Yeo, Joonhyun
2009-11-01
We study a zero-dimensional version of the fluctuating nonlinear hydrodynamics (FNH) of supercooled liquids originally investigated by Das and Mazenko (DM) [Shankar P. Das and Gene F. Mazenko Phys. Rev. A 34, 2265 (1986)]. The time-dependent density-like and momentum-like variables are introduced with no spatial degrees of freedom in this toy model. The structure of nonlinearities takes the similar form to the original FNH, which allows one to study in a simpler setting the issues raised recently regarding the field theoretical approaches to glass forming liquids. We study the effects of density nonlinearities on the time evolution of correlation and response functions by developing field theoretic formulations in two different ways: first by following the original prescription of DM and then by constructing a dynamical action which possesses a linear time-reversal symmetry as proposed recently. We show explicitly that, at the one-loop order of the perturbation theory, the DM-type field theory does not support a sharp ergodic-nonergodic transition, while the other admits one. The simple nature of the toy model in the DM formulation allows us to develop numerical solutions to a complete set of coupled dynamical equations for the correlation and response functions at the one-loop order. PMID:20364986
Nonlinear saturation spectra of electric fields and density fluctuations in drift wave turbulence
NASA Technical Reports Server (NTRS)
Kelley, M. C.
1982-01-01
The detection of drift waves in the nonlinear evolution of a space plasma process driven at long wavelengths is considered, adducing measurements of the electric field and density fluctuation power spectra as evidence. Since the driving mechanism is clearly at long wavelengths, the detection of drift waves suggests that they may play an important role in the transfer of wave energy from long to short wavelengths in a low beta plasma. The saturated spectral density is compared with theoretical results in order to estimate the anomalous diffusion rate. The observed spectral form and amplitude is in excellent agreement with drift wave predictions.
Structural analysis of the SDSS Cosmic Web - I. Non-linear density field reconstructions
NASA Astrophysics Data System (ADS)
Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.; Vegter, Gert; Calvo, Miguel A. Aragón
2011-10-01
This study is the first in a series in which we analyse the structure and topology of the Cosmic Web as traced by the Sloan Digital Sky Survey (SDSS). The main issue addressed in the present study is the translation of the irregularly distributed discrete spatial data in the galaxy redshift survey into a representative density field. The density field will form the basis for a statistical, topological and cosmographic study of the cosmic density field in our Local Universe. We investigate the ability of three reconstruction techniques to analyse and investigate web-like features and geometries in a discrete distribution of objects. The three methods are the linear Delaunay Tessellation Field Estimator (DTFE), its higher order equivalent Natural Neighbour Field Estimator (NNFE) and a version of the Kriging interpolation adapted to the specific circumstances encountered in galaxy redshift surveys, the Natural Lognormal Kriging technique. DTFE and NNFE are based on the local geometry defined by the Voronoi and Delaunay tessellations of the galaxy distribution. The three reconstruction methods are analysed and compared using mock magnitude- and volume-limited SDSS redshift surveys, obtained on the basis of the Millennium simulation. We investigate error trends, biases and the topological structure of the resulting fields, concentrating on the void population identified by the Watershed Void Finder. Environmental effects are addressed by evaluating the density fields on a range of Gaussian filter scales. Comparison with the void population in the original simulation yields the fraction of false void mergers and false void splits. In most tests DTFE, NNFE and Kriging have largely similar density and topology error behaviour. Cosmetically, higher order NNFE and Kriging methods produce more visually appealing reconstructions. Quantitatively, however, DTFE performs better, even while being computationally far less demanding. A successful recovery of the void population on
Relativistic weak lensing from a fully non-linear cosmological density field
Thomas, D.B.; Bruni, M.; Wands, D. E-mail: marco.bruni@port.ac.uk
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.
NASA Astrophysics Data System (ADS)
Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steve G.
2009-03-01
Chloroform is often used as a solvent and reference when measuring non-linear optical properties of organic molecules. We calculate directly the non-linear susceptibilities of liquid chloroform at optical frequencies, using molecular dynamics and the Sternheimer equation in time-dependent density-functional theory [X. Andrade et al., J. Chem. Phys. 126, 184106 (2007)]. We compare the results to those of chloroform in the gas and solid phases, and experimental values, and make an ab initio calculation of the local-field factors which are needed to extract molecular properties from liquid calculations and experimental measurements.
Nonlinear density waves in planetary rings
NASA Technical Reports Server (NTRS)
Borderies, Nicole; Goldreich, Peter; Tremaine, Scott
1986-01-01
The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.
Gauge fields, nonlinear realizations, supersymmetry
NASA Astrophysics Data System (ADS)
Ivanov, E. A.
2016-07-01
This is a brief survey of the all-years research activity in the Sector "Supersymmetry" (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.
The Nonlinear Field Space Theory
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-08-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Shaping the nonlinear near field.
Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus
2016-01-01
Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states. PMID:26762487
Shaping the nonlinear near field
NASA Astrophysics Data System (ADS)
Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus
2016-01-01
Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states.
Shaping the nonlinear near field
Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus
2016-01-01
Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states. PMID:26762487
Nonlinear model of elastic field sources
NASA Astrophysics Data System (ADS)
Lev, B. I.; Zagorodny, A. G.
2016-09-01
A general concept of the long-range elastic interactions in continuous medium is proposed. The interaction is determined as a consequence of symmetry breaking of the elastic field distribution produced by the topological defect as isolated inclusions. It is proposed to treat topological defects as the source of elastic field that can be described in terms of this field. The source is considered as a nonlinear object which determines the effective charge of the field at large distances in the linear theory. The models of the nonlinear source are proposed.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Primordial magnetic fields and nonlinear electrodynamics
Kunze, Kerstin E.
2008-01-15
The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.
Nonlinear upper hybrid waves and the induced density irregularities
Kuo, Spencer P.
2015-08-15
Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.
New approaches to nonlinear diffractive field propagation.
Christopher, P T; Parker, K J
1991-07-01
In many domains of acoustic field propagation, such as medical ultrasound imaging, lithotripsy shock treatment, and underwater sonar, a realistic calculation of beam patterns requires treatment of the effects of diffraction from finite sources. Also, the mechanisms of loss and nonlinear effects within the medium are typically nonnegligible. The combination of diffraction, attenuation, and nonlinear effects has been treated by a number of formulations and numerical techniques. A novel model that incrementally propagates the field of baffled planar sources with substeps that account for the physics of diffraction, attenuation, and nonlinearity is presented. The model accounts for the effect of refraction and reflection (but not multiple reflections) in the case of propagation through multiple, parallel layers of fluid medium. An implementation of the model for axis symmetric sources has been developed. In one substep of the implementation, a new discrete Hankel transform is used with spatial transform techniques to propagate the field over a short distance with diffraction and attenuation. In the other substep, the temporal frequency domain solution to Burgers' equation is implemented to account for the nonlinear accretion and depletion of harmonics. This approach yields a computationally efficient procedure for calculating beam patterns from a baffled planar, axially symmetric source under conditions ranging from quasilinear through shock. The model is not restricted by the usual parabolic wave approximation and the field's directionality is explicitly accounted for at each point. Useage of a harmonic-limiting scheme allows the model to propagate some previously intractable high-intensity nonlinear fields. Results of the model are shown to be in excellent agreement with measurements performed on the nonlinear field of an unfocused 2.25-MHz piston source, even in the near field where the established parabolic wave approximation model fails. Next, the model is used to
Laboratory Study of Nonlinear Trapping of Magnetized Langmuir Waves Inside a Density Depletion
Starodubtsev, Mikhail V.; Nazarov, Vladimir V.; Kostrov, Alexander V.
2007-05-11
The formation of a small-scale plasma density depletion region extended along the ambient magnetic field and caused by the nonlinear interaction of the upper-hybrid plasma waves with a magnetoplasma has been observed under laboratory conditions modeling the ionospheric heating experiments. Plasma waves are trapped inside the depletion due to their specific dispersion properties. The threshold of the nonlinear wave trapping significantly increases in the vicinity of the harmonics of the electron gyrofrequency.
Modeling field emitter arrays using nonlinear line charge distribution
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Singh, Gaurav; Kumar, Raghwendra
2016-09-01
Modeling high aspect ratio field emitter arrays is a computational challenge due to the enormity of the resources involved. The line charge model (LCM) provides an alternate semi-analytical tool that has been used to model both infinite as well as finite sized arrays. It is shown that the linearly varying charge density used in the LCM generically mimics ellipsoidal emitters rather than a Cylindrical-Post-with-an-Ellipsoidal-Tip (CPET) that is typical of nanowires. Furthermore, generalizing the charge density beyond the linear regime allows for modeling shapes that are closer to a CPET. Emitters with a fixed base radius and a fixed apex radius are studied with a view to understanding the effect of nonlinearity on the tip enhancement factor and the emitter current in each case. Furthermore, an infinite square array of the CPET emitters is studied using the nonlinear line charge model, each having a height h =1500 μm and a base radius b =1.5 μm . It is found that for moderate external field strengths ( 0.3 -0.4 V /μm ), the array current density falls sharply for lattice spacings smaller than 4/3 h . Beyond this value, the maximal array current density can be observed over a range of lattice spacings and falls gradually thereafter.
Miscible density fingering of chemical fronts in porous media: Nonlinear simulations
NASA Astrophysics Data System (ADS)
De Wit, A.
2004-01-01
Nonlinear interactions between chemical reactions and Rayleigh-Taylor type density fingering are studied in porous media or thin Hele-Shaw cells by direct numerical simulations of Darcy's law coupled to the evolution equation for the concentration of a chemically reacting solute controlling the density of miscible solutions. In absence of flow, the reaction-diffusion system features stable planar fronts traveling with a given constant speed v and width w. When the reactant and product solutions have different densities, such fronts are buoyantly unstable if the heavier solution lies on top of the lighter one in the gravity field. Density fingering is then observed. We study the nonlinear dynamics of such fingering for a given model chemical system, the iodate-arsenious acid reaction. Chemical reactions profoundly affect the density fingering leading to changes in the characteristic wavelength of the pattern at early time and more rapid coarsening in the nonlinear regime. The nonlinear dynamics of the system is studied as a function of the three relevant parameters of the model, i.e., the dimensionless width of the system expressed as a Rayleigh number Ra, the Damköhler number Da, and a chemical parameter d which is a function of kinetic constants and chemical concentration, these two last parameters controlling the speed v and width w of the stable planar front. For small Ra, the asymptotic nonlinear dynamics of the fingering in the presence of chemical reactions is one single finger of stationary shape traveling with constant nonlinear speed V>v and mixing zone W>w. This is drastically different from pure density fingering for which fingers elongate monotonically in time. The asymptotic finger has axial and transverse averaged profiles that are self-similar in unit lengths scaled by Ra. Moreover, we find that W/Ra scales as Da-0.5. For larger Ra, tip splittings are observed.
Nonlinear Density Dependence of Singlet Fission Rate in Tetracene Films.
Zhang, Bo; Zhang, Chunfeng; Wang, Rui; Tan, Zhanao; Liu, Yunlong; Guo, Wei; Zhai, Xiaoling; Cao, Yi; Wang, Xiaoyong; Xiao, Min
2014-10-16
Singlet fission holds the potential to dramatically improve the efficiency of solar energy conversion by creating two triplet excitons from one photoexcited singlet exciton in organic semiconductors. It is generally assumed that the singlet-fission rate is linearly dependent on the exciton density. Here we experimentally show that the rate of singlet fission has a nonlinear dependence on the density of photoexcited singlet excitons in tetracene films with small crystalline grains. We disentangle the spectrotemporal features of singlet and triplet dynamics from ultrafast spectroscopic data with the algorithm of singular value decomposition. The correlation between their temporal dynamics indicates a superlinear dependence of fission rate on the density of singlet excitons, which may arise from excitonic interactions. PMID:26278594
Spatial Frequency Clustering in Nonlinear Dust-Density Waves
Menzel, K. O.; Arp, O.; Piel, A.
2010-06-11
Self-excited density waves were studied in a strongly coupled dusty plasma of a radio-frequency discharge under microgravity conditions. The spatiotemporal evolution of the complicated three-dimensional wave field was investigated and analyzed for two different situations. The reconstructed instantaneous phase information of the wave field revealed a partial synchronization within multiple distinct domains. The boundaries of these regions coincide with the locations of topological defects.
Resonantly driven nonlinear density waves in protostellar disks
NASA Technical Reports Server (NTRS)
Yuan, Chi; Cassen, Pat
1994-01-01
Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance
NASA Astrophysics Data System (ADS)
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.
2000-01-01
Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.
NASA Astrophysics Data System (ADS)
Wan, W. M. V.; Lee, H. C.; Hui, P. M.; Yu, K. W.
1996-08-01
The effective response of random media consisting of two different kinds of strongly nonlinear materials with strong power-law nonlinearity is studied. Each component satisfies current density and electric-field relation of the form J=χ\\|E\\|βE. A simple self-consistent mean-field theory, which leads to a simple way in determining the average local electric field in each constituent, is introduced. Each component is assumed to have a conductivity depending on the averaged local electric field. The averaged local electric field is then determined self-consistently. Numerical simulations of the system are carried out on random nonlinear resistor networks. Theoretical results are compared with simulation data, and excellent agreements are found. Results are also compared with the Hashin-Shtrikman lower bound proposed by Ponte Castaneda et al. [Phys. Rev. B 46, 4387 (1992)]. It is found that the present theory, at small contrasts of χ between the two components, gives a result identical to that of Ponte Castaneda et al. up to second order of the contrast. The crossover and scaling behavior of the effective response near the percolation threshold as suggested by the present theory are discussed and demonstrated.
Nonlinear Dirac equation solitary waves in external fields.
Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh
2012-10-01
We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort
Nonlinear Dirac equation solitary waves in external fields.
Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh
2012-10-01
We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort
Nonlinear phase field model for electrodeposition in electrochemical systems
Liang, Linyun; Chen, Long-Qing
2014-12-29
A nonlinear phase-field model has been developed for describing the electrodeposition process in electrochemical systems that are highly out of equilibrium. Main thermodynamic driving forces for the electrode-electrolyte interface (EEI) evolution are limited to local variations of overpotential and ion concentration. Application of the model to Li-ion batteries describes the electrode interface motion and morphology change caused by charge mass transfer in the electrolyte, an electrochemical reaction at the EEI and cation deposition on the electrode surface during the charging operation. The Li electrodeposition rate follows the classical Butler-Volmer kinetics with exponentially and linearly depending on local overpotential and cation concentration at the electrode surface, respectively. Simulation results show that the Li deposit forms a fiber-like shape and grows parallel to the electric field direction. The longer and thicker deposits are observed both for higher current density and larger rate constant where the surface reaction rate is expected to be high. The proposed diffuse interface model well captures the metal electrodeposition phenomena in plenty of non-equilibrium electrochemical systems.
NASA Astrophysics Data System (ADS)
Khorashadizadeh, S. M.; Taghadosi, M. R.; Niknam, A. R.
2015-12-01
The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank-Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.
NASA Astrophysics Data System (ADS)
Krot, A. M.
2009-04-01
A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This
Seismological Field Observation of Mesoscopic Nonlinearity
NASA Astrophysics Data System (ADS)
Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst
2016-04-01
of events associated with separately inverted parameters. As the local ground acceleration is not correlated to static stress changes we can exclude static stress changes as causative process. The shaking sensitivity and healing process is well known from laboratory experiments in composite materials as mesoscopic nonlinearity. The sensitive behavior at this station is related to the particular near surface material that is a conglomerate cemented with gypsum - so called gypcrete. However, mesoscopic nonlinearity with different parameters might be a key to understand velocity changes also at other sites.
Low density instability in relativistic mean field models
NASA Astrophysics Data System (ADS)
Sulaksono, A.; Mart, T.
2006-10-01
The effects of symmetry energy softening of relativistic mean field (RMF) models on the properties of matter with neutrino trapping are investigated. It is found that the effects are less significant than those in the case without neutrino trapping. The weak dependence of the equation of state on the symmetry energy is shown as the main reason for this finding. Using different RMF models the dynamical instabilities of uniform matters, with and without neutrino trapping, have been also studied. The interplay between the dominant contribution of the variation of matter composition and the role of effective masses of mesons and nucleons leads to higher critical densities for matter with neutrino trapping. Furthermore, the predicted critical density is insensitive to both the number of trapped neutrinos as well as the RMF model used in the investigation. It is also found that additional nonlinear terms in the Horowitz-Piekarewicz and Furnstahl-Serot-Tang models prevent another kind of instability, which occurs at relatively high densities, because the effective σ meson mass in their models increases as a function of matter density.
But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.
2014-04-28
Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm{sup 2} to ∼5 kW/cm{sup 2})
Nonlinear transmission of an intense terahertz field through monolayer graphene
Hafez, H. A.; Ibrahim, A.; Ozaki, T.; Al-Naib, I.; Dignam, M. M.; Oguri, K.; Sekine, Y.; Hibino, H.; Cooke, D. G.; Tanaka, S.; Komori, F.
2014-11-15
We report nonlinear terahertz (THz) effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.
Non-linear density-dependent effects of an intertidal ecosystem engineer.
Harley, Christopher D G; O'Riley, Jaclyn L
2011-06-01
Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate. PMID:21170751
Density steepening formation in the interaction of microwave field with a plasma
Niknam, A. R.; Shokri, B.
2007-05-15
A modification of the electron density distribution of an unmagnetized plasma by the ponderomotive force of high-power microwave propagating into the plasma is studied. Using the Maxwell and fluid equations, nonlinear differential and integral equations for the electric field are obtained. The solution of these nonlinear equations shows that the profiles of the electric and magnetic field depart slightly from a sinusoidal shape, the amplitude of oscillations decreases in the plasma, and these oscillations become lengthened. Also, the period of oscillations decreases by increasing the microwave energy flux and the electron density becomes highly steepened for high microwave energy flux. Furthermore, the axial density profile shows a stationary density modulation that is phase-shifted with respect to the wave amplitude. This density modulation increases with the microwave energy flux.
Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer.
Marinica, D C; Kazansky, A K; Nordlander, P; Aizpurua, J; Borisov, A G
2012-03-14
A fully quantum mechanical investigation using time-dependent density functional theory reveals that the field enhancement in a coupled nanoparticle dimer can be strongly affected by nonlinear effects. We show that both classical as well as linear quantum mechanical descriptions of the system fail even for moderate incident light intensities. An interparticle current resulting from the strong field photoemission tends to neutralize the plasmon-induced surface charge densities on the opposite sides of the nanoparticle junction. Thus, the coupling between the two nanoparticles and the field enhancement is reduced as compared to linear theory. A substantial nonlinear effect is revealed already at incident powers of 10(9) W/cm(2) for interparticle separation distances as large as 1 nm and down to the touching limit.
Nonlinear Bubble Interactions in Acoustic Pressure Fields
NASA Technical Reports Server (NTRS)
Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi
1996-01-01
The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).
REJUVENATING POWER SPECTRA. II. THE GAUSSIANIZED GALAXY DENSITY FIELD
Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan
2011-04-20
We find that, even in the presence of discreteness noise, a Gaussianizing transform (producing a more Gaussian one-point distribution) reduces nonlinearities in the power spectra of cosmological matter and galaxy density fields, in many cases drastically. Although Gaussianization does increase the effective shot noise, it also increases the power spectrum's fidelity to the linear power spectrum on scales where the shot noise is negligible. Gaussianizing also increases the Fisher information in the power spectrum in all cases and resolutions, although the gains are smaller in redshift space than in real space. We also find that the gain in cumulative Fisher information from Gaussianizing peaks at a particular grid resolution depends on the sampling level.
Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field.
Zhu, Gui-Ping; Nguyen, Nam-Trung; Ramanujan, R V; Huang, Xiao-Yang
2011-12-20
This paper reports experimental and numerical results of the deformation of a ferrofluid droplet on a superhydrophobic surface under the effect of a uniform magnetic field. A water-based ferrofluid droplet surrounded by immiscible mineral oil was stretched by a magnetic field parallel to the substrate surface. The results show that an increasing flux density increases the droplet width and decreases the droplet height. A numerical model was established to study the equilibrium shape of the ferrofluid droplet. The governing equations for physical fields, including the magnetic field, are solved by the finite volume method. The interface between the two immiscible liquids was tracked by the level-set method. Nonlinear magnetization was implemented in the model. Comparison between experimental and numerical results shows that the numerical model can predict well the nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. PMID:22044246
Nonlinear electromagnetic fields as a source of universe acceleration
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2016-04-01
A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.
Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
Humphrey, V F
2000-03-01
In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described. PMID:10829672
Nonlinear electron acoustic waves in presence of shear magnetic field
Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Elhefnawy, Abdel R. F.
1993-05-01
A weakly nonlinear evolution of two dimensional wave packets on the surface of a magnetic fluid in the presence of an uniform magnetic field is presented, taking into account the surface tension. The method used is that of multiple scales to derive two partial differential equations. These differential equations can be combined to yield two alternate nonlinear Schroedinger equations. The first equation is valid near the cutoff wavenumber while the second equation is used to show that stability of uniform wave trains depends on the wavenumber, the density, the surface tension and the magnetic field. At the critical point, a generalized formulation of the evolution equation governing the amplitude is developed which leads to the nonlinear Klein-Gordon equation. From the latter equation, the various stability criteria are obtained.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition. PMID:26497312
High field optical nonlinearity and the Kramers-Kronig relations.
Wahlstrand, J K; Cheng, Y-H; Milchberg, H M
2012-09-14
The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.
Towards an effective nonlinear Quantum Mechanics for High Energy-density (HED) Matter
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh
2015-11-01
A relativistic quantum framework is presented for dealing with high energy density matter, in particular, an assembly of particles in the field of an electromagnetic (EM) wave of arbitrary magnitude. Two different approaches are presented: 1) A Statistical Mechanical model for the HED matter is developed - Principal steps involve solving the eigenvalue problem for a quantum relativistic particle in the presence of arbitrary strength EM field. The resulting energy eigenvalue (dependent on the magnitudes A, ω and k) defines the appropriate Boltzmann factor to construct expressions for physical variables for a weakly interacting system of these field-dressed particles. The fluid equations are the conservation laws, 2) Second, an equivalent nonlinear quantum mechanics is constructed to represent a hot fluid with and without internal degrees of freedom (like spin). Representative initial results are displayed and discussed: 1) fundamental changes in the particle energy momentum relationship 2) The EM wave induces anisotropy in the energy momentum tensor, 3) the EM wave splits the spin-degenerate states, 4) the propagation characteristics of the EM wave are modified by thermal and field effects causing differential self-induced transparency, 5) Particle trapping and ``pushing'' by the high amplitude EM wave. Attempts will be made to highlight testable predictions. Research supported by the U.S. Dept. of Energy Grant DE-FG02-04ER-54742.
Spectral investigation of nonlinear local field effects in Ag nanoparticles
Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji
2015-03-21
The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.
Nonlinear perturbations of cosmological scalar fields with non-standard kinetic terms
NASA Astrophysics Data System (ADS)
Renaux-Petel, Sébastien; Tasinato, Gianmassimo
2009-01-01
We adopt a covariant formalism to derive exact evolution equations for nonlinear perturbations, in a universe dominated by two scalar fields. These scalar fields are characterized by non-canonical kinetic terms and an arbitrary field space metric, a situation typically encountered in inflationary models inspired by string theory. We decompose the nonlinear scalar perturbations into adiabatic and entropy modes, generalizing the definition adopted in the linear theory, and we derive the corresponding exact evolution equations. We also obtain a nonlinear generalization of the curvature perturbation on uniform density hypersurfaces, showing that on large scales it is sourced only by the nonlinear version of the entropy perturbation. We then expand these equations to second order in the perturbations, using a coordinate based formalism. Our results are relatively compact and elegant and enable one to identify the new effects coming from the non-canonical structure of the scalar fields Lagrangian. We also explain how to analyze, in our formalism, the interesting scenario of multi-field Dirac-Born-Infeld inflation.
Stochastic acceleration of charged particle in nonlinear wave field
NASA Astrophysics Data System (ADS)
He, Kaifen
2003-04-01
Possibility of stochastic acceleration of charged particle by nonlinear waves is investigated. Spatially regular (SR) and spatiotemporal chaotic (STC) wave solutions evolving from saddle steady wave are tested as the fields. In the non-steady SR field the particle is finally trapped by the wave and averagely gains its group velocity, while in the STC field the particle motion displays trapped-free phases with its averaged velocity larger or smaller than the group velocity depending on the charge sign. A simplified model is established to investigate the acceleration mechanism. By analogy with motor protein, it is found that the virtual pattern of saddle steady wave plays a role of asymmetric potential, which and the nonlinear varying perturbation wave are the two sufficient ingredients for the acceleration in our case.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1976-01-01
An investigation is conducted of five relativistic plane nonlinear waves, taking into account circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. It is found that a large-amplitude superluminous wave determines the average plasma properties, and not vice versa. Attention is given to the implications of the obtained results for the acceleration of cosmic rays in pulsar magnetospheres.
Gravity Dual for Reggeon Field Theory and Nonlinear Quantum Finance
NASA Astrophysics Data System (ADS)
Nakayama, Yu
We study scale invariant but not necessarily conformal invariant deformations of nonrelativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the nonrelativistic conformal invariance. We discuss applications to scaling regime of Reggeon field theory and nonlinear quantum finance. These theories possess scale invariance but may or may not break the conformal invariance, depending on the underlying symmetry assumptions.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Nonlinear electric field structures in the inner magnetosphere
Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.
2014-08-28
Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less
Nonlinear electric field structures in the inner magnetosphere
Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.
2014-08-28
Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.
Nonlinear evolution of stimulated Raman scattering near the quarter-critical density
Xiao, C. Z.; Wu, D.; Liu, Z. J.; Zheng, C. Y. He, X. T.
2015-05-15
Nonlinear evolution of stimulated Raman scattering (SRS) near the quarter-critical density is studied using one-dimensional (1D) and two-dimensional (2D) particle-in-cell simulations in homogeneous plasmas. In 1D configuration, with two-plasmon decay (TPD) instability excluded, the system evolves into two regimes distinguished by whether density cavities have been formed or not. At low temperatures, a cavity regime characterised by high absorption and low reflection, and at high temperatures nonlinear frequency shift regime due to particle trapping, are observed. Furthermore, a competition between SRS and TPD in 2D simulations reveals that the nonlinear SRS does play a significant role near the quarter-critical density, whose influences were mostly neglected before.
Propulsion Physics Under the Changing Density Field Model
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
Nonlinear response of electric fields at a neutral point
NASA Astrophysics Data System (ADS)
Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard
1995-05-01
The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.
On the pressure field of nonlinear standing water waves
NASA Technical Reports Server (NTRS)
Schwartz, L. W.
1980-01-01
The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.
Acoustic field distribution of sawtooth wave with nonlinear SBE model
Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen
2015-10-28
For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.
NASA Technical Reports Server (NTRS)
Yee, T. K.; Gustafson, T. K.
1978-01-01
In the present paper a diagrammatic analysis of the density operator for the evaluation of nonlinear optical quantities is considered. The present approach extends earlier diagrammatic analysis by treating the time evolution of both the wave function and its complex conjugate. Time-ordered graphs result, each of which corresponds to a term in the density matrix. Examples involving the third-order susceptibility are discussed for both monochromatic and pulse excitation. In particular coherent rotational transient birefringence is discussed. The diagrams provide a convenient means by which nonlinear optical processes can be precisely defined and the susceptibility readily evaluated.
Nonlinear Force-Free Field Extrapolation of NOAA AR 0696
NASA Astrophysics Data System (ADS)
Thalmann, J. K.; Wiegelmann, T.
2007-12-01
We investigate the 3D coronal magnetic field structure of NOAA AR 0696 in the period of November 09-11, 2004, before and after an X2.5 flare (occurring around 02:13 UT on November 10, 2004). The coronal magnetic field dominates the structure of the solar corona and consequently plays a key role for the understanding of the initiation of flares. The most accurate presently available method to derive the coronal magnetic field is currently the nonlinear force-free field extrapolation from measurements of the photospheric magnetic field vector. These vector-magnetograms were processed from stokes I, Q, U, and V measurements of the Big Bear Solar Observatory and extrapolated into the corona with the nonlinear force-free optimization code developed by Wiegelmann (2004). We analyze the corresponding time series of coronal equilibria regarding topology changes of the 3D coronal magnetic field during the flare. Furthermore, quantities such as the temporal evolution of the magnetic energy and helicity are computed.
Modeling magnetic field amplification in nonlinear diffusive shock acceleration
NASA Astrophysics Data System (ADS)
Vladimirov, Andrey
2009-02-01
This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.
Nonlinear spinor fields in Bianchi type-VI spacetime
NASA Astrophysics Data System (ADS)
Saha, Bijan
2016-05-01
Within the scope of Bianchi type-VI cosmological model we study the role of spinor field in the evolution of the Universe. It is found that due to the spinor affine connections the energy-momentum tensor of the spinor field possesses non-diagonal components. The non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions or on both of them. But unlike in the cases of Bianchi type-I or VI_0 , in the case of Bianchi type-VI model, it does not lead to the elimination of spinor field nonlinearity or mass term in the spinor field Lagrangian. It is also found that depending on the sign of self-coupling constant the model can give rise to late time acceleration or generate oscillatory mode of evolution.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
Nonlinear nanoprobes for characterizing ultrafast optical near field
NASA Astrophysics Data System (ADS)
Li, Haifeng
With the rapid development of ultrafast optics and nanophotonics, it is crucial to measure the spatiotemporal evolution of an ultrafast optical near field in nanometer spatial and femtosecond temporal resolution with minimal perturbation. Although near-field scanning optical microscopy (NSOM) can achieve nanoscale spatial resolution and various ultrashort pulse diagnostic tools can characterize femtosecond laser pulses, yet such capability to noninvasively characterize the nanoscale characteristics of femtosecond pulses in all three spatial dimensions remains elusive. In this dissertation, we developed different types of nonlinear optical probes to characterize ultrashort optical pulses. The nonlinear optical probe is composed of three parts, a silica fiber taper, a single nanowire bonded to the end of the fiber and nonlinear nanoparticles attached on the tip of the nanowire. The optical fiber taper can be readily mounted on a mechanical stage and served as a macroscopic interface for handling and positioning control. The single nanowire bridges the dimension gap between the nanocrystals and the fiber taper, and is critical for achieving large aspect ratio and hence minimizing optical scattering and perturbation. The nonlinear nanoparticles give rise to its capability to characterize ultrashort optical pulses. The unique fusion of nanoscale and nonlinear features in developed nonlinear optical probes provides the ability of probing ultrafast optical field in complex 3D microand nano- structures. The demonstration of such ability is crucial for understanding the interaction of ultrafast optical fields and nanoscale systems. The fabrication processes of the nonlinear optical probes are illustrated in detail and the optical properties of the probes are investigated. Two different types of nonlinear optical probes, two-photon fluorescent nanoprobes and Second HARmonic nanoProbes (SHARP), are fabricated. Interferometric autocorrelation measurements near the focal point
Multicomponent Nonlinear Systems of Bose-Fermi Fields: Exact Solutions
Kostov, Nikolay A.; Gerdjikov, Vladimir S.; Valchev, Tihomir I.
2011-04-07
We present families of stationary solutions for a multicomponent nonlinear system of two boson and N{sub f} fermion fields in terms of elliptic functions of modulus k. This system is an extention of models, describing Bose-Fermi mixtures in the mean field approximation. We also single out the particular cases when the quasiperiodic solutions become periodic ones. In the limit of sinusoidal external potential (k{yields}0) our solutions model periodic waves trapped in an optical lattice. The other limit k{yields}1 provides solutions expressed by hyperbolic functions (vector solitons). Thus we demonstrate that our system describes quasi-periodic and periodic waves, as well as solitons.
Nonlinear model for coherent electric field structures in the magnetosphere
Jovanovic; Shukla
2000-05-01
A new pseudo-three-dimensional electron hole in a magnetized plasma is possible when the low-frequency ion dynamics is taken into account. The newly found nonlinear Bernstein-Greene-Kruskal stationary solution, whose parallel phase velocity ranges between almost zero and the electron thermal speed, has the form of a cylinder that is tilted relative to the magnetic field. These structures are interpreted as three-dimensional electron holes coupled with hydrodynamic vortices, and provide a possible theoretical explanation for the POLAR and FAST satellite observations of coherent structures characterized by bipolar spikes of the parallel electric field and large perpendicular ion kinetic energies.
Nonlinear force-free magnetic fields. [quasi-steady state evolution of astrophysical fields
NASA Technical Reports Server (NTRS)
Low, B. C.
1982-01-01
The nonlinear properties of force-free magnetic fields are reviewed with particular reference to the mechanisms for the sudden release of stored energy in flares during the quasi-steady evolution of solar fields. It is shown that in the solar atmosphere, force-free fields with a nonconstant scalar function in the field equations are more likely to occur than those with a constant scalar function, and the nonlinear properties of these fields may give rise to many interesting physical effects. Consideration is then given to two possible mechanisms of field evolution: a model in which a force-free field in a medium of infinite electrical conductivity evolves in response to slowly changing boundary conditions brought about by photospheric motions in the solar active region, and a model in which a field in a medium of small finite electrical conductivity evolves in response to the slow Ohmic dissipation of the electric current.
Charge-density study of the nonlinear optical precursor DED-TCNQ at 20 K
NASA Astrophysics Data System (ADS)
Cole, Jacqueline M.; Copley, Royston C.; McIntyre, Garry J.; Howard, Judith A.; Szablewski, Marek; Cross, Graham H.
2002-03-01
A charge-density study of the nonlinear-optical (NLO) precursor \\{4-[bis(diethylamino)-methylium] phenyl\\}dicyanomethanide (DED-TCNQ), space group P21/c, a=11.174(2) Å b=12.859(2) Å c=12.486(2) Å β=112.00(1)°, is presented. The results derive from a suitable combination of complementary 20 K x-ray and neutron diffraction data, the latter being important for locating the hydrogen atoms precisely. The compound is one in a series of TCNQ derivatives that exhibit varying degrees of quinoidal and zwitterionic character, these two electronic states being very close energetically. Bond-length-alternation type calculations show that the molecule at 20 K exists in a mixture of the two states, the zwitterionic ground state being dominant (63:37% zwitterionic: quinoidal). A topological analysis of the bonding density within the benzenoid ring provides for a more direct, alternative method to calculate this ratio which utilizes ellipticity values derived from the charge-density study. Results are identical thus corroborating the validity of the ``strength-length'' relationship implicitly assumed in bond-length-alternation type calculations. The ratio determined corresponds well to the electronic configuration needed to meet the requirements of the general rule for obtaining a maximum value of β (a measure of the NLO response on the molecular scale) as a function of bond-length alternation. The promise of this class of compounds for nonlinear optics also lies partly in their high molecular dipole moments and so the pseudoatomic charges derived from this study were used to evaluate the nature of the molecular charge transfer in detail and the solid-state dipolar vector moment μ. Such measurements of μ are otherwise difficult in the solid state. A value of \\|μ\\|=91×10-30 Cm was deduced which compares with liquid and gas phase theoretical calculations of μ=66.71×10-30 Cm and μ=33.36×10-30 Cm, respectively. This comparison, combined with an analysis of the sense
Non-linear magnetohydrodynamic simulations of density evolution in Tore Supra sawtoothing plasmas
Nicolas, T.; Sabot, R.; Garbet, X.; Decker, J.; Merle, A.; Luetjens, H.; Luciani, J.-F.; Guimaraes-Filho, Z.
2012-11-15
The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed.
Kinetic equations for a density matrix describing nonlinear effects in spectral line wings
Parkhomenko, A. I. Shalagin, A. M.
2011-11-15
Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.
CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR
Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...
Li, Yue; Ho, Janet; Wang, Jianchuan; Li, Zhong-Ming; Zhong, Gan-Ji; Zhu, Lei
2016-01-13
Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next generation high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. For fundamental nonlinear dielectric constants at low fields (<30 MV/m), Novocontrol high-voltage broadband dielectric spectroscopy (HVBDS) was accurate enough to measure up to the third harmonics. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ≈ 70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α → δ → β) phase transformations. By using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from that of the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude.
Li, Yue; Ho, Janet; Wang, Jianchuan; Li, Zhong-Ming; Zhong, Gan-Ji; Zhu, Lei
2016-01-13
Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next generation high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. For fundamental nonlinear dielectric constants at low fields (<30 MV/m), Novocontrol high-voltage broadband dielectric spectroscopy (HVBDS) was accurate enough to measure up to the third harmonics. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ≈ 70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α → δ → β) phase transformations. By using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from that of the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude. PMID:26698912
The nonlinear transition period of broadband ultrasound attenuation as bone density varies.
Serpe, L; Rho, J Y
1996-07-01
The purpose of this study was to determine whether a transition period occurs between cortical and cancellous bone in the relationship between ultrasound parameters [broadband ultrasound attenuation (BUA) and ultrasonic velocity] and density. Twenty-two cancellous bone discs wee obtained from proximal bovine tibiae. Also included were three samples of human vertebral cancellous bone from an elderly female and four samples of bovine cortical bone. Ultrasonic velocity did not show any transition period as density varied from cancellous to cortical bone. Ultrasonic velocity exhibited a definite linear dependence on density over the entire range examined. However, BUA has shown a transition period as density varied. Although BUA increased linearly with density for a low density cancellous bone tested (below 0.64 g cm-3), the dependence of BUA on density is nonlinear with a downwardly inflected parabola shape when covering a wide density range (0.130-0.913 g cm-3) of cancellous bone. When one includes cortical bone, the parabola tends to level off in a slow exponential decay. This nonlinear dependence may help to understand the characteristics of BUA measurement. PMID:8809627
White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.
2008-05-15
For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.
NASA Technical Reports Server (NTRS)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
Probing electric fields within organic transistors by nonlinear optics
NASA Astrophysics Data System (ADS)
Miranda, Paulo B.; Motti, Silvia G.; Gomes, Douglas J. C.
2015-03-01
Organic field-effect transistors (OFETs) are important building blocks in many organic devices, but further improvements in their performance will require a detailed knowledge of their operation mechanism. Thus mapping the electric fields in OFETs, both in the active organic layer and inside the gate dielectric, will allow a direct comparison with theoretical OFET models and guide advances in device engineering. The nonlinear optical processes of sum-frequency generation (SFG) and second-harmonic generation (SHG) may be used to probe electric fields in OFETs. With a proper choice of pump wavelength, SHG can selectively probe the field component along the OFET channel, inside the organic semiconductor. In contrast, SFG may probe the field within any organic material by selecting a specific molecular vibration and monitoring the field-enhanced SFG signal. Here we investigate OFETs fabricated with a polythiophene derivative (P3HT) on silicon substrates and with the insulating polymer PMMA for the dielectric layer. Both the strength and sign of the electric field in PMMA can be determined, yielding a direct probe of charge accumulation along the OFET channel. An extension of this technique to map the spatial distribution of accumulated charge along the channel will also be discussed. Work funded by FAPESP and CNPq (Brazil).
Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment
NASA Astrophysics Data System (ADS)
Ernst, D. R.
2012-10-01
A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W
Clemente, R. A.; Gilli, M.; Farengo, R.
2008-10-15
Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.
Non-linear vacuum polarization in strong fields
Gyulassy, M.
1981-07-01
The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.
NASA Astrophysics Data System (ADS)
Kasper, R. G.
1985-02-01
Based on completed experimental electric-field scans and the corresponding finite-element field predictions, it appears that the finite-element numerical technique presents a strong analytical tool in calculating the nearfield (within 650 micrometers electric-field distributions about active microcells. This was analytically achieved with the new double membrane finite-element configuration representing nonlinear polarization and by using a local tangent slope (impedance) definition dependent on the local potential difference. The experimental determination of the normal current was realized with a newly developed scanning vibrating electrode technique. The finite-element model utilizes a priori measured uncoupled polarization curves for pure iron and pure copper. The current densities and the electric field intensity was calculated for all the grid points within the electrolyte and on its boundaries. Results appear to indicate that first order anodic mass loss can be predicted using finite-element predicted current density distributions on the anodic surface and the imposition of Faraday's law. The electric-field correlation established for the normal current-density vector provides the confidence to proceed in the evaluation of electric fields associated with pitting and crevice corrosion.
Anode current density distribution in a cusped field thruster
Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren
2015-12-15
The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.
Using Spatial Density to Characterize Volcanic Fields on Mars
NASA Technical Reports Server (NTRS)
Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.
2012-01-01
We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.
Analytic lyapunov exponents in a classical nonlinear field equation
Franzosi; Gatto; Pettini; Pettini
2000-04-01
It is shown that the nonlinear wave equation partial differential(2)(t)straight phi- partial differential2xstraight phi-&mgr;(0) partial differential(x)( partial differential(x)straight phi)(3)=0, which is the continuum limit of the Fermi-Pasta-Ulam beta model, has a positive Lyapunov exponent lambda(1), whose analytic energy dependence is given. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependence of lambda(1) for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the dynamical description.
Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density
NASA Astrophysics Data System (ADS)
Li, Yifeng; Lan, Jun; Li, Baoshun; Liu, Xiaozhou; Zhang, Jiashu
2016-10-01
Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density based on Helmholtz resonators and membranes periodically distributed along a pipe are studied theoretically. Analyses of the transmission coefficient and dispersion relation of the composite system are realized using the acoustic transmission line method and Bloch theory, respectively. Due to the nonlinearities of the Helmholtz resonators and membranes, the acoustic wave propagation properties vary with the different incident acoustic intensities, and the frequency band gaps of the transmission coefficient are amplitude dependent. The nonlinearities shift the double negative pass band into the adjacent modulus negative forbidden band and transform the metamaterial from an acoustic insulator into an acoustic conductor, leading to some new potential acoustic applications.
Nonlinear dispersion of resonance extraordinary wave in a plasma with strong magnetic field
Krasovitskiy, V. B.; Turikov, V. A.; Sotnikov, V. I.
2007-09-15
In this paper, the efficiency of electron acceleration by a short, powerful laser pulse propagating across an external magnetic field is investigated. Conditions for the decay of a laser pulse with frequency close to the upper hybrid resonance frequency are analyzed. It is also shown that a laser pulse propagating as an extraordinary wave in cold, magnetized, low-density plasma takes the form of a nonlinear wave with the modulated amplitude (envelope soliton). Finally, simulation results on the interaction of an electromagnetic pulse with a semi-infinite plasma, obtained with the help of an electromagnetic relativistic PIC code, are discussed and a comparison with the obtained theoretical results is presented.
NONLINEAR SIMULATION OF TURBULENT FIELD LINES: DISPERSAL STATISTICS
Ragot, B. R.
2010-11-10
A new method for the full nonlinear computation of sets of turbulent field lines is introduced that extends the sums of random numbers distribution method previously applied to the computation of individual field lines. With a multiscale variation of the phases consistent with in situ observations of intermittent solar wind (SW) turbulence, the new method allows inclusion of the equivalent of more than four decades of turbulent scales with a fully three-dimensional distribution of wavevectors. As a first application, pairs of magnetic field lines are computed in independent realizations of the turbulence, for spectra typical of the quiet slow SW near 1 AU. The statistics of field-line dispersal are then studied from the simulated pairs of magnetic field lines and compared to earlier theoretical predictions. It appears that while the earlier theoretical picture remains relatively accurate as long as the mean variation of separation logarithm {Lambda} is less than one, the qualitative picture is quickly altered as {Lambda} grows past one.
Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.
Zetzsche, C; Röhrbein, F
2001-08-01
The neural mechanisms of early vision can be explained in terms of an information-theoretic optimization of the neural processing with respect to the statistical properties of the natural environment. Recent applications of this approach have been successful in the prediction of the linear filtering properties of ganglion cells and simple cells, but the relations between the environmental statistics and cortical nonlinearities, like those of end-stopped or complex cells, are not yet fully understood. Here we present extensions of our previous investigations of the exploitation of higher-order statistics by nonlinear neurons. We use multivariate wavelet statistics to demonstrate that a strictly linear processing would inevitably leave substantial statistical dependencies between the outputs of the units. We then consider how the basic nonlinearities of cortical neurons--gain control and ON/OFF half-wave rectification--can exploit these higher-order statistical dependencies. We first show that gain control provides an adaptation to the polar separability of the multivariate probability density function (PDF), and, together with an output nonlinearity, enables an overcomplete sparse coding. We then consider how the remaining higher-order dependencies between different units can be exploited by a combination of basic ON/OFF point nonlinearities and subsequent weighted linear combinations. We consider two statistical optimization schemes for the computation of the optimal weights: principal component analysis (PCA) and independent component analysis (ICA). Since the intermediate nonlinearities transform some of the higher-order dependencies into second-order dependencies even the basic PCA approach is able to exploit part of the redundancies. ICA ignores this second-order structure, but can exploit higher-order dependencies. Both schemes yield a variety of nonlinear units which comprise the typical nonlinear processing properties, such as end-stopping, side
Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)
2001-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.
On the reach of perturbative methods for dark matter density fields
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Schaan, Emmanuel; Zaldarriaga, Matias
2016-03-01
We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regime of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc-1 (k = 0.46 hMpc-1). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k4 as it does in the very low k regime. Thus, modeling this contribution might be challenging.
NASA Astrophysics Data System (ADS)
Toida, Mieko
2016-07-01
The electric field parallel to the magnetic field in nonlinear magnetosonic waves in three component plasmas (two-ion-species plasma and electron-positron-ion plasma) is theoretically studied based on a three-fluid model. In a two-ion-species plasma, a magnetosonic mode has two branches, high-frequency mode and low-frequency mode. The parallel electric field E ∥ and its integral along the magnetic field, F = - ∫ E ∥ d s , in the two modes propagating quasiperpendicular to the magnetic field are derived as functions of the wave amplitude ɛ and the density ratio and cyclotron frequency ratio of the two ion species. The theory shows that the magnitude of F in the high-frequency-mode pulse is much greater than that in the low-frequency-mode pulse. Theoretical expressions for E ∥ and F in nonlinear magnetosonic pulses in an electron-positron-ion plasma are also obtained under the assumption that the wave amplitudes are in the range of ( m e / m i ) 1 / 2 < ɛ < 1 , where m e / m i is the electron to ion mass ratio.
Observation of low magnetic field density peaks in helicon plasma
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.
2013-04-15
Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.
NASA Astrophysics Data System (ADS)
Verweij, Martin D.; Demi, Libertario; van Dongen, Koen W. A.
2012-09-01
The Iterative Nonlinear Contrast Source (INCS) method is a full-wave method for the accurate computation of wide-angle, pulsed, nonlinear ultrasound fields appearing in, e.g., medical echoscopy. The method is based on the Westervelt equation and considers the occurring nonlinear term as a distributed contrast source that operates in a linear background medium. This formulation leads to an integral equation, which is solved in an iterative way. The original INCS method uses a Neumann scheme to successively approximate the nonlinear wave field in homogeneous, lossless, nonlinear media. To cope with attenuative and/or inhomogeneous nonlinear media, additional contrast sources may be introduced. Since these deteriorate the convergence rate of the Neumann scheme, more advanced iterative solution schemes like Bi-CGSTAB are required. To overcome the difficulty that such schemes only apply to linear integral equations, the nonlinear contrast source is linearized, at the cost of a significant systematic error in the fourth and higher harmonics. In this paper, a strategy is proposed in which the relevant iterative solution scheme is restarted with an updated version of the linearized contrast source. Results demonstrate the effectiveness of this strategy in eliminating the systematic error. In addition, it is shown that the same approach also improves the convergence rate in case of nonlinear propagation in media with attenuation.
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-07-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-07-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-01-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873
NASA Astrophysics Data System (ADS)
Li, Yue; Zhu, Lei; Case Western Reserve University Team; Sichuan University Team
Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next genera tion high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ~70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α --> δ --> β) phase transformations. Using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz, regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude. This work is supported by NSF(DMR-1402733).
Density measurements using near-field background-oriented Schlieren
NASA Astrophysics Data System (ADS)
van Hinsberg, N. P.; Rösgen, T.
2014-04-01
A modification of the constant correction factor in the known equations of the background-oriented Schlieren is presented in order to be applicable to the near-field. Near-Field background-oriented Schlieren has the advantage over standard background-oriented Schlieren of being able to obtain reliable density distributions for set-ups in which the background pattern is placed directly behind the investigated flow field. It is proven that the modified correction factor depends solely on the distance between the background pattern and the flow field and on the external shape of the investigated flow field itself. The proof of principle and the accuracy of the proposed technique are obtained by the simulation of a 2D density variation with the use of glass wedge prism. The measurement of the whole-field density information of a supersonic underexpanded free jet is presented as an example that confirms the theoretical predictions.
{sup 208}Pb neutron density: A mean field problem?
Gmuca, Stefan
1998-12-21
The ground-state nuclear densities and radii of {sup 208}Pb doubly-magic nucleus have been evaluated within the framework of the relativistic mean-field approach. It is pointed out that the neutron density and the neutron radius in the RMF approach are quite different from both, the empirical data and the predictions of the Skyrme-Hartree-Fock model.
Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results
NASA Technical Reports Server (NTRS)
Lee, Nam C.; Parks, George K.
1992-01-01
A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.
Density of liquid 3He in 8 T magnetic field
NASA Astrophysics Data System (ADS)
Matsumoto, Koichi; Hasegawa, Syuichi; Okuda, Yuichi
2000-07-01
We report a precise measurement of the density of liquid 3He in a 8 T field. Measurements performed at saturated vapour pressure between 30 and 300 mK show a field-induced increase of density. The relative change is about 1×10 -5 in this temperature range. These results are in agreement with a calculation based on a Maxwell relation and the pressure dependence of the susceptibility.
NASA Astrophysics Data System (ADS)
Fu, Yiming; Chen, Yang; Zhong, Jun
2014-10-01
The nonlinear dynamic response problems of fiber-metal laminated beams with delamination are studied in this paper. Basing on the Timoshenko beam theory, and considering geometric nonlinearity, transverse shear deformation, temperature effect and contact effect, the nonlinear governing equations of motion for fiber-metal laminated beams under unsteady temperature field are established, which are solved by the differential quadrature method, Nermark-β method and iterative method. In numerical examples, the effects of delamination length, delamination depth, temperature field, geometric nonlinearity and transverse shear deformation on the nonlinear dynamic response of the glass reinforced aluminum laminated beam with delamination are discussed in details.
Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.
Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik
2016-09-01
We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695
Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.
Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik
2016-09-01
We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.
High-Density Ferroelectric Recording Using Diamond Probe by Scanning Nonlinear Dielectric Microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Hirokazu; Onoe, Astushi; Ono, Takahito; Cho, Yasuo; Esashi, Masayoshi
2006-03-01
In this paper, we report the development of a diamond multiprobe for ultrahigh-density ferroelectric data storage based on scanning nonlinear dielectric microscopy (SNDM), which is a technique for determining polarized directions in ferroelectric domains by measuring a nonlinear dielectric constant with an electrical inductance-capacitance (LC) resonator. SNDM has the capability of both reading and writing nanosized polarized ferroelectric domain information at a high speed, since the SNDM technique is a purely electrical method. Boron-doped diamond synthesized by hot-filament chemical vapor deposition is chosen as a conductive and robust probe material. The diamond probes are fabricated using a combination of the silicon lost-mold technique and selective growth. We present the fabrication of the diamond multiprobe and data storage experiments using a ferroelectric LiTaO3 thin film. It is demonstrated that the boron-doped diamond probe can be used for data storage based on SNDM.
Impact of a large density gradient on linear and nonlinear edge-localized mode simulations
NASA Astrophysics Data System (ADS)
Xi, P. W.; Xu, X. Q.; Xia, T. Y.; Nevins, W. M.; Kim, S. S.
2013-11-01
The impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation of P(k_{z})\\propto k_{z}^{-3.3} .
The electron density distribution and field profile in underdense magnetized plasma
Sadighi-Bonabi, R.; Etehadi-Abari, M.
2010-03-15
In this work propagation of a high frequency electromagnetic wave in underdense plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. By using of the Maxwell equations and nonlinear differential equation for the electric field a direct one-dimensional (1D) procedure for calculating hydrodynamic equations are developed and the electric and magnetic field profiles in the plasma are investigated. It is shown that by using the external (dc) magnetic field in constant laser intensity, the magnetic field profile in plasma deviates from the sinusoidal structure. It is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also increases in comparison to the unmagnetized underdense plasma. We noticed that by the increase in electron temperature in the unmagnetized and magnetized plasmas the electron density distribution ratio deltan/n{sub 0e} increases and the wavelength of electric and magnetic fields increase where in the magnetized system it becomes positive in some regions.
Role of nonlinear refraction in the generation of terahertz field pulses by light fields
Zabolotskii, A. A.
2013-07-15
The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.
Nonlinear dependence of complex plasma parameters on applied electric field
Sodha, M. S.; Mishra, S. K.; Misra, Shikha
2011-02-15
This paper presents an analysis of the effect of an applied static or alternating electric field on the electron density and temperature, charge on the particles, the electron collision frequency, the electronic conductivity, and the coefficient of electron diffusion in a complex plasma (i) when not illuminated by light, which can cause photoelectric emission from the particles, and (ii) when so illuminated. A parametric analysis based on computations for some typical sets of parameters has also been made. The significance of this work to (i) the disappearance of a polar mesospheric summer echoes structure by radio wave and (ii) magneto-hydrodynamic (MHD) power generation has also been indicated. The time dependence of the various parameters after the application of the electric field has also been discussed.
Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.
1997-01-01
Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.
Nonlinear response of superconductors to alternating fields and currents
McDonald, J.
1997-10-08
This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.
Rf Gun with High-Current Density Field Emission Cathode
Jay L. Hirshfield
2005-12-19
High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes
NASA Astrophysics Data System (ADS)
Merkel, Philipp M.; Schäfer, Björn Malte
2013-05-01
In this paper, we recompute contributions to the spectrum of the non-linear integrated Sachs-Wolfe (iSW)/Rees-Sciama effect in a dark energy cosmology. Focusing on the moderate non-linear regime, all dynamical fields involved are derived from the density contrast in Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are similar to that derived in previous work. With our purely analytical approach we identify two distinct contributions to the signal of the non-linear iSW effect: the change of the gravitational self-energy density of the large-scale structure with (conformal) time and gravitational lenses moving with the large-scale matter stream. In the latter we recover the Birkinshaw-Gull effect. As the non-linear iSW effect itself is inherently hard to detect, observational discrimination between its individual contributions is almost excluded. Our analysis, however, yields valuable insights into the theory of the non-linear iSW effect as a post-Newtonian relativistic effect on propagating photons.
Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je
2007-02-01
Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.
System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)
2007-01-01
Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Ibrahim, D. A.
2016-08-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
Towards time-dependent current-density-functional theory in the non-linear regime
Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Bonilla, L.L.
1987-02-01
A nonlinear Fokker-Planck equation is derived to describe the cooperative behavior of general stochastic systems interacting via mean-field couplings, in the limit of a infinite number of such systems. Disordered systems are also considered. In the weak-noise limit; a general result yields the possibility of having bifurcations from stationary solutions of the nonlinear Fokker-Planck equation into stable time-dependent solutions. The latter are interpreted as nonequilibrium probability distributions (states), and the bifurcations to them as nonequilibrium phase transitions. In the thermodynamic limit, results for three models are given for illustrative purposes. A model of self-synchronization of nonlinear oscillators presents a Hopf bifurcation to a time-periodic probability density, which can be analyzed for any value of the noise. The effects of disorder are illustrated by a simplified version of the Sompolinsky-Zippelius model of spin-glasses. Finally, results for the Fukuyama-Lee-Fisher model of charge-density waves are given. A singular perturbation analysis shows that the depinning transition is a bifurcation problem modified by the disorder noise due to impurities. Far from the bifurcation point, the CDW is either pinned or free, obeying (to leading order) the Gruener-Zawadowki-Chaikin equation. Near the bifurcation, the disorder noise drastically modifies the pattern, giving a quenched average of the CDW current which is constant. Critical exponents are found to depend on the noise, and they are larger than Fisher's values for the two probability distributions considered.
Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes
NASA Astrophysics Data System (ADS)
Manuel, Mario
2012-10-01
Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.
Correlation analysis of magnetic field and density fluctuations in SSX
NASA Astrophysics Data System (ADS)
Parks, Holden; Rock, Ariel; Schaffner, David; Brown, Michael; SSX Team
2015-11-01
The cross correlation and cross spectrum of magnetic field and density fluctuations of plasmas created by the Swarthmore Spheromak Experiment (SSX) MHD wind tunnel are examined. The SSX MHD wind tunnel produces dynamic magnetized plasma plumes with typical values B ~ 0 . 2 T, n >=1021 m-3, and Ti >= 20 eV. Magnetic field fluctuations of these plasmas are measured with a Ḃ probe and local density fluctuations are measured with a double Langmuir probe inserted radially within 1 mm of the Ḃ probe. The axial distance of both probes from the plasma source is varied to examine plasmas of different ``turbulent ages.'' Linearized MHD theory admits three types of waves - slow, fast, and Alfvén - each with different correlation values between magnetic field and density. By taking the Fourier transforms of B (t) and n (t) time series data, the cross spectrum B~* (f) ñ (f) is calculated, and the correlation between magnetic field and density can be determined as a function of frequency. Preliminary results of SSX data analysis indicate a pressure balanced structure present at 100 kHz, likely in the form of a flux tube, as well as predominately positive correlations in the frequency range 100 kHz to 10 MHz. Work supported by DOE OFES and NSF CMSO.
Richter, Marten Knorr, Andreas
2010-04-15
Time convolution less density matrix theory (TCL) is a powerful and well established tool to investigate strong system-bath coupling for linear optical spectra. We show that TCL equations can be generalised to the nonlinear optical response up to a chosen order in the optical field. This goal is achieved via an time convolution less perturbation scheme for the reduced density matrices of the electronic system. In our approach, the most important results are the inclusion of a electron-phonon coupling non-diagonal in the electronic states and memory effects of the bath: First, the considered model system is introduced. Second, the time evolution of the statistical operator is expanded with respect to the external optical field. This expansion is the starting point to explain how a TCL theory can treat the response up to in a certain order in the external field. Third, new TCL equations, including bath memory effects, are derived and the problem of information loss in the reduced density matrix is analysed. For this purpose, new dimensions are added to the reduced statistical operator to compensate lack of information in comparison with the full statistical operator. The theory is benchmarked with a two level system and applied to a three level system including non-diagonal phonon coupling. In our analysis of pump-probe experiments, the bath memory is influenced by the system state occupied between pump and probe pulse. In particular, the memory of the bath influences the dephasing process of electronic coherences developing during the time interval between pump and probe pulses.
Aspects of the density field in an active nematic
Mishra, Shradha; Puri, Sanjay; Ramaswamy, Sriram
2014-01-01
Active nematics are conceptually the simplest orientationally ordered phase of self-driven particles, but have proved to be a perennial source of surprises. We show here through numerical solution of coarse-grained equations for the order parameter and density that the growth of the active nematic phase from the isotropic phase is necessarily accompanied by a clumping of the density. The growth kinetics of the density domains is shown to be faster than the law expected for variables governed by a conservation law. Other results presented include the suppression of density fluctuations in the stationary ordered nematic by the imposition of an orienting field. We close by posing some open questions. PMID:25332390
Aspects of the density field in an active nematic.
Mishra, Shradha; Puri, Sanjay; Ramaswamy, Sriram
2014-11-28
Active nematics are conceptually the simplest orientationally ordered phase of self-driven particles, but have proved to be a perennial source of surprises. We show here through numerical solution of coarse-grained equations for the order parameter and density that the growth of the active nematic phase from the isotropic phase is necessarily accompanied by a clumping of the density. The growth kinetics of the density domains is shown to be faster than the [Formula: see text] law expected for variables governed by a conservation law. Other results presented include the suppression of density fluctuations in the stationary ordered nematic by the imposition of an orienting field. We close by posing some open questions.
Role of fluctuations and nonlinearities on field emission nanomechanical self-oscillators
NASA Astrophysics Data System (ADS)
Barois, T.; Perisanu, S.; Vincent, P.; Purcell, S. T.; Ayari, A.
2013-11-01
A theoretical and experimental description of the threshold, amplitude, and stability of a self-oscillating nanowire in a field emission configuration is presented. Two thresholds for the onset of self-oscillation are identified, one induced by fluctuations of the electromagnetic environment and a second revealed by these fluctuations by measuring the probability density function of the current. The ac and dc components of the current and the phase stability are quantified. An ac to dc ratio above 100% and an Allan deviation of 1.3×10-5 at room temperature can be attained. Finally, it is shown that a simple nonlinear model cannot describe the equilibrium effective potential in the self-oscillating regime due to the high amplitude of oscillations.
Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Stolle, Claudia
2016-10-01
Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
Uechi, Schun T.; Uechi, Hiroshi
2011-05-06
Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) hadronic mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral) {sigma}-{omega} hadronic mean-field theory which is thermodynamically consistent, relativistic and is a Lorentz-covariant mean-field theory of hadrons. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the breaking of chiral symmetry, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.
Superconducting toroidal field coil current densities for the TFCX
Kalsi, S.S.; Hooper, R.J.
1985-04-01
A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.
Towards a force field based on density fitting.
Piquemal, Jean-Philip; Cisneros, G Andrés; Reinhardt, Peter; Gresh, Nohad; Darden, Thomas A
2006-03-14
Total intermolecular interaction energies are determined with a first version of the Gaussian electrostatic model (GEM-0), a force field based on a density fitting approach using s-type Gaussian functions. The total interaction energy is computed in the spirit of the sum of interacting fragment ab initio (SIBFA) force field by separately evaluating each one of its components: electrostatic (Coulomb), exchange repulsion, polarization, and charge transfer intermolecular interaction energies, in order to reproduce reference constrained space orbital variation (CSOV) energy decomposition calculations at the B3LYP/aug-cc-pVTZ level. The use of an auxiliary basis set restricted to spherical Gaussian functions facilitates the rotation of the fitted densities of rigid fragments and enables a fast and accurate density fitting evaluation of Coulomb and exchange-repulsion energy, the latter using the overlap model introduced by Wheatley and Price [Mol. Phys. 69, 50718 (1990)]. The SIBFA energy scheme for polarization and charge transfer has been implemented using the electric fields and electrostatic potentials generated by the fitted densities. GEM-0 has been tested on ten stationary points of the water dimer potential energy surface and on three water clusters (n = 16,20,64). The results show very good agreement with density functional theory calculations, reproducing the individual CSOV energy contributions for a given interaction as well as the B3LYP total interaction energies with errors below kBT at room temperature. Preliminary results for Coulomb and exchange-repulsion energies of metal cation complexes and coupled cluster singles doubles electron densities are discussed.
Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
Barajas-Solano, David A; Tartakovsky, Alexandre M
2016-05-01
We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise. PMID:27300844
Probabilistic density function method for nonlinear dynamical systems driven by colored noise
NASA Astrophysics Data System (ADS)
Barajas-Solano, David A.; Tartakovsky, Alexandre M.
2016-05-01
We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos
2014-01-28
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
Sliding-mode control design for nonlinear systems using probability density function shaping.
Liu, Yu; Wang, Hong; Hou, Chaohuan
2014-02-01
In this paper, we propose a sliding-mode-based stochastic distribution control algorithm for nonlinear systems, where the sliding-mode controller is designed to stabilize the stochastic system and stochastic distribution control tries to shape the sliding surface as close as possible to the desired probability density function. Kullback-Leibler divergence is introduced to the stochastic distribution control, and the parameter of the stochastic distribution controller is updated at each sample interval rather than using a batch mode. It is shown that the estimated weight vector will converge to its ideal value and the system will be asymptotically stable under the rank-condition, which is much weaker than the persistent excitation condition. The effectiveness of the proposed algorithm is illustrated by simulation.
Gene flow in maize fields with different local pollen densities
NASA Astrophysics Data System (ADS)
Goggi, A. Susana; Lopez-Sanchez, Higinio; Caragea, Petrutza; Westgate, Mark; Arritt, Raymond; Clark, Craig A.
2007-08-01
The development of maize ( Zea mays L.) varieties as factories of pharmaceutical and industrial compounds has renewed interest in controlling pollen dispersal. The objective of this study was to compare gene flow into maize fields of different local pollen densities under the same environmental conditions. Two fields of approximately 36 ha were planted with a nontransgenic, white hybrid, in Ankeny, Iowa, USA. In the center of both fields, a 1-ha plot of a yellow-seeded stacked RR/Bt transgenic hybrid was planted as a pollen source. Before flowering, the white receiver maize of one field was detasseled in a 4:1 ratio to reduce the local pollen density (RPD). The percentage of outcross in the field with RPD was 42.2%, 6.3%, and 1.3% at 1, 10, and 35 m from the central plot, respectively. The percentage of outcross in the white maize with normal pollen density (NPD) was 30.1%, 2.7%, and 0.4%, respectively, at these distances. At distances greater than 100 m, the outcross frequency decreased below 0.1 and 0.03% in the field with RPD and NPD, respectively. A statistical model was used to compare pollen dispersal based on observed outcross percentages. The likelihood ratio test confirmed that the models of outcrossing in the two fields were significantly different ( P is practically 0). Results indicated that when local pollen is low, the incoming pollen has a competitive advantage and the level of outcross is significantly greater than when the local pollen is abundant.
Weakly nonlinear study of normal-field instability in confined ferrofluids.
Lira, Sérgio A; Miranda, José A
2011-07-01
Similar to the classic three-dimensional Rosensweig instability, a ferrofluid confined in a vertical Hele-Shaw cell subjected to an in-plane normal magnetic field develops a periodic array of peaked interfacial structures. We perform a weakly nonlinear analysis that is able to reproduce the morphology of such pattern formation phenomenon at lowest nonlinear order. A mode-coupling theory is applied to compare the early nonlinear evolution of the interface with static shapes obtained when relevant forces equilibrate. Our nonlinear results indicate that the time-evolving shapes tend to approach stable stationary solutions. PMID:21867300
Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability
Wang, L. F.; Ye, W. H.; He, X. T.
2012-01-15
In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength {lambda} is short and a cut-off perturbation wavelength {lambda}{sub c} appears when the perturbation wavelength {lambda} is sufficiently short, where no higher harmonics exists when {lambda}<{lambda}{sub c}. The phenomenon of third-order positive feedback to the fundamental mode near the {lambda}{sub c}[J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically {approx}0.2{lambda} in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1{lambda}, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in
NASA Astrophysics Data System (ADS)
Park, Kwangsoo
In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating
NASA Astrophysics Data System (ADS)
Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert
2016-06-01
We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.
Electric fields and current densities under small Florida thunderstorms
NASA Technical Reports Server (NTRS)
Deaver, Lance E.; Krider, E. P.
1991-01-01
Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.
Nonlinear Generation of shear flows and large scale magnetic fields by small scale
NASA Astrophysics Data System (ADS)
Aburjania, G.
2009-04-01
EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge
Tensor classification of structure in smoothed particle hydrodynamics density fields
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Bonnell, Ian; Lucas, William; Rice, Ken
2016-04-01
As hydrodynamic simulations increase in scale and resolution, identifying structures with non-trivial geometries or regions of general interest becomes increasingly challenging. There is a growing need for algorithms that identify a variety of different features in a simulation without requiring a `by eye' search. We present tensor classification as such a technique for smoothed particle hydrodynamics (SPH). These methods have already been used to great effect in N-Body cosmological simulations, which require smoothing defined as an input free parameter. We show that tensor classification successfully identifies a wide range of structures in SPH density fields using its native smoothing, removing a free parameter from the analysis and preventing the need for tessellation of the density field, as required by some classification algorithms. As examples, we show that tensor classification using the tidal tensor and the velocity shear tensor successfully identifies filaments, shells and sheet structures in giant molecular cloud simulations, as well as spiral arms in discs. The relationship between structures identified using different tensors illustrates how different forces compete and co-operate to produce the observed density field. We therefore advocate the use of multiple tensors to classify structure in SPH simulations, to shed light on the interplay of multiple physical processes.
Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field
Gashkov, M. A.; Zubarev, N. M. Kochurin, E. A.
2015-09-15
The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.
NASA Astrophysics Data System (ADS)
Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.
2016-01-01
We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.
NASA Astrophysics Data System (ADS)
Romero Kalmanovitz, Natalia
2009-12-01
The nonlinear behavior of low-dimensional electron systems has attracted a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. This work focuses on experimental results related to the nonlinear behavior of two dimensional electron systems. We first observed the non-linear zero-differential resistance state (ZDRS) that occurs for highly mobile two dimensional electron systems in response to a dc bias in the presence of a strong magnetic field applied perpendicular to the electron plane is suppressed. We found that it disappears gradually as the magnetic field is tilted away from the perpendicular at fixed filling factor. Good agreement is found with a model that considers the effect of the Zeeman splitting of Landau levels enhanced by the in-plane component of the magnetic field. Furthermore, we observed that when an electric field is applied to conductors, it heats electric charge carriers. It is demonstrated that an electric field applied to a conductor with a discrete electron spectrum produces a non-equilibrium electron distribution, which cannot be described by temperature. Such electron distribution changes significantly the conductivity of the electrons in a magnetic field, and forces them into a state with a zero differential resistance. Most importantly, the results demonstrate that in general, the effective overheating in the systems with discrete spectrum is significantly stronger than the one in systems with continuous and homogeneous distribution of the energy levels at the same input power. In the last part we observed non-linear behavior in a silicon MOSFET. Measurements of the rectification of microwave radiation at the boundary between two-dimensional electron systems separated by a narrow gap on a silicon surface for different temperatures, electron densities and microwave power, were performed. A theory is proposed that attributes the rectification to the thermoelectric
Field theory for the global density of states distribution function of disordered conductors.
Yudson, V I
2005-04-22
A field-theoretical representation is suggested for the electron global density of states distribution function P(nu) in extended disordered conductors. This opens a way to study the complete statistics of fluctuations. The approach is based on a functional integration over bilocal functions Psir(1)(r(2)) instead of the integration over local functions in the usual functional representation for moments of physical quantities. The formalism allows one to perform the disorder averaging and to derive an analog of the usual nonlinear sigma model-a slow functional of a supermatrix field Qr(1)(r(2))(r) approximately Psi(rr(1)) composite functionPsi (r(2)r). As an application of the formalism, the long-tail asymptotics of P(nu) is derived.
Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu
2009-09-01
The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.
Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation
Afhami, Saeedeh; Eslami, Esmaeil
2014-08-15
An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.
NASA Astrophysics Data System (ADS)
Lapert, M.; Tehini, R.; Turinici, G.; Sugny, D.
2008-08-01
We consider the optimal control of quantum systems interacting nonlinearly with an electromagnetic field. We propose monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a nonstandard choice of the cost, which is not quadratic in the field. These algorithms can be constructed for pure- and mixed-state quantum systems. The efficiency of the method is shown numerically for molecular orientation with a nonlinearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well approximated by pulses that could be implemented experimentally.
Effects of non-linearities on magnetic field generation
Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com
2014-09-01
Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.
Cosmological density perturbations in a conformal scalar field theory
NASA Astrophysics Data System (ADS)
Libanov, M. V.; Rubakov, V. A.
2012-02-01
We consider a scenario in which primordial scalar perturbations are generated when a complex conformal scalar field rolls down its negative quartic potential. Initially, these are perturbations of the phase of this field, which are then converted into adiabatic perturbations of the density. The existence of perturbations in the radial field direction, which have a red power spectrum, is a potentially dangerous feature of this scenario. But we show that in the linear order in the small parameter, the self-coupling, the infrared effects are completely nullified by an appropriate field redefinition. We evaluate the statistical anisotropy inherent in the model because of the presence of the long-wave perturbations of the radial field component. In the linear order in the self-coupling, the infrared effects do not affect the statistical anisotropy. They are manifested only at the quadratic order in the self-coupling, weakly (logarithmically) enhancing the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a large term, which decreases as the momentum increases, and a momentum-independent nonamplified term.
Two density peaks in low magnetic field helicon plasma
Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com
2015-09-15
In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.
Nonlinear interactions between black holes and Proca fields
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Witek, Helvi; Cardoso, Vitor
2015-12-01
Physics beyond the standard model is an important candidate for dark matter, and an interesting testing ground for strong-field gravity: the equivalence principle ‘forces’ all forms of matter to fall in the same way, and it is therefore natural to look for imprints of these fields in regions with strong gravitational fields, such as compact stars or black holes (BHs). Here we study general relativity minimally coupled to a massive vector field, and how BHs in this theory lose ‘hair’. Our results indicate that BHs can sustain Proca field condensates for extremely long time-scales.
Benchmarking mean-field approximations to level densities
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.
2016-04-01
We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus 162Dy, representing a heavy deformed nucleus, and 148Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are found to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point approximation to extract the number-projected densities is not a significant source of error compared to other errors inherent to the mean-field theory. We also present an alternative formulation of the saddle-point approximation that makes direct use of an approximate particle-number projection and avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing condensate is less amenable to approximate particle-number projection methods because of the explicit violation of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is accurate to less than one unit of entropy for 148Sm at the neutron threshold energy, which is above the pairing phase transition. This result provides support for the commonly used "back-shift" approximation, treating pairing as only affecting the excitation energy scale. When the ground state is strongly deformed, the Hartree-Fock entropy is significantly
Atomistic force field for alumina fit to density functional theory
Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
Nonlinear driven response of a phase-field crystal in a periodic pinning potential.
Achim, C V; Ramos, J A P; Karttunen, M; Elder, K R; Granato, E; Ala-Nissila, T; Ying, S C
2009-01-01
We study numerically the phase diagram and the response under a driving force of the phase field crystal model for pinned lattice systems introduced recently for both one- and two-dimensional systems. The model describes the lattice system as a continuous density field in the presence of a periodic pinning potential, allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned commensurate phase is then studied via overdamped dynamic equations of motion for different values of mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and the sliding velocity varies with the force from the threshold with power-law exponents in agreement with analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions. Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hysteresis even in one dimension under overdamped dynamics. We also characterize structural changes of the system in some detail close to the depinning transition.
Impact of nonlinear effective interactions on group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar
2016-09-01
We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.
High-density Au nanorod optical field-emitter arrays
NASA Astrophysics Data System (ADS)
Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.
2014-11-01
We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.
Stages: sub-Fourier dynamic shim updating using nonlinear magnetic field phase preparation.
Witschey, Walter R T; Littin, Sebastian; Cocosco, Chris A; Gallichan, Daniel; Schultz, Gerrit; Weber, Hans; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim
2014-01-01
Heterogeneity of the static magnetic field in magnetic resonance imaging may cause image artifacts and degradation in image quality. The field heterogeneity can be reduced by dynamically adjusting shim fields or dynamic shim updating, in which magnetic field homogeneity is optimized for each tomographic slice to improve image quality. A limitation of this approach is that a new magnetic field can be applied only once for each slice, otherwise image quality would improve somewhere to its detriment elsewhere in the slice. The motivation of this work is to overcome this limitation and develop a technique using nonlinear magnetic fields to dynamically shim the static magnetic field within a single Fourier-encoded volume or slice, called sub-Fourier dynamic shim updating. However, the nonlinear magnetic fields are not used as shim fields; instead, they impart a strong spatial dependence to the acquired MR signal by nonlinear phase preparation, which may be exploited to locally improve magnetic field homogeneity during acquisition. A theoretical description of the method is detailed, simulations and a proof-of-principle experiment are performed using a magnet coil with a known field geometry. The method is shown to remove artifacts associated with magnetic field homogeneity in balanced steady-state free-precession pulse sequences. We anticipate that this method will be useful to improve the quality of magnetic resonance images by removing deleterious artifacts associated with a heterogeneous static magnetic field.
Vock, David M; Davidian, Marie; Tsiatis, Anastasios A
2014-01-01
Generalized linear and nonlinear mixed models (GMMMs and NLMMs) are commonly used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common assumption is that the random effects are Gaussian. However, this assumption may be unrealistic in some applications, and misspecification of the random effects density may lead to maximum likelihood parameter estimators that are inconsistent, biased, and inefficient. Because testing if the random effects are Gaussian is difficult, previous research has recommended using a flexible random effects density. However, computational limitations have precluded widespread use of flexible random effects densities for GLMMs and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a smooth density that can be represented by the seminonparametric formulation proposed by Gallant and Nychka (1987). The macro is flexible enough to allow for any density of the response conditional on the random effects and any nonlinear mean trajectory. We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail infection and on a NLMM of intravenous drug concentration over time.
Vock, David M; Davidian, Marie; Tsiatis, Anastasios A
2014-01-01
Generalized linear and nonlinear mixed models (GMMMs and NLMMs) are commonly used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common assumption is that the random effects are Gaussian. However, this assumption may be unrealistic in some applications, and misspecification of the random effects density may lead to maximum likelihood parameter estimators that are inconsistent, biased, and inefficient. Because testing if the random effects are Gaussian is difficult, previous research has recommended using a flexible random effects density. However, computational limitations have precluded widespread use of flexible random effects densities for GLMMs and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a smooth density that can be represented by the seminonparametric formulation proposed by Gallant and Nychka (1987). The macro is flexible enough to allow for any density of the response conditional on the random effects and any nonlinear mean trajectory. We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail infection and on a NLMM of intravenous drug concentration over time. PMID:24688453
Vock, David M.; Davidian, Marie; Tsiatis, Anastasios A.
2014-01-01
Generalized linear and nonlinear mixed models (GMMMs and NLMMs) are commonly used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common assumption is that the random effects are Gaussian. However, this assumption may be unrealistic in some applications, and misspecification of the random effects density may lead to maximum likelihood parameter estimators that are inconsistent, biased, and inefficient. Because testing if the random effects are Gaussian is difficult, previous research has recommended using a flexible random effects density. However, computational limitations have precluded widespread use of flexible random effects densities for GLMMs and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a smooth density that can be represented by the seminonparametric formulation proposed by Gallant and Nychka (1987). The macro is flexible enough to allow for any density of the response conditional on the random effects and any nonlinear mean trajectory. We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail infection and on a NLMM of intravenous drug concentration over time. PMID:24688453
Aspects of renormalization in finite-density field theory
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia
2015-05-01
We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction "Landau parameters" run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 kF singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.
Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability
Nilson, P. M.; Gao, L.; Igumenshchev, I. V.; Fiksel, G.; Yan, R.; Davies, J. R.; Martinez, D.; Smalyuk, V. A.; Haines, M. G.; Blackman, E. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.
2015-04-01
Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh–Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.
Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation
Gerstner, Wulfram
2016-01-01
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities. PMID:27690349
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
NASA Astrophysics Data System (ADS)
Garai, S.; Janaki, M. S.; Chakrabarti, N.
2016-09-01
The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.
NASA Astrophysics Data System (ADS)
Suresha, Suhas; Sujith, R. I.; Emerson, Benjamin; Lieuwen, Tim
2016-10-01
The flame or flow behavior of a turbulent reacting wake is known to be fundamentally different at high and low values of flame density ratio (ρu/ρb ), as the flow transitions from globally stable to unstable. This paper analyzes the nonlinear dynamics present in a bluff-body stabilized flame, and identifies the transition characteristics in the wake as ρu/ρb is varied over a Reynolds number (based on the bluff-body lip velocity) range of 1000-3300. Recurrence quantification analysis (RQA) of the experimentally obtained time series of the flame edge fluctuations reveals that the time series is highly aperiodic at high values of ρu/ρb and transitions to increasingly correlated or nearly periodic behavior at low values. From the RQA of the transverse velocity time series, we observe that periodicity in the flame oscillations are related to periodicity in the flow. Therefore, we hypothesize that this transition from aperiodic to nearly periodic behavior in the flame edge time series is a manifestation of the transition in the flow from globally stable, convective instability to global instability as ρu/ρb decreases. The recurrence analysis further reveals that the transition in periodicity is not a sudden shift; rather it occurs through an intermittent regime present at low and intermediate ρu/ρb . During intermittency, the flow behavior switches between aperiodic oscillations, reminiscent of a globally stable, convective instability, and periodic oscillations, reminiscent of a global instability. Analysis of the distribution of the lengths of the periodic regions in the intermittent time series and the first return map indicate the presence of type-II intermittency.
On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.
1990-01-01
An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.
Electric field and plasma density measurements in the auroral electrojet
NASA Astrophysics Data System (ADS)
Pfaff, R. F.; Kelley, M. C.; Fejer, B. G.; Kudeki, E.; Carlson, C. W.; Pedersen, A.; Hausler, B.
1984-01-01
Extensive experimental and theoretical studies of auroral and equatorial electrojet irregularities have been conducted for the last two decades. The present investigation is concerned with electric field and plasma density fluctuation measurements made on board of the Porcupine II sounding rocket and on a free-flyer ejected from the main spacecraft. The Porcupine II sounding rocket payload was launched at 1922:00 UT from Kiruna, Sweden, on March 20, 1977. The considered results show electrostatic turbulence in the unstable auroral E region confined to a layer between 96 and 121 km. The similarities between the observations of two simultaneous payloads spaced a few kilometers apart indicate that on a large scale, the electrojet turbulence displays uniform characteristics.
Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides
NASA Astrophysics Data System (ADS)
Millis, Andrew
2015-03-01
The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.
Electromagnetic field energy density in homogeneous negative index materials.
Shivanand; Webb, Kevin J
2012-05-01
An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials. PMID:22712096
Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.
Takeshita, Daisuke; Gollisch, Tim
2014-05-28
Throughout different sensory systems, individual neurons integrate incoming signals over their receptive fields. The characteristics of this signal integration are crucial determinants for the neurons' functions. For ganglion cells in the vertebrate retina, receptive fields are characterized by the well-known center-surround structure and, although several studies have addressed spatial integration in the receptive field center, little is known about how visual signals are integrated in the surround. Therefore, we set out here to characterize signal integration and to identify relevant nonlinearities in the receptive field surround of ganglion cells in the isolated salamander retina by recording spiking activity with extracellular electrodes under visual stimulation of the center and surround. To quantify nonlinearities of spatial integration independently of subsequent nonlinearities of spike generation, we applied the technique of iso-response measurements as follows: using closed-loop experiments, we searched for different stimulus patterns in the surround that all reduced the center-evoked spiking activity by the same amount. The identified iso-response stimuli revealed strongly nonlinear spatial integration in the receptive field surrounds of all recorded cells. Furthermore, cell types that had been shown previously to have different nonlinearities in receptive field centers showed similar surround nonlinearities but differed systematically in the adaptive characteristics of the surround. Finally, we found that there is an optimal spatial scale of surround suppression; suppression was most effective when surround stimulation was organized into subregions of several hundred micrometers in diameter, indicating that the surround is composed of subunits that have strong center-surround organization themselves. PMID:24872559
NASA Astrophysics Data System (ADS)
Kapuria, S.; Yaqoob Yasin, M.
2013-05-01
In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined.
Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA
2012-06-12
The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.
On the numerical computation of nonlinear force-free magnetic fields
NASA Technical Reports Server (NTRS)
Wu, S. T.; Chang, H. M.; Hagyard, M. J.
1985-01-01
An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from a source surface, given the proper boundary conditions. The results of this work; describing the mathematical formalism that was developed, the numerical techniques employed, and the stability criteria developed for these numerical schemes are presented. An analytical solution is used for a test case; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent ( 5%).
A new method to measure galaxy bias by combining the density and weak lensing fields
NASA Astrophysics Data System (ADS)
Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu
2016-10-01
We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.
Massoudi, Mehrdad; Phuoc, Tran X.
2008-09-25
In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.
Massoudi, Mehrdad; Tran, P.X.
2008-09-22
In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed
NASA Astrophysics Data System (ADS)
Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed
2013-11-01
Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.
Holomorphic normal form of nonlinear perturbations of nilpotent vector fields
NASA Astrophysics Data System (ADS)
Stolovitch, Laurent; Verstringe, Freek
2016-07-01
We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n ≥ 3. Based on Belitskii's work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point.We shall show that this sufficient condition is a nilpotent version of Bruno's condition (A). In dimension 2, no condition is required since, according to Stróżyna-Żołladek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton's method and sl2(C)-representations.
HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO
Pipin, V. V.; Sokoloff, D. D.; Zhang, H.; Kuzanyan, K. M.
2013-05-01
It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magnetic Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.
High-order optical processes in intense laser field: Towards nonperturbative nonlinear optics
NASA Astrophysics Data System (ADS)
Strelkov, V. V.
2016-05-01
We develop an approach describing nonlinear-optical processes in the strong-field domain characterized by the nonperturbative field-with-matter interaction. The polarization of an isolated atom in the external field calculated via the numerical solution of the time-dependent Schrödinger equation agrees with our analytical findings. For the practically important case of one strong laser field and several weaker fields, we derive and analytically solve propagation equations describing high-order (HO) wave mixing, HO parametric amplification, and HO stimulated scattering. These processes provide a way of efficient coherent xuv generation. Some properties of HO processes are new in nonlinear optics: essentially complex values of the coefficients in the propagation equations, the superexponential (hyperbolic) growing solutions, etc. Finally, we suggest conditions for the practical realization of these processes and discuss published numerical and experimental results where such processes could have been observed.
NASA Astrophysics Data System (ADS)
Karabulut, Ibrahim; Paspalakis, Emmanuel
2016-07-01
We study theoretically the intensity-dependent nonlinear optical properties of an asymmetric coupled quantum well under a static electric field. Effects such as nonlinear absorption, optical rectification and refractive index are investigated theoretically by using the density matrix equations including the permanent dipole terms. Our results show that the effects of the permanent dipoles on the corresponding optical processes depend crucially on the direction and strength of the static electric field, especially for large optical intensities. Another interesting result of this work is that the nonlinear optical spectra studied here saturate with an increasing optical intensity and specifically the optical spectra in the case that the permanent dipoles are considered reach saturation for lower intensities than when the permanent dipoles are not considered.
Detecting non-linearities in neuro-electrical signals: A study of synchronous local field potentials
NASA Astrophysics Data System (ADS)
Müller-Gerking, Johannes; Martinerie, Jacques; Neuenschwander, Sergio; Pezard, Laurent; Renault, Bernard; Varela, Francisco J.
The question of the presence and detection of non-linear dynamics and possibly low-dimensional chaos in the brain is still an open question, with recent results indicating that initial claims for low dimensionality were faulted by incomplete statistical testing. To make some progress on this question, our approach was to use stringent data analysis of precisely controlled and behaviorally significant neuroelectric data. There are strong indications that functional brain activity is correlated with synchronous local field potentials. We examine here such synchronous episodes in data recorded from the visual system of behaving cats and pigeons. Our purpose was to examine under these ideal conditions whether the time series showed any evidence of non-linearity concommitantly with the arising of synchrony. To test for non-linearity we have used surrogate sets for non-linear forecasting, the false nearest strands method, and an examination of deterministic vs stochastic modeling. Our results indicate that the time series under examination do show evidence for traces of non-linear dynamics but weakly, since they are not robust under changes of parameters. We conclude that low-dimensional chaos is unlikely to be found in the brain, and that a robust detection and characterization of higher-dimensional non-linear dynamics is beyond the reach of current analytical tools.
On the generation of nonlinear travelling waves in confined geometries using electric fields
Cimpeanu, R; Papageorgiou, D. T
2014-01-01
We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid–surface–structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid–fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019
On the generation of nonlinear travelling waves in confined geometries using electric fields.
Cimpeanu, R; Papageorgiou, D T
2014-07-28
We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid-surface-structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid-fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019
Exactly solvable model for nonlinear light-matter interaction in an arbitrary time-dependent field
Brown, J. M.; Lotti, A.; Teleki, A.; Kolesik, M.
2011-12-15
Exact analytic expressions are derived for the dipole moment and nonlinear current of a one-dimensional quantum particle subject to a short-range attractive potential and an arbitrary time-dependent electric field. An efficient algorithm for the current evaluation is described and a robust implementation suitable for numerical simulations is demonstrated.
String solutions in the S/sup 2/ nonlinear sigma-model with a gauge field
Rybakov, Yu.P.; Khalder, A.L.
1986-11-01
A variant of the S/sup 2/ nonlinear sigma-model of Faddeev with an Abelian gauge field is considered. By using a direct variational method the authors demonstrate the existence of string-like solutions in this model and they establish the regularity of these solutions.
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-01
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-15
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)
1999-01-01
Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.
Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range
NASA Astrophysics Data System (ADS)
Acosta, V.; Ledbetter, M. P.; Rochester, S. M.; Budker, D.; Jackson Kimball, D. F.; Hovde, D. C.; Gawlik, W.; Pustelny, S.; Zachorowski, J.; Yashchuk, V. V.
2006-05-01
Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (τrel˜1s) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 10-11G/Hz for small (≲1μG ) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (˜500mG) , of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.
NASA Astrophysics Data System (ADS)
Titov, Serguey V.; Déjardin, Pierre-Michel; El Mrabti, Halim; Kalmykov, Yuri P.
2010-09-01
The nonlinear ac response of the magnetization M(t) of a uniaxially anisotropic superparamagnetic nanoparticle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial particle driven by a strong ac field applied at an angle to the easy axis of the particle (so that the axial symmetry is broken) alters drastically leading to different nonlinear effects due to coupling of the thermally activated magnetization reversal mode with the precessional modes of M(t) via the driving ac field.
Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites
NASA Astrophysics Data System (ADS)
Sarychev, Andrey K.; Shalaev, Vladimir M.
2000-09-01
A scaling theory of local field fluctuations and optical nonlinearities is developed for random metal-dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared spectral ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized surface plasmons (s.p.). The localization maps the Anderson localization problem described by the random Hamiltonian with both on- and off-diagonal disorder. The local fields exceed the applied field by several orders of magnitudes resulting in giant enhancements of various optical phenomena. A new numerical method based on the developed theory is suggested. This method is employed to calculate the giant field fluctuations and enhancement of various optical processes in 2D metal-dielectric composites - semicontinuous metal films. The local field fluctuations appear to be highly correlated in space. These fluctuations result in dramatically enhanced Rayleigh and Raman light scattering. The scaling analysis is performed to describe the giant light scattering in a vicinity of the percolation threshold. The developed theory describes quantitatively enhancement of various nonlinear optical processes in percolation composites. It is shown that enhancement depends strongly on whether nonlinear multiphoton scattering includes an act of photon subtraction (annihilation). The magnitudes and spectral dependencies of enhancements in optical processes with photon subtraction, such as Raman and hyper-Raman scattering, Kerr refraction and four-wave mixing, are dramatically different from those processes without photon subtraction, such as sum-frequency and high-harmonic generation. Electromagnetic properties of metal-dielectric crystals and composites beyond the quasistatic approximation are also studied. Equations of macroscopic electromagnetism are presented for these systems. Both linear and nonlinear optical responses are considered in the case of a strong skin effect
Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li
2011-09-01
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.
Sub transitional and supersonic travelling field response in nonlinear viscoelastic media
NASA Technical Reports Server (NTRS)
Padovan, Joe
1989-01-01
This paper considers the problem of traveling fields in nonlinearly elastic and viscoelastic media. By introducing the appropriate hierarchical partitioning, the governing equations of motion are shown to be a continuum analogy of Duffing's equation. Through the use of a constrained perturbation procedure, the response behavior is obtained in sub, transitional as well as supersonic ranges of disturbance speed. Due to the generality of the approach taken, the effects of damping can be handled. To quantify the effects of material nonlinearity, strain softening and hardening are considered. Such behavior is quantified in general example problems.
Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique
Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.
2014-10-15
The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.
Jiménez-Aquino, J I; Romero-Bastida, M
2011-07-01
The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.
Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique
NASA Astrophysics Data System (ADS)
Rejeena, I.; Lillibai, Rahimkutty, M. H.; Nampoori, V. P. N.; Radhakrishnan, P.
2014-10-01
The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl2 solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.
2016-08-01
In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.
Nonlinear dynamical law governs magnetic field induced changes in lymphoid phenotype.
Marino, A A; Wolcott, R M; Chervenak, R; Jourd'heuil, F; Nilsen, E; Frilot, C
2001-12-01
The results of many different types of animal and human studies dealing with the biological effects of exposure to low frequency electromagnetic fields (EMFs) have consistently been both positive and negative. We addressed the question of why this pattern had occurred so commonly in biological studies involving exposure to EMFs and hypothesized that it stemmed from the prevalent use of a linear model to characterize what are inherently nonlinear input-output relationships. The hypothesis was tested by analyzing biological data using a novel statistical procedure that could be adjusted to detect either nonlinear or linear effects. The reliability of the procedure was established using positive and negative controls and by comparison with the results obtained from sampling a known nonlinear system. In four independent experiments, male and female mice were exposed continuously to 0.1 or 0.5 mT, 60 Hz, for 175 days, and the effect on 20 immune parameters was measured using flow cytometry and functional assays. In each experiment, EMF exposure resulted in statistically significant changes in lymphoid phenotype when and only when the response of the animals to the fields was analyzed as if it were governed by nonlinear laws. Our results suggest that the pattern of inconsistency in the EMF bioeffects studies is an artifact resulting from an incorrect choice of the conceptual model for the relation between the field and the biological effect it causally determines. PMID:11748671
NASA Astrophysics Data System (ADS)
Samal, M. K.; Seshu, P.
2009-06-01
Piezoceramic materials exhibit different types of nonlinearities depending upon the magnitude of the mechanical and electric field strength in the continuum. Some of the nonlinearities observed under weak electric fields are: presence of superharmonics in the response spectra and jump phenomena etc. especially if the system is excited near resonance. In this paper, an analytical solution (in 2D plane stress domain) for the nonlinear response of a rectangular piezoceramic slab has been obtained by use of Rayleigh-Ritz method and perturbation technique. The eigenfunction obtained from solution of the differential equation of the linear problem has been used as the shape function in the Rayleigh-Ritz method. Forced vibration experiments have been conducted on a rectangular piezoceramic slab by applying varying electric field strengths across the thickness and the results have been compared with those of analytical solution. The analytical solutions compare well with those of experimental results. These solutions should serve as a method to validate the FE formulations as well as help in the determination of nonlinear material property coefficients for these materials.
Biggs, Jason D.; Voll, Judith A.; Mukamel, Shaul
2012-01-01
Two types of diagrammatic approaches for the design and simulation of nonlinear optical experiments (closed-time path loops based on the wave function and double-sided Feynman diagrams for the density matrix) are presented and compared. We give guidelines for the assignment of relevant pathways and provide rules for the interpretation of existing nonlinear experiments in carotenoids. PMID:22753822
Nonlinear optics response of semiconductor quantum wells under high magnetic fields
Chemla, D.S.
1993-07-01
Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
NASA Astrophysics Data System (ADS)
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-08-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.
Gang, Noa; Persinger, Michael A
2011-12-01
There have been multiple claims that exposing water to a static magnetic field affects its properties which influence living systems. To test this hypothesis, planarian subsequent to dissection were maintained in spring water that had been previously exposed for only one day to one of three (16, 160, or 1,600 G) intensity static magnetic fields or to a reference condition. Although there was no significant difference in regeneration rates over the subsequent seven-day period, there was a statistically significant nonlinear effect for planarian mobility and diffusion rates. Both mobility rates and diffusion velocity of a liquid within the water that had been exposed to the 16 G field was about twice that for water exposed to the other intensities. These results imply that nonlinear biophysical effects may emerge under specific conditions of intensity ranges for particular volumes of water.
Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field
Druzhinin, V.V.; Tatsenko, O.M.; Bykov, A.I.
1994-08-01
A significant nonlinearity in the angle of rotation polarization plane was observed in CdS at wavelengths of 494 in the presence of high magnetic fields (0.5-5 MG). The onset significant nonlinearity also depended on sample temperature. An absorption study with probe wavelength of {approximately} 494 nm revealed an increase in optical transmission associated with a splitting of the conduction band. Dispersion, field and temperature curves indicate a low conduction electron mass m{sub e} = 0.3 m{sub o}. A numerical calculation and interpretation of the observed effects was carried out using band theory. The optical and magnetooptical properties of semiconducting crystals of CdS were studied, reviews of which are presented in [1,2]. This article describes joint American-Russian experiments to study the optical and magnetooptical properties of CdS in ultrahigh fields to {approximately} 7 MG.
Dawson, Kevin; Rodriguez, Raymond L; Malyj, Wasyl
2005-01-01
Background Life processes are determined by the organism's genetic profile and multiple environmental variables. However the interaction between these factors is inherently non-linear [1]. Microarray data is one representation of the nonlinear interactions among genes and genes and environmental factors. Still most microarray studies use linear methods for the interpretation of nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to analyze three independent large Affymetrix high-density oligonucleotide microarray data sets. Results Isomap discovered low-dimensional structures embedded in the Affymetrix microarray data sets. These structures correspond to and help to interpret biological phenomena present in the data. This analysis provides examples of temporal, spatial, and functional processes revealed by the Isomap algorithm. In a spinal cord injury data set, Isomap discovers the three main modalities of the experiment – location and severity of the injury and the time elapsed after the injury. In a multiple tissue data set, Isomap discovers a low-dimensional structure that corresponds to anatomical locations of the source tissues. This model is capable of describing low- and high-resolution differences in the same model, such as kidney-vs.-brain and differences between the nuclei of the amygdala, respectively. In a high-throughput drug screening data set, Isomap discovers the monocytic and granulocytic differentiation of myeloid cells and maps several chemical compounds on the two-dimensional model. Conclusion Visualization of Isomap models provides useful tools for exploratory analysis of microarray data sets. In most instances, Isomap models explain more of the variance present in the microarray data than PCA or MDS. Finally, Isomap is a promising new algorithm for class discovery and class prediction in high-density oligonucleotide data sets. PMID:16076401
Sela, I.; Watkins, D.E.; Laurich, B.K.; Smith, D.L. ); Subbanna, S.; Kroemer, H. )
1991-02-18
The nonlinear optical properties of a new class of strained-layer superlattices (intrinsic Stark effect superlattices) have been investigated. Specifically, we have compared the nonlinear transmission of Ga{sub 1{minus}{ital x}}In{sub {ital x}}As-GaAs strained-layer superlattices grown along the (211) axis to identical superlattices grown along the (100) axis, and found that the optical nonlinearity in the (211) sample is about one order of magnitude greater than in the (100) sample. A blue shift of the exciton resonance and an increase in the exciton absorption strength in the (211) sample with increasing light intensity was observed (attributed to screening of the intrinsic Stark effect fields by photogenerated carriers), resulting in the stronger optical nonlinearity. The maximum of the nonlinear absorption index, {vert bar}{alpha}{sub 2}{vert bar}, in the (211) sample was 54 cm/W ({vert bar}Im {chi}{sup 3}{vert bar}=0.33 esu) whereas in the (100) sample the maximum of {vert bar}{alpha}{sub 2}{vert bar} was 6.9 cm/W ({vert bar}Im {chi}{sup 3}{vert bar}=0.042 esu). The measured carrier recovery time in both samples was 2 ns.
Nano-imaging collagen by atomic force, near-field and nonlinear microscope
NASA Astrophysics Data System (ADS)
Lim, Ken Choong; Tang, Jinkai; Li, Hao; Ng, Boon Ping; Kok, Shaw Wei; Wang, Qijie; Zhang, Ying
2015-03-01
As the most abundant protein in the human body, collagen has a very important role in vast numbers of bio-medical applications. The unique second order nonlinear properties of fibrillar collagen make it a very important index in nonlinear optical imaging based disease diagnosis of the brain, skin, liver, colon, kidney, bone, heart and other organs in the human body. The second-order nonlinear susceptibility of collagen has been explored at the macroscopic level and was explained as a volume-averaged molecular hyperpolarizability. However, details about the origin of optical second harmonic signals from collagen fibrils at the molecular level are still not clear. Such information is necessary for accurate interpolation of bio-information from nonlinear optical imaging techniques. The later has shown great potential in collagen based disease diagnosis methodologies. In this paper, we report our work using an atomic force microscope (AFM), near field (SNOM) and nonlinear laser scanning microscope (NLSM) to study the structure of collagen fibrils and other pro-collagen structures.
DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures
NASA Astrophysics Data System (ADS)
Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail
2016-09-01
Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.
DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures
NASA Astrophysics Data System (ADS)
Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail
2016-09-01
Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT‑1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.
Light bending by nonlinear electrodynamics under strong electric and magnetic field
Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr
2011-11-01
We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.
Nonlinear spinor field in isotropic space-time and dark energy models
NASA Astrophysics Data System (ADS)
Saha, Bijan
2016-07-01
Within the scope of the isotropic FRW cosmological model the role of nonlinear spinor field in the evolution of the Universe is studied. It is found that unlike in anisotropic cosmological models in the present case the spinor field does not possess nontrivial non-diagonal components of energy-momentum tensor, consequently it does not impose any additional restrictions on the components of the spinor field or metric function. The spinor description of different matter was given and the evolution of the Universe corresponding to these sources is illustrated. In the framework of a three-fluid system the utility of spinor description of matter is established.
Spata, Michael
2012-08-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.
Error analysis regarding the calculation of nonlinear force-free field
NASA Astrophysics Data System (ADS)
Liu, S.; Zhang, H. Q.; Su, J. T.
2012-02-01
Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans
2014-05-21
We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.
Parkhomenko, A I; Shalagin, Anatolii M
2011-11-30
Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.
NASA Astrophysics Data System (ADS)
Okuzumi, Satoshi; Inutsuka, Shu-ichiro
2015-02-01
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
Okuzumi, Satoshi; Inutsuka, Shu-ichiro
2015-02-10
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
Effect of Transverse Magnetic Fields on Cold-Atom Nonlinear Magneto-Optical Rotation
NASA Astrophysics Data System (ADS)
Meyer, David; Kunz, Paul; Fatemi, Fredrik; Quraishi, Qudsia
2016-05-01
We investigate nonlinear magneto-optical rotation (NMOR) in cold atoms in the presence of a transverse magnetic field where alignment-to-orientation conversion (AOC) dominates. The AOC mechanism, which relies on AC-Stark shifts generated by a strong, off-resonant probe beam, significantly alters the NMOR resonance. When an additional magnetic field is present, parallel to the electric field of the light, a nested feature within this NMOR resonance manifests. Unlike similar features observed with lower optical power in warm vapors, attributed to optical pumping through nearby hyperfine levels, this feature is due solely to the AOC mechanism. Using numerical simulations, a perturbative solution, and experimental observations we characterize the feature with respect to optical power, optical polarization, magnetic field strength, and magnetic field direction. These results shed further light on the AOC mechanism common to NMOR-based experiments and we demonstrate a potential application to measure transverse DC magnetic fields and spatial gradients.
Contributions of the substrate electric field to the molecular adsorbate optical nonlinearities
Zouari, M.; Villaeys, A.A.
2005-10-15
The nonlinear optical response of an adsorbate, whose structure is altered by the inhomogeneous electrostatic field of the substrate, has been evaluated with a particular emphasis on the sum-frequency generation process. In the limiting case of an homogeneous electrostatic field, besides the contributions associated with the induced dipole moments, we have additional contributions which only exist if the adsorbed molecule has permanent dipole moments. Also, the Franck-Condon factors of the unperturbed molecule weight the internal couplings induced by the electrostatic field. For the more general inhomogeneous electrostatic field case, while the main observations remain valid, the Franck-Condon factors are modified by the molecular structure changes induced by the electrostatic field. In addition, we have a strong redistribution of the vibronic couplings resulting from the analytical Q dependence of the partial charge distribution which is a signature of the field inhomogeneities.
NASA Astrophysics Data System (ADS)
Scheinert, Susanne; Paasch, Gernot
2009-01-01
The current characteristics of organic field-effect transistors (OFET) often show a disadvantageous nonlinearity at low drain voltages. It has been shown recently [J. Appl. Phys. 102, 054509 (2007)] that in top contact (TOC) OFETs this effect can be caused by trap recharging if the contacts are of Schottky type. For bottom contact (BOC) OFETs, in spite of controversial discussions, Schottky contacts as origin of the nonlinearity are often stated. At first, it is shown here by a mixed mode simulation that for large ideality factors a Schottky contact only at drain leads to such a nonlinearity. However, with the same Schottky contacts at drain and source the effect is covered by the high resistance of the contact at source. Next, the different influences of Schottky contacts on BOC OFETs and TOC OFETs with varying overlap of the source/drain contacts with the gate are clarified. Further, it is demonstrated with detailed two-dimensional simulations that the combination of the presence of Schottky contacts with a field dependence of the mobility can cause the nonlinearity. For the mobility we use the field dependent Pool/Frenkel model, and the models of Limketai et al.[Phys. Rev. B 75, 113203 (2007)] and Pasveer/Coehoorn et al.[Phys. Rev. Lett. 94, 206601 (2005)], which depend in addition on the carrier concentration. Their influence on the device performance has been clarified by the simulations. Simulated profiles of concentrations and fields lead to the understanding of the mechanism causing the nonlinearity. This mechanism is especially effective for the Pasveer/Coehoorn model. The field dependence of the mobility is a consequence of the energetic distribution of the hopping states and can hardly be avoided in solution based deposition of the active polymer layer. A strategy to prevent the nonlinearity is therefore an optimization of the contact-polymer interface such that the contacts become Ohmic.
Harbola, Upendra; Mukamel, Shaul
2004-11-01
Electrostatic and dispersive interactions of polarizable molecules are expressed in terms of generalized (nonretarded) charge-density response functions of the isolated molecules, which in turn are expanded using the collective electronic oscillator (CEO) eigenmodes of linearized time-dependent density-functional theory. Closed expressions for the intermolecular energy are derived to sixth order in charge fluctuation amplitudes.
Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results. PMID:26071703
NASA Astrophysics Data System (ADS)
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-01
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Tensor of the nonlinear polarizability of anisotropic medium and ``local'' field method
NASA Astrophysics Data System (ADS)
Lavric, V. V.; Ovander, L. N.; Shunyakov, V. T.
1983-08-01
The nonlinear polarizability tensor (NPT) for a molecular crystal of arbitrary symmetry has been obtained within the framework of polariton theory. Use of the Göppert-Mayer unitary transformation for the Hamiltonian of the crystal plus quantized electromagnetic field system made it possible to represent finally the result for the NPT in a compact form and to compare with results of semiphenomenological calculation of the NPT and to go out of the framework of the Gaitler-London approximation.
The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance
NASA Astrophysics Data System (ADS)
Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.
2016-08-01
A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.
NASA Astrophysics Data System (ADS)
Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan
2016-10-01
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).
On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques
Viglierchio, David R.; Yamashita, Tom T.
1983-01-01
Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831
ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS
Chen Xu,Charles Reece,Michael Kelley
2012-07-01
The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.
Methanol clusters (CH3OH)n, n = 3-6 in external electric fields: density functional theory approach.
Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K
2011-07-14
Structural evolution of cyclic and branched-cyclic methanol clusters containing three to six molecules, under the influence of externally applied uniform static electric field is studied within the density functional theory. Akin to the situation for water clusters, the electric field is seen to stretch the intermolecular hydrogen bonds, and eventually break the H-bonded network at certain characteristic threshold field values of field strength in the range 0.009-0.016 a.u., yielding linear or branched structures with a lower energy. These structural transitions are characterized by an abrupt increase in the electric dipole moment riding over its otherwise steady nonlinear increase with the applied field. The field tends to rupture the H-bonded structure; consequently, the number of hydrogen bonds decreases with increasing field strength. Vibrational spectra analyzed for fields applied perpendicular to the cyclic ring structures bring out the shifts in the OH ring vibrations (blueshift) and the CO stretch vibrations (redshift). For a given field strength, the blueshifts increase with the number of molecules in the ring and are found to be generally larger than those in the corresponding water cluster counterparts.
Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George
2015-12-01
We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems.
Local-field enhancement of optical nonlinearities in the AGZO nano-triangle array
NASA Astrophysics Data System (ADS)
Long, Hua; Bao, Lijiao; Wang, Kai; Liu, Shuhui; Wang, Bing
2016-10-01
Enhancement of the third order optical nonlinearities in Ga and Al co-doped ZnO (AGZO) nano-triangle array was investigated by performing a Z-scan method with a femtosecond laser (800 nm, 40 fs). The AGZO nano-triangle array was fabricated on silica substrates by nanosphere lithography (NSL) method, showing a surface plasmon resonance (SPR) peak around 3 μm. The two photon absorption (TPA) coefficient and nonlinear refractive index of the AGZO nano-triangle array were determined to be 340 cm/GW and 3.22 × 10-2 cm2/GW under an excitation intensity of 26 GW/cm2. It shows a 3.4-fold enhancement of the nonlinear refraction in the AGZO array with respect to that in the AGZO film, which attributes to the local field enhancement effect. The finite-difference time-domain (FDTD) simulation was in agreement with the experimental results. It indicates that the AGZO nano-triangle arrays have potential applications for nonlinear optical devices like all-optical switching, optical limiting and other types of signal processing.
Density and compressibility effects in turbulent subsonic jets part 1: mean velocity field
NASA Astrophysics Data System (ADS)
Wang, Zhexuan; Andreopoulos, Yiannis
2010-02-01
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal
Concerning the extrapolation of solar nonlinear force-free magnetic fields
NASA Technical Reports Server (NTRS)
Gary, G. Allen
1990-01-01
This paper contains a review and discussion of the mathematical basis of the extrapolation techniques involved in using photospheric vector magnetograms to obtain the coronal field above the surface. The two basic techniques employing the Cauchy initial value problem and the variational techniques are reviewed in terms of the mathematical and practical applications. A short review is presented of the current research on numerical modeling techniques in the area of extrapolating vector magnetograms; specifically, algorithms to extrapolate nonlinear force-free magnetic fields from the photosphere are considered.
Comparison of different gravity field implied density models of the topography
NASA Astrophysics Data System (ADS)
Sedighi, Morteza; Tabatabaee, Seied; Najafi-Alamdari, Mehdi
2009-06-01
Density within the Earth crust varies between 1.0 and 3.0 g/cm3. The Bouguer gravity field measured in south Iran is analyzed using four different regional-residual separation techniques to obtain a residual map of the gravity field suitable for density modeling of topography. A density model of topography with radial and lateral distribution of density is required for an accurate determination of the geoid, e.g., in the Stokes-Helmert approach. The apparent density mapping technique is used to convert the four residual Bouguer anomaly fields into the corresponding four gravity im-plied subsurface density (GRADEN) models. Although all four density models showed good correlation with the geological density (GEODEN) model of the region, the GRADEN models obtained by high-pass filter-ing and GGM high-pass filtering show better numerical correlation with GEODEN model than the other models.
NASA Astrophysics Data System (ADS)
Ahmad, Ali; Masood, W.
2016-05-01
Linear and nonlinear electrostatic ion acoustic waves in a weakly relativistic magnetorotating plasma in the presence of non-Maxwellian electrons and warm ions have been examined. The system under consideration has yielded two solutions, namely, the fast and slow acoustic modes which have been observed to depend on the streaming velocity, ion to electron temperature ratio, and the nonthermality parameter of the non-Maxwellian electrons. Using the multiple time scale analysis, we have derived the three dimensional nonlinear Zakharov-Kuznetsov equation and also presented its solution. Both compressive and rarefactive solitary structures have been found in consonance with the satellite observations. It has been observed that although the linear dispersion relation gives both fast and slow ion acoustic waves, the solitary structures form only for the fast acoustic mode. The dependence of the characteristics of the solitary structures on several plasma parameters has also been explored. The present investigation may be beneficial to understanding the rotating plasma environments such as those found in the planetary magnetospheres of Saturn and Jupiter.
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators.
Driben, R; Konotop, V V; Malomed, B A; Meier, T
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3+3 harmonic-oscillator p-wave eigenfunctions with orbital and magnetic quantum numbers l=1 and m=1, 0, -1. The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p-wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l=1. PMID:27575123
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators
NASA Astrophysics Data System (ADS)
Driben, R.; Konotop, V. V.; Malomed, B. A.; Meier, T.
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3 +3 harmonic-oscillator p -wave eigenfunctions with orbital and magnetic quantum numbers l =1 and m =1 , 0, -1 . The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p -wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l =1 .
Measurements of Nonlinear Hall-Driven Reconnection in the Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Tharp, T. D.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Kim, C. C.
2010-11-01
Previous measurements have established that reversed field pinch (RFP) sawtooth relaxation is characterized by spontaneous reconnection occurring simultaneously at multiple sites. Here, we report measurements of the magnetic fields and terms in Ohm's law associated with reconnection in the edge region of MST plasmas. The magnetic field structure is measured by probes and compared with theoretical predictions computed in both toroidal and cylindrical geometry. The composite magnetic structure from modes with toroidal mode numbers n=1-4 resonant at the toroidal field reversal surface reveals a complex but still coherent edge structure. Key terms of Ohm's law for the dominant mode (n=1) are accessible from magnetic field measurements and reveal the ordering (1neJxB >> E>ηJ), clearly indicating that single fluid physics is not sufficient to explain this reconnection. In particular, nonlinear three-wave coupling through the Hall term acts as a driving mechanism for this linearly stable mode. The observed coherent structures and strong nonlinear interaction terms highlight the substantial role of collective mode phase matching during sawtooth events.
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators.
Driben, R; Konotop, V V; Malomed, B A; Meier, T
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3+3 harmonic-oscillator p-wave eigenfunctions with orbital and magnetic quantum numbers l=1 and m=1, 0, -1. The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p-wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l=1.
NASA Astrophysics Data System (ADS)
Vikas, Hash(0x125f4490)
2011-02-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field ( B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs "dynamically" from the CDFT based approach under similar computational constraints.
Guo, Dapeng; Wang, Yonghuan; Li, Lingfeng; Wang, Xiaozhi; Luo, Jikui
2015-01-01
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ-FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ-FAIMS system at ultra-high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td.
Yuan, Chi; Cheng, Ye National Tsing Hua University, Hsinchu STX Corp., New York )
1991-07-01
The present nonlinear theory of spiral density waves in a thin, viscous, self-gravitating gaseous disk views the waves as generated near the Lindblad resonance by periodic disturbances through an excitation mechanism. The suggestion of Yuan (1984), that either a minor oval distortion or an uneven distribution of mass in the center can excite a spiral density wave whose radial velocity and mass concentration are in excellent agreement with observations of the 3 kpc arm of the Galaxy, is confirmed. Reliable results are obtained for nonlinear density waves either in a gaseous disk or in the gas components of a galactic disk. 17 refs.
From effective field theories to effective density functionals in and beyond the mean field
NASA Astrophysics Data System (ADS)
Grasso, M.; Lacroix, D.; van Kolck, U.
2016-06-01
Since the 1975 Nobel Prize in Physics, nuclear theory has evolved along two main directions. On the one hand, the energy-density functional (EDF) theory was established, which presently encompasses (by enlarging the EDF framework) all the mean-field and beyond-mean-field theories based on energy functionals produced by effective phenomenological interactions. Highly sophisticated structure and reaction models are currently available for the treatment of medium-mass and heavy nuclei. On the other hand, effective field theories (EFTs) have rendered possible the formulation of QCD as a low-energy hadronic theory. Ab initio methods have recently achieved remarkable success in the application of EFT or EFT-inspired potentials to structure analyses of light nuclei. Different but complementary competences have been developed during the past few decades in the EDF and EFT communities. Bridges and connections have in some cases been identified and constructed. We review here some of the developments that have been performed within the EDF theory and the EFT during recent years, with some emphasis on analogies and connections that may one day provide a unified picture of the two theories. Illustrations are given for infinite matter and finite nuclei.
From effective field theories to effective density functionals in and beyond the mean field
NASA Astrophysics Data System (ADS)
Grasso, M.; Lacroix, D.; van Kolck, U.
2016-06-01
Since the 1975 Nobel Prize in Physics, nuclear theory has evolved along two main directions. On the one hand, the energy–density functional (EDF) theory was established, which presently encompasses (by enlarging the EDF framework) all the mean-field and beyond-mean-field theories based on energy functionals produced by effective phenomenological interactions. Highly sophisticated structure and reaction models are currently available for the treatment of medium-mass and heavy nuclei. On the other hand, effective field theories (EFTs) have rendered possible the formulation of QCD as a low-energy hadronic theory. Ab initio methods have recently achieved remarkable success in the application of EFT or EFT-inspired potentials to structure analyses of light nuclei. Different but complementary competences have been developed during the past few decades in the EDF and EFT communities. Bridges and connections have in some cases been identified and constructed. We review here some of the developments that have been performed within the EDF theory and the EFT during recent years, with some emphasis on analogies and connections that may one day provide a unified picture of the two theories. Illustrations are given for infinite matter and finite nuclei.
Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field
Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Roychoudhury, Rajkumar; Chakrabarti, Nikhil
2013-04-15
Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.
Gurevich, A
2014-08-22
A theory of dissipative nonlinear conductivity, σ(1)(ω,H), of s-wave superconductors under strong electromagnetic fields at low temperatures is proposed. Closed-form expressions for σ(1)(H) and the surface resistance R(s)(ω,H) are obtained in the nonequilibrium dirty limit for which σ(1)(H) has a significant minimum as a function of a low-frequency (ħω ≪ k(B)T) magnetic field H. The calculated microwave suppression of R(s)(H) is in good agreement with recent experiments on alloyed Nb resonator cavities. It is shown that superimposed dc and ac fields, H = H(0) + H(a)cosωt, can be used to reduce ac dissipation in thin film nanostructures by tuning σ(1)(H(0)) with the dc field. PMID:25192119
Analytical Predictions of Field and Plasma Dynamics during Nonlinear Weibel-Mediated Flow Collisions
NASA Astrophysics Data System (ADS)
Ruyer, C.; Gremillet, L.; Bonnaud, G.; Riconda, C.
2016-08-01
The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al., Phys. Plasmas 22, 032102 (2015) for the weakly nonlinear ion Weibel instability in a symmetric two-stream system is shown to be consistent with recent experimental and simulation results. Large-scale kinetic simulations are then performed to clarify the spatiotemporal evolution of the magnetic-field and plasma properties in the subsequent strongly nonlinear phase leading to shock formation. A simple analytical model is proposed which captures the simulation results up to a point close to ion isotropization. Electron screening effects are found important in the instability dynamics, so that numerical simulations using a nonphysical electron mass should be considered with caution.
Ruyer, C; Gremillet, L; Bonnaud, G; Riconda, C
2016-08-01
The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al., Phys. Plasmas 22, 032102 (2015) for the weakly nonlinear ion Weibel instability in a symmetric two-stream system is shown to be consistent with recent experimental and simulation results. Large-scale kinetic simulations are then performed to clarify the spatiotemporal evolution of the magnetic-field and plasma properties in the subsequent strongly nonlinear phase leading to shock formation. A simple analytical model is proposed which captures the simulation results up to a point close to ion isotropization. Electron screening effects are found important in the instability dynamics, so that numerical simulations using a nonphysical electron mass should be considered with caution. PMID:27541468
Fully non-linear cosmological perturbations of multicomponent fluid and field systems
NASA Astrophysics Data System (ADS)
Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung
2016-09-01
We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.
Turbulence Dissipation in Non-Linear Diffusive Shock Acceleration with Magnetic Field Amplification
NASA Astrophysics Data System (ADS)
Ellison, Donald C.; Vladimirov, A.
2008-03-01
High Mach number shocks in young supernova remnants (SNRs) are believed to simultaneously place a large fraction of the supernova explosion energy in relativistic particles and amplify the ambient magnetic field by large factors. Continuing our efforts to model this strongly nonlinear process with a Monte Carlo simulation, we have incorporated the effects of the dissipation of the self-generated turbulence on the shock structure and thermal particle injection rate. We find that the heating of the thermal gas in the upstream shock precursor by the turbulence damping significantly impacts the acceleration process in our thermal pool injection model. This precursor heating may also have observational consequences. In this preliminary work, we parameterize the turbulence damping rate and lay the groundwork for incorporating more realistic physical models of turbulence generation and dissipation in nonlinear DSA. This work was support in part by NASA ATP grant NNX07AG79G.
NASA Astrophysics Data System (ADS)
Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie
2016-06-01
This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09151a
RECONSTRUCTING THE INITIAL DENSITY FIELD OF THE LOCAL UNIVERSE: METHODS AND TESTS WITH MOCK CATALOGS
Wang Huiyuan; Mo, H. J.; Yang Xiaohu; Van den Bosch, Frank C.
2013-07-20
Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3{approx}<{rho}/ {rho}-bar {approx}<20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of {approx}1 h Mpc{sup -1}, much smaller than the translinear scale, which corresponds to a wavenumber of {approx}0.15 h Mpc{sup -1}.
Morphology based field rice density detection from rice transplant stage to rice jointing stage
NASA Astrophysics Data System (ADS)
Bai, X. D.; Cao, Z. G.; Wang, Y.; Ye, M. N.; Yu, Z. H.; Li, Y. N.
2013-10-01
Rice yield estimation is an important aspect in the agriculture research field. For the rice yield estimation, rice density is one of its useful factors. In this paper, we propose a new method to automatically detect the rice density from the rice transplanting stage to rice jointing stage. It devotes to detect rice planting density by image low-level features of the rice image sequences taken in the fields. Moreover, a rice jointing stage automatic detection method is proposed so as to terminate the rice density detection algorithm. The validities of the proposed rice density detection method and the rice jointing stage automatic detection method are proved in the experiment.
Speckle photography applied to the density field of a flame
NASA Astrophysics Data System (ADS)
Shu, J.-Z.; Li, J.-Y.
1987-11-01
An optical arrangement combining a set-up for taking speckle records with a shearing interferometer using a Wollaston prism is applied to the study of a fluctuating Bunsen burner flame. The simultaneous recording, in real time, of the interferogram facilitates the interpretation of the data field derived by the point-by-point analysis of the specklegram. The pattern of Young's fringes obtained by analysis of the specklegram at 16 different positions in the field of view is shown, displaying the random variation of the light deflection in the flame.
The Effect of the Density Ratio on the Nonlinear Dynamics of the Unstable Fluid Interface
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.
2003-01-01
Here we report multiple harmonic theoretical solutions for a complete system of conservation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids with a finite density ratio in the general three-dimensional case. The analysis yields new properties of the bubble front dynamics. In either RTI or RMI, the obtained dependencies of the bubble velocity and curvature on the density ratio differ qualitatively and quantitatively from those suggested by the models of Sharp (1984), Oron et al. (2001), and Goncharov (2002). We show explicitly that these models violate the conservation laws. For the first time, our theory reveals an important qualitative distinction between the dynamics of the RT and RM bubbles.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Fabrication and Characterization of Cross-Linked Organic Thin Films with Nonlinear Mass Densities.
Rashed, Md A; Laokroekkiat, Salinthip; Hara, Mitsuo; Nagano, Shusaku; Nagao, Yuki
2016-06-14
The preparation of urea (bonded) cross-linked multilayer thin films by sequential deposition of bifunctional and tetrafunctional molecular building blocks is demonstrated. Multilayer growth as a function of deposition cycles was inspected using UV-vis absorption spectroscopy. From infrared results, three characteristic infrared bands of amide I, amide II, and asymmetric νa(N-C-N) stretching confirmed the formation of polyurea networks by alternate dipping into solutions of amine and isocyanate functionality monomers. The deconvoluted component of the C 1s and N 1s spectra obtained by X-ray photoelectron spectroscopy shows clear evidence of stable polyurea networks. The enhancement of structural periodicity with film growth was demonstrated by grazing-incidence small-angle X-ray scattering measurements. The thin film near the substrate surface seems to have an amorphous structure. However, molecular ordering improves in the surface normal direction of the substrate with a certain number of deposited layers. Constant mass density was not observed with deposition cycles. The mass density increased up to 16% within deposited layers from proximate layers to those extending away from the substrate surface. This difference in the packing density might derive from the different degrees of cross-linking among layers proximate to the substrate surface and extending away from the substrate surface. PMID:27175975
Bobylev, Yu. B.; Kuzelev, M. V.
2012-06-15
A nonlinear quantum theory of stimulated Cherenkov radiation of transverse electromagnetic waves from a low-density relativistic electron beam in an isotropic dielectric medium is presented. A quantum model based on the Klein-Gordon equation is used. The growth rates of beam instabilities caused by the effect of stimulated Cherenkov radiation have been determined in the linear approximation. Mechanisms of the nonlinear saturation of relativistic quantum Cherenkov beam instabilities have been analyzed and the corresponding analytical solutions have been obtained.
Mean Field Strategies Induce Unrealistic Non-Linearities in Calcium Puffs
Solovey, Guillermo; Fraiman, Daniel; Dawson, Silvina Ponce
2011-01-01
Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs). To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic non-linear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes. PMID:21869877
Non-linear transport by solitons in nanofibers of polymers in high magnetic field
NASA Astrophysics Data System (ADS)
Kirova, N.; Brazovskii, S.; Choi, A.; Park, Y. W.
2012-06-01
Nonlinear local excitations like solitons, polarons, and bipolarons are known to be responsible for physical properties of conducting polymers. Recent experiments on nano-fibers in high electric and magnetic fields provide a further insight by demonstrating an effect of vanishing magnetoconductance (MC) in the polyacetylene (PA)-in contrast to other polymers. Here we present new experimental data and describe the theoretical model based on notion of solitons-dimerization kinks which can carry either the spin or the charge; they are allowed only in the PA with its degenerate ground state. The solitons experience a confinement force due to the interchange coupling which is erased by the electric field and disappears above critical field strength. The unbinding by tunneling allows for the transport of individual solitons, which sweeps off the spins residing at electronic intragap states associated with polarons, hence the vanishing MC.
Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies
NASA Astrophysics Data System (ADS)
Tashiro, Hiroyuki; Sugiyama, Naoshi; Banerjee, Robi
2006-01-01
In this work we investigate the effects of primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magneto-hydro dynamic (MHD) simulations [R. Banerjee and K. Jedamzik, Phys. Rev. DPRVDAQ0556-2821 70, 123003 (2004).10.1103/PhysRevD.70.123003] we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfvén modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length L and the comoving magnetic field strength B, such as L˜30(B/10-9Gauss)3pc. The resulting CMB temperature and polarization anisotropies for the initial power law index of the magnetic fields n>3/2 are somewhat different from the ones previously obtained by using linear perturbation theory. In particular, differences can appear on intermediate scales l<2000 and small scales l>20000. On scales l<2000 the CMB anisotropy and polarization spectra are flat in the case of our nonlinear calculations whereas the spectra have a blue index calculated with linear perturbation theory if we assume the velocity fields of baryons induced by the magnetic fields achieved Alfvén velocity due to the turbulent motions on large scales in the early universe. Our calculation gives a constraint on the magnetic field strength in the intermediate scale of CMB observations. Upper limits are set by WMAP and BOOMERANG results for comoving magnetic field strength of B<28nGauss with a comoving coherence length of L>0.7Mpc for the most extreme case, or B<30nGauss and L>0.8Mpc for the most conservative case. We may also expect higher signals on large scales of the polarization spectra compared to linear calculations. The signal may even exceed the B-mode polarization from gravitational lensing depending on
Waterbird nest density and nest survival in rice fields of southwestern Louisiana
Pierluissi, S.; King, Sammy L.; Kaller, Michael D.
2010-01-01
Rice fields in southwestern Louisiana provide breeding habitat for several waterbird species; however, little is known about nest density, nest survival and the importance of landscape context of rice fields in determining breeding activity. In 2004, 42 rice fields were searched for nests, and 40 were searched in 2005. Land uses surrounding rice fields, including irrigation canals, trees, crawfish ponds, rice, fallow and soybean fields, were examined to determine influence on nest density and survival. Nest densities were 13.5-16.0 nests/km2 for Purple Gallinules (Porphyrio martinica), 3.0-13.7 nests/km2 for Fulvous Whistling Ducks (Dendrocygna bicolor), 2.6-2.8 nests/km2 for Common Moorhens (Gallinula chloropus), 0.3-0.92 nests/km2 for Least Bitterns (Ixobrychus exilisi) and 0-0.6 nests/km2 for Mottled Ducks (Anas fulvigula). Nest survival was 52-79% for Purple Gallinules and 39-43% for Fulvous Whistling Ducks. Apparent nest success of Common Moorhens was 73-75%, 83% for Least Bitterns and 33% for Mottled Ducks. Purple Gallinule and Common Moorhen nest densities were highest in fields with a larger proportion of irrigation canals surrounding rice fields. Purple Gallinule nest densities were greater in fields devoid of trees and landscapes dominated by rice fields and pasture, rather than landscapes containing soybean fields and residential areas. Fulvous Whistling Duck nest densities were higher in agriculturally-dominated landscapes with few trees.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.
Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V
2016-01-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569
NASA Astrophysics Data System (ADS)
Richert, Ranko
2016-03-01
A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a "hump," i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; et al
2016-08-16
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less
Rosnitskiy, P. Yuldashev, P. Khokhlova, V.
2015-10-28
An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-01-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569
NASA Astrophysics Data System (ADS)
Ponte Castañeda, Pedro
2002-04-01
In Part I of this work, an improved "second-order" homogenization theory was developed. This new theory makes use of generalized secant moduli that are intermediate between the standard secant and tangent moduli of the nonlinear phases, and that depend not only on the averages, or first-moments of the fields in the phases, but also on the second-moments of the field fluctuations, or phase covariance tensors. In this article, the theory, which is known to be exact to second-order in the heterogeneity contrast, is applied to the special cases of rigidly reinforced and porous materials. These are cases corresponding to infinite contrast where fairly explicit analytical expressions of the Hashin-Shtrikman and self-consistent-type may be generated for nonlinear composites. The results show that the new theory improves on the earlier theory (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) in at least two ways. First, the new theory satisfies rigorous bounds, even near the percolation limit, where field fluctuations become important, and the earlier second-order theory had been found to fail. Second, the new theory predicts fully compressible behavior for porous materials with an incompressible matrix phase, where the earlier theory had also been found to fail. In addition, the new estimates are found to be in better agreement with numerical simulations available from the literature.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Horioka, Kazuhiko
2016-06-01
A procedure to obtain a ratio of beam radii at final and initial states in arbitrary particle distributions is proposed, and is applied to the estimation of possible emittance growth for Gaussian and thermal equilibrium distributions. The ratios are estimated for Gaussian and thermal equilibrium distributions as a function of tune depression. The possible emittance growth as a function of tune depression and nonlinear field energy factor is also estimated with and without a constant radius ratio approximation. It is confirmed that the possible emittance growths are almost the same in comparison to the cases with and without the constant radius ratio approximation at each distribution.
NASA Astrophysics Data System (ADS)
Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.
2015-11-01
The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.
φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations
NASA Astrophysics Data System (ADS)
Sornette, D.; Simonetti, P.; Andersen, J. V.
2000-08-01
Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive
Exact analytic solution for non-linear density fluctuation in a ΛCDM universe
NASA Astrophysics Data System (ADS)
Yoo, Jaiyul; Gong, Jinn-Ouk
2016-07-01
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
NASA Astrophysics Data System (ADS)
Saja, D.; Joe, I. Hubert; Jayakumar, V. S.
2006-01-01
The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.
Density and concentration field description of nonperiodic structures.
Menzel, Andreas M
2011-11-01
We propose a simple nonlocal energy functional that is suitable for the continuum field characterization of nonperiodic and localized textures. The phenomenological functional is based on the pairwise direction-dependent interaction of field gradients that are separated by a fixed distance. In an appendix, we describe the numerical minimization of our functional. On that basis, we investigate the kinetic evolution of threadlike stripe patterns that are created by the functional when we start from an initially disordered state. At later stages, we find a coarse graining that shows the same scaling behavior as was obtained for the Cahn-Hilliard equation. In fact, the Cahn-Hilliard model is contained in our characterization as a limiting case. A slight modification of our model omits this coarse graining and leads to nonperiodic stripe phases. For the latter case, we investigate the temporal evolution of the defects (end points) of the threadlike stripes. In view of actual applications of this functional, we discuss the characterization of processes observed for polymeric systems and vesicles. The statistics of the growth of the threadlike structures is compared to the case of step-growth polymerization reactions. Furthermore, we demonstrate that the functional may be applied for the study of vesicles in a continuum field description. Basic features, such as the tendency of tank treading in simple shear flows and parachute folding in pipe flows, are reproduced. PMID:22181420
NASA Astrophysics Data System (ADS)
Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian
2016-04-01
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Volkova, E. A.; Popov, A. M. Tikhonova, O. V.
2013-03-15
The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schroedinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.
Waterfowl density on agricultural fields managed to retain water in winter
Twedt, D.J.; Nelms, C.O.
1999-01-01
Managed water on private and public land provides habitat for wintering waterfowl in the Mississippi Valley, where flood control projects have reduced the area of natural flooding. We compared waterfowl densities on rice, soybean, and moist-soil fields under cooperative agreements to retain water from 1 November through 28 February in Arkansas and Mississippi and assessed temporal changes in waterfowl density during winter in 1991-1992 and 1992-1993. Fields flooded earlier in Arkansas, but retained water later in Mississippi. Over winter, waterfowl densities decreased in Arkansas and increased in Mississippi. Densities of waterfowl, including mallard (Anas platyrhynchos), the most abundant species observed, were greatest on moist-soil fields. However, soybean fields had the greatest densities of northern shoveler (Spatula clypeata).
Varray, François; Ramalli, Alessandro; Cachard, Christian; Tortoli, Piero; Basset, Olivier
2011-07-01
The simulation of nonlinear propagation of ultrasound waves is typically based on the Kuznetsov-Zabolotskaya- Khokhlov equation. A set of simulators has been proposed in the literature but none of them takes into account a possible spatial 3-D variation of the nonlinear parameter in the investigated medium. This paper proposes a generalization of the angular spectrum method (GASM) including the spatial variation of the nonlinear parameter. The proposed method computes the evolution of the fundamental and second-harmonic waves in four dimensions (spatial 3-D and time). For validation purposes, the one-way fields produced by the GASM are first compared with those produced by established reference simulators and with experimental one-way fields in media with a homogeneous nonlinear parameter. The same simulations are repeated for media having an axial variation of the nonlinear parameter. The mean errors estimated in the focal region are less than 4.0% for the fundamental and 5.4% for the second harmonic in all cases. Finally, the fundamental and second-harmonic fields simulated for media having nonlinear parameter variations in the axial, lateral, and elevation directions, which cannot be simulated with other currently available methods, are presented. The new approach is also shown to yield a reduction in computation time by a factor of 13 with respect to the standard nonlinear simulator.
[Nonlinear magnetohydrodynamics
Not Available
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.
Topology of magnetic-field induced electron current density in the cubane molecule.
Pelloni, Stefano; Lazzeretti, Paolo
2008-05-21
A spatial model of the electronic current density induced in the cubane molecule by applying an external magnetic-field has been constructed employing quantum mechanical methods at the Hartree-Fock level of accuracy. The topological features of the current density vector field are described via a stagnation graph that shows the isolated points and the lines at which the current vanishes. Shielding density maps based on the differential Biot-Savart law, along with a collection of current density maps, explain magnetic shielding at hydrogen and carbon nuclei, and virtual shielding at ring and cage centers. PMID:18500863
Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission.
NASA Astrophysics Data System (ADS)
Luo, Tao; Xin, Zhouping; Zeng, Huihui
2016-11-01
The nonlinear asymptotic stability of Lane-Emden solutions is proved in this paper for spherically symmetric motions of viscous gaseous stars with the density dependent shear and bulk viscosities which vanish at the vacuum, when the adiabatic exponent {γ} lies in the stability regime {(4/3, 2)}, by establishing the global-in-time regularity uniformly up to the vacuum boundary for the vacuum free boundary problem of the compressible Navier-Stokes-Poisson systems with spherical symmetry, which ensures the global existence of strong solutions capturing the precise physical behavior that the sound speed is {C^{{1}/{2}}}-Hölder continuous across the vacuum boundary, the large time asymptotic uniform convergence of the evolving vacuum boundary, density and velocity to those of Lane-Emden solutions with detailed convergence rates, and the detailed large time behavior of solutions near the vacuum boundary. Those uniform convergence are of fundamental importance in the study of vacuum free boundary problems which are missing in the previous results for global weak solutions. Moreover, the results obtained in this paper apply to much broader cases of viscosities than those in Fang and Zhang (Arch Ration Mech Anal 191:195-243, 2009) for the theory of weak solutions when the adiabatic exponent {γ} lies in the most physically relevant range. Finally, this paper extends the previous local-in-time theory for strong solutions to a global-in-time one.
NASA Astrophysics Data System (ADS)
Naima, Boubegra; Abdelkader, Chouaih; Mokhtaria, Drissi; Fodil, Hamzaoui
2014-01-01
The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å-1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I >= 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.
Quantifying wave-breaking dissipation using nonlinear phase-resolved wave-field simulations
NASA Astrophysics Data System (ADS)
Qi, Y.; Xiao, W.; Yue, D. K. P.
2014-12-01
We propose to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields using direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987). We implement a robust phenomenological-based energy dissipation model in HOS to capture the effect of wave-breaking dissipation on the overall wave-field evolution (Xiao et al 2013). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field δ(x,y,t), which provides the times, locations and intensity of wave breaking events (δ>δc). This is validated by comparison of HOS simulations with Airborne Terrain Mapper (ATM) measurements in the recent ONR Hi-Res field experiment. Figure (a) shows one frame of simulated wave-field (with dissipation model). Figure (b) is the corresponding measurement from ATM, where a large wave breaking event was captured. Figure (c) is the 3D view of the simulated wave-field with the colored region representing dissipation with δ>δc. The HOS predicted high-dissipation area is found to agree well with the measured breaking area. Based on HOS predicted high-dissipation area (δ>δc), we calculate Λ(c) (Phillips 1985), the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity c. Figure (d) shows the distribution Λ(c) calculated from HOS. For breaking speeds c greater than 5m/s, the simulated Λ(c) is in qualitative agreement with Phillips theoretical power-law of Λ(c)~c-6. From δ(x,y,t), we further quantify wave breaking by calculating the whitecap coverage rate Wr(t) and energy dissipation rate ΔE'(t), and study the evolution of Wr and ΔE' to understand the role of wave breaking in nonlinear wave-field evolution. We obtain HOS simulations
Bykov, Andrei M.; Osipov, Sergei M.; Ellison, Donald C.; Vladimirov, Andrey E. E-mail: osm2004@mail.ru E-mail: avenovo@gmail.com
2014-07-10
We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvénic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (∼eV) injected at the viscous subshock to the escape of the highest energy CRs (∼PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.
Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.
2016-01-01
Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V−1m−1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices. PMID:27424885
NASA Astrophysics Data System (ADS)
Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.
2016-07-01
Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V‑1m‑1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.
Lazzaro, E.; Comisso, L.; Valdettaro, L.
2010-05-15
In tokamaks magnetic islands arise from an unstable process of tearing and reconnecting of helical field lines across rational surfaces. After a linear stage the magnetic instability develops through three characteristic nonlinear stages where increasingly complex topological alterations occur in the form of the magnetic islands. The problem of response of reconnection process to the injection of an external current suitably localized is addressed using a four-field model in a plane slab plasma, with a novel extension to account consistently of the relevant neoclassical effects, such as bootstrap current and pressure anisotropy. The results found have implications on the interpretation of the possible mechanism of present day experimental results on neoclassical tearing modes as well as on the concepts for their control or avoidance.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. PMID:26342968
Halliday, William D; Blouin-Demers, Gabriel
2016-07-01
The ideal free distribution concept predicts that organisms will distribute themselves between habitats in a density-dependent manner so that individuals, on average, achieve the same fitness in each habitat. In ectotherms, environmental temperature has a strong impact on fitness, but temperature is not depletable and thus not density dependent. Can density-dependent habitat selection occur in ectotherms when habitats differ in thermal quality? We used an observational study of habitat selection by small snakes in field and forest, followed by manipulative habitat selection and fitness experiments with common gartersnakes in enclosures in field and forest to test this hypothesis. Snakes were much more abundant in the field, the habitat with superior thermal quality, than in the forest. Gartersnakes in our controlled experiment only used the forest habitat when snake density was highest and when food was more abundant in the forest; habitat selection was largely density independent, although there was weak evidence of density dependence. No female gartersnake gave birth in the forest enclosures, whereas half of the females gave birth in the field enclosures. Growth rates of females were higher in field than in forest enclosures. Overall, our data indicate that temperature appears to be the most important factor driving the habitat selection of gartersnakes, likely because temperature was more limiting than food in our study system. Snakes, or at least temperate snakes, may naturally exist at population densities low enough that they do not exhibit density-dependent habitat selection. PMID:27016079
Halliday, William D; Blouin-Demers, Gabriel
2016-07-01
The ideal free distribution concept predicts that organisms will distribute themselves between habitats in a density-dependent manner so that individuals, on average, achieve the same fitness in each habitat. In ectotherms, environmental temperature has a strong impact on fitness, but temperature is not depletable and thus not density dependent. Can density-dependent habitat selection occur in ectotherms when habitats differ in thermal quality? We used an observational study of habitat selection by small snakes in field and forest, followed by manipulative habitat selection and fitness experiments with common gartersnakes in enclosures in field and forest to test this hypothesis. Snakes were much more abundant in the field, the habitat with superior thermal quality, than in the forest. Gartersnakes in our controlled experiment only used the forest habitat when snake density was highest and when food was more abundant in the forest; habitat selection was largely density independent, although there was weak evidence of density dependence. No female gartersnake gave birth in the forest enclosures, whereas half of the females gave birth in the field enclosures. Growth rates of females were higher in field than in forest enclosures. Overall, our data indicate that temperature appears to be the most important factor driving the habitat selection of gartersnakes, likely because temperature was more limiting than food in our study system. Snakes, or at least temperate snakes, may naturally exist at population densities low enough that they do not exhibit density-dependent habitat selection.
NASA Astrophysics Data System (ADS)
Wei, Nijun; Coffey, William T.; Déjardin, Pirre-Michel; Kalmykov, Yuri P.
External dc bias field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean field potential are studied via the rotational Brownian motion model. Postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments (the expectation value of the Legendre polynomials), the dielectric and Kerr effect ac stationary responses may be evaluated for arbitrary dc bias field strength via perturbation theory in the ac field. We have given two complementary approaches for treating the nonlinear effects. The first is based on perturbation theory allowing one to calculate the nonlinear ac stationary responses using powerful matrix methods. The second approach based on the accurate two-mode approximation [D.A. Garanin, Phys. Rev. E. 54, 3250 (1996)] effectively generalizes the existing results for dipolar systems in superimposed ac and dc fields to a mean field potential. The results apply both to nonlinear dielectric relaxation and dynamic Kerr effect of nematics and to magnetic birefringence relaxation of ferrofluids. Furthermore, the given methods of the solution of infinite hierarchies of multi-term recurrence relations are quite general and can be applied to analogous nonlinear response problems.
NASA Astrophysics Data System (ADS)
Chinone, N.; Yamasue, K.; Honda, K.; Cho, Y.
2013-11-01
Scanning nonlinear dielectric microscopy (SNDM) can evaluate carrier or charge distribution in semiconductor devices. High sensitivity to capacitance variation enables SNDM to measure the super-high-order (higher than 3rd) derivative of local capacitance-voltage (C-V) characteristics directly under the tip (dnC/dVn,n = 3, 4, ...). We demonstrate improvement of carrier density resolution by measurement of dnC/dVn,n = 1, 2, 3, 4 (super-higher-order method) in the cross-sectional observation of metal-oxide-semiconductor field-effect-transistor.
Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field
NASA Astrophysics Data System (ADS)
Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.
2011-03-01
In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.
Beninato, A.; Baglio, S.; Andò, B.; Emery, T.; Bulsara, A. R.; Jenkins, C.; Palkar, V.
2013-12-09
Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3} shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3}, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a “blueprint” for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or “target” B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.
Models for electrostatic drift waves with density variations along magnetic field lines
NASA Astrophysics Data System (ADS)
Garcia, O. E.; Pécseli, H. L.
2013-11-01
Drift waves with vertical magnetic fields in gravitational ionospheres are considered where the unperturbed plasma density is enhanced in a magnetic flux tube. The gravitational field gives rise to an overall decrease of plasma density for increasing altitude. Simple models predict that drift waves with finite vertical wave vector components can increase in amplitude merely due to a conservation of energy density flux of the waves. Field-aligned currents are some of the mechanisms that can give rise to fluctuations that are truly unstable. We suggest a self-consistent generator or "battery" mechanism that in the polar ionospheres can give rise to magnetic field-aligned currents even in the absence of electron precipitation. The free energy here is supplied by steady state electric fields imposed in the direction perpendicular to the magnetic field in the collisional lower parts of the ionosphere or by neutral winds that have similar effects.
Scott, Alison J D; Kumar, Sudhir; Nahum, Alan E; Fenwick, John D
2012-07-21
The impact of density and atomic composition on the dosimetric response of various detectors in small photon radiation fields is characterized using a 'density-correction' factor, F(detector), defined as the ratio of Monte Carlo calculated doses delivered to water and detector voxels located on-axis, 5 cm deep in a water phantom with a SSD of 100 cm. The variation of F(detector) with field size has been computed for detector voxels of various materials and densities. For ion chambers and solid-state detectors, the well-known variation of F(detector) at small field sizes is shown to be due to differences between the densities of detector active volumes and water, rather than differences in atomic number. However, associated changes in the measured shapes of small-field profiles offset these variations in F(detector), so that integral doses measured using the different detectors are quite similar, at least for slit fields. Since changes in F(detector) with field size arise primarily from differences between the densities of the detector materials and water, ideal small-field relative dosimeters should have small active volumes and water-like density. PMID:22722374
Aciktepe, T.; Akdeniz, K.G.; Barut, A.O.; Kalayci, J.
1988-01-01
For the conformally covariant coupled non-linear spinor-scalar field of the sigma-model type the authors show that the non-trivial vacuum instanton solutions have a geometric meaning as constant spinors on the five-dimensional hypercone. The quantized fields around these solutions correspond to the normal modes of the hypercone. A connection is thus established between field theory, particle spectrum of the fields and quantized excitations of a geometry (the hypercone).
Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.
de Montferrand, Caroline; Lalatonne, Yoann; Bonnin, Dominique; Lièvre, Nicole; Lecouvey, Marc; Monod, Philippe; Russier, Vincent; Motte, Laurence
2012-06-25
The magnetic behavior at room temperature of maghemite nanoparticles of variable sizes (from 7 to 20 nm) is compared using a conventional super quantum interference device (SQUID) and a recently patented technology, called MIAplex. The SQUID usually measures the magnetic response versus an applied magnetic field in a quasi-static mode until high field values (from -4000 to 4000 kA m(-1)) to determine the field-dependence and saturation magnetization of the sample. The MIAplex is a handheld portable device that measures a signal corresponding to the second derivative of the magnetization around zero field (between -15 and 15 kA m(-1)). In this paper, the magnetic response of the size series is correlated, both in diluted and powder form, between the SQUID and MIAplex. The SQUID curves are measured at room temperature in two magnetic field ranges from -4000 to 4000 kA m(-1) (-5T to 5T) and from -15 to 15 kA m(-1). Nonlinear behavior at weak fields is highlighted and the magnetic curves for diluted solutions evolve from quasi-paramagnetic to superparamagnetic behavior when the size of the nanoparticles increases. For the 7-nm sample, the fit of the magnetization with the Langevin model weighted with log-normal distribution corresponds closely to the magnetic size. This confirms the accuracy of the model of non-interacting superparamagnetic particles with a magnetically frustrated surface layer of about 0.5 nm thickness. For the other samples (10-nm to 21-nm), the experimental weak-field magnetization curves are modeled by more than one population of magnetically responding species. This behavior is consistent with a chemically uniform but magnetically distinct structure composed of a core and a magnetically active nanoparticle canted shell. Accordingly the weak-field signature corresponds to the total assembly of the nanoparticles. The impact of size polydispersity is also discussed.
Back in the saddle: large-deviation statistics of the cosmic log-density field
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.
2016-08-01
We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.
Besnard, D. CEA Centre d'Etudes de Limeil, 94 - Villeneuve-Saint-Georges ); Harlow, F.H.; Rauenzahn, R.M.; Zemach, C. )
1992-06-01
This study gives an updated account of our current ability to describe multimaterial compressible turbulent flows by means of a one-point transport model. Evolution equations are developed for a number of second-order correlations of turbulent data, and approximations of the gradient type are applied to additional correlations to close the system of equations. The principal fields of interest are the one- point Reynolds tensor for variable-density flow, the turbulent energy dissipation rate, and correlations for density-velocity and density- density fluctuations. This single-field description of turbulent flows is compared in some detail to two-field flow equations for nonturbulent, highly dispersed flow with separate variables for each field. This comparison suggests means for improved modeling of some correlations not subjected to evolution equations.
Estimation of stratospheric-mesospheric density fields from satellite radiance data
NASA Technical Reports Server (NTRS)
Quiroz, R. S.
1974-01-01
Description of a method for deriving horizontal density fields at altitudes above 30 km directly from satellite radiation measurements. The method is applicable to radiation measurements from any instrument with suitable transmittance weighting functions. Data such as those acquired by the Satellite Infrared Spectrometers on satellites Nimbus 3 and 4 are employed for demonstrating the use of the method for estimating stratospheric-mesospheric density fields.
NASA Astrophysics Data System (ADS)
Sun, Hao-Ran; Huang, Ka-Ma
2015-12-01
In this paper, an experimental set-up based on a novel microstrip cancellation circuit is presented for investigating the effects of external microwave fields on the dielectric properties of polar solution. The circuit consists of a 3 dB Wilkinson power combiner, a conventional 20 dB backward coupler, and a specially designed 20 dB single-sectioned forward coupler. Besides, in order to realize a uniform electric field in the tested solution, a nicked microstrip ring is designed in the circuit. An improvement of measurement sensitivity in the proposed circuit was obtained when compared to the conventional transmission lines method. We exploit interference cancellation processes to suppress the probing signal at the output port under the principle that two identical amplitude signals with 180° phase difference will completely cancel each other. The measurements are carried out at the frequency of 2.45 GHz, and the temperature effects caused by microwave heating are excluded by the flowing fluid. Experimental results show that the dielectric properties of DMSO-methanol/ethanol mixtures change at the electric field intensity of 105 V m - 1 and present a distinctly nonlinear dielectric change with the electric fields. The study of the microwave-material interaction has expanded our insights into the high-power microwave’s industry application.
A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA
Jiang Chaowei; Feng Xueshang; Xiang Changqing
2012-08-10
Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 Multiplication-Sign 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.
NASA Astrophysics Data System (ADS)
Ponte Castañeda, Pedro
2002-04-01
This paper is concerned with the development of an improved second-order homogenization method incorporating field fluctuations for nonlinear composite materials. The idea is to combine the desirable features of two different, earlier methods making use of "linear comparison composites", the properties of which are chosen optimally from suitably designed variational principles. The first method (Ponte Castañeda, J. Mech. Phys. Solids 39 (1991) 45) makes use of the "secant" moduli of the phases, evaluated at the second moments of the strain field over the phases, and delivers bounds, but these bounds are only exact to first-order in the heterogeneity contrast. The second method (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) makes use of the "tangent" moduli, evaluated at the phase averages (or first moments) of the strain field, and yields estimates that are exact to second-order in the contrast, but that can violate the bounds in some special cases. These special cases turn out to correspond to situations, such as percolation phenomena, where field fluctuations, which are captured less accurately by the second-order method than by the bounds, become important. The new method delivers estimates that are exact to second-order in the contrast, making use of generalized secant moduli incorporating both first- and second-moment information, in such a way that the bounds are never violated. Some simple applications of the new theory are given in Part II of this work.
Structure of a reconnection layer poleward of the cusp: Extreme density asymmetry and a guide field
NASA Astrophysics Data System (ADS)
Muzamil, F. M.; Farrugia, C. J.; Torbert, R. B.; Pritchett, P. R.; Mozer, F. S.; Scudder, J. D.; Russell, C. T.; Sandholt, P. E.; Denig, W. F.; Wilson, L.
2014-09-01
We present Polar observations of a reconnection layer during an inbound pass at high northern latitudes. The interplanetary field of 20 nT pointed strongly northward continuously for 13 h. Reverse polar cap convection observed repeatedly by the DMSP F13 satellite provided direct evidence of continued reconnection. Polar observed sunward and southward jets. The event was hallmarked by a density asymmetry ≈140 and moderate guide field. Disturbances in fields and plasma were much more intense on the magnetosphere (MSP) side of the current sheet (CS). A density cavity was observed at both separatrices. Isolated EN peaks occurred at the density cavity regions. The intense electric field fluctuations (≤60 mV/m) were mainly in the component normal to the CS, EN. The guide field pointed opposite to the Hall field, leading to an overall weakening of the out-of-plane magnetic field. A magnetic island was observed in the outflow jet. The field reversal at the CS occurred before the outflow jet, which we argue to be due to the large density asymmetry. The stagnation line was strongly shifted toward the MSP side of the CS. We compare observations with simulations which emphasize the density asymmetry and which also include a guide field, and we find good agreement. Remaining discrepancies may be explained by a density asymmetry much larger than in simulations. This is to our knowledge the first study of a high-latitude reconnection layer with (1) an extreme density asymmetry and (2) steady and continuously strong interplanetary Bz.
NASA Technical Reports Server (NTRS)
Bullock, S. Ray; Myers, R. M.
1994-01-01
Applied-field magnetoplasmadynamic (MPD) thruster performance is below levels required for primary propulsion missions. While MPD thruster performance has been found to increase with the magnitude of the applied-field strength, there is currently little understanding of the impact of applied-field shape on thruster performance. The results of a study in which a single applied-field thruster was operated using three solenoidal magnets with diameters of 12.7, 15.2, and 30.4-cm are presented. Thruster voltage and anode power deposition were measured for each applied field shape over a range of field strengths. Plume electron number density and temperature distributions were measured using a Langmuir probe in an effort to determine the effect of field shape on plume confinement by the diverging magnetic-field for each of the three magnetic field shapes. Results show that the dependence of the measured thruster characteristics on field shape were non-monotonic and that the field shape had a significant effect on the plume density and temperature profiles.
Hatsuki, Ryuji; Honda, Ayae; Kajitani, Masayuki; Yamamoto, Takatoki
2015-01-01
Our living sphere is constantly exposed to a wide range of pathogenic viruses, which can be either known, or of novel origin. Currently, there is no methodology for continuously monitoring the environment for viruses in general, much less a methodology that allows the rapid and sensitive identification of a wide variety of viruses responsible for communicable diseases. Traditional approaches, based on PCR and immunodetection systems, only detect known or specifically targeted viruses. We here describe a simple device that can potentially detect any virus between nanogap electrodes using nonlinear impedance spectroscopy. Three test viruses, differing in shape and size, were used to demonstrate the general applicability of this approach: baculovirus, tobacco mosaic virus (TMV), and influenza virus. We show that each of the virus types responded differently in the nanogap to changes in the electric field strength, and the impedance of the virus solutions differed depending both on virus type and virus concentration. These preliminary results show that the three virus types can be distinguished and their approximate concentrations determined. Although further studies are required, the proposed nonlinear impedance spectroscopy method may achieve a sensitivity comparable to that of more traditional, but less versatile, virus detection systems. PMID:26441875
Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field
NASA Astrophysics Data System (ADS)
Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
NASA Astrophysics Data System (ADS)
Agapitov, Oleksiy; Drake, James; Mozer, Forrest
2016-04-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
NASA Astrophysics Data System (ADS)
Agapitov, O. V.; Drake, J. F.; Mozer, F.
2015-12-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
NASA Astrophysics Data System (ADS)
Borisov, V. I.; Galanin, A. L.; Liubchenko, V. E.; Rogashkov, A. S.; Telegin, A. A.
1988-10-01
Experimental results are presented on InP Gunn diodes in intense microwave fields. Two important features of such devices which distinguish them from GaAs devices were found: (1) microwave oscillation at an active-layer electron density of about 10 to the 17th/cu cm and (2) the substantial heating of the near-cathode region of the active layer, leading to characteristic changes in the I-V characteristics.
NASA Astrophysics Data System (ADS)
Tukmakov, A. L.
2015-01-01
A model of a multivelocity multitemperature polydisperse gas suspension has been constructed with account taken of coagulation. Calculations of the dynamics of an aerosol of a polydisperse composition in an acoustic resonator have been done and the derived regularities have been described. A system of Navier-Stokes equations for a compressible heat-conducting gas was used to describe the motion of a carrier medium. The dynamics of dispersed fractions is described by a system of equations including continuity, momentum, and internal-energy equations. The equations of motion of the carrier medium and dispersed fractions have been written with account of the interphase exchange of momentum and energy. The Lagrangian model has been used to describe the process of coagulation. The change in the dispersity of the gas suspension in the nonlinear field of an acoustic resonator has been analyzed.
On some p-Laplacian equation with electromagnetic fields and critical nonlinearity in ℝN
NASA Astrophysics Data System (ADS)
Liang, Sihua; Zhang, Jihui
2015-04-01
In this paper, we consider the existence and multiplicity of solutions for p-Laplacian equation with electromagnetic fields and critical nonlinearity in ℝN: - ɛ p Δ p , A u + V ( x ) |u| p - 2 u = |u| p* - 2 u + h ( x , |u| p ) |u| p - 2 u for x ∈ ℝN, where Δ p , A u ( x ) ≔ div ( |u ∇ u + i A ( x ) u | p - 2 ( ∇ u + i A ( x ) u ) . By using Lions' second concentration compactness principle and concentration compactness principle at infinity to prove that the (PS)c condition holds locally and by variational method, we show that this equation has at least one solution provided that ɛ < E , for any m ∈ ℕ, it has m pairs of solutions if ɛ < E m , where E and E m are sufficiently small positive numbers.
McArthur, Duncan; Hourahine, Ben; Papoff, Francesco
2015-01-01
We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699
McArthur, Duncan; Hourahine, Ben; Papoff, Francesco
2015-11-24
We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts.
McArthur, Duncan; Hourahine, Ben; Papoff, Francesco
2015-01-01
We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699
NASA Astrophysics Data System (ADS)
Fetisov, Y. K.; Srinivasan, G.
2008-07-01
This report is on hysteresis and switching associated with electric field (E) tuning of ferromagnetic resonance in a bilayer of yttrium iron garnet (YIG)-lead zirconate titanate (PZT). The tuning is facilitated by piezoelectricity of PZT and mechanical bonding with YIG. For E <2kV/cm, the frequency shift δf is linear with E. For E <10kV/cm a pronounced hysteresis is seen in δf versus E. For E >10kV/cm, a butterflylike dependence of δf with an abrupt switch in the sign and magnitude of δf are measured. The observations are attributed to nonlinearities of the piezoelectric deformation.
Vacuum polarization of massive spinor and vector fields in the spacetime of a nonlinear black hole
Matyjasek, Jerzy
2007-10-15
Building on general formulas obtained from the approximate renormalized effective action, the stress-energy tensor of the quantized massive spinor and vector fields in the spacetime of the regular black hole is constructed. Such a black hole is the solution to the coupled system of nonlinear electrodynamics and general relativity. A detailed analytical and numerical analysis of the stress-energy tensor in the exterior region is presented. It is shown that for small values of the charge as well as large distances from the black hole the leading behavior of the stress-energy tensor is similar to that in the Reissner-Nordstroem geometry. Important differences appear when the inner horizon becomes close to the event horizon. A special emphasis is put on the extremal configuration and it is shown that the stress-energy tensor is regular inside the event horizon of the extremal black hole.
NASA Astrophysics Data System (ADS)
Zhelavskaya, I. S.; Spasojevic, M.; Shprits, Y. Y.; Kurth, W. S.
2016-05-01
We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.
Lall, Upmanu; Devineni, Naresh; Kaheil, Yasir
2016-01-01
Multivariate simulations of a set of random variables are often needed for risk analysis. Given a historical data set, the goal is to develop simulations that reproduce the dependence structure in that data set so that the risk of potentially correlated factors can be evaluated. A nonparametric, copula-based simulation approach is developed and exemplified. It can be applied to multiple variables or to spatial fields with arbitrary dependence structures and marginal densities. The nonparametric simulator uses logspline density estimation in the univariate setting, together with a sampling strategy to reproduce dependence across variables or spatial instances, through a nonparametric numerical approximation of the underlying copula function. The multivariate data vectors are assumed to be independent and identically distributed. A synthetic example is provided to illustrate the method, followed by an application to the risk of livestock losses in Mongolia. PMID:26177987
Complexities of determining the Field-Aligned current density from LEO satellites.
NASA Astrophysics Data System (ADS)
Gjerloev, J. W.; Friel, M. M.; Ohtani, S.; Muhleisen, M.; Gjerloev, A. W.; Martin, P.; Barnes, R. J.
2015-12-01
We show results from a study of the field-aligned currents (FAC) as derived from SWARM magnetic field perturbations. We calculate the FAC density using four different techniques and explain why they provide different results. Theoretical work, simulations and data are used to show that widely used techniques can provide current density estimates with errors of 1000%. These errors can be explained by spatial gradients in the currents and temporal variability of the currents as well as a breakdown of other fundamental assumptions. We apply the techniques to auroral crossings with THEMIS ASI coverage and use the SWARM magnetic field observations to calculate the current density. Finally, we show how to estimate the errors in the current density calculations.
Comparing the equivalent particle number density distribution of gas and plasma flow fields.
Chen, Yun-yun; Zhang, Ying-ying; Zhang, Cheng-yi; Li, Zhen-hua
2013-04-20
In this paper, the equivalent particle number density distribution of gas and plasma flow fields is investigated. For the purpose of facilitating comparison, argon gas and argon arc plasma are chosen as practical examples for experiment. The equivalent particle number density distributions of the argon gas and argon arc plasma are reconstructed from the experimentally measured refractive index distributions obtained by moiré tomography, while five cross sections, which are 7, 8.5, 10, 11.5, and 13 mm away from the jet nozzle are chosen for practical calculation and comparison. In experiment, the probe wavelength and the export pressure of argon gas and argon arc plasma are the same. The experimental results manifest that (1) the equivalent particle number density decreases with the distance away from the jet nozzle of the gas flow field, while (2) the equivalent particle number density of the plasma flow field has a different variation. Finally, the experimental results are theoretically explained and analyzed.
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B. Ghorbanalilu, M.
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of the electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.
Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
Ding, Chenliang; Wei, Jingsong
2016-01-01
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics. PMID:26727415
Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong
2016-01-01
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.
Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes
Buividovich, P. V.
2011-02-15
We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators. We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion parameters. A stochastic solution of the self-consistency conditions can be implemented as a 'memory' of the random process, so that some parameters of the process are estimated from its previous history. We illustrate this idea on the two-dimensional O(N) sigma model. The extension to non-Abelian lattice gauge theories is discussed.
Inoue, S.; Magara, T.; Choe, G. S.; Kim, K. S.; Pandey, V. S.; Shiota, D.; Kusano, K.
2014-01-01
We develop a nonlinear force-free field (NLFFF) extrapolation code based on the magnetohydrodynamic (MHD) relaxation method. We extend the classical MHD relaxation method in two important ways. First, we introduce an algorithm initially proposed by Dedner et al. to effectively clean the numerical errors associated with ∇ · B . Second, the multigrid type method is implemented in our NLFFF to perform direct analysis of the high-resolution magnetogram data. As a result of these two implementations, we successfully extrapolated the high resolution force-free field introduced by Low and Lou with better accuracy in a drastically shorter time. We also applied our extrapolation method to the MHD solution obtained from the flux-emergence simulation by Magara. We found that NLFFF extrapolation may be less effective for reproducing areas higher than a half-domain, where some magnetic loops are found in a state of continuous upward expansion. However, an inverse S-shaped structure consisting of the sheared and twisted loops formed in the lower region can be captured well through our NLFFF extrapolation method. We further discuss how well these sheared and twisted fields are reconstructed by estimating the magnetic topology and twist quantitatively.
Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment
NASA Astrophysics Data System (ADS)
De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.
2009-05-01
Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.
Nonlinear Force-Free Magnetic Field Modeling of the Solar Corona: A Critical Assessment
NASA Astrophysics Data System (ADS)
De Rosa, M. L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; McTiernan, J. M.; Régnier, S.; Thalmann, J.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.
2008-12-01
Nonlinear force-free field (NLFFF) modeling promises to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have so far failed to arrive at consistent solutions when applied to cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not been available). It is our view that the lack of robust results indicates an endemic problem with the NLFFF modeling process, and that this process will likely continue to fail until (1) more of the far-reaching, current-carrying connections are within the observational field of view, (2) the solution algorithms incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is found to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.
Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred
2013-01-01
Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230
A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields
Lerche, I.; Low, B. C.
2014-10-15
An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4/3 as
Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations
NASA Astrophysics Data System (ADS)
Guo, Y.; Xia, C.; Keppens, R.
2016-09-01
A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel‑1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.
Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations
NASA Astrophysics Data System (ADS)
Guo, Y.; Xia, C.; Keppens, R.
2016-09-01
A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.
Magnetic field-aligned electrons escaping from plasma density minima in the cusp
NASA Astrophysics Data System (ADS)
Pedersen, A.; Lybekk, B.; Haaland, S.; Svenes, K.; Dandouras, I.; Fazakerley, A. N.
2012-04-01
On Cluster the plasma density in very tenuous plasmas can be estimated based on spacecraft potential measurements. This has made it possible to detect plasma density minima of 0.01-0.1 cm-3 in the cusp poleward of the main precipitation of electrons and ions. Electron data from PEACE show that some of these minima have magnetic field-aligned outflow of electrons with energies of several hundred eV. Ion data from CIS will be used to look for possible related ion field-aligned flow. In this study the locations and the extents of plasma density minima, with electron outflow, will be determined for the northern and the southern cusp. Information about extent across the magnetic field can be obtained by using data from all four Cluster satellites, and electric field data can be used to detect plasma drift and wave activity. Possible connections to solar wind conditions and magnetosphere disturbance level will be presented
NASA Astrophysics Data System (ADS)
Inoue, S.; Hayashi, K.; Kusano, K.
2016-02-01
We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields. PMID:26520498
System and method for magnetic current density imaging at ultra low magnetic fields
Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich
2016-02-09
Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.
NASA Astrophysics Data System (ADS)
Trisnanto, Suko Bagus; Kitamoto, Yoshitaka
2016-02-01
The magnetization induced by oscillatory magnetic-field in a polydispersive superparamagnetic-suspension shows a nonlinearity which strongly depends on the applied frequency. Referring to the initially-measured complex magnetic-susceptibility in function of field-strength, the highly-nonlinear curve of dynamic magnetization at low frequency tends to be linear at higher frequency. Likewise, the dynamic susceptibility appears to be less field-strength dependent at higher frequency, emphasizing a frequency-dependence of magnetically-induced particle-dynamics. This finding is attributable to the imaginary part of magnetization which saturates at lower field-strength of low-frequency magnetic-field. Hence, Brownian relaxation losses should be constant after the saturation due to a confinement of particle rotations.
NASA Astrophysics Data System (ADS)
Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man
2016-10-01
We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.
Collapse of small-scale density perturbations during preheating in single field inflation
Jedamzik, Karsten; Lemoine, Martin; Martin, Jérôme E-mail: lemoine@iap.fr
2010-09-01
After cosmic inflation and before the transition to radiation domination, the cosmic energy density may have been dominated during an extended period by an oscillating massive scalar condensate. We show that during this period, sub-Hubble scale perturbations are subject to a metric preheating instability in the narrow resonance regime. We analyze in detail both, quadratic and quartic potentials. The instability leads to the growth of density perturbations which in many cases become non-linear already before the beginning of a radiation dominated Universe. This is particularly the case when requiring a phenomenologically preferred low reheat temperature. These early structures may lead to the emission of gravitational waves and the production of primordial black holes.
Effects of larval density in Ambystoma opacum: An experiment in large-scale field enclosures
Scott, D.E. )
1990-02-01
This experiment was designed to measure the effects of larval density on larval traits in the salamander Ambystoma opacum, and to ascertain whether previous studies conducted at smaller spatial scales or higher densities produced artifactual results. Density effects on larval growth, body size at metamorphosis, length of larval period, and survival to metamorphosis were studied in A. opacum in large-scale (41 m{sup 2} and 23 m{sup 2}) field enclosures in two temporary ponds. Each enclosure contained indigenous populations of prey (zooplankton and insects) and predators, as well as the range of microhabitats present in these natural ponds. Initial larval densities were chosen to represent high and low levels of naturally occurring mean densities. The results suggest that, in natural ponds, the importance of intraspecific competition is dependent upon hydroperiod, and the intensity of competition influences predation risk. Thus, both density-dependent and density-independent factors affect body size and recruitment of larval A. opacum into the adult population. The use of large-scale field enclosures has advantages and disadvantages: it allows the examination of density-dependent processes under natural conditions and provides high statistical power because of low variability in larval traits; however, experimental designs must be simple and underlying mechanisms are difficult to identify.
NASA Astrophysics Data System (ADS)
Luo, Ma
The goal of this dissertation is to implement the spectral element method to calculate the electromagnetic properties of various semiconductor nano-structures, including photonic crystal, photonic crystal slab, finite size photonic crystal block, nano dielectric sphere. The linear electromagnetic characteristics, such as band structure and scattering properties, can be calculated by this method with high accuracy. In addition, I have explored the application of the spectral element method in nonlinear and quantum optics. The effort will focus on second harmonic generation and quantum dot nonlinear dynamics. The electromagnetic field can be simulated in both frequency domain and time domain. Each method has different application for research and engineering. In this dissertation, the first half of the dissertation discusses the frequency domain solver, and the second half of the dissertation discusses the time domain solver. For frequency domain simulation, the basic equation is the second order vector Helmholtz equation of the electric field. This method is implemented to calculate the band structure of photonic crystals consisting of dielectric material as well as metallic materials. Because the photonic crystal is periodic, only one unit cell need to be simulated in the computational domain, and a periodic boundary condition is applied. The spectral accuracy is inspected. Adding the radiation boundary condition at top and bottom of the computational region, the scattering properties of photonic crystal slab can be calculated. For multiple layers photonic crystal slab, the block-Thomas algorithm is used to increase the efficiency of the calculation. When the simulated photonic crystals are finite size, unlike an infinitely periodic system, the periodic boundary condition does not apply. In order to increase the efficiency of the simulation, the domain decomposition method is implemented. The second harmonic generation, which is a kind of nonlinear optical effect
NASA Technical Reports Server (NTRS)
Lobashov, A. A.; Mostepanenko, V. M.
1993-01-01
The theory of quantum effects in nonlinear dielectric media is developed. The nonlinear dielectric media is influenced by an external pumping field. The diagonalization of the Hamiltonian of a quantized field is obtained by the canonical Bogoliubov transformations. The transformations allow us to obtain the general expressions for the number of created photons and for the degree of squeezing. In the case of a plane pumping wave, for example, the results are calculated by using the zero order of the secular perturbation theory, with small parameters characterizing the medium nonlinearity. The Heisenberg equations of motion are obtained for non-stationary case and a commonly used Hamiltonian is derived from the first principles of quantum electrodynamics.
Response of thermosphere density to changes in interplanetary magnetic field sector polarity
NASA Astrophysics Data System (ADS)
Kwak, Y.-S.; Kim, K.-H.; Deng, Y.; Forbes, J. M.
2011-11-01
A systematic analysis of the thermospheric density response to changes in the interplanetary magnetic field (IMF) sector polarity is carried out. For this purpose we use a high-latitude southern thermospheric total mass density near 400 km altitude, derived from the high-accuracy accelerometer on board the Challenging Minisatellite Payload (CHAMP) spacecraft in 2003, a period of a well-defined IMF sector polarity change. The IMF sector polarity changes appear to strongly influence the high-latitude thermospheric density variations, especially in equinox seasons. After normalization to a constant solar flux level, densities in the Southern Hemisphere near the March equinox show a significant differences, depending on whether the IMF field polarity is toward the Sun (“toward sector,” i.e., +Bx and -By) or away from the Sun (“away sector,” i.e., -Bx and +By). Densities in the toward sector near the March equinox increase before the sector boundary passes the Earth, with strong enhancements in the cusp region and the premidnight sector. Densities in the away sector near the March equinox decrease before the sector boundary passes the Earth, with a significant decrease in the early morning hours. On the other hand, near the September equinox, densities in the Southern Hemisphere do not show significant changes associated with the IMF sector polarity changes. The IMF By and the Bz offsets associated with the IMF sector polarity changes are related to specific behaviors in terms of thermospheric densities. In the toward (away) sector near the March equinox, IMF conditions that increase (decrease) the high-latitude southern thermospheric densities, the negative (positive) By and the negative (positive) Bz offsets, are maintained. On the other hand, in the toward (away) sector near the September equinox, the negative (positive) IMF By condition, which increases (decreases) the high-latitude southern thermospheric densities, and the positive (negative) IMF Bz offset
NASA Astrophysics Data System (ADS)
Bergmann, Rachelle Ann
The linear generation of electrostatic hydrogen cyclotron (EHC) waves in the auroral acceleration region near an altitude of 1R(,E) is examined. A field-aligned electron drift and an ion beam are included simultaneously in the plasma model. Each of these has the capability to excite EHC waves. Two assumptions are made, (1) that the plasma can be described by three Maxwellian species and, (2) that the properties of observed EHC waves are the same as the properties of the linearly excited modes. With these assumptions and a plasma model based on S3-3 satellite data, it is concluded that EHC waves driven by an electron drift compare more favorably with observed EHC waves than those driven by an ion beam. Further, the temperature of the drifting electrons should be on the order of the temperature of the stationary ions. Saturation of a linearly excited EHC wave by coherent decay to another EHC wave and an ion acoustic mode is considered. Frequency and wave number matching can be satisfied in this three -wave interaction if the daughter ion acoustic mode is oblique to the geomagnetic field. Many three-wave triads exist for a single parent. A calculation of the coupling coefficient between any three electrostatic waves in a uniformly magnetized plasma comprised of drifting Maxwellian species is derived. This is used to find the threshold electric field of a parent wave necessary for the daughter modes to have a positive non-linear growth rate. It is found that this threshold is below observed EHC wave amplitudes, and is zero when the parent EHC wave couples to a linearly marginally stable EHC daughter wave. Thus, this three-wave interaction may occur in the auroral acceleration region. A preliminary investigation into the temporal development of this interaction is conducted. Though the model is incomplete, the results indicate that this decay can act as a saturation mechanism for the linear growth. In the asymptotic state of the time development, it is the linearly
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
Theunissen, F E; Sen, K; Doupe, A J
2000-03-15
The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli.
NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY
Aschwanden, Markus J.
2013-02-15
We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of {mu}{sub 2} = 2. Degree-Sign 7 {+-} 1. Degree-Sign 3 between the model field lines and observed loops, and an accuracy of Almost-Equal-To 1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines
Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.
2014-05-15
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
Theunissen, F E; Sen, K; Doupe, A J
2000-03-15
The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli. PMID:10704507
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2016-06-01
It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling
White, Jonathan; Minamitsuji, Masato; Sasaki, Misao E-mail: masato.minamitsuji@ist.utl.pt
2013-09-01
Using the δN formalism we consider the non-linear curvature perturbation in multi-field models of inflation with non-minimal coupling. In particular, we focus on the relation between the δN formalism as applied in the conformally related Jordan and Einstein frames. Exploiting results already known in the Einstein frame, we give expressions for the power spectrum, spectral tilt and non-gaussianity associated with the Jordan frame curvature perturbation. In the case that an adiabatic limit has not been reached, we find that in general these quantities differ from those associated with the Einstein frame curvature perturbation, and also confirm their equivalence in the absence of isocurvature modes. We then proceed to consider two analytically soluble examples, the first involving a non-minimally coupled 'spectator' field and the second being a non-minimally coupled extension of the multi-brid inflation model. In the first model we find that predictions can easily be brought into agreement with the recent Planck results, as the tensor-to-scalar ratio is generally small, the spectral tilt tuneable and the non-gaussianity suppressed. In the second model we find that predictions for all three parameters can differ substantially from those predicted in the minimally coupled case, and that the recent Planck results for the spectral tilt can be used to constrain the non-minimal coupling parameters.
Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling
NASA Astrophysics Data System (ADS)
White, Jonathan; Minamitsuji, Masato; Sasaki, Misao
2013-09-01
Using the δN formalism we consider the non-linear curvature perturbation in multi-field models of inflation with non-minimal coupling. In particular, we focus on the relation between the δN formalism as applied in the conformally related Jordan and Einstein frames. Exploiting results already known in the Einstein frame, we give expressions for the power spectrum, spectral tilt and non-gaussianity associated with the Jordan frame curvature perturbation. In the case that an adiabatic limit has not been reached, we find that in general these quantities differ from those associated with the Einstein frame curvature perturbation, and also confirm their equivalence in the absence of isocurvature modes. We then proceed to consider two analytically soluble examples, the first involving a non-minimally coupled `spectator' field and the second being a non-minimally coupled extension of the multi-brid inflation model. In the first model we find that predictions can easily be brought into agreement with the recent Planck results, as the tensor-to-scalar ratio is generally small, the spectral tilt tuneable and the non-gaussianity suppressed. In the second model we find that predictions for all three parameters can differ substantially from those predicted in the minimally coupled case, and that the recent Planck results for the spectral tilt can be used to constrain the non-minimal coupling parameters.
Dayside electron density structures organised by the Martian crustal magnetic fields
NASA Astrophysics Data System (ADS)
Dieval, C.; Wild, J. A.; Morgan, D. D.; Andrews, D. J.; Gurnett, D. A.
2015-12-01
The Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard Mars Express is able to detect remotely the Martian topside electron densities down to the main ionospheric peak. In the ionospheric mode it transmits a sequence of pulses in the frequency range 0.1 to 5.5 MHz and measures the delay of reception of the reflected signals returned by the ionospheric plasma layers below the spacecraft. Previous studies using MARSIS have investigated localized electron density structures in the dayside Martian ionosphere, located in areas of typically near-vertical or oblique orientation of the Martian crustal magnetic fields. These crustal fields are remnants of the now extinct global Martian dipole magnetic field, with the strongest fields in the Southern hemisphere reaching up to |B| > 200 nT at altitudes of 400 km. These density structures are often detected as apparent upwellings above the surrounding ideally horizontally stratified ionosphere. Previous studies searched the density structures at a fixed sounding frequency of 1.9 MHz (equivalent to a plasma density of 4.47·104 cm-3), which is a typical frequency at which they are detected. In addition, these studies did not account for the signal dispersion due to the propagation through the ionosphere, which causes larger time delays for receiving the radar echoes, and therefore an underestimation of the altitude of these structures. In the present work we propose to use a statistical dataset of such density structures detected on the dayside of Mars by MARSIS in areas of oblique crustal fields, to determine the interval of densities for which the structures are found to make apparent upwellings. Then we use the corresponding electron density profiles corrected for signal dispersion, to determine the real altitudes of the density structures, their vertical extent and their plasma scale heights compared to the surrounding ionosphere. These new informations give critical hints for uncovering their origins
Karlberg, G S; Rossmeisl, J; Nørskov, J K
2007-10-01
By varying the external electric field in density functional theory (DFT) calculations we have estimated the impact of the local electric field in the electric double layer on the oxygen reduction reaction (ORR). Potentially, including the local electric field could change adsorption energies and barriers substantially, thereby affecting the reaction mechanism predicted for ORR on different metals. To estimate the effect of local electric fields on ORR we combine the DFT results at various external electric field strengths with a previously developed model of electrochemical reactions which fully accounts for the effect of the electrode potential. We find that the local electric field only slightly affects the output of the model. Hence, the general picture obtained without inclusion of the electric field still persists. However, for accurate predictions at oxygen reduction potentials close to the volcano top local electric field effects may be of importance.
Critical current density and current distribution in field cooled superconducting disks
NASA Astrophysics Data System (ADS)
Bernstein, Pierre; Noudem, Jacques; Dupont, Louis
2016-07-01
Applications of bulk superconductors concern superconducting motors and generators, the levitation of vehicles, the generation of high magnetic fields with small size cryo-magnets, the shielding of magnetic fields and other applications. For all of them, it is essential to determine the critical current density, and to understand the effect of the shape and size of the bulks on the properties of interest. In this contribution, we show how the combination of levitation force and trapped field measurements allow one to determine the characteristics and the potential performances of superconducting disks using analytical modeling. As examples of applications we detail the effects of the magnetizing field and of the bulk sheet critical current density on the levitation force. An important result of the reported measurements is that in field-cooled samples, the shielding currents possibly do not flow along the whole thickness of the disks.
Comparison of Electric Fields and Density structures Seen in Simulations and Satellite Observations
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Deverapalli, C.; Khazanov, G.
2005-01-01
There are now clear observations of large parallel electric fields (E(sub ||)) from Polar and FAST in the auroral upward-current region (UCR). Such fields are associated with large perpendicular electric fields (E(sub perpendicular) and density cavities. The observed features of the fields and density are found to be compatible with their spatial structures seen in a simulated U-shaped potential structure (USPS), consisting of double layers (DL) with obliqueness ranging from zero to 90 degrees from the magnetic field. The spatial and temporal evolution of the USPS, its up and down motions and its striations into thin long potential structures, suggest a variety of signatures in the satellite detection of E(sub ||) and E(sub perpendicular)
Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2001-01-01
Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.
NASA Astrophysics Data System (ADS)
Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong
2016-08-01
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)
NASA Astrophysics Data System (ADS)
Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri
2016-07-01
We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.
NASA Astrophysics Data System (ADS)
Zhelavskaya, Irina; Spasojevic, Maria; Shprits, Yuri; Kurth, William
2016-04-01
We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurement made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detection. We describe the design and implementation of the algorithm and perform initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.
Finding the lost river gas field - Lineament density analysis in hydrocarbon exploration
NASA Technical Reports Server (NTRS)
Lang, H. R.
1982-01-01
A comparative trial analysis of lineament density in 1:500,000 Landsat and 1:48,000 aerial Landsat-simulator images of a gas-field region in West Virginia is presented. The high-contrast, band 4, 5, 7 color composite Landsat image was interpreted independently by two analysts. The slightly different lineament maps were evaluated in terms of lineament-density variation in 10 x 10-km areas, and the resulting areal-variation maps are found to be statistically equivalent. High lineament density is shown to be associated with productive gas wells. Comparison of ground-based substructural contour maps and lineament-density analyses of the Landsat-simulator images reveals good correlation between density maxima or isopleths and substructural features associated with hydrocarbon formations. A hydrocarbon-exploration strategy using both Landsat and aerial images is proposed.
Technology Transfer Automated Retrieval System (TEKTRAN)
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee
2013-12-15
Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction
Fabrication of spatial transient-density structures as high-field plasma photonic devices
Pai, C.-H.; Huang, S.-Y.; Kuo, C.-C.; Lin, M.-W.; Wang, J.; Chen, S.-Y.; Lee, C.-H.; Lin, J.-Y.
2005-07-15
Fabrication of periodic transient-density structures in a gas jet with a boundary scale length approaching 10 {mu}m was demonstrated. This was achieved by passing an ultrashort high-intensity laser pulse through a patterned mask and imaging the mask onto the target plane. Gas/plasma density at the laser-irradiated regions drops as a result of hydrodynamic expansion following ionization and heating by the laser pulse. The fabrication of gas/plasma density structures with such a scheme is an essential step in the development of plasma photonic devices for applications in high-field physics.
NASA Astrophysics Data System (ADS)
Venkatakrishnan, L.; Suriyanarayanan, P.
2009-09-01
The background oriented Schlieren (BOS) technique has been applied to determine the density field in an oblique shock-separated turbulent boundary flow. Measurements were made for two cases, namely, with/without jet flow from the afterbody which is a nozzle. In addition, oil flow and Schlieren visualizations were carried out—the results show certain upstream features of interest including shock excursions. The mean density field from BOS is discussed along with results from conventional Schlieren flow visualization. The data extracted from the mean density field obtained through BOS have been compared for the jet-off and jet-on cases. The data obtained also show the mean density in the base region (jet-off case) to be about 50% of the freestream density and match the isentropic values for the underexpanded jet at the exit. The study involving shock-boundary interaction, movement of freestream shock over the afterbody in the presence of a jet plume provides understanding of flow physics in a flow regime where whole field velocity measurements are extremely difficult.
Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays
Wang, Lin; Gao, Fengmei; Chen, Shanliang; Yang, Weiyou; Li, Chengming
2015-09-21
The density of the nanowires is one of the key issues for their field emission (FE) properties of the nanoarrays, since it plays an important role on the electron emission sites and field screening effect. Here, we reported the nanowire-density-dependent FE properties of the n-type 3C-SiC nanoarrays. The highly oriented and large-scale SiC nanoarrays were grown on the 6H-SiC wafer via pyrolysis of polyureasilazane by adjusting the thicknesses of Au films used as the catalysts. The densities of the nanoarrays were tunable to be ∼2.9 × 10{sup 7}, ∼4.0 × 10{sup 7}, and ∼5.7 × 10{sup 7} nanowires/cm{sup 2} by controlling the Au film thicknesses of 50, 70, and 90 nm, respectively. The measured FE characteristics disclosed that the turn-on fields of the samples could be tailored to be of ∼1.79, 1.57, and 1.95 V/μm with the increase of the densities, suggesting that a suitable nanowire density could favor the enhanced electron emission from the SiC nanoarrays with improved emission sites and limited field screening effects.
Fabrication of Plasma Transient Density Structures and its Application to High-Field Plasma Devices
Chen Szuyuan; Wang Jyhpyng; Lin Jiunnyuan
2006-11-27
Fabrications of plasma transient density structures such as plasma waveguide, variable gas jet length, longitudinal density structure, and transverse wiggler by using laser machining in a gas jet are presented. The implementations of the technique of variable gas jet length with laser machining to achieve tomographic diagnosis of laser wakefield electron acceleration, x-ray lasing, and high harmonic generation are reported. Applications of these elements of high-field plasma devices and their combinations to enhance the products in high-field physics are presented or proposed.
Self-consistent density functional calculation of field emission currents from metals
Gohda; Nakamura; Watanabe; Watanabe
2000-08-21
We have developed a fully self-consistent method which is suitable to examine field emission currents, on the basis of the density functional theory. In our method, the nearby counterelectrode is not necessary. By using this method, we have investigated field emission currents from a biased metallic surface represented by the jellium model. We have found that the energy barrier between the jellium and vacuum becomes lower than the Fermi energy under strong electric fields (e.g., 10 V/nm for r(s) = 4 bohr). In this situation, the slope of the Fowler-Nordheim plot becomes flatter than that under a weaker field.
Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.
2006-07-15
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.
Information theory lateral density distribution for Earth inferred from global gravity field
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1981-01-01
Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.
NASA Astrophysics Data System (ADS)
Kosch, Michael; Ogawa, Yasunobu; Rietveld, Michael; Blagoveshchenskaya, Nataly; Yamazaki, Yosuke
2016-07-01
We have developed an active ground-based technique to estimate the topside thermospheric neutral density as well as topside ionospheric anomalous electric field and resistivity at EISCAT, combining the EISCAT UHF radar, HF heater and optics. When pumping the ionosphere the F-region electron temperature is significantly raised, increasing the upward plasma pressure gradient in the topside ionosphere, resulting in observed ion up-flow along the magnetic field line. Simultaneously, pump-induced suprathermal electrons produce artificial optical emissions. Using the modified ion-momentum equation, the thermospheric neutral density is estimated. Alternatively, using the MSIS model the field-aligned anomalous electric field is estimated. From the optical data the suprathermal electron flux is estimated, giving an estimate of the anomalous resistivity. Results from recent observations at EISCAT are presented.
NASA Astrophysics Data System (ADS)
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
Qin Hong; Davidson, Ronald C.
2011-08-15
In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio-frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.
2011-08-01
In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio-frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.
Hong Qin and Ronald C. Davidson
2011-07-19
In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.
Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams
NASA Astrophysics Data System (ADS)
Phadte, D. S.; Patidar, C. B.
2013-07-01
Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.
NASA Astrophysics Data System (ADS)
Shi, Pengpeng; Jin, Ke; Zheng, Xiaojing
2016-04-01
Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress-strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress-magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.
NASA Astrophysics Data System (ADS)
Sigsbee, K.; Kletzing, C. A.; Pickett, J. S.; Gurnett, D. A.; Schwartz, S. J.; Lefebvre, B.; Lucek, E.; Fazakerley, A. N.; Kucharek, H.
2010-10-01
Langmuir wave characteristics in the Earth's foreshock were examined to identify possible nonlinear wave behavior for two case studies with data from the Cluster Wideband Data Plasma Wave Receiver. The occurrence rates of four types of power spectra near the foreshock edge were determined: (1) spectra with power at the local plasma frequency fpe only, (2) spectra with power at fpe and 2fpe, (3) spectra with double peaks near fpe, and (4) spectra with double peaks near fpe and peaks at low frequencies indicative of ion acoustic waves. For electric field waveform amplitudes between 0.1 and 22.0 mV/m, most power spectra fell into the fpe only and double-peaked categories. The maximum Langmuir wave amplitudes and bump-on-tail reduced electron distribution functions from Cluster PEACE data were more consistent with saturation of wave growth by electrostatic decay than modulational instabilities. However, few spectra had the double peaks near fpe and ion acoustic waves indicative of electrostatic decay, suggesting other processes may also be at work. For amplitudes greater than 22.0 mV/m, most power spectra fell into the fpe and 2fpe category, but many of the harmonics were too weak to be clearly distinguished from harmonics caused by instrumental effects.
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions
NASA Astrophysics Data System (ADS)
Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions.
Fujieda, S; Mori, Y; Nakazawa, A; Mogami, Y
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.
2015-03-15
Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.
Determining the Mass Density Along Magnetic Field Lines from Toroida Eigenfrequencies
NASA Technical Reports Server (NTRS)
Denton, R.; Gallagher, D. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Toroidal eigenfrequencies can be used to remotely sense the equatorial mass density rho(sub eq) and the density dependence along a magnetic field line. Here we present improvements to the method of Schulz [1996], which allows rho(sub eq) and the power law index alpha (for mass density along a field line proportional to R(sup -alpha), where R is the radial distance from the center of the Earth) to be determined from the y intercept and slope of a plot of toroidal frequency versus toroidal harmonic number n. Our modifications include a model form for eigenfrequencies with a fractional precision of 0.0005 for -6 less than or = alpha less than or = 6 and 2 less than or = L less than or = 8 (accuracy is doubtful beyond L = 5) and an iterative procedure for getting more accurate results than those found using Schulz's method. In addition, we do an analysis of the effect of random measurement errors. Observed frequencies need to be accurate to approx. 6% (3%) of the fundamental frequency in order to determine rho(sub eq) (alpha) to a precision of 30% (unity). We then apply our method to data generated using the Global Core Plasma Model for plasmaspheric mass density; our analysis demonstrates clearly bow the alpha index represents the mass density dependence on the outer part of the field line (R/(LR(sub E)) greater than or approx. 2/3).
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Yu, Anqi; Lu, Wei
2014-10-01
Recent observations of the negative differential conductance (NDC) phenomenon in graphene field-effect transistors (FET) open up new opportunities for their application in graphene-based fast switches, frequency multipliers and, most importantly, in high frequency oscillators up to the terahertz regime. Unlike conventional two-terminal NDC devices that rely on resonant tunneling and inter-valley transferring, in the present work, it has been shown that the universal NDC phenomenon of graphene-based FETs originates from their intrinsic nonlinear carrier transport under a strong electric field. The operation of graphene-NDC devices depends strongly on the interface between graphene and dielectric materials, the scattering-limited carrier mobility, and on the saturation velocity. To reveal such NDC behavior, the output characteristics of GFET are investigated rigorously, with both an analytical model and self-consistent transport equation, and with a multi-electrical parameter simulation. It is demonstrated that the contact-induced doping effect plays an important role in the operational efficiency of graphene-based NDC devices, rather than the ambipolar behavior associated with the competition between electron and hole conductances. In the absence of a NDC regime or beyond one, ambipolar transport starts at Vds > 2Vgs at the drain end, and as the dielectric layer begins to thin down, the kink-like saturation output characteristic is enhanced by the quantum capacitance contribution. These observations reveal the intrinsic mechanism of the NDC effect and open up new opportunities for the performance improvement of GFETs in future high-frequency applications, beyond the current paradigm based on two-terminal diodes.Recent observations of the negative differential conductance (NDC) phenomenon in graphene field-effect transistors (FET) open up new opportunities for their application in graphene-based fast switches, frequency multipliers and, most importantly, in high
Influence of 50 Hz magnetic field on human heart rate variability: linear and nonlinear analysis.
Tabor, Zbisław; Michalski, Józef; Rokita, Eugeniusz
2004-09-01
This study investigated the problem of the influence of 50 Hz magnetic field (MF) on human heart rate variability (HRV). The exposure system was a commercial device for magnetotherapy, generating field of the strength of 500 microT at the center of the coil, 150-200 microT at the position of human subjects' heart and 20-30 microT at the position of subjects' head. The exposure protocols, applied randomly, were either "half hour MF-off/half hour MF-on" or "half hour MF-off/half hour MF-off." The phonocardiographic (PhCG) signal of 15 volunteers were obtained during exposure and used for calculation of time-domain HRV parameters (mean time between heart beats (N-N), standard deviation of time between heart beats (SDNN), and the number of differences of successive beat-to-beat intervals greater than 50 ms, divided by the total number of beat-to-beat intervals (pNN50)) and nonlinear HRV measures (approximate entropy (ApEn), detrended fluctuation scaling exponents). The protocol MF-off/MF-on was applied in nine subjects. Repeated measures ANOVA (RMANOVA) performed for Mf-off/MF-off protocol indicated no statistical difference among four 15 min intervals of HRV data (P value >20% for all parameters except for N-N, where P = 3.7%). RMANOVA followed by the post hoc Tukey test performed for Mf-off/MF-on protocol indicated a statistically significant difference during MF on for N-N (8% increase, P <.1%), SDNN (40% increase, P = 1.1%), and pNN50 (110% increase, P <.1%). The results of the analysis indicate that the changes of these parameters could be associated with the influence of MF. PMID:15300734
Nonlinear superconformal symmetry of a fermion in the field of a Dirac monopole
NASA Astrophysics Data System (ADS)
Leiva, Carlos; Plyushchay, Mikhail S.
2004-02-01
We study a longstanding problem of identification of the fermion-monopole symmetries. We show that the integrals of motion of the system generate a nonlinear classical Z2-graded Poisson, or quantum superalgebra, which may be treated as a nonlinear generalization of the osp(2|2)⊕su(2). In the nonlinear superalgebra, the shifted square of the full angular momentum plays the role of the central charge. Its square root is the even osp(2|2) spin generating the u(1) rotations of the supercharges. Classically, the central charge's square root has an odd counterpart whose quantum analog is, in fact, the same osp(2|2) spin operator. As an odd integral, the osp(2|2) spin generates a nonlinear supersymmetry of De Jonghe, Macfarlane, Peeters and van Holten, and may be identified as a grading operator of the nonlinear superconformal algebra.
NASA Astrophysics Data System (ADS)
Sunil; Mahajan, Amit
2009-09-01
A rigorous nonlinear stability result is derived by introducing a suitable generalized energy functional for a magnetized ferrofluid layer heated and soluted from below with magnetic field-dependent (MFD) viscosity, for stress-free boundaries. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. For ferrofluids, we find that there is possibility of existence of subcritical instabilities, however, it is noted that in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effects of magnetic parameter, M3, solute gradient, S1 and MFD viscosity parameter, δ, on the subcritical instability region have also been analyzed.
Reconstruction of the density field using the Colored Background Oriented Schlieren Technique (CBOS)
NASA Astrophysics Data System (ADS)
Sourgen, F.; Leopold, F.; Klatt, D.
2012-01-01
In this paper the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows to measure the light deflection caused by density gradients in a compressible flow. For this purpose the local image displacements of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the accuracy and the spatial resolution can be increased. A tomographic reconstruction method is then used to reconstruct the density field in three-dimensional flows from CBOS measurements.
Plasma density accumulation on a conical surface for diffusion along a diverging magnetic field
Saha, S. K.; Chowdhury, S.; Janaki, M. S.; Ghosh, A.; Hui, A. K.; Raychaudhuri, S.
2014-04-15
Two-dimensional (2-D) density and potential measurements have been carried out for plasma diffusing through an aperture in a diverging magnetic field. The radial density profile near the source is peaked on the axis but gradually evolves into a hollow profile away from the source. We observe a slow increase of the peak density along a hollow conical surface and correlate with the 2-D potential measurement reported earlier. It is also shown that the formation of 2-D structures with similar features are observed whenever plasma is allowed to diffuse through a physical aperture in such diverging magnetic field configuration, with or without the presence of electric double layer, i.e., the phenomenon is generic in nature.
Cosmological magnetic field: a fossil of density perturbations in the early universe.
Ichiki, Kiyotomo; Takahashi, Keitaro; Ohno, Hiroshi; Hanayama, Hidekazu; Sugiyama, Naoshi
2006-02-10
The origin of the substantial magnetic fields that are found in galaxies and on even larger scales, such as in clusters of galaxies, is yet unclear. If the second-order couplings between photons and electrons are considered, then cosmological density fluctuations, which explain the large-scale structure of the universe, can also produce magnetic fields on cosmological scales before the epoch of recombination. By evaluating the power spectrum of these cosmological magnetic fields on a range of scales, we show here that magnetic fields of 10(-18.1) gauss are generated at a 1-megaparsec scale and can be even stronger at smaller scales (10(-14.1) gauss at 10 kiloparsecs). These fields are large enough to seed magnetic fields in galaxies and may therefore have affected primordial star formation in the early universe.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
NASA Astrophysics Data System (ADS)
Kotovsky, D. A.; Moore, R. C.
2016-05-01
Onsets of electron density enhancements in the upper nighttime mesosphere produced by electric field heating of electrons are examined using a photochemical model that accounts for 29 dynamic species via a set of 156 reactions. Physical mechanisms are identified which result in electron density enhancements that continuously increase for up to several seconds after electric field heating, establishing the conditions under which early VLF scattering is either "fast" (<20 ms) or slower (>20 ms, including "slow," ≥500 ms). During heating, O- ions are produced by heterolysis, e- + O2 → e- + O- + O+, and dissociative attachment, e-+ O2 → O- + O. Following heating, a significant proportion of O- ions associatively detach with molecular oxygen, O- + O2 → O3 + e-, and atomic oxygen, O- + O → O2 + e-. If enough O- ions are produced during heating such that O- detachment exceeds electron loss (predominantly attachment, e- + O3 → O2- + O, and/or electron-ion recombination), electron densities will continue to increase after heating has ended. Consequently, the total risetime of electron density enhancements produced by electric field heating is controlled by the duration of the electric field heating and (in some cases) the effects of O- detachment following heating.
The temperature and density structure in the closed field regions of the solar corona
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Sukhorukova, G. V.; Axford, W. I.
1999-10-01
In this paper we study the temperature and density structure in the closed field region of the solar corona using a dipole plus current sheet model to simulate the global solar magnetic field and a heating function of the same type used in models of the fast wind. The heat equation, describing the redistributing effects of heat conduction on the heat input in the presence of radiative losses, is solved simultaneously with hydrostatic pressure balance. At the base we prescribe the temperature and assume that the heat flux is zero there. We also insist that the heat flux is zero at the equator. This ensures that whatever heat has been added is radiated away. From the mathematical viewpoint this additional requirement sets up an eigenvalue problem which implies that the density at the base must be chosen in just the right way to fulfill the condition of zero heat flux at the equator. Thus our model not only provides the temperature and density structure in the closed regions of a global solar magnetic field appropriate to solar minimum but also predicts the latitudinal variation of the base density whose characteristic value is determined by the ratio of the amplitudes of the heating to the cooling. However it should be stressed that this last prediction represents, at best, an approximation to the real stale of affairs which is more complex and involves the connection of the coronal field lines to the magnetic funnels of the chromospheric network.
A coarse-grain force field for RDX: Density dependent and energy conserving
NASA Astrophysics Data System (ADS)
Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.
2016-03-01
We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.
Phase-field simulations of gas density within bubbles under irradiation
Paul C. Millett; Anter El-Azab; Michael Tonks
2011-05-01
Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization.
Ronald C. Davidson; Hong Qin; Stephan I. Tzenov; Edward A. Startsev
2003-02-26
The Vlasov-Maxwell equations are used to investigate the nonlinear evolution of an intense sheet beam with distribution function f{sub b}(x,x{prime},s) propagating through a periodic focusing lattice k{sub x}(s+S) = k{sub x}(s), where S = const is the lattice period. The analysis considers the special class of distribution functions with uniform phase-space density f{sub b}(x,x{prime},s) = A = const inside of the simply connected boundary curves, x{prime}{sub +}(x,s) and x{prime}{sub -}(x,s), in the two-dimensional phase space (x,x{prime}). Coupled nonlinear equations are derived describing the self-consistent evolution of the boundary curves, x{prime}{sub +}(x,s) and x{prime}{sub -}(x,s), and the self-field potential {psi}(x,s) = e{sub b}{phi}(x,s)/{gamma}{sub b}m{sub b}{beta}{sub g}{sup 2}c{sup 2}. The resulting model is shown to be exactly equivalent to a (truncated) warm-fluid description with zero heat flow and triple-adiabatic equation-of-state with scalar pressure P{sub b}(x,s) = const x [n{sub b}(x,s)]. Such a fluid model is amenable to direct analysis by transforming to Lagrangian variables following the motion of a fluid element. Specific examples of periodically focused beam equilibria are presented, ranging from a finite-emittance beam in which the boundary curves in phase space (x,x{prime}) correspond to a pulsating parallelogram, to a cold beam in which the number density of beam particles, n{sub b}(x,s), exhibits large-amplitude periodic oscillations. For the case of a sheet beam with uniform phase-space density, the present analysis clearly demonstrates the existence of periodically focused beam equilibria without the undesirable feature of an inverted population in phase space that is characteristic of the Kapchinskij-Vladimirskij beam distribution.
NASA Astrophysics Data System (ADS)
Sateesh, V. L.; Upadhyay, C. S.; Venkatesan, C.
2010-07-01
Polarization-electric-field (P-E) interaction results in rendering the stress tensor non-symmetric and in a nonlinear force term in the equilibrium equation. In this paper, an attempt is made to study these (P-E) nonlinear effects on the static response of laminated composite plates with piezo actuators. Further, this paper also focuses on finding the most effective piezo lay-up and ply orientation which gives the maximum deflections. Four different piezo lay-up configurations and three ply orientations are considered. It has been observed from the study that width-wise strips show more transverse bending and twisting. However, full length piezo layers show maximum longitudinal bending. The results of nonlinear analysis show a more considerable softening trend in deformations than that of the linear analysis in the case of longitudinal bending and twisting. In the case of transverse bending this nonlinear effect shows a hardening trend. Further, it has been observed that the influence of P-E nonlinearity depends on the stiffness of the core material, the geometric arrangement of piezo patches, the boundary conditions and the actuation voltage.
Polar cap plasma densities based on Cluster electric field probe measurements
NASA Astrophysics Data System (ADS)
Haaland, S.; Svenes, K. R.; Lybekk, B.; Pedersen, A.; Kronberg, E.
2011-12-01
The plasma density above the Earth's polar caps provide crucial information about the state of the magnetosphere. This region of space is known for its tenuous plasma and extremely low plasma densities, thus making traditional measurements with particle and plasma instruments extremely difficult. A new method based on spacecraft potential measurements from the electric field instrument onboard the Cluster satellites has shown that more reliable density measurements can be obtained. In this study, we utilize this method and present a survey of the polar cap densities and the response to changes in the solar irradiation, solar wind parameters as well as processes internal to the magnetosphere. Our observations spans a time interval of almost 10 years, thus covering almost a half solar cycle. The observations indicate that solar irradiance, and thus ionization through UV absorption in the atmosphere is the most important mechanism controlling the polar cap plasma density. We also find positive correlations between polar cap density and solar wind density and solar wind dynamic pressure, as well as geomagnetic activity levels.
The screening effects of carbon nanotube arrays and its field emission optimum density
Cai, Dan Liu, Lie
2013-12-15
In order to investigate the field emission optimum density of carbon nanotube (CNT) array, the screening effects of CNT array have been studied. It has been shown that the electric field in the vicinity of an individual nanotube of array can be notable distorted due to the screening action of the surrounding neighbors. The optimum normalized spacing s/l(as referred to the length) for the maximum emission current is inversely proportional to aspect ratio l/r and electric field strength for CNT arrays with a fixed dimension.
NASA Technical Reports Server (NTRS)
Fejer, J. A.
1974-01-01
Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.
3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum
NASA Astrophysics Data System (ADS)
Kramar, Maxim; Airapetian, Vladimir; Lin, Haosheng
2016-08-01
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R_⊙ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ˜ 2.5 R_⊙. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.
Theory of small-scale density and electric field fluctuations in the nightside Venus ionosphere
NASA Technical Reports Server (NTRS)
Huba, J. D.
1992-01-01
Recently, it has been reported that small-scale (lambda about 0.1-2 km) density irregularities occur during 100-Hz electric field bursts in the nightside ionosphere of Venus. This paper provides a detailed analysis of the lower-hybrid-drift instability as a mechanism to generate the observed irregularities. A fully electromagnetic theory is developed that is relevant to the finite beta plasma in Venus's ionosphere and includes collisional effects (e.g., electron-ion, electron-neutral, and ion-neutral collisions). The key features of the analysis that favor this instability are the following: (1) it is a flute mode and propagates orthogonal to the ambient magnetic field; (2) it is a relatively short wavelength mode and the Doppler-shifted frequency can be greater than about 100 Hz; (3) it can produce both electric field and density fluctuations, as well as magnetic field fluctuations in a finite beta plasma; and (4) it is most unstable in low-beta plasmas so that it is likely to occur in the low-density, high-magnetic-field ionospheric holes. These features are consistent with observational results.
Field-induced spin-density wave beyond hidden order in URu2Si2
Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.
2016-01-01
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations. PMID:27762260
Estimate of absolute geostrophic velocity from the density field in the northeastern Pacific Ocean
Coats, D.A.
1981-09-20
A pair of hydrographic sections (35/sup 0/N, 155/sup 0/W) were analyzed to compute absolute velocity by using a variation of the technique by Stommel and Schott (1977). Absolute velocity is determined from an integrated form of the potential vorticity equation by a technique suggested by Davis (1978). This study is the first application of this technique that allows a direct comparison between the uncertainty in estimating a smooth density field and the amount of imbalance in the system of model equations. Because the amount of incompatibility (imbalance) in the system of equations is far smaller than is allowed by the uncertainty in defining the smooth field, the model equation is considered adequate for this set of data. Below 400 m, the nearly constant zonal isopycnal slope indicates that potential vorticity is uniform on isopycnal surfaces. Since the method depends on resolving flow directions from the intersection of isopycnals and surfaces of constant potential vorticity, the absolute velocity is indeterminate in this region. The model equation does, however, constrain the structure of the meridional density field and requires a poleward shift in the latitude which successively deeper isopycnals reach their maximum depth. The fact that this poleward translation can be predicted over several degrees of latitude suggests potential vorticity is uniform over a substantial portion of the North Pacific subtropical gyre. This poleward translation of the density field is an aspect of subtropical density fields, in general, and occurs in conjunction with a translation in the field of geopotential anomaly. It is directly related to the curvature in the deep portion of the beta spiral.
Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies
NASA Astrophysics Data System (ADS)
Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš
2016-05-01
Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.
NASA Astrophysics Data System (ADS)
Zhu, J.; Winter, C. L.; Wang, Z.
2015-11-01
Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model
NASA Astrophysics Data System (ADS)
Fernández, Leandro; Onorato, Miguel; Monbaliu, Jaak; Toffoli, Alessandro
2015-04-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing laboratory experiments, field measurements and numerical simulations. It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics and second order based statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh = 1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh < 1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, laboratory experiments in a large wave basin, numerical experiments solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and field experiments at the Lake George experimental site (Australia) have been compared to assess the role of third order nonlinearity, and particularly modulational instability, on wave statistics. Herein, we present a comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between laboratory experiments, simulations and in-situ data which provides a confrontation between the numerical results and real observations in laboratory and field conditions.
Plasma Density and Magnetic Field Evolution in a 100-ns Plasma Opening Switch
NASA Astrophysics Data System (ADS)
Weingarten, A.; Maron, Y.; Krasik, Ya. E.; Weber, B. V.; Commisso, R. J.
1997-11-01
The electron density and magnetic field evolution in a 100-ns, 170-kA POS are investigated using emission spectroscopy. The plasma is doped by various elements using laser evaporation in order to obtain spatially resolved measurements. The prefilled plasma density, determined from Stark broadening and ionization times, is 1-2× 10^14 cm-3. The opening time was observed to depend on the prefilled plasma azimuthal uniformity. During the pulse, the plasma density drops substantially during 10-20 ns. The drop propagates mainly axially from the plasma generator side to the load side at a velocity of ≈ 2 × 10^8 cm/s. The drop is accompanied by penetration of the magnetic field, determined from the Zeeman effect. A mapping of the density and the magnetic field distributions in the r-z plane will be presented. Proton motion is probably important, but the axial velocities of heavy ions are low (≈ 10^6 cm/s << V_Alfven). These results will be compared with previous results obtained on Gamble I(B. V. Weber et. al.), Appl. Physc. Lett. 45, 1043, (1984).
Experimental profile evolution of a high-density field-reversed configuration
Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.
2006-12-15
A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by {pi}) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density ({approx}10{sup 17} cm{sup -3}) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter {alpha} (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD.
Inference of equatorial field-line-integrated electron density values using whistlers
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Kintner, P. M.; Kelley, M. C.
1985-01-01
The nighttime electron density integrated along a magnetic field line at very small L-values (about 1.06) is inferred by comparing whistler dispersions, measured from a sounding rocket, with model ionospheric calculations. At a local time of 0500 LT, the electron density in the F-layer valley was found to be about 1000 per cu cm. It is suggested that this technique can be applied to earlier times in the local evening to determine ionospheric conditions which benefit the growth of low-latitude plasma instabilities.
Chen, Guang-Yin
2016-01-01
The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface. PMID:26860197
Density Functional Approximation for Non-Hard Sphere Fluids Subjected to External Fields
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
A theoretical way is proposed, by which any hard sphere density functional approximation (DFA) can be applied to non-hard sphere fluids for the calculation of density profile in the framework of density functional theory (DFT). Used as examples, the present formalism is combined respectively with two recently proposed hard sphere DFAs to predict the density profile of Lennard-Jones (LJ) fluid, hard core square well (SW) fluid and penetrable potenial fluid subjected to diverse external fields. Extensive comparison between theoretical predictions and corresponding simulation results shows that the present theoretical way, when combined with an accurate hard sphere DFA, can perform well for calculating the density profile of the non-uniform fluids of the above mentioned potentials. Concretely speaking, for LJ and hard core SW fluid, even a less accurate FEDFA is sufficient, while for extreme potential such as the penetrable potenial, a more accurate adjustable parameter free version of LTDFA is needed to combine with the present theoretical way to predict density profile satisfactorily. The advantage of the proposed theoretical way is that the resultant DFA is applicable to both subcritical and supercritical temperature cases, thereby overcoming the disadvantages of previous two categories of DFT approach.
Mehdian, H. Kargarian, A.; Hajisharifi, K.
2015-06-15
In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.
Quantal density-functional theory in the presence of a magnetic field
Yang Tao; Pan Xiaoyin; Sahni, Viraht
2011-04-15
We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-{nabla}v(r) to include an external magnetostatic field B(r)={nabla}xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density {rho}(r) and physical current density j(r), and from which the total energy can be obtained. The properties ({rho}(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
A density spike on astrophysical scales from an N-field waterfall transition
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.
2015-09-01
Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.
Field-induced spin density wave and spiral phases in a layered antiferromagnet
Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.
2015-07-28
Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less
Field-induced spin density wave and spiral phases in a layered antiferromagnet
Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.
2015-07-28
Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba_{3}Mn_{2}O_{8} using single crystal neutron diffraction. We find that for magnetic fields between μ_{0}H=8.80 T and 10.56 T applied along the $1\\bar{1}0$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ_{0}H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.
Non-destructive, in-field determination of wood density in tropical forests
NASA Astrophysics Data System (ADS)
Torello-Raventos, Mireia; Page, Tony; Ford, Andrew; Metcalfe, Dan; Lloyd, Jon; Bird, Michael
2014-05-01
Tropical forests are a significant store of terrestrial carbon1,2,3, and quantification of the above-ground carbon stocks provides a way to improve understanding of vegetation dynamics in the face of climate change. The determination of carbon stocks in tropical forests usually relies on a combination of remote sensing data and allometric models that predict tree biomass4, with extensive requirements for the collection of field data. Tropical forests usually contain a high diversity of tree species, with a wide range of wood densities and the wood density of tropical trees may vary considerably across their diameter5,6. In addition, field core extraction and laboratory processing for wood density determination are time consuming and costly. In this study, wood density has been indirectly determined by a novel ultrasonic, field-based method across different tropical forests types and climates through Australia, Vanuatu and Papua New Guinea and compared against laboratory wood density determinations on the same samples. The data set comprises 1500 measurements on living trees to study the intraspecific and interspecific variation of wood density across tree species ranging from soft to hardwoods and also along the stem of standing trees. Regression analysis suggests a positive relationship between ultrasonic velocity and intraspecific and interspecific variation of wood density indicating a potential use for this technique for carbon inventory development in tropical forests The technique may be particularly valuable for directly measuring the wood density of large trees, which can contain one third of the total proportion of above ground carbon biomass in tropical forests7 and are particularly onerous to core to the pith to measure average wood density across the whole stem by traditional techniques. This study will in the development of predictive relationships between wood density and environmental variables to infer carbon stocks at local and global scale through
Field-Line Tracing from Locations of Polar Cap Neutral Density Anomalies to the Magnetosphere
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.
2015-12-01
Localized neutral density enhancement in the polar cap above 70o magnetic latitude have been frequently observed during major geomagnetic storms. It has been suggested that energy input responsible for producing localized neutral density spikes is the dominant energy deposition in the polar cap. To better understand the origin of polar cap neutral density anomalies (PCNDAs) we trace magnetic field lines from the polar cap region at about 400 km to the magnetosphere using the data-based Tsyganenko magnetic field model TS05 [Tsyganenko and Sitnov, 2005] for the periods when CHAMP detected PCNDAs during major magnetic storms with the minimum Dst < -100 nT. The magnetopause boundary is specified according to the three-dimensional asymmetric magnetopause model recently developed by Lin et al. [2010]. The closest distance to the magnetopause along the traced field line path is determined as a function of time. The tracing results indicate that depending on Dst and locations PCNDAs could be connected through magnetic field lines either to the nightside magnetopause or to the magnetotail lobe. For some events field lines originating from a portion of the PCNDA region are found to cross the equatorial plane in the near earth tail region. We discuss the results to help elucidate the coupling between the magnetosphere and the thermosphere and its roles in producing polar cap density anomalies. ReferencesLin, R. L., X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong (2010), A three-dimensional asymmetric magnetopause model, J. Geophys. Res., 115, A04207, doi:10.1029/2009JA014235.Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Germaschewski, K.; Wang, X.; Linde, T.; Rosner, R.; Siegel, A.
2002-12-01
There has been considerable interest in recent years in collisionless reconnection dynamics governed by the generalized Ohm's law in which electron inertia provides the mechanism for breaking field lines. It has been suggested in several theoretical studies that the nonlinear reconnection dynamics, to leading order, is independent of the mechanism that breaks field lines (that is, electron inertia). We test this suggestion carefully using the new Magnetic Reconnection Code (MRC) developed at the Center for Magnetic Reconnection Studies. The MRC is a new massively parallel code with Adaptive Mesh Refinement (AMR) that integrates the equations of Hall MHD. The use of AMR enables unprecedented levels of resolution of the current and vorticity layers and uncovers interesting secondary dynamics not seen in previous studies. We apply the MRC to the study of two problems, one involving free reconnection caused by a spontaneous and fast collisionless instability, the other involving forced reconnection induced by boundary perturbations on a stable plasma. In the case of free reconnection, over the range of parameters covered by our simulations, it is shown that the nonlinear reconnection rate is near-explosive, and furthermore, that the nonlinear magnetic island width is an invariant function of a dimensionless variable which is the product of the linear growth rate and time. Now, since the linear growth rate is a function of the ion sound radius as well as the electron skin depth, we conclude that the nonlinear reconnection rate is not independent of electron inertia. In the case of forced reconnection, after a slow growth phase, the dynamics exhibits an impulsive growth in the amplitude of the thin current sheet, and a subsequent current disruption mediated by secondary instabilities. These results, in which electron inertia provides the mechanism for breaking field lines, are contrasted with resistive Hall MHD simulations in which resistivity provides the mechanism for
Leonard, T.; Lander, B.; Seifert, U.; Speck, T.
2013-11-28
We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.
High-{beta}, improved confinement reversed-field pinch plasmas at high density
Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.
2008-01-15
In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n{sub e}=4x10{sup 19} m{sup -3}. Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch.
Gravity field separation, density inversion and crustal tectonics in Kang-Dian region
NASA Astrophysics Data System (ADS)
Fu-Zhen, Jiang; Jian, Fang
2001-07-01
Kang-Dian region is located on the southern part of the famous North-South active tectonic belts, which is a part of China-Mongolia central axes strong earthquake belt and the huge crustal thickness undulation belt. Many geologists are interested in it due to its seismicity and abundant mineral resource. We inverted mean crustal density and density anomalies on the different layer in the depth range of 10 100 km, using the gravity field that is treated by separation and adjustment. Combining other geophysical data to analyze the density data, the results show that there is difference both in tectonic feature and geophysical feature between Kang-Dian lozenge block and its western and eastern parts.
An efficient method for computing the QTAIM topology of a scalar field: the electron density case.
Rodríguez, Juan I
2013-03-30
An efficient method for computing the quantum theory of atoms in molecules (QTAIM) topology of the electron density (or other scalar field) is presented. A modified Newton-Raphson algorithm was implemented for finding the critical points (CP) of the electron density. Bond paths were constructed with the second-order Runge-Kutta method. Vectorization of the present algorithm makes it to scale linearly with the system size. The parallel efficiency decreases with the number of processors (from 70% to 50%) with an average of 54%. The accuracy and performance of the method are demonstrated by computing the QTAIM topology of the electron density of a series of representative molecules. Our results show that our algorithm might allow to apply QTAIM analysis to large systems (carbon nanotubes, polymers, fullerenes) considered unreachable until now.
NASA Technical Reports Server (NTRS)
Stricker, Josef
1987-01-01
Effects of diffraction and nonlinear photographic emulsion characteristics on the performance of deferred electronic heterodyne moire deflectometry are investigated. The deferred deflectometry is used for measurements of nonsteady phase objects where it is difficult to complete the analysis of the field in real time. The sensitivity, accuracy and resolution of the system are calculated and it is shown that they are weakly affected by diffraction and by nonlinear recording. The feactures of the system are significantly improved compared with the conventional deferred intensity moire technique, and are comparable with the online heterodyne moire. The system was evaluated experimentally by deferred measurements of the refractive index gradients of a weak phase object consisting of a large KD*P crystal. This was done by photographing the phase object through a Ronchi grating and analyzing the tranparency with the electronic heterodyne readout system. The results are compared with the measurements performed on the same phase object with online heterodyne moire deflectometry and with heterodyne holographic interferometry methods. Some practical considerations for system improvement are discussed.
Stam, Rianne
2014-06-01
Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices.
Stam, Rianne
2014-01-01
Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933
NASA Astrophysics Data System (ADS)
Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen
2016-05-01
A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.
NASA Technical Reports Server (NTRS)
Shih, C. C.
1973-01-01
In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.
NASA Astrophysics Data System (ADS)
Karlický, M.; Jiricka, K.
2002-10-01
Using the recent model of the radio zebra fine structures (Ledenev et al. 2001) the magnetic fields, plasma densities, and plasma beta parameters are estimated from high-frequency zebra fine structures. It was found that in the flare radio source of high-frequency (1-2 GHz) zebras the densities and magnetic fields vary in the intervals of (1-4)×1010 cm-3 and 40-230 G, respectively. Assuming then the flare temperature as about of 107K, the plasma beta parameters in the zebra radio sources are in the 0.05-0.81 interval. Thus the plasma pressure effects in such radio sources, especially in those with many zebra lines, are not negligible.
Latitudinal Density Dependence of Magnetic Field Lines Inferred from Polar Plasma Wave Data
NASA Technical Reports Server (NTRS)
Goldstein, J.; Denton, R. E.; Hudson, M. K.; Miftakhova, E. G.; Menietti, J. D.; Gallagher, D. L.
2000-01-01
Using observations of the electron density, n(sub e), based on measurement of the upper hybrid resonance frequency by the Polar spacecraft Plasma Wave Instrument, we have examined the radial density dependence along field lines in the outer plasmasphere and the near plasmatrough. Sampled L values range from 2.5 to 6.6. Our technique depends on the fact that Polar crosses particular L values at two different points with different radial distance R. In our plasmaspheric data set (n(sub e) > 100/cm3), we find that on average n(sub e) is flat along field lines from the equator up to the latitudes sampled by Polar (R approximately equal to or > 2.0). In the plasmatrough data set (n(sub e) < 100/cm-3), there is on average a mild radial dependence n(sub e) varies as R(exp -1.7).
CORRELATIONS OF PLASMA DENSITY AND MAGNETIC FIELD STRENGTH IN THE HELIOSHEATH
Gutynska, O.; Safrankova, J.; Nemecek, Z.; Richardson, J. D.
2010-10-20
The crossing of the termination shock (TS) by Voyager 2 in 2007 at 84 AU allows a comparison of fluctuations in different heliosheath regions. The Letter concentrates on MHD waves that exhibit a significant correlation between the magnetic field strength and plasma density. The correlations between both quantities were computed on 2 hr time intervals in the frequency range of 1 x 10{sup -4} to 4 x 10{sup -3} Hz. We separate the data into two regions with different magnetic field behavior; the post-TS region with many crossings of the current sheet and the unipolar region where the magnetic field direction remains nearly constant. We find that typical correlation coefficients in these regions are about 0.55-0.65, larger than in Earth's magnetosheath. The largest correlations occur when the spectrum of magnetic field fluctuations is dominated by low frequencies.
Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays
NASA Technical Reports Server (NTRS)
Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.
2004-01-01
We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.
NASA Astrophysics Data System (ADS)
Granett, B. R.; Branchini, E.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.
2015-11-01
Aims: Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the keyparameters that describe the galaxy density field and its spatial correlations in redshift space. Methods: We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results: We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at redshift 0.7. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki
2016-03-01
Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.
Current density and poloidal magnetic field for toroidal elliptic plasmas with triangularity
Martin, P.; Haines, M.G.; Castro, E.
2005-08-15
Changes in the poloidal magnetic field around a tokamak magnetic surface due to different values of triangularity and ellipticity are analyzed in this paper. The treatment here presented allows the determination of the poloidal magnetic field from knowledge of the toroidal current density. Different profiles of these currents are studied. Improvements in the analytic forms of the magnetic surfaces have also been found. The treatment has been performed using a recent published system of coordinates. Suitable analytic equations have been used for the elliptic magnetic surfaces with triangularity and Shafranov shift.
Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family
NASA Astrophysics Data System (ADS)
Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.
1994-10-01
We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.
Megagauss field generation for high-energy-density plasma science experiments.
Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.
2008-10-01
There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.
Magnetic field generation and evolution in high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Moissard, C.; Deng, W.; Fox, W.; Bhattacharjee, A.
2014-10-01
Magnetic reconnection has been proposed to account for many astrophysical phenomena and is inferred to play an important role in fusion. Recent experiments have studied magnetic reconnection in high-energy-density (HED) plasmas at the Vulcan, Omega and Shenguang laser facilities. Plasma bubbles are created by laser irradiation of solid targets. These bubbles self-generate MG-scale magnetic fields, and the collision of pairs of bubbles drives reconnection of this magnetic field. 2D first principles particle-in-cell (PIC) simulations with a collision operator have been used to study the evolution of the magnetic field in these experiments. The ablation of the target is modeled by a Gaussian heating function acting on an initially cold, high density plasma. It is shown that the Biermann battery effect (∇T × ∇n in generalized Ohm's law) can account quantitatively for the magnetic field produced. However, special attention must be given to the temperature, which can no longer be considered as a scalar in the regime of the experiments. In simulations with a collision operator, the evolution of the magnetic field is compared to Braginskii's transport theory. Results of 3D simulations of magnetic reconnection with the self-consistent Biermann effect will be reported.
Monte Carlo computation of the spectral density function in the interacting scalar field theory
NASA Astrophysics Data System (ADS)
Abbasi, Navid; Davody, Ali
2015-12-01
We study the ϕ4 field theory in d = 4. Using bold diagrammatic Monte Carlo method, we solve the Schwinger-Dyson equations and find the spectral density function of the theory beyond the weak coupling regime. We then compare our result with the one obtained from the perturbation theory. At the end, we utilize our Monte Carlo result to find the vertex function as the basis for the computation of the physical scattering amplitudes.
NASA Astrophysics Data System (ADS)
Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf
2014-04-01
The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.
Atomic density functional and diagram of structures in the phase field crystal model
NASA Astrophysics Data System (ADS)
Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.
2016-02-01
The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.
Outer density profiles of 19 Galactic globular clusters from deep and wide-field imaging
NASA Astrophysics Data System (ADS)
Carballo-Bello, Julio A.; Gieles, Mark; Sollima, Antonio; Koposov, Sergey; Martínez-Delgado, David; Peñarrubia, Jorge
2012-01-01
Using deep photometric data from Wide Field Camera at the Isaac Newton Telescope and Wide Field Imager at the ESO 2.2-m telescope we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess the impact of internal and external dynamical processes on the spatial distribution of stars. Adopting power-law fitting templates, with index -γ in the outer region, we find that the clusters in our sample can be divided in two groups: a group of massive clusters (≥105 M⊙) that has relatively flat profiles with 2.5 < γ < 4, and a group of low-mass clusters (≤105 M⊙), with steep profiles (γ > 4) and clear signatures of interaction with the Galactic tidal field. We refer to these two groups as 'tidally unaffected' and 'tidally affected', respectively. Our results also show a clear trend between the slope of the outer parts and the half-mass density of these systems, which suggests that the outer density profiles may retain key information on the dominant processes driving the dynamical evolution of globular clusters.
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
NASA Astrophysics Data System (ADS)
Huete Ruiz de Lira, C.
2010-12-01
When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role in the early stages of the mixing process in a compressed fluid. This situation emerges naturally in a shock interaction with weakly inhomogeneous deuterium-wicked foam targets in inertial confinement fusion and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such an interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in two dimensions results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity and sonic energy flux radiated downstream. These explicit formulae are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.
Imaging electron density and magnetic field distributions in the magnetosphere: A new technique
NASA Astrophysics Data System (ADS)
Ganguly, S.; Van Bavel, G. H.; Brown, A.
2000-07-01
The current collection of magnetospheric observations consists almost entirely of in situ measurements at isolated spacecraft positions. A novel remote sensing technique for simultaneously imaging the plasma density N and the magnetic field B is proposed. The imaged region of the magnetosphere can be several Earth radii in extent. Simultaneous measurements of both group delay and Faraday rotation of radio waves propagating through the magnetosphere yield both total electron content (TEC) and Faraday rotation angle, which is the integral of electron density weighted by some known function of the magnetic field and ray path. These data can then be inverted to obtain estimates of the three-dimensional spatial distribution of N and B. The geometry of the ray paths determines the number of components of B that can be resolved. Simple multisatellite simulations and common data processing techniques introduce this new application of tomography: Magnetospheric TEC measurements yield a map of N, which is then combined with Faraday rotation angle measurements to produce a two-component map of B in the plane of observation. The successful tomographic reconstructions provide a straightforward illustration of the practicality of using this technique to map the magnetospheric plasma density and magnetic field in two or three dimensions. Furthermore, simultaneous images of N and B are of great topical interest to geospace science because of their direct and immediate relevance to current questions regarding magnetospheric structure and dynamics.
NASA Technical Reports Server (NTRS)
Benson, R. F.
1985-01-01
In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.
Serebryannikov, E E; Zheltikov, A M
2014-07-25
Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.
NASA Astrophysics Data System (ADS)
Dehghani, Z.; Saievar Iranizad, E.; Nadafan, M.
2015-01-01
Third order nonlinearity of Fe3O4 nanoparticles (NPs) doped in nematic liquid crystals (NLCs) was evaluated due to laser induced self-phase modulation. The influence of electric field on the nonlinear optical responses of the NLCs doped with Fe3O4 NPs was considered in different voltages. The measurements were performed for two commonly initial alignments (homogeneous and homeotropic) with different small compositional percentages of magnetic NPs. The experimental results show that the homogenous- aligned cell was considerably affected on the applied electric field while the nonlinearity of homeotropic-aligned NLCs with the Fe3O4 NPs did not approximately change in the presence of electric field.
NASA Astrophysics Data System (ADS)
Shi, L.; Yan, Z. W.
2016-06-01
In the present work, the optical properties of GaAs/AlxGa1-xAs/GaAs multi-shell ellipsoidal quantum dot heterostructures with a shallow hydrogenic impurity in the presence of an external electric field have been studied. The results show how the linear and nonlinear optical absorption coefficients and refraction index changes are changed by the variations of the size and shape of the multi-shell structure. Moreover, how the optical properties of this structure are affected by the electric field has also been shown. The physical reasons for the results have been discussed in detail.
Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity
Priyesh, K. V.; Thayyullathil, Ramesh Babu
2014-01-28
We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.
Parazzini, Marta; Ravazzani, Paolo; Thuroczy, György; Molnar, Ferenc B; Ardesi, Gianluca; Sacchettini, Alessio; Mainardi, Luca Tommaso
2013-06-01
This study was designed to assess the nonlinear dynamics of heart rate variability (HRV) during exposure to low-intensity EMFs. Twenty-six healthy young volunteers were subjected to a rest-to-stand protocol to evaluate autonomic nervous system in quiet condition (rest, vagal prevalence) and after a sympathetic activation (stand). The procedure was conducted twice in a double-blind design: once with a genuine EMFs exposure (GSM cellular phone at 900 MHz, 2 W) and once with a sham exposure (at least 24 h apart). During each session, three-lead electrocardiograms were recorded and RR series extracted off-line. The RR series were analyzed by nonlinear deterministic techniques in every phase of the protocol and during the different exposures. The analysis of the data shows there was no statistically significant effect due to GSM exposure on the nonlinear dynamics of HRV.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
NASA Astrophysics Data System (ADS)
Chen, Chao; Xia, Jianghai; Liu, Jiangping; Feng, Guangding
2006-03-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant
Effect of lung and target density on small-field dose coverage and PTV definition
Higgins, Patrick D. Ehler, Eric D.; Cho, Lawrence C.; Dusenbery, Kathryn E.
2015-04-01
We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy was delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.
Tam, Leo K; Stockmann, Jason P; Galiana, Gigi; Constable, R Todd
2012-10-01
To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term null space imaging. The method is compared to conventional Cartesian SENSitivity Encoding as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The null space imaging approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding.
Tam, Leo K.; Galiana, Gigi; Stockmann, Jason P.; Constable, R. Todd
2012-01-01
To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition (SVD) and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term Null Space Imaging (NSI). The method is compared to conventional Cartesian SENSitivity Encoding (SENSE) as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The NSI approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding. PMID:22190380
Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x
Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. v.; Forgan, E. M.; Hayden, S M
2016-01-01
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested. PMID:27146255
Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. V.; Forgan, E. M.; Hayden, S. M.
2016-05-01
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ~0.123, we find that a field (B~10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B~15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.
NASA Astrophysics Data System (ADS)
Zhang, Li
2015-11-01
Based on the compact density matrix approach, the linear and nonlinear refractive index change (RIC) and optical rectification (OR) coefficients in a GaN-based step QW with strong built-in electric field (BEF) have been theoretically deduced and investigated in detail. The analytical electronic state is derived by the two airy functions. And the band nonparabolicity is taken into account by using an energy dependence effective mass (EDEM) method. Numerical calculations on a four-layer AlN/GaN/AlxGa1-xN/AlN step QW are performed, and the curves for the geometric factors, the linear, the nonlinear, the total RICs and the OR coefficients as functions of the structural parameters of the step QW are discussed. The features for these curves were specified and reasons for the features were explained reasonably. It is found that the decreasing of well width Lw, and step barrier width Lb and the doped concentration x in step barrier will result in the significant enhancement of the RICs. With the decrease of Lw, Lb and x, the resonant photon energies of RIC and OR coefficients have obvious blue-shift. Moreover, the RIC and OR coefficients behave different dependence on the structural parameters of the GaN-based step QWs. The profound physical reasons are also analyzed.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.
2009-01-01
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients
NASA Astrophysics Data System (ADS)
Hu, XiaoLin; Zhang, YongFan; Zhuang, NaiFeng; Li, JunQian
2010-12-01
The TD-B3LYP method and the plane-wave formalism of DFT method were applied to predict the blue luminescence and nonlinear optical effect of C-doped GaN, respectively. The introduction of carbon dopant will generate different acceptor or donor levels, which are mainly composed by p electronic state, within the energy gap of GaN. Exploring the calculated luminescence spectra based on the optimized excited-state structure, C N:GaN exhibits high luminescence intensity and has nice monochromatic property. In addition, the corresponding second-order nonlinear optical coefficients are considerable, χ(2)xzx=-15.07 pm/V and χ(2)zzz=26.91 pm/V, which are about 28 times and 50 times of the second-order optical coefficient of KDP crystal.
NASA Astrophysics Data System (ADS)
Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko
2015-09-01
For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.
Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko
2015-09-14
For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.
2012-01-01
The exciton binding energy of an asymmetrical GaAs-Ga1−xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418
Zapata, Alejandro; Acosta, Ruben E; Mora-Ramos, Miguel E; Duque, Carlos A
2012-01-01
: The exciton binding energy of an asymmetrical GaAs-Ga1-xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan
2014-12-01
We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω m or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on DAH , the product of the angular diameter distance and the Hubble parameter.
Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr
2014-12-01
We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.
NASA Astrophysics Data System (ADS)
Zhao, P.; Shang, X. F.; Ma, Y. P.; Zhou, J. J.; Gu, Z. Q.; Li, Z. H.; Xu, Y. B.; Wang, M.
2008-06-01
Single-walled carbon nanotubes can be used as electron sources in the process of field emission, and have great potential for practical application of the field emission display (FED) panels with large screen size. We fabricated a FED using the single-walled carbon nanotubes (SWNTs) as the cathode by the screen-printing process. Test showed that the SWNTs emitters exhibit excellent macroscopic emission properties. It has low turn-on voltage (2.7 V/μ m) and high brightness, with a high current density of good uniformity and stability. It was observed that the field emission qualitatively follows the conventional Fowler Nordheim (F N) theory, and aging treatment played an important role in improving the image uniformity and stability. Compared to other complicated processes, the simple fabrication using screen-printing process seems to be advantageous for practical application.
NASA Astrophysics Data System (ADS)
Petrie, G. J. D.; Canou, A.; Amari, T.
2011-12-01
Between 24 March 2008 and 2 April 2008, the three active regions (ARs) NOAA 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliosphere Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer-belt locations, are discussed in comparison with extreme ultra-violet and coronagraph observations from STEREO. The global field is found to be far from a minimum, dipolar state. From the nonlinear models we compute physical quantities for the active regions such as the photospheric magnetic and electric current fluxes, the free magnetic energy and the relative helicity for each region each day where observations permit. The interconnectivity of the three regions is addressed in the context of the potential-field source-surface model. Using local and global quantities derived from the models, we briefly discuss the different observed activity levels of the regions.
Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching
NASA Astrophysics Data System (ADS)
Shao, Guang-hao; Wu, Zi-jian; Chen, Jin-hui; Xu, Fei; Lu, Yan-qing
2013-12-01
We propose and investigate the quasi-phase-matched (QPM) nonlinear optical frequency conversion of optical vortices in periodically poled lithium niobate. Laguerre-Gaussian (LG) modes are used to represent the orbital angular momentum (OAM) states, characterized with the azimuthal and radial indices. Typical three-wave nonlinear interactions among the involved OAM modes are studied with the help of coupling wave equations. Being different from normal QPM process where the energy and quasimomentum conservations are satisfied, both of the azimuthal and radial indices of the OAM states stay constant in most of the cases. However, abnormal change of the radial index is observed when there is asynchronous nonlinear conversion in different parts of the beams. The QPM nonlinear evolution of fractional OAM states is also discussed showing some interesting properties. In comparison with the traditional birefringent phase matching, the QPM technique avoids the undesired walk-off effect to reserve high-quality LG modes. We believe the QPM is an effective way to convert, amplify, and switch OAM states in various optical vortex related applications.
Venturi, D.; Karniadakis, G.E.
2012-08-30
By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.
Controlling activation site density by low-energy far-field stimulation in cardiac tissue.
Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi
2012-06-01
Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.
Controlling activation site density by low-energy far-field stimulation in cardiac tissue
NASA Astrophysics Data System (ADS)
Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi
2012-06-01
Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.
Scaling laws for the critical current density of NbN films in high magnetic fields
Hampshire, D.P. . Dept. of Physics); Gray, K.E.; Kampwirth, R.T. )
1992-08-01
We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean's model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.
Scaling laws for the critical current density of NbN films in high magnetic fields
Hampshire, D.P.; Gray, K.E.; Kampwirth, R.T.
1992-08-01
We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus_minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus_minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean`s model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.
Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.
2014-01-01
The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593
Near-Field Optical Recording Using Solid Immersion Lens for High-Density Flexible Optical Disks
NASA Astrophysics Data System (ADS)
Koide, Daiichi; Kajiyama, Takeshi; Sato, Ryuji; Tokumaru, Haruki; Takano, Yoshimichi; Ohishi, Kiyoshi
2013-09-01
We propose a near-field optical recording flexible optical disk (NFR-FOD) for high-density recording at a high data transfer rate. We built a prototype high-density NFR-FOD that had a track pitch of 0.16 µm and we stacked some recording layers on a thin substrate that was 0.1 mm thick. We rotated the NFR-FOD closing the mechanical stabilizer on a drive system with less than 10 µmp-p axial run-out and achieved precise gap servo operation at a high rotational speed. We demonstrated near-field optical recording with a solid immersion lens with a numerical aperture (NA) of 1.84 on the NFR-FOD. The NFR-FOD has a fourfold higher recording density than the current Blu-ray disc, corresponding to a capacity of 100 Gbytes per layer, and a high data transfer rate of 250 Mbps, while rotating at half the speed.
Electromagnetic field versus circuit weight training on bone mineral density in elderly women
Elsisi, Hany Farid Eid Morsy; Mousa, Gihan Samir Mohamed; ELdesoky, Mohamed Taher Mahmoud
2015-01-01
Background and purpose Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD) in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF) or circuit weight training (CWT) on short-run basis (after 12 weeks). Patients and methods Thirty elderly women, aged 60–70 years, were randomly assigned into two groups (magnetic field and CWT) (n=15 each group). The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2–L4) and femoral neck, trochanter, and Ward’s triangle were evaluated before and after 12 weeks of treatment. Results Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05). But magnetic field seems to have more beneficially and statistically significant effect than does CWT. Conclusion It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women. PMID:25834412
NASA Astrophysics Data System (ADS)
Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.
2015-12-01
Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.
Constraining mean-field models of the nuclear matter equation of state at low densities
NASA Astrophysics Data System (ADS)
Voskresenskaya, M. D.; Typel, S.
2012-08-01
An extension of the generalized relativistic mean-field (gRMF) model with density dependent couplings is introduced in order to describe thermodynamical properties and the composition of dense nuclear matter for astrophysical applications. Bound states of light nuclei and two-nucleon scattering correlations are considered as explicit degrees of freedom in the thermodynamical potential. They are represented by quasiparticles with medium-dependent properties. The model describes the correct low-density limit given by the virial equation of state (VEoS) and reproduces RMF results around nuclear saturation density where clusters are dissolved. A comparison between the fugacity expansions of the VEoS and the gRMF model provides consistency relations between the quasiparticles properties, the nucleon-nucleon scattering phase shifts and the meson-nucleon couplings of the gRMF model at zero density. Relativistic effects are found to be important at temperatures that are typical in astrophysical applications. Neutron matter and symmetric nuclear matter are studied in detail.
A coarse-grain force field for RDX: Density dependent and energy conserving.
Moore, Joshua D; Barnes, Brian C; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S; Taylor, DeCarlos E; Brennan, John K
2016-03-14
We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions. PMID:26979691
Asteroid entry in Venusian atmosphere: Pressure and density fields effect on crater formation
NASA Technical Reports Server (NTRS)
Schmidt, Robert
1995-01-01
The objectives are to look at time scales of overpressure compared to cratering and to determine: what are the transient pressure and density due to atmospheric entry; do shock waves evacuate ambient gas; do transient atmospheric disturbances 'settle down' during cratering; can the pressure/density field be approximated as quasi-static; how does disturbance scale with impactor size; and what is the role of atmospheric thickness. The general approach is to perform inexpensive exploratory calculations, perform experiments to validate code and observe crater growth, and to follow up with more realistic coupling calculations. This viewgraph presentation presents progress made with the objective to obtain useful scaling relationships for crater formation when atmospheric effects are important.
Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.
2016-01-01
Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351