysis.

    PubMed

    Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D

    2004-01-01

    The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.

  4. The Buoyancy Budget With a Nonlinear Equation of State

    NASA Astrophysics Data System (ADS)

    Hieronymus, M. H.; Nycander, J.

    2012-12-01

    There has been a number of studies focusing on different aspects of having a nonlinear equation of state for seawater. Amongst other things it has been shown that the nonlinear equation of state has implications for the oceanic energy budget and that nonlinear processes can be a significant source of dense water production. This presentation will focus on the oceanic buoyancy budget. The nonlinear equation of state of seawater can introduce a sink or source of buoyancy when water parcels of unequal salinities and temperatures are mixed. A common example is the process known as cabbeling, which is responsible for forming a water mass that is denser than the original constituents in a mixture of two water masses with equal densities but different salinities and temperatures. This presentation will contain quantitative estimates of these nonlinear effects on the buoyancy budget of the global ocean. Because of these nonlinear effects there is a net sink of buoyancy in the oceans interior and the size of this sink can be determined from the buoyancy fluxes at the ocean boundaries. These boundary buoyancy fluxes are calculated using two surface heat flux climatologies one based on in situ measurements, the other on a reanalysis and in both cases using a nonlinear equation of state. The presentation also treats the buoyancy budget in the State of the art ocean model Nucleus for European Modelling of the Ocean (NEMO) and the results from NEMO are seen to be in good agreement with the buoyancy budgets based on the heat flux climatologies. Using the ocean model is a good complement to the surface flux climatologies, because in NEMO the buoyancy fluxes can be evaluated at all vertical model levels. This means that the vertical distribution of the buoyancy sink can be looked into. The results from NEMO shows that in large parts of the ocean the nonlinear buoyancy sink is the largest contribution to the buoyancy budget.

  5. Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy.

    PubMed

    Bell, J S; Christmas, J; Mansfield, J C; Everson, R M; Winlove, C P

    2014-06-01

    Articular cartilage (AC) is a highly anisotropic biomaterial, and its complex mechanical properties have been a topic of intense investigation for over 60 years. Recent advances in the field of nonlinear optics allow the individual constituents of AC to be imaged in living tissue without the need for exogenous contrast agents. Combining mechanical testing with nonlinear microscopy provides a wealth of information about microscopic responses to load. This work investigates the inhomogeneous distribution of strain in loaded AC by tracking the movement and morphological changes of individual chondrocytes using point pattern matching and Bayesian modeling. This information can be used to inform models of mechanotransduction and pathogenesis, and is readily extendable to various other connective tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Observation of three-photon bound states in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan

    2018-02-01

    Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.

  7. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchenbecker, Stefan, E-mail: stefan.kuchenbecker@dkfz.de; Faby, Sebastian; Sawall, Stefan

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energymore » to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal implant. For each case, the contrast-to-noise ratio (CNR) was assessed. Results: In the simulation, the pseudo-monochromatic images yielded acceptable artifact reduction results. However, the CNR in the artifact-reduced images was more than 60% lower than in the original polychromatic images. In contrast, the raw data-based material decomposition did not significantly reduce the CNR in the virtual monochromatic images. Regarding the patient data with beam hardening artifacts and with metal artifacts from small implants the pseudo-monochromatic method was able to reduce the artifacts, again with the downside of a significant CNR reduction. More intense metal artifacts, e.g., as those caused by an artificial hip joint, could not be suppressed. Conclusions: Pseudo-monochromatic imaging is able to reduce beam hardening, scatter, and metal artifacts in some cases but it cannot remove them. In all cases, the CNR is significantly reduced, thereby rendering the method questionable, unless special post processing algorithms are implemented to restore the high CNR from the original images (e.g., by using a frequency split technique). Raw data-based dual energy decomposition methods should be preferred, in particular, because the CNR penalty is almost negligible.« less

  8. A test of the reward-contrast hypothesis.

    PubMed

    Dalecki, Stefan J; Panoz-Brown, Danielle E; Crystal, Jonathon D

    2017-12-01

    Source memory, a facet of episodic memory, is the memory of the origin of information. Whereas source memory in rats is sustained for at least a week, spatial memory degraded after approximately a day. Different forgetting functions may suggest that two memory systems (source memory and spatial memory) are dissociated. However, in previous work, the two tasks used baiting conditions consisting of chocolate and chow flavors; notably, the source memory task used the relatively better flavor. Thus, according to the reward-contrast hypothesis, when chocolate and chow were presented within the same context (i.e., within a single radial maze trial), the chocolate location was more memorable than the chow location because of contrast. We tested the reward-contrast hypothesis using baiting configurations designed to produce reward-contrast. The reward-contrast hypothesis predicts that under these conditions, spatial memory will survive a 24-h retention interval. We documented elimination of spatial memory performance after a 24-h retention interval using a reward-contrast baiting pattern. These data suggest that reward contrast does not explain our earlier findings that source memory survives unusually long retention intervals. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  10. Global non-linear effect of temperature on economic production.

    PubMed

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  11. Global non-linear effect of temperature on economic production

    NASA Astrophysics Data System (ADS)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  12. Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Wong, C. Y.; Lin, S. C. F.; Rahman, M. A.; Ren, T. R.; Kwok, Ngaiming; Shi, Haiyan; Yu, Ying-Hao; Wu, Tonghai

    2015-04-01

    The enhancement of image contrast and preservation of image brightness are two important but conflicting objectives in image restoration. Previous attempts based on linear histogram equalization had achieved contrast enhancement, but exact preservation of brightness was not accomplished. A new perspective is taken here to provide balanced performance of contrast enhancement and brightness preservation simultaneously by casting the quest of such solution to an optimization problem. Specifically, the non-linear gamma correction method is adopted to enhance the contrast, while a weighted sum approach is employed for brightness preservation. In addition, the efficient golden search algorithm is exploited to determine the required optimal parameters to produce the enhanced images. Experiments are conducted on natural colour images captured under various indoor, outdoor and illumination conditions. Results have shown that the proposed method outperforms currently available methods in contrast to enhancement and brightness preservation.

  13. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  14. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  15. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.

    2018-01-01

    By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.

  16. A deep belief network with PLSR for nonlinear system modeling.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli

    2018-08-01

    Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Linear and nonlinear subspace analysis of hand movements during grasping.

    PubMed

    Cui, Phil Hengjun; Visell, Yon

    2014-01-01

    This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.

  18. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    NASA Astrophysics Data System (ADS)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  19. Acoustic fingerprints of dye-labeled protein submicrosphere photoacoustic contrast agents

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2009-05-01

    Dye-labeled protein microspheres, submicron in size and capable of producing thermoelastically generated ultrasound in response to laser stimulation, are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by fluorescein isothiocyanate (FITC)-labeled elastin submicrospheres results in thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and a greater than two orders of magnitude increase in signal amplitude subsequent to converting FITC elastin into submicrospheres (despite a four orders of magnitude decrease in concentration). Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of FITC-elastin submicrospheres in a water-filled phantom vessel shows enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  20. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  1. The lead-lag relationships between spot and futures prices of natural gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Liu, Li

    2018-01-01

    The lead-lag relationships between spot and futures markets are of great interest for academics. Previous studies neglect the possibility of nonlinear behaviors which may be caused by asymmetry or persistence. To fill this gap, this paper uses the MF-DCCA method and the linear and nonlinear causality tests to explore the causal relationships between natural gas spot and futures prices in the New York Mercantile Exchange. We find that spot and futures prices are positive cross-correlated, the natural gas futures can linearly Granger cause spot price, and there are bidirectional nonlinear causality relationships between natural gas spot and futures prices. Further, we explore the sources of nonlinear causality relationships, and find that the volatility spillover can partly explain the nonlinear causality and affect their cross-correlations.

  2. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  3. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.

  4. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-11-01

    The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.

  5. Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone

    DOE PAGES

    Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...

    2016-04-14

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less

  6. Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids

    NASA Astrophysics Data System (ADS)

    Subramaniyam, Nagarajan; Shah, Ali; Dreser, Christoph; Isomäki, Antti; Fleischer, Monika; Sopanen, Markku

    2018-06-01

    We demonstrate linear and nonlinear plasmonic behaviors of periodic nanohole arrays in thin gold (Au) films with varying periodicities. As expected, the linear optical transmission spectra of the nanohole arrays show a red-shift of the resonance wavelength and Wood's anomaly with increasing hole spacing. The optical transmission and electric near-field intensity distribution of the nanohole arrays are simulated using the finite element method. The nonlinear plasmonic behavior of the nanohole arrays is studied by using picosecond pulsed excitation at near-infrared wavelengths. The characteristic nonlinear signals indicating two-photon excited luminescence (TPEL), sum frequency generation, second harmonic generation, and four-wave mixing (FWM) are observed. A maximum FWM/TPEL signal intensity ratio is achieved for nanohole arrays with a periodicity of 500 nm. Furthermore, the significant FWM signal intensity and contrast compared to the background were harnessed to demonstrate the ability of surface-enhanced coherent anti-Stokes Raman scattering to visualize low concentrations of lipids deposited on the nanohole array with a periodicity of 500 nm.

  7. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    NASA Astrophysics Data System (ADS)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  8. Triple tailored nonlinear dispersion of dressed four- and six-wave mixing

    NASA Astrophysics Data System (ADS)

    Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng

    2018-06-01

    We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.

  9. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping

    DOE PAGES

    Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...

    2016-03-18

    Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.

  10. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  11. Moderately nonlinear ultrasound propagation in blood-mimicking fluid.

    PubMed

    Kharin, Nikolay A; Vince, D Geoffrey

    2004-04-01

    In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.

  12. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  13. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  14. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  15. Single-Step Laser-Assisted Graphene Oxide Reduction and Nonlinear Optical Properties Exploration via CW Laser Excitation

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Razi, Sepehr; Madanipour, Khosro

    2018-02-01

    The synthesis of reduced graphene oxide using pulsed laser irradiation is experimentally investigated. For this purpose, various irradiation conditions were selected and the chemical features of the different products were explored using ultraviolet-visible, Fourier transform infrared and Raman spectroscopy techniques. Moreover, the nonlinear optical properties of the synthesized products were assessed by using open and closed aperture Z-scan techniques, in which continuous wave laser irradiating at 532-nm wavelength was utilized as the exciting source. The results clearly revealed that the degree of graphene oxide reduction not only depends on the amount of the irradiation dose (energy of the laser beam × exposure time) but also on the light source wavelength. Furthermore, strong dependency between the nonlinear optical properties of the products and the amount of the de-oxygenation was observed. The experimental results are discussed in detail.

  16. Nonlinear characterization of a silicon integrated Bragg waveguide filter.

    PubMed

    Massara, Micol Previde; Menotti, Matteo; Bergamasco, Nicola; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Galli, Matteo; Bajoni, Daniele

    2018-03-01

    Bragg waveguides are promising optical filters for pump suppression in spontaneous four-wave mixing (FWM) photon sources. In this work, we investigate the generation of unwanted photon pairs in the filter itself. We do this by taking advantage of the relation between spontaneous and classical FWM, which allows for the precise characterization of the nonlinear response of the device. The pair generation rate estimated from the classical measurement is compared with the theoretical value calculated by means of a full quantum model of the filter, which also allows investigation of the spectral properties of the generated pairs. We find a good agreement between theory and experiment, confirming that stimulated FWM is a valuable approach to characterize the nonlinear response of an integrated filter, and that the pairs generated in a Bragg waveguide are not a serious issue for the operation of a fully integrated nonclassical source.

  17. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Kano, Hideaki; Hamaguchi, Hiro-O.

    2006-04-01

    A supercontinuum light source generated with a femtosecond Ti:Sapphire oscillator has been used to obtain both vibrational and two-photon excitation fluorescence (TPEF) images of a living cell simultaneously at different wavelengths. Owing to an ultrabroadband spectral profile of the supercontinuum, multiple vibrational resonances have been detected through coherent anti-Stokes Raman scattering (CARS) process. In addition to the multiplex CARS process, multiple electronic states can be excited due to the broadband electronic two-photon excitation using the supercontinuum, giving rise to a two-photon excitation fluorescence (TPEF) signal. Using a living yeast cell whose nucleus is labeled by green fluorescent protein (GFP), we have succeeded in visualizing organelles such as mitochondria, septum, and nucleus through the CARS and the TPEF processes. The supercontinuum enables us to perform unique multi-nonlinear optical imaging through two different nonlinear optical processes.

  18. Microscopie non-lineaire pour l'imagerie des cordes vocales

    NASA Astrophysics Data System (ADS)

    Deterre, Romain

    The vocal cords are two folds of epithelial tissues located in the larynx and are involved in production of the human voice. Despite their apparent simplicity, their internal structure is complex. Each fold can be divided into several layers with different mechanical properties. The gold standard for studying their structure - histology - has the inconvenience of being very invasive. Non-linear microscopy is an optical imaging technique which allows images to be taken in depth within samples in a non invasive manner. It also offers intrinsic contrasts, allowing the identification of certain fibrous proteins - elastin and collagen - which are responsible for the mechanical properties of epithelious tissues. The main goal of this research project was to assess nonlinear microscopy's performances for vocal fold imaging. The study has been broken down in two separate tasks. The first one was to evaluate the nonlinear modalities contrast against histology. For that purpose, we chose to first take images of thin samples and compare them to the corresponding histological slides. The second task was to make tests to transcribe the results obtained to in vivo imaging. A custom-built nonlinear imaging system was used for these experiments. It was developed to allow acquisition of wide-field images. A C++ based software was developped to control the microscope and allow treatment and visualization of the images. After being built, the system was further tested to check its performances in comparison with the theoretical limit as described in the literature. Thin slices of vocal folds were obtained from the team of Pr Christopher J. Hartnick from Massachusetts Eye and Ear Infirmary, Harvard Medical School. Specialists from his team analysed the histological samples to extract structural data from the vocal folds. A good correlation was measured between histological and nonlinear data. A first step in evaluating the possibility for translating these results towards in vivo imaging was performed during this project. A swine's larynx was obtained, and vocal folds were extracted for imaging purposes. This experiment showed that it is indeed possible to localize various macrostructures of the tissues with nonlinear microscopy.

  19. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis.

    PubMed

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T; Reidenberg, Joy S

    2016-10-10

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale's U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale's body size and physical fitness, and thus may be an important component of humpback whale songs.

  20. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis

    NASA Astrophysics Data System (ADS)

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.

    2016-10-01

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs.

  1. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to themore » borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.« less

  2. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  3. Aircraft Accident Prevention: Loss-of-Control Analysis

    NASA Technical Reports Server (NTRS)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  4. Heterodyne interferometer with subatomic periodic nonlinearity.

    PubMed

    Wu, C M; Lawall, J; Deslattes, R D

    1999-07-01

    A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.

  5. Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity.

    PubMed

    Oxenham, A J; Plack, C J

    2000-12-01

    Forward masking has often been thought of in terms of neural adaptation, with nonlinearities in the growth and decay of forward masking being accounted for by the nonlinearities inherent in adaptation. In contrast, this study presents further evidence for the hypothesis that forward masking can be described as a linear process, once peripheral, mechanical nonlinearities are taken into account. The first experiment compares the growth of masking for on- and off-frequency maskers. Signal thresholds were measured as a function of masker level for three masker-signal intervals of 0, 10, and 30 ms. The brief 4-kHz sinusoidal signal was masked by a 200-ms sinusoidal forward masker which had a frequency of either 2.4 kHz (off-frequency) or 4 kHz (on-frequency). As in previous studies, for the on-frequency condition, the slope of the function relating signal threshold to masker level became shallower as the delay between the masker and signal was increased. In contrast, the slopes for the off-frequency condition were independent of masker-signal delay and had a value of around unity, indicating linear growth of masking for all masker-signal delays. In the second experiment, a broadband Gaussian noise forward masker was used to mask a brief 6-kHz sinusoidal signal. The spectrum level of the masker was either 0 or 40 dB (re: 20 microPa). The gap between the masker and signal was either 0 or 20 ms. Signal thresholds were measured for masker durations from 5 to 200 ms. The effect of masker duration was found to depend more on signal level than on gap duration or masker level. Overall, the results support the idea that forward masking can be modeled as a linear process, preceded by a static nonlinearity resembling that found on the basilar membrane.

  6. Linear and nonlinear pattern selection in Rayleigh-Benard stability problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1993-01-01

    A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.

  7. Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours

    NASA Astrophysics Data System (ADS)

    Tang, Yutao

    2017-10-01

    In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.

  8. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  9. Nonlinear Convective Flows in a Laterally Heated Two-Layer System with a Temperature-Dependent Heat Release/Consumption at the Interface

    NASA Astrophysics Data System (ADS)

    Simanovskii, Ilya; Viviani, Antonio; Dubois, Frank; Queeckers, Patrick

    2018-01-01

    Nonlinear convective flows developed under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer system filling the closed cavity, have been investigated. The influence of a temperature-dependent interfacial heat release/consumption on nonlinear steady and oscillatory regimes, has been studied. It is shown that sufficiently strong temperature dependence of interfacial heat sinks and heat sources can change the sequence of bifurcations and lead to the development of specific oscillatory regimes in the system.

  10. Global solutions and finite time blow-up for fourth order nonlinear damped wave equation

    NASA Astrophysics Data System (ADS)

    Xu, Runzhang; Wang, Xingchang; Yang, Yanbing; Chen, Shaohua

    2018-06-01

    In this paper, we study the initial boundary value problem and global well-posedness for a class of fourth order wave equations with a nonlinear damping term and a nonlinear source term, which was introduced to describe the dynamics of a suspension bridge. The global existence, decay estimate, and blow-up of solution at both subcritical (E(0) < d) and critical (E(0) = d) initial energy levels are obtained. Moreover, we prove the blow-up in finite time of solution at the supercritical initial energy level (E(0) > 0).

  11. Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Teng, Xu-Dong; Guo, Xia-Sheng; Tu, Juan; Zhang, Dong

    2016-12-01

    Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. Projects supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 11374155, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the National High-Technology Research and Development Program, China (Grant No. 2012AA022702), and Qing Lan Project of Jiangsu Province, China.

  12. Encoding of luminance and contrast by linear and nonlinear synapses in the retina.

    PubMed

    Odermatt, Benjamin; Nikolaev, Anton; Lagnado, Leon

    2012-02-23

    Understanding how neural circuits transmit information is technically challenging because the neural code is contained in the activity of large numbers of neurons and synapses. Here, we use genetically encoded reporters to image synaptic transmission across a population of sensory neurons-bipolar cells in the retina of live zebrafish. We demonstrate that the luminance sensitivities of these synapses varies over 10(4) with a log-normal distribution. About half the synapses made by ON and OFF cells alter their polarity of transmission as a function of luminance to generate a triphasic tuning curve with distinct maxima and minima. These nonlinear synapses signal temporal contrast with greater sensitivity than linear ones. Triphasic tuning curves increase the dynamic range over which bipolar cells signal light and improve the efficiency with which luminance information is transmitted. The most efficient synapses signaled luminance using just 1 synaptic vesicle per second per distinguishable gray level. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Dynamics of Ultrasound Contrast Agents and Nonlinear Acoustic Waves: Experiments, Modeling, and Theories

    NASA Astrophysics Data System (ADS)

    Xia, Lang

    Bubbles occur in many natural and biological flows as well as in numerous industrial phenomena, such as pumps, propellers, turbines, and chemical processing plants. They have been widely studied in the past leading to a large body of literature. However, bubbles appearing in different situations differ significantly in their physical characteristics and behaviors. Recently, bubbles of diameter less than 10 micrometers have found applications in diagnostic ultrasound imaging. These microbubble-based ultrasound contrast agents (UCA) are intravenously administered in patients before ultrasound imaging. Due to the compressive gas core, they generate substantial ultrasound echoes leading to significant enhancement of image quality and contrast. Free bubbles of a micrometer diameter experience a large surface tension induced Laplace pressure leading to their quick dissolution in milliseconds. UCAs are stabilized by coating them with a shell of lipids, polymers, proteins, and other surface-active materials and changing the gas content from air to a high molecular weight low solubility gas such as perfluorocarbon. The past literature of bubble dynamics are mostly restricted to free bubbles. The stabilizing shell of UCAs, however, critically affects their dynamics. In this thesis, we performed acoustic characterization of several UCAs coated with polymer and lipids. We experimentally measured their acoustic attenuation and scattering, of which the data were used in mathematical models to determine shell properties and nonlinear dynamics. Several different interfacial rheological models were employed. Experimental acoustic characterization was also extended to a novel type of nanoparticle suspension--polymersomes, vesicles encapsulated by amphiphilic polymers. The later part of the thesis is devoted to modeling the effects of the presence of coated microbubbles to the overall effective bulk properties of bubbly liquids. Introduction of microbubbles in the liquids does not only modify the bulk properties of the medium (bubbly liquids) but also significantly changes the natures of the propagating waves (e.g., the sound velocity in bubble suspension was found to be as low as 20 m/s). We investigate the nonlinear nature of the acoustic wave in bubbly liquids. Specifically, we theoretically show that microbubbles could change the nonlinearity of the medium, characterized by quantity B/A.

  14. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less

  15. A nonlinear model for analysis of slug-test data

    USGS Publications Warehouse

    McElwee, C.D.; Zenner, M.A.

    1998-01-01

    While doing slug tests in high-permeability aquifers, we have consistently seen deviations from the expected response of linear theoretical models. Normalized curves do not coincide for various initial heads, as would be predicted by linear theories, and are shifted to larger times for higher initial heads. We have developed a general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the well bore, and a Hvorslev model for the aquifer, which explains these data features. The model produces a very good fit for both oscillatory and nonoscillatory field data, using a single set of physical parameters to predict the field data for various initial displacements at a given well. This is in contrast to linear models which have a systematic lack of fit and indicate that hydraulic conductivity varies with the initial displacement. We recommend multiple slug tests with a considerable variation in initial head displacement to evaluate the possible presence of nonlinear effects. Our conclusion is that the nonlinear model presented here is an excellent tool to analyze slug tests, covering the range from the underdamped region to the overdamped region.

  16. Deterministic quantum nonlinear optics with single atoms and virtual photons

    NASA Astrophysics Data System (ADS)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  17. Time-dependent behavior of passive skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.

    2016-03-01

    An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.

  18. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  19. Technique for Very High Order Nonlinear Simulation and Validation

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2001-01-01

    Finding the sources of sound in large nonlinear fields via direct simulation currently requires excessive computational cost. This paper describes a simple technique for efficiently solving the multidimensional nonlinear Euler equations that significantly reduces this cost and demonstrates a useful approach for validating high order nonlinear methods. Up to 15th order accuracy in space and time methods were compared and it is shown that an algorithm with a fixed design accuracy approaches its maximal utility and then its usefulness exponentially decays unless higher accuracy is used. It is concluded that at least a 7th order method is required to efficiently propagate a harmonic wave using the nonlinear Euler equations to a distance of 5 wavelengths while maintaining an overall error tolerance that is low enough to capture both the mean flow and the acoustics.

  20. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    NASA Astrophysics Data System (ADS)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  1. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  2. Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer.

    PubMed

    Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei

    2010-12-06

    By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.

  3. Experimental correlation between nonlinear optical and magnetotransport properties observed in Au-Co thin films

    DOE PAGES

    Yang, Kaida; Kryutyanskiy, Victor; Kolmychek, Irina; ...

    2016-01-01

    Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. As a result, it has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport propertiesmore » in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.« less

  4. Preparation, characterization, and nonlinear optical properties of hybridized graphene @ gold nanorods nanocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Ning, Tingyin; Han, Yanshun; Sheng, Yingqiang; Li, Chonghui; Zhao, Xiaofei; Lu, Zhengyi; Man, Baoyuan; Jiao, Yang; Jiang, Shouzhen

    2018-03-01

    The methods of chemical vapor deposition (CVD) and seed-mediated growth were used to obtain graphene and gold nanorods (GNRs), respectively. We fabricate graphene @ gold nanorods (G@GNRs) nanocomposites by successively using dropping and transferring methods Through SEM, Raman spectra and TEM analysis, the number of graphene layers is 6-7. The diameter of gold nanorods (GNRs) is about 10 nm and the average aspect ratio is 6.5. In addition, we systematically investigate their nonlinear optical responses by using open-aperture Z-scan technique. In contrast with graphene and GNRs, the G@GNRs nanocomposites exhibit excellent nonlinear optical response with a modulation depth of about 51% and a saturable intensity of about 6.23 GW/cm2. The results suggest that the G@GNRs nanocomposites could potentially be used as an optical modulator in pulsed laser generation.

  5. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.

    PubMed

    Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M

    2013-02-01

    Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  6. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  7. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.

    PubMed

    You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A

    2018-05-29

    Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.

  8. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  9. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  10. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE PAGES

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...

    2017-10-18

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  11. Summary of Research 2002

    DTIC Science & Technology

    2005-01-01

    dissipation, nonuniformity , and nonlinearity are included. A possible future objective is to theoretically investigate nonradiating sources in two and...dissipation, nonuniformity , and nonlinearity. The presence of any of these effects causes radiation to “leak” from the driven region. This radiation was...The utility of LWIR spectral imagery for plume detection was studied. PRESENTATION: Olsen, R.C., Ganer, J. and Van Dyke, E., “Terrain

  12. Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain

    1990-01-01

    Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.

  13. Real Time Digital Control of a Magnetostrictive Actuator

    NASA Technical Reports Server (NTRS)

    Zrostlik, Rick L.; Hall, David L.; Flatau, Alison B.

    1996-01-01

    The use of the magnetostrictive material Terfenol-D as a motion source in active vibration control (AVC) systems are being studied. Currently it is of limited use due to the nonlinear nature of the strain versus magnetization curve and the magnetic hysteresis in the Terfenol-D. One manifestation of these nonlinearities is waveform distortion in the output velocity of the transducer. For Terfenol-D to be used in ever greater numbers of AVC systems, these nonlinearities must be addressed. In this study the nonlinearities are treated as disturbances to a linear system. The acceleration output is used in simple analog and digital feedback control schemes to improve linearity of the transducer. In addition, the use of a Terfenol-D actuator in an AVC system is verified. Both analog and digital controllers are implemented and results compared. A cantilever beam system is considered for AVC applications. The second thrust of this presentation is the reduction of harmonic distortions. Two conclusions can be reached from this work. One, the linearization of Terfenol-D transducers is possible with the use of feedback controllers, both digital and analog. Second, Terfenol-D is a viable motion source in active vibration control systems utilizing either analog or digital controllers.

  14. Acoustic characterization of a nonlinear vibroacoustic absorber at low frequencies and high sound levels

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Monteil, M.; Bellizzi, S.; Côte, R.; Herzog, Ph.; Pachebat, M.

    2018-03-01

    A nonlinear vibroacoustic absorber (Nonlinear Energy Sink: NES), involving a clamped thin membrane made in Latex, is assessed in the acoustic domain. This NES is here considered as an one-port acoustic system, analyzed at low frequencies and for increasing excitation levels. This dynamic and frequency range requires a suitable experimental technique, which is presented first. It involves a specific impedance tube able to deal with samples of sufficient size, and reaching high sound levels with a guaranteed linear response thank's to a specific acoustic source. The identification method presented here requires a single pressure measurement, and is calibrated from a set of known acoustic loads. The NES reflection coefficient is then estimated at increasing source levels, showing its strong level dependency. This is presented as a mean to understand energy dissipation. The results of the experimental tests are first compared to a nonlinear viscoelastic model of the membrane absorber. In a second step, a family of one degree of freedom models, treated as equivalent Helmholtz resonators is identified from the measurements, allowing a parametric description of the NES behavior over a wide range of levels.

  15. Proposal of ultra-compact NAND/NOR/XNOR all-optical logic gates based on a nonlinear 3x1 multimode interference

    NASA Astrophysics Data System (ADS)

    Tajaldini, Mehdi; Mat Jafri, M. Z.

    2014-05-01

    We present a highly miniaturized multimode interference (MMI) coupler based on nonlinear modal propagation analysis (NMPA) method as a novel design method and potential application for optical NAND, NOR and XNOR logic gates for Boolean logic signal processing devices. Crystalline polydiacetylene is used to allow the appearances of nonlinear effects in low input intensities and ultra- short length to control the MMI coupler as an active device to access light switching due to its high nonlinear susceptibility. We consider a 10x33 μm2 MMI structure with three inputs and one output. Notably, the access facets are single-mode waveguides with sub-micron width. The center input contributes to control the induced light propagation in MMI by intensity variation whereas others could be launched by particular intensity when they are ON and 0 in OFF. Output intensity is analyzed in various sets of inputs to show the capability of Boolean logic gates, the contrast between ON and OFF is calculated on mentioned gates to present the efficiency. Good operation in low intensity and highly miniaturized MMI coupler is observed. Furthermore, nonlinear effects could be realized through the modal interferences. The issue of high insertion loss is addressed with a 3×3 upgraded coupler. Furthermore, the main significant aspect of this paper is simulating an MMI coupler that is launched by three nonlinear inputs, simultaneously, whereas last presents have never studied more than one input in nonlinear regimes.

  16. Consumer-phase Salmonella enterica serovar enteritidis risk assessment for egg-containing food products.

    PubMed

    Mokhtari, Amirhossein; Moore, Christina M; Yang, Hong; Jaykus, Lee-Ann; Morales, Roberta; Cates, Sheryl C; Cowen, Peter

    2006-06-01

    We describe a one-dimensional probabilistic model of the role of domestic food handling behaviors on salmonellosis risk associated with the consumption of eggs and egg-containing foods. Six categories of egg-containing foods were defined based on the amount of egg contained in the food, whether eggs are pooled, and the degree of cooking practiced by consumers. We used bootstrap simulation to quantify uncertainty in risk estimates due to sampling error, and sensitivity analysis to identify key sources of variability and uncertainty in the model. Because of typical model characteristics such as nonlinearity, interaction between inputs, thresholds, and saturation points, Sobol's method, a novel sensitivity analysis approach, was used to identify key sources of variability. Based on the mean probability of illness, examples of foods from the food categories ranked from most to least risk of illness were: (1) home-made salad dressings/ice cream; (2) fried eggs/boiled eggs; (3) omelettes; and (4) baked foods/breads. For food categories that may include uncooked eggs (e.g., home-made salad dressings/ice cream), consumer handling conditions such as storage time and temperature after food preparation were the key sources of variability. In contrast, for food categories associated with undercooked eggs (e.g., fried/soft-boiled eggs), the initial level of Salmonella contamination and the log10 reduction due to cooking were the key sources of variability. Important sources of uncertainty varied with both the risk percentile and the food category under consideration. This work adds to previous risk assessments focused on egg production and storage practices, and provides a science-based approach to inform consumer risk communications regarding safe egg handling practices.

  17. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions

    PubMed Central

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  18. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  19. Nonlinear Evolution of Counter-Propagating Whistler Mode Waves Excited by Anisotropic Electrons Within the Equatorial Source Region: 1-D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui

    2018-02-01

    Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.

  20. Optimization of Dynamic Aperture of PEP-X Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min-Huey; /SLAC; Cai, Yunhai

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less

  1. Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization

    PubMed Central

    Lyu, Siwei; Simoncelli, Eero P.

    2011-01-01

    We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the source is nongaussian and elliptically symmetric. In this case, no invertible linear transform suffices to decompose the signal into independent components, but we show that a simple nonlinear transformation, which we call radial gaussianization (RG), is able to remove all dependencies. We then examine this methodology in the context of natural image statistics. We first show that distributions of spatially proximal bandpass filter responses are better described as elliptical than as linearly transformed independent sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either nearby pairs or blocks of bandpass filter responses is significantly greater than that achieved by ICA. Finally, we show that the RG transformation may be closely approximated by divisive normalization, which has been used to model the nonlinear response properties of visual neurons. PMID:19191599

  2. Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.

    PubMed

    Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che

    2016-11-01

    A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.

  3. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina

    PubMed Central

    Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.

    2009-01-01

    The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470

  4. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    PubMed

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  5. Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Mittal, Richa

    Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG contrast. These studies show a potential for multiphoton compact probes to be used for real time imaging in the clinic.

  6. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate.

    PubMed

    Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J

    2018-05-01

    To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Insight into the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response in chemically grown ZnO/Al2O3 films

    NASA Astrophysics Data System (ADS)

    Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata

    2017-11-01

    We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.

  8. Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen

    1997-01-01

    The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.

  9. Edge turbulence and divertor heat flux width simulations of Alcator C-Mod discharges using an electromagnetic two-fluid model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.

    2017-11-01

    The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.

  10. Third-order nonlinear optical properties of methylammonium lead halide perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C.; Li, Zhen; Ndione, Paul F.

    2016-01-01

    We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due tomore » the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.« less

  11. Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.

  12. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  13. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    PubMed

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  14. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  15. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława

    2018-04-01

    The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.

  16. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  17. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  18. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.

    PubMed

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B

    2018-05-18

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19}  m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  19. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients

    NASA Astrophysics Data System (ADS)

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.

    2018-05-01

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  20. Linear and Non-Linear Visual Feature Learning in Rat and Humans

    PubMed Central

    Bossens, Christophe; Op de Beeck, Hans P.

    2016-01-01

    The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201

  1. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses

    PubMed Central

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2013-01-01

    High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field synthesis and an energy-scaling method of high-order harmonic generation, the maximum pulse energy of the isolated attosecond pulse reaches as high as 1.3 μJ. The generated pulse with a duration of 500 as, as characterized by a nonlinear autocorrelation measurement, is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena. The peak power of our tabletop light source reaches 2.6 GW, which even surpasses that of an extreme-ultraviolet free-electron laser. PMID:24158092

  2. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey

    2018-02-01

    We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  3. Prediction and control of chaotic processes using nonlinear adaptive networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Barnes, C.W.; Flake, G.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  4. Remote Vibration Measurements at a Sud Aviation Alouette III Helicopter with a CW CO2-Laser System

    DTIC Science & Technology

    1993-09-28

    mrad and a continuous output of 0.4 Watt. The purpose of our measurements was to measure the vibration spectra of a helicopter from the Dutch Air Force...detection 13 3.2.1 Non-linear effects in vibrometry 15 4 THE VIBRATION SOURCES OF A HELICOPTER 24 5 MEASUREMENTS 29 5.1 Measuring Method 29 5.2 Scenario...vibration in Hz. 3.2.1 Non-linear effects in vibrometry A brief explanation of the non-linear effects is given below. A FM receiver has a built-in limiter

  5. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  6. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization

    DOE PAGES

    Jonkman, Jason M.; Jonkman, Bonnie J.

    2016-10-03

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  7. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  8. FAST modularization framework for wind turbine simulation: full-system linearization

    NASA Astrophysics Data System (ADS)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  9. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  10. Nonlinear theory of shocked sound propagation in a nearly choked duct flow

    NASA Technical Reports Server (NTRS)

    Myers, M. K.; Callegari, A. J.

    1982-01-01

    The development of shocks in the sound field propagating through a nearly choked duct flow is analyzed by extending a quasi-one dimensional theory. The theory is applied to the case in which sound is introduced into the flow by an acoustic source located in the vicinity of a near-sonic throat. Analytical solutions for the field are obtained which illustrate the essential features of the nonlinear interaction between sound and flow. Numerical results are presented covering ranges of variation of source strength, throat Mach number, and frequency. It is found that the development of shocks leads to appreciable attenuation of acoustic power transmitted upstream through the near-sonic flow. It is possible, for example, that the power loss in the fundamental harmonic can be as much as 90% of that introduced at the source.

  11. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    PubMed Central

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  12. Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Vakakis, Alexander F.; Cetinkaya, Cetin

    1993-02-01

    The free oscillations of n-degree-of-freedom (DOF) nonlinear systems with cyclic symmetry and weak coupling between substructures are examined. An asymptotic methodology is used to detect localized nonsimilar normal modes, i.e., free periodic motions spatially confined to only a limited number of substructures of the cyclic system. It is shown that nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structure, in contrast to linear mode localization, which exists only in the presence of substructure 'mistuning'. In addition to the localized modes, nonlocalized modes are also found in the weakly coupled system. The stability of the identified modes is investigated by means of an approximate two-timing averaging mothodology, and the general theory is applied to the case of a cyclic system with three-DOF. The theoretical results are then verified by direct numerical integrations of the equations of motion.

  13. Network evolution by nonlinear preferential rewiring of edges

    NASA Astrophysics Data System (ADS)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  14. Temporal processing and adaptation in the songbird auditory forebrain.

    PubMed

    Nagel, Katherine I; Doupe, Allison J

    2006-09-21

    Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.

  15. Fuzzy control of a fluidized bed dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taprantzis, A.V.; Siettos, C.I.; Bafas, G.V.

    1997-05-01

    Fluidized bed dryers are utilized in almost every area of drying applications and therefore improved control strategies are always of great interest. The nonlinear character of the process, exhibited in the mathematical model and the open loop analysis, implies that a fuzzy logic controller is appropriate because, in contrast with conventional control schemes, fuzzy control inherently compensates for process nonlinearities and exhibits more robust behavior. In this study, a fuzzy logic controller is proposed; its design is based on a heuristic approach and its performance is compared against a conventional PI controller for a variety of responses. It is shownmore » that the fuzzy controller exhibits a remarkable dynamic behavior, equivalent if not better than the PI controller, for a wide range of disturbances. In addition, the proposed fuzzy controller seems to be less sensitive to the nonlinearities of the process, achieves energy savings and enables MIMO control.« less

  16. Structural health monitoring based on sensitivity vector fields and attractor morphing.

    PubMed

    Yin, Shih-Hsun; Epureanu, Bogdan I

    2006-09-15

    The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.

  17. Recovery from nonlinear creep provides a window into physics of polymer glasses

    NASA Astrophysics Data System (ADS)

    Caruthers, James; Medvedev, Grigori

    Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.

  18. A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying

    2018-04-01

    Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.

  19. Archimedes' law explains penetration of solids into granular media.

    PubMed

    Kang, Wenting; Feng, Yajie; Liu, Caishan; Blumenfeld, Raphael

    2018-03-16

    Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.

  20. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a

Top