Science.gov

Sample records for nonlinear density field

  1. Density nonlinearities in field theories for a toy model of fluctuating nonlinear hydrodynamics of supercooled liquids.

    PubMed

    Yeo, Joonhyun

    2009-11-01

    We study a zero-dimensional version of the fluctuating nonlinear hydrodynamics (FNH) of supercooled liquids originally investigated by Das and Mazenko (DM) [Shankar P. Das and Gene F. Mazenko Phys. Rev. A 34, 2265 (1986)]. The time-dependent density-like and momentum-like variables are introduced with no spatial degrees of freedom in this toy model. The structure of nonlinearities takes the similar form to the original FNH, which allows one to study in a simpler setting the issues raised recently regarding the field theoretical approaches to glass forming liquids. We study the effects of density nonlinearities on the time evolution of correlation and response functions by developing field theoretic formulations in two different ways: first by following the original prescription of DM and then by constructing a dynamical action which possesses a linear time-reversal symmetry as proposed recently. We show explicitly that, at the one-loop order of the perturbation theory, the DM-type field theory does not support a sharp ergodic-nonergodic transition, while the other admits one. The simple nature of the toy model in the DM formulation allows us to develop numerical solutions to a complete set of coupled dynamical equations for the correlation and response functions at the one-loop order.

  2. Density Fluctuation Induced Kinetic Dynamo and Tearing Mode Nonlinear Saturation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Lin, Liang; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2014-10-01

    In the MST reversed field pinch (RFP), the evolution of core tearing mode nonlinear evolution is partially determined by the electron current density profile along with nonlinear interactions among multiple tearing modes. Density fluctuations driven by intrinsic magnetic perturbations are usually large, approximately 1%, in RFP plasmas. These density fluctuations can modify the current density profile via the kinetic dynamo effect, defined as the correlated product of parallel electron pressure and radial magnetic field fluctuations, which alters the temporal dynamics of tearing modes in MST. A component of the kinetic dynamo originating from the correlated product of density and radial magnetic fluctuations has been measured using a high-speed, low phase noise polarimetry-interferometry diagnostic. Between sawtooth crashes it is found that the measured kinetic dynamo has finite amplitude that generates an anti-dynamo in the plasma core, which would tend to flatten the current density profile. These measurements suggest that density fluctuations passively driven by magnetic fluctuations can actively alter tearing modes via fluctuation-induced current transport. Work supported by US DOE and NSF.

  3. Divergent nonlinear responses of the boreal forest field layer along an experimental gradient of deer densities.

    PubMed

    Tremblay, Jean-Pierre; Huot, Jean; Potvin, François

    2006-11-01

    The early responses of the field layer to changes in biotic and abiotic conditions are key determinants of the future composition and structure of forests where sustained heavy browsing pressure has depauperated the shrub understory. We investigated the relationships between white-tailed deer density and field layer plant community dynamics in boreal forests managed for wildlife and timber production. We hypothesized that the growth and reproduction of field layer plants are either: (H(1)) directly proportional to deer density, or (H(2)) related to deer density through nonlinear relationships or (H(3)) through nonlinear relationships with thresholds. We tested these hypotheses using data from a controlled browsing experiment involving a gradient of deer densities (0, 7.5, 15, 27 and 56 deer km(-2)) in interaction with timber harvesting conducted on Anticosti Island, Canada. In recent clearcuts, the dominant responses of the field layer plants were exponential recovery in growth and reproduction with decreasing deer densities. The abundance of browse-tolerant species such as grasses was positively related to deer density, suggesting an apparent competitive gain. These results support the prediction from our second hypothesis, although the presence of ecological thresholds should not be ruled out. Rapid changes in the early successional stages have potentially long-term consequences on successional patterns through processes such as the modulation of germination and early establishment success of seedlings from later successional species. Quantitative data as those presented here are essential for the development of ecosystem management prescriptions. On Anticosti Island, reduction of local deer densities to levels <15-7.5 deer km(-2) in the first 3 years following timber harvesting appears to be compatible with the regeneration dynamics of this system although lower levels of deer densities may be required for the conservation of browse-sensitive plant species.

  4. Nonlinear saturation spectra of electric fields and density fluctuations in drift wave turbulence

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1982-01-01

    The detection of drift waves in the nonlinear evolution of a space plasma process driven at long wavelengths is considered, adducing measurements of the electric field and density fluctuation power spectra as evidence. Since the driving mechanism is clearly at long wavelengths, the detection of drift waves suggests that they may play an important role in the transfer of wave energy from long to short wavelengths in a low beta plasma. The saturated spectral density is compared with theoretical results in order to estimate the anomalous diffusion rate. The observed spectral form and amplitude is in excellent agreement with drift wave predictions.

  5. Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, M. J.; Masood, W.; Shah, H. A.; Tsintsadze, N. L.

    2017-01-01

    In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the formation of solitary structures in the presence of a quantizing magnetic field in an electron-positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be classical and cold. We have found that positron concentration, quantizing magnetic field, and finite electron temperature effects not only affect the linear dispersion characteristics of the electrostatic waves under consideration but also have a significant bearing on the propagation of solitary structures in the nonlinear regime. Importantly, the system under consideration has been found to allow the formation of compressive solitary structures only. The work presented here may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments and in intense-laser plasma interactions.

  6. Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Müller, Volker

    2015-02-01

    We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark matter field from halo catalogues. Our new contribution consists of implementing a non-Poisson likelihood including a deterministic non-linear and scale-dependent bias. In particular we present the Hamiltonian equations of motions for the negative binomial (NB) probability distribution function. This permits us to efficiently sample the posterior distribution function of density fields given a sample of galaxies using the Hamiltonian Monte Carlo technique implemented in the ARGO code. We have tested our algorithm with the Bolshoi N-body simulation at redshift z = 0, inferring the underlying dark matter density field from subsamples of the halo catalogue with biases smaller and larger than one. Our method shows that we can draw closely unbiased samples (compatible within 1-σ) from the posterior distribution up to scales of about k ˜ 1 h Mpc-1 in terms of power-spectra and cell-to-cell correlations. We find that a Poisson likelihood including a scale-dependent non-linear deterministic bias can yield reconstructions with power spectra deviating more than 10 per cent at k = 0.2 h Mpc-1. Our reconstruction algorithm is especially suited for emission line galaxy data for which a complex non-linear stochastic biasing treatment beyond Poissonity becomes indispensable.

  7. Structural analysis of the SDSS Cosmic Web - I. Non-linear density field reconstructions

    NASA Astrophysics Data System (ADS)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.; Vegter, Gert; Calvo, Miguel A. Aragón

    2011-10-01

    This study is the first in a series in which we analyse the structure and topology of the Cosmic Web as traced by the Sloan Digital Sky Survey (SDSS). The main issue addressed in the present study is the translation of the irregularly distributed discrete spatial data in the galaxy redshift survey into a representative density field. The density field will form the basis for a statistical, topological and cosmographic study of the cosmic density field in our Local Universe. We investigate the ability of three reconstruction techniques to analyse and investigate web-like features and geometries in a discrete distribution of objects. The three methods are the linear Delaunay Tessellation Field Estimator (DTFE), its higher order equivalent Natural Neighbour Field Estimator (NNFE) and a version of the Kriging interpolation adapted to the specific circumstances encountered in galaxy redshift surveys, the Natural Lognormal Kriging technique. DTFE and NNFE are based on the local geometry defined by the Voronoi and Delaunay tessellations of the galaxy distribution. The three reconstruction methods are analysed and compared using mock magnitude- and volume-limited SDSS redshift surveys, obtained on the basis of the Millennium simulation. We investigate error trends, biases and the topological structure of the resulting fields, concentrating on the void population identified by the Watershed Void Finder. Environmental effects are addressed by evaluating the density fields on a range of Gaussian filter scales. Comparison with the void population in the original simulation yields the fraction of false void mergers and false void splits. In most tests DTFE, NNFE and Kriging have largely similar density and topology error behaviour. Cosmetically, higher order NNFE and Kriging methods produce more visually appealing reconstructions. Quantitatively, however, DTFE performs better, even while being computationally far less demanding. A successful recovery of the void population on

  8. Relativistic weak lensing from a fully non-linear cosmological density field

    SciTech Connect

    Thomas, D.B.; Bruni, M.; Wands, D. E-mail: marco.bruni@port.ac.uk

    2015-09-01

    In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.

  9. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steve G.

    2009-03-01

    Chloroform is often used as a solvent and reference when measuring non-linear optical properties of organic molecules. We calculate directly the non-linear susceptibilities of liquid chloroform at optical frequencies, using molecular dynamics and the Sternheimer equation in time-dependent density-functional theory [X. Andrade et al., J. Chem. Phys. 126, 184106 (2007)]. We compare the results to those of chloroform in the gas and solid phases, and experimental values, and make an ab initio calculation of the local-field factors which are needed to extract molecular properties from liquid calculations and experimental measurements.

  10. The Nonlinear Field Space Theory

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  11. Shaping the nonlinear near field

    PubMed Central

    Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus

    2016-01-01

    Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states. PMID:26762487

  12. Nonlinear density wave theory for the spiral structure of galaxies.

    PubMed

    Kondoh, S; Teramoto, R; Yoshida, Z

    2000-05-01

    The theory of nonlinear waves for plasmas has been applied to the analysis of the density wave theory of galaxies which are many-body systems of gravity. A nonlinear Schrödinger equation has been derived by applying the reductive perturbation method on the fluid equations that describe the behavior of infinitesimally thin disk galaxies. Their spiral arms are characterized by a soliton and explained as a pattern of a propagating nonlinear density wave.

  13. Nonlinear spin-wave excitations at low magnetic bias fields

    PubMed Central

    Bauer, Hans G.; Majchrak, Peter; Kachel, Torsten; Back, Christian H.; Woltersdorf, Georg

    2015-01-01

    Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. Here we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behaviour in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. PMID:26374256

  14. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  15. Nonlinear upper hybrid waves and the induced density irregularities

    SciTech Connect

    Kuo, Spencer P.

    2015-08-15

    Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.

  16. Correlations in cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.

    1994-12-01

    A method is proposed to place constraints on the functional form of the high-order correlation functions zetan that arise in cosmic density fields at large scales. This technique is based on a mass-in-cell statistic and a difference of mass in partitions of a cell. The relationship between these measures is sensitive to the formal structure of the zetan as well as their amplitudes. This relationship is quantified in several theoretical models of structure, based on the hierarchical clustering paradigm. The results lead to a test for specific types of hierarchical clustering that is sensitive to correlations of all orders. The method is applied to examples of simulated large-scaled structure dominated by cold dark matter. In the preliminary study, the hierarchical paradigm appears to be a realistic approximation over a broad range of the scales. Furthermore, there is evidence that graphs of low-order vertices are dominant. On the basis of simulated data a phenomological model is specified that gives a good representation of clustering from linear scales to the strongly clustered regime (zeta2 approximately 500).

  17. Nonlinear eigenvalue problems in Density Functional Theory calculations

    SciTech Connect

    Fattebert, J

    2009-08-28

    Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.

  18. Resonant-test-field model of fluctuating nonlinear waves

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    1982-03-01

    A Hamiltonian system of nonlinear dispersive waves is used as a basis for generalizing the test-wave model to a set of resonantly interacting waves. The resonant test field (RTF) is shown to obey a nonlinear generalized Langevin equation in general. In the Markov limit a Fokker-Planck equation is obtained and the exact steady-state solution is determined. An algebraic expression for the power spectral density is obtained in terms of the number of resonantly interacting waves (n) in the RTF, the interaction strength (Vk), and the dimensionality of the wave field (d). For gravity waves on the ocean surface a k-4 spectrum is obtained, and for capillary waves a k-8 spectrum, both of which are in essential agreement with data.

  19. Resonant Strong Field Nonlinear Optical Interactions

    NASA Astrophysics Data System (ADS)

    Coppeta, David Anthony

    This work considers the steady state nonlinear response of a medium subjected to electromagnetic fields which are resonant and/or strong. In this regime, pertubation expansions in the field amplitude(s) diverge and non-pertubative techniques are required. Two general cases are considered. In the first case, radiative renormalization is applied to Four Wave Mixing (FWM) in a four level system with three resonant driving fields. The absorption and generation of a weak FWM signal are considered. Several variants including coherent anti-Stokes Raman scattering are considered. The second case is a two level atom subject to excitation by an arbitrarily amplitude modulated field. The domain of solution is extended to non-equal damping rates with zero detuning from resonance. As an example, the steady state response to step function amplitude modulation is treated.

  20. Modeling field emitter arrays using nonlinear line charge distribution

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata; Singh, Gaurav; Kumar, Raghwendra

    2016-09-01

    Modeling high aspect ratio field emitter arrays is a computational challenge due to the enormity of the resources involved. The line charge model (LCM) provides an alternate semi-analytical tool that has been used to model both infinite as well as finite sized arrays. It is shown that the linearly varying charge density used in the LCM generically mimics ellipsoidal emitters rather than a Cylindrical-Post-with-an-Ellipsoidal-Tip (CPET) that is typical of nanowires. Furthermore, generalizing the charge density beyond the linear regime allows for modeling shapes that are closer to a CPET. Emitters with a fixed base radius and a fixed apex radius are studied with a view to understanding the effect of nonlinearity on the tip enhancement factor and the emitter current in each case. Furthermore, an infinite square array of the CPET emitters is studied using the nonlinear line charge model, each having a height h =1500 μm and a base radius b =1.5 μm . It is found that for moderate external field strengths ( 0.3 -0.4 V /μm ), the array current density falls sharply for lattice spacings smaller than 4/3 h . Beyond this value, the maximal array current density can be observed over a range of lattice spacings and falls gradually thereafter.

  1. Nonlinear growth of electron holes in cross-field wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian; Haakonsen, C. B.; Zhou, C.

    2015-11-01

    Cross-field plasma flow past an obstacle is key to the physics underlying Mach-probes, space-craft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We report associated new nonlinear instability mechanisms. Ions are accelerated along the B-field into the wake, forming two beams, but they are not initially unstable to ion two-stream instabilities. Electron Langmuir waves become unstable much earlier because of an electron velocity-distribution distortion called the ``dimple''. The magnetic field, perpendicular to the flow, defines the 1-D direction of particle dynamics. In high-fidelity PIC simulations at realistic mass ratio, small electron holes--non-linearly self-binding electron density deficits--are spawned by the dimple in fe (v) near the phase-space separatrix. Most holes accelerate rapidly out of the wake, along B. However, some remain at very low speed, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady. Partially supported by the NSF/DOE Basic Plasma Science Partnership grant DE-SC0010491.

  2. Nonlinear scalar field equations involving the fractional Laplacian

    NASA Astrophysics Data System (ADS)

    Byeon, Jaeyoung; Kwon, Ohsang; Seok, Jinmyoung

    2017-04-01

    In this paper we study the existence, regularity, radial symmetry and decay property of a mountain pass solution for nonlinear scalar field equations involving the fractional Laplacian under an almost optimal class of continuous nonlinearities.

  3. Nonlinear magnetic field transport in opening switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Auer, P. L.; Sudan, R. N.; Oliver, B. V.; Seyler, C. E.; Greenly, J. B.

    1993-04-01

    The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code anthem [J. Comput. Phys. 71, 429 (1987)] is studied. The focus is on early time behavior in the electron-magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of ve×B Hall forces. Through simulation, magnetic penetration and magnetic exclusion waves are characterized, due to the Hall effect in the presence of transverse density gradients, and the interaction of these Hall waves with nonlinear diffusive disturbances from electron velocity advection, (veṡ∇)ve, is studied. It is shown how these mechanisms give rise to the anode magnetic insulation layer, central diffusion, and cathode potential hill structures seen in earlier opening switch plasmas studies.

  4. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton

  5. Spatial Frequency Clustering in Nonlinear Dust-Density Waves

    SciTech Connect

    Menzel, K. O.; Arp, O.; Piel, A.

    2010-06-11

    Self-excited density waves were studied in a strongly coupled dusty plasma of a radio-frequency discharge under microgravity conditions. The spatiotemporal evolution of the complicated three-dimensional wave field was investigated and analyzed for two different situations. The reconstructed instantaneous phase information of the wave field revealed a partial synchronization within multiple distinct domains. The boundaries of these regions coincide with the locations of topological defects.

  6. Renormalization and non-linear symmetries in quantum field theory

    NASA Astrophysics Data System (ADS)

    Velenich, Andrea

    Most of the phenomena we experience, from the microscopic world to the universe at its largest scales, are out of equilibrium and their comprehensive formalization is one of the open problems in theoretical physics. Fluids of interacting particles cooled down or compressed quickly enough to become amorphous solids are an example of rich out-of-equilibrium systems with very slow relaxation dynamics. Even though the equilibrium phases are ordered, these systems remain trapped in glassy metastable states, with disordered microscopic structures. As a realistic model of this phenomenology, in the first part of this work I focused on a field theory of particles obeying a Brownian dynamics. The field-theoretic action displays a time-reversal symmetry leading to Fluctuation-Dissipation relations. For non-interacting particles I solved the field theory exactly, providing the explicit form of all the correlation functions, with their space and time dependence. As a non-perturbative result, the distribution of the density field has been proven to be Poissonian and not Gaussian. For interacting particles the field theory presents two major challenges: its apparent non-renormalizability and a non-linear implementation of the time-reversal symmetry. Non-linear field redefinitions can be used to make the symmetry linear and might even lead to the solution of the interacting equations of motion. However they also alter the renormalizability properties of a field theory. These challenges inspired the second part of the work, where a more abstract approach was taken. Using algebraic methods I investigated the effect of non-linear field redefinitions both on symmetry and on renormalization by focusing on simple scalar field theories as toy models. In the formal setting of the Hopf algebra of Feynman diagrams, symmetries take the form of Hopf ideals and enforce relations among scattering amplitudes; such relations can drastically reduce the number of independent couplings in a field

  7. Instability of coupled geostrophic density fronts and its nonlinear evolution

    NASA Astrophysics Data System (ADS)

    Scherer, Emilie; Zeitlin, Vladimir

    Instability of coupled density fronts, and its fully nonlinear evolution are studied within the idealized reduced-gravity rotating shallow-water model. By using the collocation method, we benchmark the classical stability results on zero potential vorticity (PV) fronts and generalize them to non-zero PV fronts. In both cases, we find a series of instability zones intertwined with the stability regions along the along-front wavenumber axis, the most unstable modes being long wave. We then study the nonlinear evolution of the unstable modes with the help of a high-resolution well-balanced finite-volume numerical scheme by initializing it with the unstable modes found from the linear stability analysis. The most unstable long-wave mode evolves as follows: after a couple of inertial periods, the coupled fronts are pinched at some location and a series of weakly connected co-rotating elliptic anticyclonic vortices is formed, thus totally changing the character of the flow. The characteristics of these vortices are close to known rodon lens solutions. The shorter-wave unstable modes from the next instability zones are strongly concentrated in the frontal regions, have sharp gradients, and are saturated owing to dissipation without qualitatively changing the flow pattern.

  8. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  9. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  10. NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS

    SciTech Connect

    Vlad, M.; Spineanu, F.; Croitoru, A.

    2015-12-10

    Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.

  11. Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study.

    PubMed

    Van Den Abeele, K; Le Bas, P Y; Van Damme, B; Katkowski, Tomasz

    2009-09-01

    High amplitude vibrations induce amplitude dependence of the characteristic resonance parameters (i.e., resonance frequency and damping factor) in materials with microscopic damage features as a result of the nonlinear constitutive relation at the damage location. This paper displays and quantifies results of the nonlinear resonance technique, both in time (signal reverberation) and in frequency (sweep) domains, as a function of sample crack density. The reverberation spectroscopy technique is applied to carbon fiber reinforced plastic (CFRP) composites exposed to increasing thermal loading. Considerable gain in sensitivity and consistent interpretation of the results for nonlinear signatures in comparison with the linear characteristics are obtained. The amount of induced damage is quantified by analyzing light optical microscopy images of several cross-sections of the CFRP samples using histogram equalization and grayscale thresholding. The obtained measure of crack density is compared to the global macroscopic nonlinearity of the sample and explicitly confirms that the increase in nonlinearity is linked to an increased network of cracks. A change from 1% to 3% in crack density corresponds to a tenfold increase in the signature of nonlinearity. Numerical simulations based on a uniform distribution of a hysteretic nonlinear constitutive relation within the sample support the results.

  12. Stability Analysis and Stabilization of Nonlinear Systems via Locally Defined Density Functions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Izumi

    This paper considers local stability analysis of nonlinear systems with deriving a positively invariant set based on the Rantzer's stability theory by using density functions. We define a notion of locally defined density functions around an equilibrium that give monotonously increasing positive measures near the equilibrium of a nonlinear system. Under certain assumptions, it is shown that some level set of a locally defined density function is a positively invariant set where almost all of the system trajectories converge to the equilibrium. We also mention an SOS (sum-of-squares) formulation for synthesis of a nonlinear gain via locally defined density functions.

  13. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  14. Simulations of nonlinear continuous wave pressure fields in FOCUS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  15. Nonlinear phase field model for electrodeposition in electrochemical systems

    SciTech Connect

    Liang, Linyun; Chen, Long-Qing

    2014-12-29

    A nonlinear phase-field model has been developed for describing the electrodeposition process in electrochemical systems that are highly out of equilibrium. Main thermodynamic driving forces for the electrode-electrolyte interface (EEI) evolution are limited to local variations of overpotential and ion concentration. Application of the model to Li-ion batteries describes the electrode interface motion and morphology change caused by charge mass transfer in the electrolyte, an electrochemical reaction at the EEI and cation deposition on the electrode surface during the charging operation. The Li electrodeposition rate follows the classical Butler-Volmer kinetics with exponentially and linearly depending on local overpotential and cation concentration at the electrode surface, respectively. Simulation results show that the Li deposit forms a fiber-like shape and grows parallel to the electric field direction. The longer and thicker deposits are observed both for higher current density and larger rate constant where the surface reaction rate is expected to be high. The proposed diffuse interface model well captures the metal electrodeposition phenomena in plenty of non-equilibrium electrochemical systems.

  16. The application of water coupled nonlinear ultrasonics to quantify the dislocation density in aluminum 1100

    NASA Astrophysics Data System (ADS)

    Mostavi, Amir; Tehrani, N.; Kamali, N.; Ozevin, D.; Chi, S. W.; Indacochea, J. E.

    2017-02-01

    This article investigates water coupled nonlinear ultrasonic method to measure the dislocation density in aluminum 1100 specimens. The different levels of dislocation densities are introduced to the samples by applying different levels of plastic strains by tensile loading. The ultrasonic testing includes 2.25 MHz transducer as transmitter and 5.0 MHz transducer as receiver in an immersion tank. The results of immersion experiments are compared with oil-coupled experiments. While water has significant nonlinearity within itself, the immersion ultrasound results agree with the literature of oil coupled ultrasound results of the specimens that the nonlinearity coefficient increases with the increase of dislocation density in aluminum.

  17. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This

  18. Seismological Field Observation of Mesoscopic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst

    2016-04-01

    of events associated with separately inverted parameters. As the local ground acceleration is not correlated to static stress changes we can exclude static stress changes as causative process. The shaking sensitivity and healing process is well known from laboratory experiments in composite materials as mesoscopic nonlinearity. The sensitive behavior at this station is related to the particular near surface material that is a conglomerate cemented with gypsum - so called gypcrete. However, mesoscopic nonlinearity with different parameters might be a key to understand velocity changes also at other sites.

  19. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer.

    PubMed

    Marinica, D C; Kazansky, A K; Nordlander, P; Aizpurua, J; Borisov, A G

    2012-03-14

    A fully quantum mechanical investigation using time-dependent density functional theory reveals that the field enhancement in a coupled nanoparticle dimer can be strongly affected by nonlinear effects. We show that both classical as well as linear quantum mechanical descriptions of the system fail even for moderate incident light intensities. An interparticle current resulting from the strong field photoemission tends to neutralize the plasmon-induced surface charge densities on the opposite sides of the nanoparticle junction. Thus, the coupling between the two nanoparticles and the field enhancement is reduced as compared to linear theory. A substantial nonlinear effect is revealed already at incident powers of 10(9) W/cm(2) for interparticle separation distances as large as 1 nm and down to the touching limit.

  20. Nonlinear transmission of an intense terahertz field through monolayer graphene

    SciTech Connect

    Hafez, H. A.; Ibrahim, A.; Ozaki, T.; Al-Naib, I.; Dignam, M. M.; Oguri, K.; Sekine, Y.; Hibino, H.; Cooke, D. G.; Tanaka, S.; Komori, F.

    2014-11-15

    We report nonlinear terahertz (THz) effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.

  1. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Johnson, Spencer Joseph

    Acousto-electromagnetic scattering is a process in which an acoustic excitation is utilized to induce modulation on an electromagnetic (EM) wave. This phenomenon can be exploited in remote sensing and detection schemes whereby target objects are mechanically excited by high powered acoustic waves resulting in unique object characterizations when interrogated with EM signals. Implementation of acousto-EM sensing schemes, however, are limited by a lack of fundamental understanding of the nonlinear interaction between acoustic and EM waves and inefficient simulation methods in the determination of the radiation patterns of higher order scattered acoustic fields. To address the insufficient simulation issue, a computationally efficient mathematical model describing higher order scattered sound fields, particularly of third-order in which a 40x increase in computation speed is achieved, is derived using a multi-Gaussian beam (MGB) expansion that expresses the sound field of any arbitrary axially symmetric beam as a series of Gaussian base functions. The third-order intermodulation (IM3) frequency components are produced by considering the cascaded nonlinear second-order effects when analyzing the interaction between the first- and second-order frequency components during the nonlinear scattering of sound by sound from two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays, showing that the MGB model can be efficiently used to calculate both the second- and third-order sound fields of the array. Additionally, a near-to-far-field (NTFF) transformation method is developed to model the far-field characteristics of scattered sound fields, extending Kirchhoff's theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by including the higher order sound fields generated by the

  2. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field.

    PubMed

    Zhu, Gui-Ping; Nguyen, Nam-Trung; Ramanujan, R V; Huang, Xiao-Yang

    2011-12-20

    This paper reports experimental and numerical results of the deformation of a ferrofluid droplet on a superhydrophobic surface under the effect of a uniform magnetic field. A water-based ferrofluid droplet surrounded by immiscible mineral oil was stretched by a magnetic field parallel to the substrate surface. The results show that an increasing flux density increases the droplet width and decreases the droplet height. A numerical model was established to study the equilibrium shape of the ferrofluid droplet. The governing equations for physical fields, including the magnetic field, are solved by the finite volume method. The interface between the two immiscible liquids was tracked by the level-set method. Nonlinear magnetization was implemented in the model. Comparison between experimental and numerical results shows that the numerical model can predict well the nonlinear deformation of a ferrofluid droplet in a uniform magnetic field.

  3. Stability under dilations of nonlinear spinor fields

    NASA Astrophysics Data System (ADS)

    Strauss, Walter A.; Vázquez, Luis

    1986-07-01

    The stability problem of the localized solutions for classical Dirac fields with scalar self-interactions is considered in the framework of the Shatah-Strauss formalism. We study the stability and instability under dilations and provide an application to the Soler model.

  4. Stability under dilations of nonlinear spinor fields

    SciTech Connect

    Strauss, W.A.; Va-acute-accentzquez, L.

    1986-07-15

    The stability problem of the localized solutions for classical Dirac fields with scalar self-interactions is considered in the framework of the Shatah-Strauss formalism. We study the stability and instability under dilations and provide an application to the Soler model.

  5. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  6. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  7. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    PubMed

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  8. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  9. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  10. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  11. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  12. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  13. A nonlinear dynamics for the scalar field in Randers spacetime

    NASA Astrophysics Data System (ADS)

    Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.

    2017-03-01

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  14. Impurity-related nonlinear optical rectification in double quantum dot under electric field

    NASA Astrophysics Data System (ADS)

    Bejan, D.

    2016-11-01

    The characteristics of donor-impurity-related nonlinear optical rectification in asymmetric double quantum dot under electric field are investigated within the compact density-matrix formalism and the effective mass approximation. The results show that: (i) the binding energy of the ground state varies strongly with the impurity position and it is raised or decreased by the applied field, depending on the impurity position; (ii) the optical rectification spectra are rather sensitive to the impurity position and the electric field intensity; (iii) the changes in the impurity position within the double quantum dot and the electric field value may induce red or blue shift of the resonant peaks of the nonlinear optical rectification.

  15. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  16. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  17. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.

    PubMed

    Yuldashev, Petr V; Kreider, Wayne; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera

    2012-10-07

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm(2) leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm(2). The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays.

  18. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  19. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  20. Rashba spin orbit interaction effect on nonlinear optical properties of quantum dot with magnetic field

    NASA Astrophysics Data System (ADS)

    Jha, Pradip Kumar; Kumar, Manoj; Lahon, Siddhartha; Gumber, Sukirti; Mohan, Man

    2014-01-01

    Here we have investigated the influence of external magnetic field on the optical absorption and refractive index changes of a parabolically confined quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum confinement potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate the important influence of magnetic field on the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated.

  1. Visualization of high-density 3D graphs using nonlinear visual space transformations

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Garg, Pankaj; Machiraju, Vijay

    2002-03-01

    The real world data distribution is seldom uniform. Clutter and sparsity commonly occur in visualization. Often, clutter results in overplotting, in which certain data items are not visible because other data items occlude them. Sparsity results in the inefficient use of the available display space. Common mechanisms to overcome this include reducing the amount of information displayed or using multiple representations with a varying amount of detail. This paper describes out experiments on Non-Linear Visual Space Transformations (NLVST). NLVST encompasses several innovative techniques: (1) employing a histogram for calculating the density of data distribution; (2) mapping the raw data values to a non-linear scale for stretching a high-density area; (3) tightening the sparse area to save the display space; (4) employing different color ranges of values on a non-linear scale according to the local density. We have applied NLVST to several web applications: market basket analysis, transactions observation, and IT search behavior analysis.

  2. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  3. Nonlinear effects at high flux-flow electric fields.

    PubMed

    Huebener, R P

    2009-06-24

    Ohm's law with the linear relation between resistive voltage and electric current is strictly valid only in the limit of infinitesimally small voltages. On the other hand, at finite electric voltages nonlinearities in the electric resistance can develop due to the energy picked up by the charge carriers in the electric field. This can lead to important effects both in the case of semiconductors and of superconductors, where the energy rise of the charge carriers or the quasiparticles can become relatively large. In this paper we limit our discussion to the flux-flow voltage in the mixed state of a type-II superconductor. At sufficiently low temperatures the energy dependence of the quasiparticle density of states and, hence, of the quasiparticle scattering rate can cause distinct nonlinear effects in the flux-flow resistance. The recent advances in thin-film sample preparation provided new opportunities for observing nonlinear effects of the latter kind.

  4. Nonlinear electric field structures in the inner magnetosphere

    SciTech Connect

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.

  5. Nonlinear electric field structures in the inner magnetosphere

    DOE PAGES

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  6. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone.

    PubMed

    Lee, Kang Il

    2013-11-01

    In the present study, correlations of linear and nonlinear ultrasound parameters (speed of sound, normalized broadband ultrasound attenuation, and nonlinear parameter B/A) with bone mineral density and microarchitectural parameters were investigated in 28 bovine femoral trabecular bone samples in vitro. All three ultrasound parameters exhibited relatively high correlation coefficients with the indexes of bone quantity (bone mineral density and bone volume fraction) and lower correlation coefficients with the remaining microarchitectural parameters. These results suggest that B/A, in addition to speed of sound and attenuation, may have potential as an index for the assessment of bone status and osteoporosis.

  7. Nonlinear response of electric fields at a neutral point

    NASA Astrophysics Data System (ADS)

    Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard

    1995-05-01

    The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.

  8. Nonlinear magnetic field transport in opening switch plasmas

    SciTech Connect

    Mason, R.J. ); Auer, P.L.; Sudan, R.N.; Oliver, B.V.; Seyler, C.E.; Greenly, J.B. )

    1993-04-01

    The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code ANTHEM [J. Comput. Phys. [bold 71], 429 (1987)] is studied. The focus is on early time behavior in the electron--magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of [bold v][sub [ital e

  9. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  10. Nonlinear spinor fields in Bianchi type-VI0 spacetime

    NASA Astrophysics Data System (ADS)

    Saha, Bijan

    2015-10-01

    Within the scope of Bianchi type- V I 0 spacetime we study the role of spinor field on the evolution of the Universe. It is found that the presence of the non-trivial non-diagonal components of the energy-momentum tensor of the spinor field plays a vital role on the evolution of the Universe. As a result of their mutual influence, there occur two different scenarios. In one case the invariants constructed from the bilinear forms of the spinor field become trivial, thus giving rise to a massless and linear spinor field Lagrangian. According to the second scenario massive and nonlinear terms do not vanish and depending on the sign of the coupling constants we have either an expanding mode of expansion or the one that, after obtaining some maximum value, contracts and ends in a big crunch generating spacetime singularity. This result shows that the spinor field is highly sensitive to the gravitational one.

  11. Nonlinear Interaction of a Shock Wave with an Anisotropic Entropy Perturbation Field

    NASA Astrophysics Data System (ADS)

    Gorodnichev, K. E.; Kuratov, S. E.; Gorodnichev, E. E.

    2017-01-01

    The problem of the interaction of a shock wave with an anisotropic entropy perturbation field has been solved including second-order corrections to hydrodynamic quantities. It has been shown that nonlinear interactions between acoustic waves result in the localization of acoustic perturbations behind the shock front. This effect is observed when sound attenuation is absent in the linear approximation. The problem of the propagation of the shock wave in an incident sample, where the spatially anisotropic density perturbation field initially exists, has been numerically solved in application to the collision of two plates. Numerical calculations confirm the results of the theoretical analysis.

  12. On the Transition Regime of Nonlinear Error Field Penetration in Toroidal Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Wang, Zhengxiong; Ding, Yonghua; Rao, Bo

    2015-07-01

    The error field penetration is numerically studied in the frame of the visco-resistive magnetohydrodynamics (MHD) model. A transition scaling is obtained to link the Rutherford and Waelbroeck regimes in the nonlinear phase of error field penetration process. Furthermore, a transition density scaling of [br/BT]crit ∼ ne½ is obtained in accord with recent experimental observations in the J-TEXT tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB124001 and 2013GB102000) and National Natural Science Foundation of China (Nos. 11322549, 11275043 and 11275080)

  13. Comparison of recent non-linear filters from graphics field

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Fu, Kun; Xu, Guangluan

    2015-12-01

    Image filtering is an important and fundamental issue in image processing pipelines and find itself a lot of applications in segmentation, salient features detection, colorization, stylization and so on. In recent years, several nonlinear filters aiming at edge-preserving smoothing has been proposed from different fields. However, none of these filters is perfect for all applications due to their own model assumption and solving strategy. In this paper, we give a brief introduction to several of them particularly from graphics field and comparison about their advantages and limitations through experiments. We look forward to offer an helpful starting point for researchers to select or improve them.

  14. Nonlinear model for coherent electric field structures in the magnetosphere

    PubMed

    Jovanovic; Shukla

    2000-05-08

    A new pseudo-three-dimensional electron hole in a magnetized plasma is possible when the low-frequency ion dynamics is taken into account. The newly found nonlinear Bernstein-Greene-Kruskal stationary solution, whose parallel phase velocity ranges between almost zero and the electron thermal speed, has the form of a cylinder that is tilted relative to the magnetic field. These structures are interpreted as three-dimensional electron holes coupled with hydrodynamic vortices, and provide a possible theoretical explanation for the POLAR and FAST satellite observations of coherent structures characterized by bipolar spikes of the parallel electric field and large perpendicular ion kinetic energies.

  15. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  16. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  17. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  18. Anode current density distribution in a cusped field thruster

    SciTech Connect

    Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  19. Anode current density distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Liu, Hui; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-01

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  20. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  1. Nonlinear spin control by terahertz-driven anisotropy fields

    NASA Astrophysics Data System (ADS)

    Baierl, S.; Hohenleutner, M.; Kampfrath, T.; Zvezdin, A. K.; Kimel, A. V.; Huber, R.; Mikhaylovskiy, R. V.

    2016-11-01

    Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.

  2. A quantitative measure of phase correlations in density fields

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Shandarin, Sergei F.

    1991-01-01

    A quantitative measure of the phase correlations in a density field is presented based on the location of the maxima of the Fourier components of that field. It is found that this measue can easily detect non-Gaussian behavior either in artificially constructed density fields or those that become non-Gaussian from gravitational clustering of Gaussian initial conditions. It is found that different initial power spectra produce somewhat distinguishable signals, and the signals are robust against sparse sampling.

  3. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led

  4. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    PubMed Central

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our

  5. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  6. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W

  7. Electric Field and Density Measurements with STEREO-SWaves.

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Bale, S. D.; Maksimovic, M.

    2007-12-01

    The STEREO experiment SWaves has a low frequency part which is designed to make measurements of low frequency electric fields and rapid measurements of density fluctuations, using the three 6 meter stacer monopole antennas. The short antennas of STEREO respond both to density fluctuations and to electric fields. Therefore, it is desired to obtain four quantities, density and 3 components of electric field, from three measurements, the potentials on the three orthogonal antennas relative to the spacecraft, which requires some additional information. One possibility is to add a fourth equation implied by the large plasma conductivity, so large that electric field parallel to the magnetic field is zero, a condition which has often been used in electric field measurements. Under selected conditions, this seems to work. There are also conditions, for example ion acoustic waves, where the responses to density fluctuations and to electric fields are available from dispersion relations, and this provides another possible solution. A situation where it is not likely that the parallel electric field is zero is the case of solitary, intense bursts of Langmuir waves. For this case, it is expected that there is an electron density depression due to the ponderomotive pressure, and a resulting low frequency electric field from the non-neutrality which would be expected to have components parallel to the magnetic field. Examples will be discussed.

  8. Probing electric fields within organic transistors by nonlinear optics

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo B.; Motti, Silvia G.; Gomes, Douglas J. C.

    2015-03-01

    Organic field-effect transistors (OFETs) are important building blocks in many organic devices, but further improvements in their performance will require a detailed knowledge of their operation mechanism. Thus mapping the electric fields in OFETs, both in the active organic layer and inside the gate dielectric, will allow a direct comparison with theoretical OFET models and guide advances in device engineering. The nonlinear optical processes of sum-frequency generation (SFG) and second-harmonic generation (SHG) may be used to probe electric fields in OFETs. With a proper choice of pump wavelength, SHG can selectively probe the field component along the OFET channel, inside the organic semiconductor. In contrast, SFG may probe the field within any organic material by selecting a specific molecular vibration and monitoring the field-enhanced SFG signal. Here we investigate OFETs fabricated with a polythiophene derivative (P3HT) on silicon substrates and with the insulating polymer PMMA for the dielectric layer. Both the strength and sign of the electric field in PMMA can be determined, yielding a direct probe of charge accumulation along the OFET channel. An extension of this technique to map the spatial distribution of accumulated charge along the channel will also be discussed. Work funded by FAPESP and CNPq (Brazil).

  9. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Yang, Xiaofeng

    2017-04-01

    We consider the numerical approximations of a two-phase hydrodynamics coupled phase-field model that incorporates the variable densities, viscosities and moving contact line boundary conditions. The model is a nonlinear, coupled system that consists of incompressible Navier-Stokes equations with the generalized Navier boundary condition, and the Cahn-Hilliard equations with moving contact line boundary conditions. By some subtle explicit-implicit treatments to nonlinear terms, we develop two efficient, unconditionally energy stable numerical schemes, in particular, a linear decoupled energy stable scheme for the system with static contact line condition, and a nonlinear energy stable scheme for the system with dynamic contact line condition. An efficient spectral-Galerkin spatial discretization is implemented to verify the accuracy and efficiency of proposed schemes. Various numerical results show that the proposed schemes are efficient and accurate.

  10. Non-linear vacuum polarization in strong fields

    SciTech Connect

    Gyulassy, M.

    1981-07-01

    The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.

  11. Subcycle Extreme Nonlinearities in GaP Induced by an Ultrastrong Terahertz Field

    NASA Astrophysics Data System (ADS)

    Vicario, Carlo; Shalaby, Mostafa; Hauri, Christoph P.

    2017-02-01

    We report on the experimental observation of extreme laser spectral broadening and a change in optical transmission in gallium phosphite induced by 25 MV /cm terahertz (THz) single-cycle internal field. Such intense THz radiation leads to twofold transient modifications of the optical properties in the electro-optical crystal. First, the electric field provokes extensive cross-phase modulation via the χ(2 ) and χ(3 ) nonlinearities on a copropagating 50 fs near infrared laser pulse which turns into 500% spectral broadening. Second, we observe an instantaneous change of the optical transmission occurring at the THz field which is alleged to interband Zener tunneling and charge carrier density modification by impact ionization turning the semiconductor in a metal-like transient state. The presented scheme displays a pathway to coherently control the optical properties of semiconductors on an ultrafast time scale by a strong THz field.

  12. Second-order nonlinear susceptibility in quantum dot structure under applied electric field

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Noori, Farah T. Mohammed; Al-Khursan, Amin H.

    2015-06-01

    A model for quantum dot (QD) subbands, when the dots are in the form of quantum disks, under applied electric field was stated. Then, subbands of dots with different disk radii and heights were calculated under applied field. The competition between the shift due to confinement by field and the size was shown for subbands. Second-order nonlinear susceptibility in quantum dots (QDs) was derived using density matrix theory which is, then, simulated using the calculated subbands. Both interband (IB) and intersubband (ISB) transitions were discussed. High second-order susceptibility in QDs was predicted. The results show a reduction in the susceptibility with the applied field while the peak wavelength was mainly relates to energy difference between subbands. A good match between theory and laboratory experiments was observed. Laboratory experiments at terahertz region might be possible using valence intersubband which is important in many device applications.

  13. Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Lan, Jun; Li, Baoshun; Liu, Xiaozhou; Zhang, Jiashu

    2016-10-01

    Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density based on Helmholtz resonators and membranes periodically distributed along a pipe are studied theoretically. Analyses of the transmission coefficient and dispersion relation of the composite system are realized using the acoustic transmission line method and Bloch theory, respectively. Due to the nonlinearities of the Helmholtz resonators and membranes, the acoustic wave propagation properties vary with the different incident acoustic intensities, and the frequency band gaps of the transmission coefficient are amplitude dependent. The nonlinearities shift the double negative pass band into the adjacent modulus negative forbidden band and transform the metamaterial from an acoustic insulator into an acoustic conductor, leading to some new potential acoustic applications.

  14. Nonlinear evolution of density and flow perturbations on a Bjorken background

    NASA Astrophysics Data System (ADS)

    Brouzakis, Nikolaos; Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A nontrivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution in detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.

  15. A Density Functional Study of the Nonlinear Optical Properties of Edge-Functionalized Nonplanar Nanographenes.

    PubMed

    Dai, Yafei; Li, Zhenyu; Yang, Jinlong

    2015-08-06

    The atomically precise edge chlorination of nanographenes has recently been reported as a crucial technology of functionalization through which the planar structure and optical properties of nanographenes can be significantly changed. To check the effects of molecular size, geometrical symmetry and edge functionalization of nanographenes on their optical properties, a series of nanographenes is studied in the framework of density functional theory with the B3LYP functional. Our results indicate that edge functionalization remarkably changes the nonlinear optical properties and increases the anisotropy of nanographenes compared to the effects of the molecular size and system geometric symmetry. Furthermore, the nonlinear optical properties of nanographenes can be tuned by precise edge functionalization, which opens a new avenue for using nanographenes as nonlinear optical materials.

  16. Nonlinear Compton scattering in a strong rotating electric field

    NASA Astrophysics Data System (ADS)

    Raicher, Erez; Eliezer, Shalom; Zigler, Arie

    2016-12-01

    The nonlinear Compton scattering rate in a rotating electric field is explicitly calculated. For this purpose, an approximate solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for implementation in kinetic codes. The spectrum is numerically calculated for present-day optical and x-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Substantial deviations between the two models, in both the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonic spectrum for electrons with low asymptotic momentum compared to the field amplitude. This discrete structure is a clear imprint of the electric field frequency, as opposed to the Volkov-Ritus rate, which reduces to the constant crossed field rate for the physical conditions under consideration. Our model predictions can be tested with present-day laser facilities.

  17. Non-linear Resistivity of a Two-Dimensional Electron Gas in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Vavilov, Maxim G.; Aleiner, Igor L.; Glazman, Leonid I.

    2007-03-01

    We develop a theory of nonlinear response to an electric field of a two-dimensional electron gas (2DEG) placed in a classically strong magnetic field. The latter leads to a non-linear current-voltage characteristic at a relatively weak electric field. The origin of the non-linearity is two-fold: the formation of a non-equilibrium electron distribution function, and the geometrical resonance in the inter-Landau-levels transitions rates. We find the dependence of the current-voltage characteristics on the electron relaxation rates in the 2DEG. Our results can be applied for analysis of measurements at low [1] and high [2,3] current densities. [1] J. Zhang, S. Vitkalov, A. A. Bykov, A. K. Kalagin and A. K. Bakarov, cond-mat/0607741. [2] C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons and J. L. Reno, Phys. Rev. Lett. 89, 076801 (2002). [3] W. Zhang, H. -S. Chiang, M. A. Zudov, L. N. Pfeiffer and K. W. West, cond-mat/0608727.

  18. Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.

  19. Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.

    PubMed

    Zetzsche, C; Röhrbein, F

    2001-08-01

    The neural mechanisms of early vision can be explained in terms of an information-theoretic optimization of the neural processing with respect to the statistical properties of the natural environment. Recent applications of this approach have been successful in the prediction of the linear filtering properties of ganglion cells and simple cells, but the relations between the environmental statistics and cortical nonlinearities, like those of end-stopped or complex cells, are not yet fully understood. Here we present extensions of our previous investigations of the exploitation of higher-order statistics by nonlinear neurons. We use multivariate wavelet statistics to demonstrate that a strictly linear processing would inevitably leave substantial statistical dependencies between the outputs of the units. We then consider how the basic nonlinearities of cortical neurons--gain control and ON/OFF half-wave rectification--can exploit these higher-order statistical dependencies. We first show that gain control provides an adaptation to the polar separability of the multivariate probability density function (PDF), and, together with an output nonlinearity, enables an overcomplete sparse coding. We then consider how the remaining higher-order dependencies between different units can be exploited by a combination of basic ON/OFF point nonlinearities and subsequent weighted linear combinations. We consider two statistical optimization schemes for the computation of the optimal weights: principal component analysis (PCA) and independent component analysis (ICA). Since the intermediate nonlinearities transform some of the higher-order dependencies into second-order dependencies even the basic PCA approach is able to exploit part of the redundancies. ICA ignores this second-order structure, but can exploit higher-order dependencies. Both schemes yield a variety of nonlinear units which comprise the typical nonlinear processing properties, such as end-stopping, side

  20. Terahertz radiation generation by nonlinear mixing of two lasers in a plasma with density hill

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Lee, Kitae; Hee Park, Seong; Uk Jeong, Young; Vinokurov, Nikolay

    2017-03-01

    An analytical formalism of the terahertz (THz) radiation generation by beating of two lasers in a plasma with the density hill is investigated. The lasers propagate obliquely to the density gradient, and the nonlinearity arises through the ponderomotive force. The density gradient renders the ponderomotive force driven beat frequency nonlinear current density J → N L to possess a nonzero curl ( ∇ × J → N L ≠ 0 ) when θ is finite, giving rise to the THz radiation generation. The plasma frequency peak ω p max is below the frequency difference of the lasers ( ω p max < ( ω 1 - ω 2 ) cos θ , where ω 1 and ω 2 are the frequencies of the laser, and θ is the angle that is arrived by their propagation vectors with the density gradient) to avoid THz reflection. The THz power conversion efficiency decreases with the THz frequency, increases with the plasma frequency and electron temperature, and maximizes at an optimum angle of incidence. For our set of parameters, the radiated THz power is about 0.15 GW.

  1. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  2. A nonlinear model of cell interaction with an acoustic field.

    PubMed

    Miller, A D; Subramanian, A; Viljoen, H J

    2017-03-14

    A theoretical and experimental nonlinear analysis of cellular response/displacement to ultrasound excitations is presented. Linear cell models can predict the resonant frequency (fR∼5MHz), but only a nonlinear analysis can reveal the amount of mechanical energy that couples into the cell and the bifurcation behavior of the cell when it is excited near resonance. The cell dynamics is described by the nonlinear viscoelastic constitutive behavior of the cytoplasm, nucleus and their respective membranes, in the presence of a fluid with an oscillating pressure field. The method of multiple scales is used to derive the amplitude of oscillation of the cytoplasm and nucleus as a function of frequency. A major finding is the existence of multiple solutions for a range of sub-resonant frequencies. At positive detuning (f>fR), the mechanical energy that couples into the cell is small, it is higher at resonance but significantly higher at sub-resonant frequencies in the multiplicity range. Experimentally it was shown when 3.5MHz is approached sub- and supra-resonance and 6.5MHz is approached sub-resonance, gene expression was statistically higher than that when stimulated directly. Thus, there exists an optimal range of frequencies for ultrasound treatment - in the region of multiplicity where deformation and thus mechanical energy coupling is maximized. The ultrasound protocol must be designed to operate at the solution associated with the higher mechanical energy - thus the start-up conditions should be in the domain of attraction of the high energy solution.

  3. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  4. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-07

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  5. Understanding Nonlinear Dielectric Properties in a Biaxially Oriented Poly(vinylidene fluoride) Film at Both Low and High Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhu, Lei; Case Western Reserve University Team; Sichuan University Team

    Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next genera tion high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ~70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α --> δ --> β) phase transformations. Using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz, regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude. This work is supported by NSF(DMR-1402733).

  6. Density Perturbations in the Universe from Massive Vector Fields

    SciTech Connect

    Dimopoulos, K.

    2007-11-20

    I discuss the possibility of using a massive vector field to generate the density perturbation in the Universe. I find that a scale-invariant superhorizon spectrum of vector field perturbations is possible to generate during inflation. The associated curvature perturbation is imprinted onto the Universe following the curvaton scenario. The mechanism does not generate a long-range anisotropy because an oscillating massive vector field behaves as a pressureless isotropic fluid.

  7. Effects of density fluctuations on nonlinear evolution of low-frequency Alfven waves in solar wind plasmas

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.; Seough, J.

    2015-12-01

    It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the

  8. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  9. Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Duque, C. A.; Sari, H.; Sökmen, I.

    2011-07-01

    By using the compact-density matrix approach, the effect of a nonresonant intense laser field on the linear and nonlinear optical absorptions based on intersubband transitions and the refractive index changes in an asymmetric semiconductor quantum well have been presented. Our results show that the peak position of the absorption coefficient is sensitive to intense laser field, the absorption maximum shifts towards lower energies for increasing intense laser field value. Also we observe as the intense laser field strength increases, the total refractive index change has been increased in magnitude and also shifted towards lower energies. The results indicate that linear and nonlinear optical properties of the low dimensional semiconductor heterostructures can be adjusted in a desired energy range by using intense laser field.

  10. A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    NASA Astrophysics Data System (ADS)

    Rappaport, Nicole J.; Longaretti, Pierre-Yves; French, Richard G.; Marouf, Essam A.; McGhee, Colleen A.

    2009-01-01

    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is established using simulated data in the presence of realistic noise perturbations, to control the reconstruction error. It is then applied to the Mimas 5:3 density wave. There are two important concepts at the basis of this procedure. The first one is that it uses the nonlinear representation of density waves, and the second one is that it relies on a combination of optical depth profiles instead of just one profile. A related method to analyze density waves was devised by Longaretti and Borderies [Longaretti, P.-Y., Borderies, N., 1986. Icarus 67, 211-223] to study the nonlinear density wave associated with the Mimas 5:3 resonance, but the single photopolarimetric profile provided limited constraints. Other studies of density waves analyzing Cassini data [ Colwell, J.E., Esposito, L.W., 2007. Bull. Am. Astron. Soc. 39, 461; Tiscareno, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34] are based on the linear theory and find inconsistent results from profile to profile. Multiple cuts of the rings are helpful in a fundamental way to ensure the accuracy of the procedure by forcing consistency among the various optical depth profiles. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity ( K≃0.02 cm/g) and velocity dispersion of ( c≃0.6 cm/s) in the wave region. Our

  11. Electron density and parallel electric field distribution of the auroral density cavity

    NASA Astrophysics Data System (ADS)

    Alm, L.; Marklund, G. T.; Karlsson, T.

    2015-11-01

    We present an event study in which Cluster satellites C1 and C3 encounters the flux tube of a stable auroral arc in the premidnight sector. C1 observes the midcavity, while C3 enters the flux tube of the auroral arc at an altitude which is below the acceleration region, before crossing into the top half of the acceleration region. This allows us to study the boundary between the ionosphere and the density cavity, as well as large portion of the upper density cavity. The position of the two satellites, in relation to the acceleration region, is described using a pseudo altitude derived from the distribution of the parallel potential drop above and below the satellites. The electron density exhibits an anticorrelation with the pseudo altitude, indicating that the lowest electron densities are found near the top of the density cavity. Over the entire pseudo altitude range, the electron density distribution is similar to a planar sheath, formed out of a plasma sheet dominated electron distribution, in response to the parallel electric field of the acceleration region. This indicates that the parallel electric fields on the ionosphere-cavity boundary, as well as the midcavity parallel electric fields, are part of one unified structure rather than two discrete entities. The results highlight the strong connection between the auroral density cavity and auroral acceleration as well as the necessity of studying them in a unified fashion.

  12. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  13. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    NASA Astrophysics Data System (ADS)

    Sederberg, Shawn; Firby, Curtis J.; Greig, Shawn R.; Elezzabi, Abdulhakem Y.

    2017-01-01

    As modern complementary-metal-oxide-semiconductor (CMOS) circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  14. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    NASA Astrophysics Data System (ADS)

    Sederberg, Shawn; Firby, Curtis J.; Greig, Shawn R.; Elezzabi, Abdulhakem Y.

    2016-11-01

    As modern complementary-metal-oxide-semiconductor (CMOS) circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  15. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  16. Nonlinear stability of field-reversed configurations with self-generated toroidal field

    SciTech Connect

    Omelchenko, Y. A.; Schaffer, M. J.; Parks, P. B.

    2001-10-01

    The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs.

  17. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    SciTech Connect

    Zabolotskii, A. A.

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.

  18. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  19. Nonlinear dependence of complex plasma parameters on applied electric field

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.; Misra, Shikha

    2011-02-15

    This paper presents an analysis of the effect of an applied static or alternating electric field on the electron density and temperature, charge on the particles, the electron collision frequency, the electronic conductivity, and the coefficient of electron diffusion in a complex plasma (i) when not illuminated by light, which can cause photoelectric emission from the particles, and (ii) when so illuminated. A parametric analysis based on computations for some typical sets of parameters has also been made. The significance of this work to (i) the disappearance of a polar mesospheric summer echoes structure by radio wave and (ii) magneto-hydrodynamic (MHD) power generation has also been indicated. The time dependence of the various parameters after the application of the electric field has also been discussed.

  20. Effects of applied electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Ungan, Fatih

    2017-01-01

    In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1- x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.

  1. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  2. Effective field theory for plasmas at all temperatures and densities

    NASA Astrophysics Data System (ADS)

    Braaten, Eric

    1993-05-01

    The solution of the plasmon problem and the subsequent development of an effective field-theory approach to ultrarelativistic plasmas are reviewed. The effective Lagrangians that summarize collective effects in ultrarelativistic quark-gluon and electron-photon plasmas are presented. A generalization that describes an electromagnetic plasma at all temperatures and densities is proposed.

  3. On the reach of perturbative methods for dark matter density fields

    SciTech Connect

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel E-mail: eschaan@astro.princeton.edu

    2016-03-01

    We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regime of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc{sup −1} (k = 0.46 hMpc{sup −1}). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k{sup 4} as it does in the very low k regime. Thus, modeling this contribution might be challenging.

  4. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  5. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2016-10-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  6. Extending the Ion Capacity of a Linear Ion Trap Using Nonlinear Radio Frequency Fields.

    PubMed

    Guna, Mircea

    2015-12-01

    Mass selective axial ejection (MSAE) from a low pressure linear ion trap (LIT) is investigated in the presence of added auxiliary nonlinear radio frequency (rf) fields. Nonlinear rf fields allow ions to be ejected with high sensitivity at large excitation amplitudes and reduced deleterious effects of space charge. These permit the operation of the LIT at ion populations considerably larger than the space charge limit usually observed in the absence of the nonlinear fields while maintaining good spectral resolution and mass accuracy. Experimental data show that the greater the strength of the nonlinear field, the less the effects of space charge on mass assignment and peak width. The only deleterious effect is a slight broadening of the mass spectral peaks at the highest values of added nonlinear fields used. Graphical Abstract ᅟ.

  7. Nonlinear response of superconductors to alternating fields and currents

    SciTech Connect

    McDonald, Jason

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  8. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  9. Density-Dependent Properties of Hadronic Matter in the self-consistent Chiral ({sigma},{pi},{omega}) Mean-Field Model

    SciTech Connect

    Uechi, Schun T.; Uechi, Hiroshi

    2011-05-06

    Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) hadronic mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral) {sigma}-{omega} hadronic mean-field theory which is thermodynamically consistent, relativistic and is a Lorentz-covariant mean-field theory of hadrons. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the breaking of chiral symmetry, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.

  10. Development and error analysis of nonlinear ionospheric removal algorithm for ionospheric electron density determination using broadband RF data

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Close, S.; Colestock, P.; Bust, G.

    2011-02-01

    The first documented, empirical comparisons are provided of four methods to retrieve total electron content (TEC) that use broadband, impulsive events detected by satellite in the lower very high frequency range (20-150 MHz). The four TEC retrieval methods are the quasi-longitudinal approximation (i.e., Taylor expansion) of the Appleton-Hartree (A-H) dispersion relation to the first and second orders, as well as the nonlinear ionospheric removal algorithm (NIRA) that utilizes the A-H dispersion equation directly to model the propagation of an electromagnetic wave through the ionosphere. NIRA solves not only for TEC between the ground source and satellite, but also for higher-order ionospheric terms, such as electron density, ionospheric thickness, and angle between wave vector and magnetic field. Regimes of validity for each TEC retrieval method are analyzed by comparison of the parameters retrieved from synthetic data with a known ionosphere and from RF FORTE satellite data measurements of a ground-based broadband transmitter. Results include a comparison between TEC and infinite frequency time of arrival (to) determined by NIRA and determined by using the first- and second-order terms from the Taylor expansion of the A-H equation. Plasma density, ionospheric thickness, and angle between magnetic field and wave vector as determined by the two NIRA methods are also compared.

  11. A time convolution less density matrix approach to the nonlinear optical response of a coupled system-bath complex

    SciTech Connect

    Richter, Marten Knorr, Andreas

    2010-04-15

    Time convolution less density matrix theory (TCL) is a powerful and well established tool to investigate strong system-bath coupling for linear optical spectra. We show that TCL equations can be generalised to the nonlinear optical response up to a chosen order in the optical field. This goal is achieved via an time convolution less perturbation scheme for the reduced density matrices of the electronic system. In our approach, the most important results are the inclusion of a electron-phonon coupling non-diagonal in the electronic states and memory effects of the bath: First, the considered model system is introduced. Second, the time evolution of the statistical operator is expanded with respect to the external optical field. This expansion is the starting point to explain how a TCL theory can treat the response up to in a certain order in the external field. Third, new TCL equations, including bath memory effects, are derived and the problem of information loss in the reduced density matrix is analysed. For this purpose, new dimensions are added to the reduced statistical operator to compensate lack of information in comparison with the full statistical operator. The theory is benchmarked with a two level system and applied to a three level system including non-diagonal phonon coupling. In our analysis of pump-probe experiments, the bath memory is influenced by the system state occupied between pump and probe pulse. In particular, the memory of the bath influences the dephasing process of electronic coherences developing during the time interval between pump and probe pulses.

  12. Towards time-dependent current-density-functional theory in the non-linear regime

    SciTech Connect

    Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  13. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Kim, J.; Pichon, C.; Bernardeau, F.; Pogosyan, D.; Park, C.; L'Huillier, B.

    2017-04-01

    We present simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts and grow as b(ρ) - b(1) ∝ (1 - ρ-13/21)ρ1 + n/3 with b(1) = -4/21 - n/3 for a power-law initial spectrum with index n. We carry out the derivation in the context of large-deviation statistics while relying on the spherical collapse model. We use a logarithmic transformation that provides a saddle-point approximation that is valid for the whole range of densities and show its accuracy against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow us to identify peaks are employed to obtain the conditional bias and a proxy for the BBKS extremum correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the per cent level down to scales of about 10 Mpc h-1 at redshift 0. Conversely, the joint statistics also provide us with optimal dark matter two-point correlation estimates that can be applied either universally to all spheres or to a restricted set of biased (over- or underdense) pairs. Based on a simple fiducial survey, we show that the variance of this estimator is reduced by five times relative to the traditional sample estimator for the two-point function. Extracting more information from correlations of different types of objects should prove essential in the context of upcoming surveys like Euclid, DESI and WFIRST.

  14. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  15. Estimation of probability densities using scale-free field theories.

    PubMed

    Kinney, Justin B

    2014-07-01

    The question of how best to estimate a continuous probability density from finite data is an intriguing open problem at the interface of statistics and physics. Previous work has argued that this problem can be addressed in a natural way using methods from statistical field theory. Here I describe results that allow this field-theoretic approach to be rapidly and deterministically computed in low dimensions, making it practical for use in day-to-day data analysis. Importantly, this approach does not impose a privileged length scale for smoothness of the inferred probability density, but rather learns a natural length scale from the data due to the tradeoff between goodness of fit and an Occam factor. Open source software implementing this method in one and two dimensions is provided.

  16. Estimation of probability densities using scale-free field theories

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2014-07-01

    The question of how best to estimate a continuous probability density from finite data is an intriguing open problem at the interface of statistics and physics. Previous work has argued that this problem can be addressed in a natural way using methods from statistical field theory. Here I describe results that allow this field-theoretic approach to be rapidly and deterministically computed in low dimensions, making it practical for use in day-to-day data analysis. Importantly, this approach does not impose a privileged length scale for smoothness of the inferred probability density, but rather learns a natural length scale from the data due to the tradeoff between goodness of fit and an Occam factor. Open source software implementing this method in one and two dimensions is provided.

  17. Tensor classification of structure in smoothed particle hydrodynamics density fields

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Bonnell, Ian; Lucas, William; Rice, Ken

    2016-04-01

    As hydrodynamic simulations increase in scale and resolution, identifying structures with non-trivial geometries or regions of general interest becomes increasingly challenging. There is a growing need for algorithms that identify a variety of different features in a simulation without requiring a `by eye' search. We present tensor classification as such a technique for smoothed particle hydrodynamics (SPH). These methods have already been used to great effect in N-Body cosmological simulations, which require smoothing defined as an input free parameter. We show that tensor classification successfully identifies a wide range of structures in SPH density fields using its native smoothing, removing a free parameter from the analysis and preventing the need for tessellation of the density field, as required by some classification algorithms. As examples, we show that tensor classification using the tidal tensor and the velocity shear tensor successfully identifies filaments, shells and sheet structures in giant molecular cloud simulations, as well as spiral arms in discs. The relationship between structures identified using different tensors illustrates how different forces compete and co-operate to produce the observed density field. We therefore advocate the use of multiple tensors to classify structure in SPH simulations, to shed light on the interplay of multiple physical processes.

  18. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  19. Neural field theory of nonlinear wave-wave and wave-neuron processes

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Roy, N.

    2015-06-01

    Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.

  20. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  1. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  2. Dual characterization of critical fluctuations: Density functional theory & nonlinear dynamics close to a tangent bifurcation

    NASA Astrophysics Data System (ADS)

    Riquelme-Galván, Mauricio; Robledo, Alberto

    2017-02-01

    We improve on the description of the relationship that exists between critical clusters in thermal systems and intermittency near the onset of chaos in low-dimensional systems. We make use of the statistical-mechanical language of inhomogeneous systems and of the renormalization group (RG) method in nonlinear dynamics to provide a more accurate, formal, approach to the subject. The description of this remarkable correspondence encompasses, on the one hand, the density functional formalism, where classical and quantum mechanical analogues match the procedure for one-dimensional clusters, and, on the other, the RG fixed-point map of functional compositions that captures the essential dynamical behavior. We provide details of how the above-referred theoretical approaches interrelate and discuss the implications of the correspondence between the high-dimensional (degrees of freedom) phenomenon and low-dimensional dynamics.

  3. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    SciTech Connect

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time. We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.

  4. Study of linear and nonlinear optical properties of dendrimers using density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Ramasesha, S.

    2009-08-01

    We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser-Parr-Pople Hamiltonian to model the interacting π electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.

  5. Study of linear and nonlinear optical properties of dendrimers using density matrix renormalization group method.

    PubMed

    Mukhopadhyay, S; Ramasesha, S

    2009-08-21

    We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser-Parr-Pople Hamiltonian to model the interacting pi electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.

  6. Shock front field structure in low-density systems

    NASA Astrophysics Data System (ADS)

    Hua, Rui; Mucguffey, Christopher; Beg, Farhat; Sio, Hong; Ping, Yuan; Wilks, Scott; Heeter, Bob; Collins, Rip

    2016-10-01

    It is known that a shock front is not a simple discontinuity in density and temperature as depicted in commonly used hydro codes but also consists of self-generated fields associated with gradients in the electron pressure. A quasi-planar platform using broadband proton radiography has been developed to study this field structure at a shock front. The broad bandwidth offers energy-dependent measurements which quantitatively constrain both the potential and field width at the shock front. Experiments were conducted on the OMEGA EP, where three long pulse beams delivered 6 kJ in 2 ns for shock initiation in a tube filled with either pure Helium or mixture of Helium and Neon, and a short pulse of 850 J, 10 ps generated broadband protons for point-projection radiography. Simultaneous spatially resolved soft-x-ray spectroscopy provided shock velocity, particle velocity and thermal emission measurements, constraining density and temperature for the field generation. The data and modeling indicate that a multi-KeV potential was present at the shock front where a strong electron pressure gradient existed. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  7. Reproducibility for linear and nonlinear micro-finite element simulations with density derived material properties of the human radius.

    PubMed

    Christen, David; Zwahlen, Alexander; Müller, Ralph

    2014-01-01

    Finite element (FE) simulations based on high-resolution peripheral quantitative computed-tomography (HRpQCT) measurements provide an elegant and direct way to estimate bone strength. Parallel solvers for nonlinear FE simulations allow the assessment not only of the initial linear elastic behavior of the bone but also materially and geometrically nonlinear effects. The reproducibility of HRpQCT measurements, as well as their analysis of microarchitecture using linear-elastic FE simulations with a homogeneous elastic modulus has been investigated before. However, it is not clear to which extent density-derived and nonlinear FE simulations are reproducible. In this study, we introduced new mechanical indices derived from nonlinear FE simulations that describe the onset of yielding and the behavior at maximal load. Using 14 embalmed forearms that were imaged three times, we found that in general the in vitro reproducibility of the nonlinear FE simulations is as good as the reproducibility of linear FE. For the nonlinear simulations precision errors (PEs) ranged between 0.4 and 3.2% and intraclass correlation coefficients were above 0.9. In conclusion, nonlinear FE simulations with density derived material properties contain important additional information that is independent from the results of the linear simulations.

  8. Exciton effects on the nonlinear optical properties of semiparabolic quantum dot under electric field

    NASA Astrophysics Data System (ADS)

    Bejan, D.

    2017-02-01

    The effects of exciton and electric field on the nonlinear optical properties, such as refraction index change, optical absorption coefficient and optical rectification of semiparabolic one-dimensional quantum dot, were theoretically investigated. The energy eigenvalues and eigenfunctions are calculated numerically within the effective mass approximation for a typical GaAs/ Al0.3Ga0.7 As quantum dot, for the cases where there is an exciton or a single electron/hole in the structure. Optical properties are obtained using the compact density matrix approach and steady state solutions. Our results show that: i) if the increasing electric field is oriented along the growth direction, the refractive index change structure and the resonance peaks of the absorption coefficient and optical rectification present a blue shift and are weakened for exciton and electron systems but have a red shift and are strengthened for the hole system; ii) when the field, oriented against the growth direction, augments, the above optical parameters present a red shift and are increased for exciton and electron systems but have a blue shift and are lowered for the hole system; iii) the exciton presence in the structure enhances the amplitude of the resonant peaks of all optical parameters even at zero electric field.

  9. Exact radial dependence of the field in a nonlinear dispersive dielectric fiber: bright pulse solutions.

    PubMed

    Christodoulides, D N; Joseph, R L

    1984-06-01

    The propagation of nonlinear optical pulses in fibers is discussed, taking into account physical effects arising from nonlinearity, dispersion, and transverse confinement. The wave equation is solved by treating the radial dependence of the field in an exact way. The conditions supporting bright solitary waves are presented and compared with previous results.

  10. Australia's lithospheric density field, and its isostatic equilibration

    NASA Astrophysics Data System (ADS)

    Aitken, A. R. A.; Altinay, C.; Gross, L.

    2015-12-01

    Density is a key driver of tectonic processes, but it is a difficult property to define well in the lithosphere because the gravity method is non-unique, and because converting to density from seismic velocity models, themselves non-unique, is also highly uncertain. Here we use a new approach to define the lithospheric density field of Australia, covering from 100°E to 165°E, from 5°N to 55°S and from the crust surface to 300 km depth. A reference model was derived primarily from the recently released Australian Seismological Reference Model, and refined further using additional models of sedimentary basin thickness and crustal thickness. A novel form of finite-element method based deterministic gravity inversion was applied in geodetic coordinates, implemented within the open-source escript modelling environment. Three spatial resolutions were modelled: half-, quarter- and eighth-degree in latitude and longitude, with vertical resolutions of 5, 2.5 and 1.25 km, respectively. Parameter sweeps for the key inversion regularization parameters show that parameter selection is not scale dependent. The sweep results also show that finer resolutions are more sensitive to the uppermost crust, but less sensitive to the mid- to lower-crust and uppermost mantle than lower resolutions. All resolutions show similar sensitivity below about 100 km depth. The final density model shows that Australia's lithospheric density field is strongly layered but also has large lateral density contrasts at all depths. Within the continental crust, the structure of the middle and lower crust differs significantly from the crystalline upper crust, suggesting that the tectonic processes or events preserved in the deep crust differ from those preserved in the shallower crust. The lithospheric mantle structure is not extensively modified from the reference model, but the results reinforce the systematic difference between the density of the oceanic and continental domains, and help identify

  11. Field measurements of the linear and nonlinear shear moduli of cemented alluvium using dynamically loaded surface footings

    NASA Astrophysics Data System (ADS)

    Park, Kwangsoo

    In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating

  12. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  13. Holographic Superconductors with Logarithmic Nonlinear Electrodynamics in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Shamsi, F.

    2017-03-01

    Based on the matching method, we explore the effects of adding an external magnetic field on the s-wave holographic superconductors when the gauge field is in the form of the logarithmic nonlinear source. First, we obtain the critical temperature as well as the condensation operator in the presence of logarithmic nonlinear electrodynamics and understand that they depend on the nonlinear parameter b. We show that the critical temperature decreases with increasing b, which implies that the nonlinear gauge field makes the condensation harder. Then, we turn on the magnetic field in the bulk and find the critical magnetic field, B c , in terms of the temperature, which also depends on the nonlinear parameter b. We observe that for temperature smaller than the critical temperature, T < T c , the critical magnetic field increases with increasing b and goes to zero as T → T c , independent of the nonlinear parameter b. In the limiting case where b → 0, all results restore those of the holographic superconductor with magnetic field in Maxwell theory.

  14. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  15. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  16. DC electric field effects during measurements of monopolar charge density and net space charge density near HVDC power lines

    SciTech Connect

    Misakian, M.; McKnight, R.H. )

    1989-10-01

    The influence of a dc electric field on the measurement of monopolar charge densities using an aspirator-type ion counter and the measurement of net space charge density using a Faraday cage or filter is examined. Optimum configurations which minimize the effect of the electric field are identified for each type of instrumentation. Key Words: Electric field, Faraday cage, filter, ion counter, measurement, measurement errors, monopolar charge density, net space charge.

  17. Atomistic force field for alumina fit to density functional theory

    SciTech Connect

    Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul

    2013-11-28

    We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.

  18. Robust Noise Modulation of Nonlinearity in Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kawahara, Toshio; Yamaguchi, Satarou; Maehashi, Kenzo; Ohno, Yasuhide; Matsumoto, Kazuhiko; Kawai, Tomoji

    2010-02-01

    Carbon nanotubes (CNTs) are one of the candidates for nanosize devices such as field-effect transistors. CNT field-effect transistors (CNTFETs) have very special properties sometimes caused by surface states. For example, they are also well known as noisy devices caused by the molecule adhesion on the surface. Nonlinear systems, however, have some advantages such as weak signal detection or enhancement in working with noise. The small signal enhancement was conventionally studied as stochastic resonance. Therefore, we study the modification of nonlinearity of the systems under noise. For actual applications, the noise is also generated from the devices. Thus, we combined the noise CNTFET and another CNT transistor for the trial nonlinear system. Then, the sine wave amplification in the transistor with 1/ f noise of CNTFETs was measured. We used two different combinations of CNTFETs for noise and nonlinear CNTFETs, and observed the robustness of the noise modification on the nonlinearity.

  19. Aspects of renormalization in finite-density field theory

    SciTech Connect

    Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia

    2015-05-26

    We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.

  20. Vacuum energy density and pressure of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Mera, Fernando Daniel; Fulling, S. A.

    2015-06-01

    With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrödinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

  1. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    SciTech Connect

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    2009-03-05

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  2. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  3. Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem; Sharma, Gargi; Dignam, Marc M.; Hafez, Hassan; Ibrahim, Akram; Cooke, David G.; Ozaki, Tsuneyuki; Morandotti, Roberto

    2013-11-01

    We demonstrate the strong effect of the local field enhancement on the nonlinear terahertz response of a hybrid photoexcited silicon/double concentric ring metamaterial structure. The ring resonators enhance the local terahertz electric field by more than a factor of ten, pushing the terahertz-semiconductor interaction into the high-field regime even for moderate-strength incident terahertz pulses. In this regime, terahertz field-induced intervalley scattering in the photoexcited silicon substrate dynamically alters the substrate conductivity, which in turn strongly modifies the pulse transmission. The spatial distribution of the local field enhancement within the resonator structure results in a modified bandwidth, amplitude, and central frequency of the transmission resonance occurring on a subcycle time scale. These results demonstrate an enhancement of the nonlinear terahertz response of silicon-based metamaterials that must be accounted for in the design of terahertz nonlinear devices.

  4. Symmetry breaking induced by charge density and the entropy of interacting fields

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.; Guendelman, E. I.

    1987-01-01

    We study interacting complex scalar field theories with global U(1) symmetry and concave potentials. It is usually assumed that spontaneous symmetry breaking is excluded for such interaction. However, we show that degenerate ground states appear when the system is considered as a charged medium, which we take to be so large that it makes sense to speak of a uniform, finite, charge density. This of course implies that we are considering as ground states solutions that select a particular Lorentz frame. The consequent symmetry breaking is accompanied by the usual Goldstone modes. It makes topological solitons possible in 1+1 dimensions. Further, a new kind of nontopological solitons appears, again in 1+1 dimensions. These are embedded in a uniformly charged background. Unlike the Friedberg-Lee-Sirlin solitons, those studied here do not require a complicatedly shaped potential to exist. Although Derrick's theorem, which forbids higher-dimensional solitons, cannot be proved in the present context, it appears that such solitons are still forbidden in the presence of finite charge density. When the field is confined to a box, the frequency spectrum is, classically, a continuum. This is in sharp contrast to the situation for linear fields. However, semiclassical quantization, or the requirement that charge be quantized, both make the spectrum discrete. We show by general arguments that the energy spectrum (distinct from the frequency spectrum for nonlinear fields) for the interacting field in a box must have widely spaced levels. For the case of a quartic potential we compute the energy levels exactly in 1+1 dimensions, and verify this conclusion directly. The interacting scalar field thus complies in detail with the bound on specific entropy proposed by one of us earlier as applicable to all finite physical systems.

  5. Energetic particle production, cavition formation, and nonlinear development at a plasma density maximum

    SciTech Connect

    Wong, A.Y.; Bauer, B.S. . Dept. of Physics)

    1990-09-04

    We have investigated several phenomena of importance to laser-plasma interactions. In our studies, these are modeled by microwave and rf-plasma interactions. Our focus has been on resonant absorption of intense electromagnetic radiation at the plasma critical layer. Electron plasma wave (EPW) growth and caviton formation have been shown to be most efficient for shallow density gradients at the critical layer, where EPW convection losses are minimized. EPW electric field energies of 5000 times the plasma thermal energy, and energetic electron tails out to 5000T{sub e}, have been observed at the top of an inverse parabolic density profile. Ions receive delta-function-like impulses from localized electron plasma waves and wave-breaking electron ejection; the disruption of the ion fluid can only partially be described by the ponderomotive force. Our attempt is to test and illuminate some of the fundamental concepts of strong turbulence and EM wave-plasma interaction. 7 refs.

  6. Effects of non-linearities on magnetic field generation

    SciTech Connect

    Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com

    2014-09-01

    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.

  7. NONLINEAR FORCE-FREE FIELD MODELING OF A SOLAR ACTIVE REGION USING SDO/HMI AND SOLIS/VSM DATA

    SciTech Connect

    Thalmann, J. K.; Wiegelmann, T.; Pietarila, A.; Sun, X.

    2012-08-15

    We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique, into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure, and the vertically integrated current density. Though the longitudinal and transverse magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial, and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compare to each other.

  8. Nonlinear driven response of a phase-field crystal in a periodic pinning potential.

    PubMed

    Achim, C V; Ramos, J A P; Karttunen, M; Elder, K R; Granato, E; Ala-Nissila, T; Ying, S C

    2009-01-01

    We study numerically the phase diagram and the response under a driving force of the phase field crystal model for pinned lattice systems introduced recently for both one- and two-dimensional systems. The model describes the lattice system as a continuous density field in the presence of a periodic pinning potential, allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned commensurate phase is then studied via overdamped dynamic equations of motion for different values of mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and the sliding velocity varies with the force from the threshold with power-law exponents in agreement with analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions. Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hysteresis even in one dimension under overdamped dynamics. We also characterize structural changes of the system in some detail close to the depinning transition.

  9. Impact of nonlinear effective interactions on group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar

    2016-09-01

    We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.

  10. SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models

    PubMed Central

    Vock, David M.; Davidian, Marie; Tsiatis, Anastasios A.

    2014-01-01

    Generalized linear and nonlinear mixed models (GMMMs and NLMMs) are commonly used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common assumption is that the random effects are Gaussian. However, this assumption may be unrealistic in some applications, and misspecification of the random effects density may lead to maximum likelihood parameter estimators that are inconsistent, biased, and inefficient. Because testing if the random effects are Gaussian is difficult, previous research has recommended using a flexible random effects density. However, computational limitations have precluded widespread use of flexible random effects densities for GLMMs and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a smooth density that can be represented by the seminonparametric formulation proposed by Gallant and Nychka (1987). The macro is flexible enough to allow for any density of the response conditional on the random effects and any nonlinear mean trajectory. We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail infection and on a NLMM of intravenous drug concentration over time. PMID:24688453

  11. Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Millis, Andrew

    2015-03-01

    The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.

  12. Electric field and plasma density measurements in the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Kelley, M. C.; Fejer, B. G.; Kudeki, E.; Carlson, C. W.; Pedersen, A.; Hausler, B.

    1984-01-01

    Extensive experimental and theoretical studies of auroral and equatorial electrojet irregularities have been conducted for the last two decades. The present investigation is concerned with electric field and plasma density fluctuation measurements made on board of the Porcupine II sounding rocket and on a free-flyer ejected from the main spacecraft. The Porcupine II sounding rocket payload was launched at 1922:00 UT from Kiruna, Sweden, on March 20, 1977. The considered results show electrostatic turbulence in the unstable auroral E region confined to a layer between 96 and 121 km. The similarities between the observations of two simultaneous payloads spaced a few kilometers apart indicate that on a large scale, the electrojet turbulence displays uniform characteristics.

  13. Electromagnetic field energy density in homogeneous negative index materials.

    PubMed

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  14. Nonlinear theory of a "shear-current" effect and mean-field magnetic dynamos.

    PubMed

    Rogachevskii, Igor; Kleeorin, Nathan

    2004-10-01

    The nonlinear theory of a "shear-current" effect in a nonrotating and nonhelical homogeneous turbulence with an imposed mean velocity shear is developed. The shear-current effect is associated with the W x J term in the mean electromotive force and causes the generation of the mean magnetic field even in a nonrotating and nonhelical homogeneous turbulence (where W is the mean vorticity and J is the mean electric current). It is found that there is no quenching of the nonlinear shear-current effect contrary to the quenching of the nonlinear alpha effect, the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the mean magnetic field, the shear-current effect only changes its sign at some value B (*) of the mean magnetic field. The magnitude B (*) determines the level of the saturated mean magnetic field which is less than the equipartition field. It is shown that the background magnetic fluctuations due to the small-scale dynamo enhance the shear-current effect and reduce the magnitude B (*) . When the level of the background magnetic fluctuations is larger than 1/3 of the kinetic energy of the turbulence, the mean magnetic field can be generated due to the shear-current effect for an arbitrary exponent of the energy spectrum of the velocity fluctuations.

  15. Field line distribution of mass density at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, Kazue; Lee, Jimyoung; Zeitler, C. K.; Wimer, N. T.; Litscher, L. E.; Singer, H. J.; Min, Kyungguk

    2015-06-01

    The distribution of mass density along the field lines affects the ratios of toroidal (azimuthally oscillating) Alfvén frequencies, and given the ratios of these frequencies, we can get information about that distribution. Here we assume the commonly used power law form for the field line distribution, ρm = ρm,eq(LRE/R)α, where ρm,eq is the value of the mass density ρm at the magnetic equator, L is the L shell, RE is the Earth's radius, R is the geocentric distance to a point on the field line, and α is the power law coefficient. Positive values of α indicate that ρm increases away from the magnetic equator, zero value indicates that ρm is constant along the magnetic field line, and negative α indicates that there is a local peak in ρm at the magnetic equator. Using 12 years of observations of toroidal Alfvén frequencies by the Geostationary Operational Environmental Satellites, we study the typical dependence of inferred values of α on the magnetic local time (MLT), the phase of the solar cycle as specified by the F10.7 extreme ultraviolet solar flux, and geomagnetic activity as specified by the auroral electrojet (AE) index. Over the mostly dayside range of the observations, we find that α decreases with respect to increasing MLT and F10.7, but increases with respect to increasing AE. We develop a formula that depends on all three parameters, α3Dmodel=2.2+1.3·cos(MLT·15°)+0.0026·AE·cos((MLT-0.8)·15°)+2.1·10-5·AE·F10.7-0.010·F10.7, that models the binned values of α within a standard deviation of 0.3. While we do not yet have a complete theoretical understanding of why α should depend on these parameters in such a way, we do make some observations and speculations about the causes. At least part of the dependence is related to that of ρm,eq; higher α, corresponding to steeper variation with respect to magnetic latitude, occurs when ρm,eq is lower.

  16. An improved reconstruction method for cosmological density fields

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt

    1993-01-01

    This paper proposes some improvements to existing reconstruction methods for recovering the initial linear density and velocity fields of the universe from the present large-scale density distribution. We derive the Eulerian continuity equation in the Zel'dovich approximation and show that, by applying this equation, we can trace the evolution of the gravitational potential of the universe more exactly than is possible with previous approaches based on the Zel'dovich-Bernoulli equation. The improved reconstruction method is tested using N-body simulations. When the Zel'dovich-Bernoulli equation describes the formation of filaments, then the Zel'dovich continuity equation also follows the clustering of clumps inside the filaments. Our reconstruction method recovers the true initial gravitational potential with an rms error about 3 times smaller than previous methods. We examine the recovery of the initial distribution of Fourier components and find the scale at which the recovered phases are scrambled with respect their true initial values. Integrating the Zel'dovich continuity equation back in time, we can improve the spatial resolution of the reconstruction by a factor of about 2.

  17. Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays

    NASA Astrophysics Data System (ADS)

    Yuldashev, P. V.; Khokhlova, V. A.

    2011-05-01

    A novel numerical model was developed to simulate three-dimensional nonlinear fields generated by high intensity focused ultrasound (HIFU) arrays. The model is based on the solution to the Westervelt equation; the developed algorithm makes it possible to model nonlinear pressure fields of periodic waves in the presence of shock fronts localized near the focus. The role of nonlinear effects in a focused beam of a two-dimensional array was investigated in a numerical experiment in water. The array consisting of 256 elements and intensity range on the array elements of up to 10 W/cm2 was considered. The results of simulations have shown that for characteristic intensity outputs of modern HIFU arrays, nonlinear effects play an important role and shock fronts develop in the pressure waveforms at the focus.

  18. Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields

    PubMed

    Breuer; Huber; Petruccione

    2000-05-01

    The dynamics of periodically driven quantum systems coupled to a thermal environment is investigated. The interaction of the system with the external coherent driving field is taken into account exactly by making use of the Floquet picture. Treating the coupling to the environment within the Born-Markov approximation one finds a Pauli-type master equation for the diagonal elements of the reduced density matrix in the Floquet representation. The stationary solution of the latter yields a quasistationary, time-periodic density matrix which describes the long-time behavior of the system. Taking the example of a periodically driven particle in a box, the stationary solution is determined numerically for a wide range of driving amplitudes and temperatures. It is found that the quasistationary distribution differs substantially from a Boltzmann-type distribution at the temperature of the environment. For large driving fields it exhibits a plateau region describing a nearly constant population of a certain number of Floquet states. This number of Floquet states turns out to be nearly independent of the temperature. The plateau region is sharply separated from an exponential tail of the stationary distribution which expresses a canonical Boltzmann-type distribution over the mean energies of the Floquet states. These results are explained in terms of the structure of the matrix of transition rates for the dissipative quantum system. Investigating the corresponding classical, nonlinear Hamiltonian system, one finds that in the semiclassical range essential features of the quasistationary distribution can be understood from the structure of the underlying classical phase space.

  19. A new method to measure galaxy bias by combining the density and weak lensing fields

    NASA Astrophysics Data System (ADS)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-10-01

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  20. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  1. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    Kirchhoff’s theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in...two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays ...typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by

  2. Nonlinear theory of pattern formation in ferrofluid films at high field strengths.

    PubMed

    Richardi, J; Pileni, M P

    2004-01-01

    When a magnetic field is applied to a thin layer of a suspension of magnetic nanoparticles (ferrofluid), the formation of labyrinthine and hexagonal patterns is observed. We introduce a theory to describe ferrofluid patterns at high field, where a nonlinear relationship between field and magnetization is expected. The computational difficulties due to the use of a nonlinear magnetization curve are solved by a reformulation of the magnetic energy equation. The evolution of the pattern size at intermediate and very high fields can be understood by an analysis of limiting cases of the magnetization curve. In particular, at a very high field the pattern size reaches a constant saturation value which has been recently confirmed by experiments. The field for the onset of a nonlinear behavior is shifted to higher field strength due to a demagnetization effect. This can partially explain the ability of linear approaches to reproduce experimental data even at a high field. Finally, the impact of the nonlinearity of the magnetization curve on the transition between hexagonal and labyrinthine patterns is discussed.

  3. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai

    2016-03-01

    Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  4. Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation

    PubMed Central

    Gerstner, Wulfram

    2016-01-01

    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities. PMID:27690349

  5. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  6. The probability density function tail of the Kardar-Parisi-Zhang equation in the strongly non-linear regime

    NASA Astrophysics Data System (ADS)

    Anderson, Johan; Johansson, Jonas

    2016-12-01

    An analytical derivation of the probability density function (PDF) tail describing the strongly correlated interface growth governed by the nonlinear Kardar-Parisi-Zhang equation is provided. The PDF tail exactly coincides with a Tracy-Widom distribution i.e. a PDF tail proportional to \\exp ≤ft(-cw23/2\\right) , where w 2 is the the width of the interface. The PDF tail is computed by the instanton method in the strongly non-linear regime within the Martin-Siggia-Rose framework using a careful treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the interface width distribution and the analysis suggests that there is no upper critical dimension.

  7. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  8. Linear and nonlinear optical properties of anisotropic quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Xie, Wenfang

    2013-05-01

    We have investigated the linear and nonlinear optical properties of a two-dimensional anisotropic quantum dot in a magnetic field. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different cases of anisotropy, dot size and external magnetic field. The results show that the linear and nonlinear optical properties of anisotropic quantum dots are strongly affected by the degree of anisotropy, the dot size, the external magnetic field and the polarized direction of the incident electromagnetic wave. The result also shows that the size effect of anisotropy quantum dots on the optical absorptions is different from that of isotropic quantum dots.

  9. Nonlinear interaction of tearing modes: a comparison between the tokamak and the reversed field pinch configurations

    SciTech Connect

    Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Hicks, H.R.; Lynch, V.E.; An, Z.G.; Diamond, P.H.

    1984-04-01

    The multiple helicity nonlinear interaction of resistive tearing modes is compared for the tokamak and reversed field pinch configurations using the magnetohydrodynamic equations. Unlike the case of the tokamak disruption, for which this interaction is destabilizing when islands overlap, the nonlinear coupling of the dominant helicities is shown to be a stabilizing influence in the reversed field pinch. The behavior of the coupled instabilities in the two configurations can be understood as a consequence of the stability properties of the nonlinearly driven modes. In the case of the tokamak disruption, quasi-linear effects linearly destabilize the dominant driven mode, which then feeds energy to the driving mode. For the reversed field pinch the driven modes remain stable, acting as a brake on the growth of the dominant instabilities than was observed in single helicity studies.

  10. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    SciTech Connect

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-15

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  11. Speckle reduction in medical ultrasound: a novel scatterer density weighted nonlinear diffusion algorithm implemented as a neural-network filter.

    PubMed

    Badawi, Ahmed M; Rushdi, Muhammad A

    2006-01-01

    This paper proposes a novel algorithm for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. We propose a nonlinear image diffusion algorithm that incorporates two local parameters of image quality, namely, scatterer density and texture-based contrast in addition to gradient, to weight the nonlinear diffusion process. The scatterer density is proposed to replace the existing traditional measures of quality of the ultrasound diffusion process such as MSE, RMSE, SNR, and PSNR. This novel diffusion filter was then implemented using back propagation neural network for fast parallel processing of volumetric images. The experimental results show that weighting the image diffusion with these parameters produces better noise reduction and produces a better edge detection quality with reasonable computational cost. The proposed filter can be used as a preprocessing phase before applying any ultrasound segmentation or active contour model processes.

  12. Stability of nonlinear spinor fields with application to the Gross-Neveu model

    NASA Astrophysics Data System (ADS)

    Blanchard, Ph.; Stubbe, J.; Vàzquez, L.

    1987-10-01

    We consider the stability problem for the localized solutions of classical nonlinear spinor fields in space dimensions N=1 and N=3 within the framework of the Shatah-Strauss formalism. We show that the well-known relations existing between the different stability criteria for scalar field equations are no longer valid for spinor fields. We discuss the application of the Shatah-Strauss formalism to several models: e.g., the Gross-Neveu, Thirring, and the Soler models.

  13. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  14. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Phuoc, Tran X.

    2008-09-25

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.

  15. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2012-06-12

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  16. Nonlinear generation mechanism for the vortical electric field in magnetized plasma media

    SciTech Connect

    Aburjania, G. D.

    2007-10-15

    A physical mechanism and nonlinear mathematical formalism for study of generation and further amplification of the vortical electric field in the magnetized plasma are proposed. A modulation instability process in a plasma medium is considered in a strong constant magnetic field. The plasmon condensate is modulated not by a low-frequency ionic sound as is usually done, but by the beating of two high-frequency transverse electromagnetic waves propagating along the external magnetic field. Conditions in which aperiodic instability occurs are found and its increment is defined. This instability leads to a decrease in the scale of Langmuir turbulence along the external magnetic field and to the generation of electromagnetic fields. Dissipative property of the medium increases an amplitude threshold of the pumping waves. It is shown that for sufficiently large amplitudes of pumping waves the effect described in the paper is the defining nonlinear process.

  17. Nonlinear Optical Systems Interacting with Amplitude-Modulated Optical Fields

    DTIC Science & Technology

    1990-07-01

    We start with the rate equations for the excited-state population of the laser transition p, d ( ltp = - (I + I + I,)P + -LI, (C.1) and the equation...spectroscopy; lasers ; parametric resonances ABSTRACT (Continue on reverse if necessary and identify by block number) Please see Abstract on Pages v-vi. I...he conducted research in the fields of modulation spectroscopy and laser instability under the guidance of Professor Carlos R. Stroud, Jr. While at

  18. Optimum Vessel Performance in Evolving Nonlinear Wave Fields

    DTIC Science & Technology

    2012-11-01

    information collected by the radar with a seakeeping model that determines a path that minimizes the RMS vessel motion and incorporates a trade-off...analytic solution. A dynamic programming model was developed for the optimal routing and control that integrates the detailed wave-field information ... information collected by the radar into the path planning process. We were able to integrate our earlier results for a stationary sea into the DP model

  19. High electric field measurement with slab coupled optical sensors using nonlinear calibration

    NASA Astrophysics Data System (ADS)

    Stan, Nikola; Shumway, Legrand; Seng, Frederick; King, Rex; Selfridge, Richard; Schultz, Stephen

    2015-05-01

    We describe the application of SCOS technology in non-intrusive, directional and spatially localized measurements of high electric fields. When measuring electric fields above a certain threshold, SCOS measurement sensitivity starts varying to a great extent and the linear approximation that assumes sensitivity to be constant breaks down. This means that a comprehensive nonlinear calibration method is required for accurate calibration of both low and high electric fields, while linear calibration can only be accurately applied for low fields. Nonlinear calibration method relies on the knowledge of the variability of sensitivity, while linear calibration relies on approximation of sensitivity with a constant value, which breaks down for high fields. We analyze and compare the two calibration methods by applying them to a same set of measurements. We measure electric field pulses with magnitudes from 1 MV/m to 8.2 MV/m, with sub-300 ns rise time and fall-off time constant of 60 μs. We show that the nonlinear calibration very accurately predicts all measured fields, both high and low, while the linear calibration becomes increasingly inaccurate for fields above 1 MV/m.

  20. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.; Kuzanyan, K. M.

    2013-05-01

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magnetic Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.

  1. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  2. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  3. Delaunay Tessellation Field Estimator analysis of the PSCz local Universe: density field and cosmic flow

    NASA Astrophysics Data System (ADS)

    Romano-Díaz, Emilio; van de Weygaert, Rien

    2007-11-01

    We apply the Delaunay Tessellation Field Estimator (DTFE) to reconstruct and analyse the matter distribution and cosmic velocity flows in the local Universe on the basis of the PSCz galaxy survey. The prime objective of this study is the production of optimal resolution 3D maps of the volume-weighted velocity and density fields throughout the nearby universe, the basis for a detailed study of the structure and dynamics of the cosmic web at each level probed by underlying galaxy sample. Fully volume-covering 3D maps of the density and (volume-weighted) velocity fields in the cosmic vicinity, out to a distance of 150h-1Mpc, are presented. Based on the Voronoi and Delaunay tessellation defined by the spatial galaxy sample, DTFE involves the estimate of density values on the basis of the volume of the related Delaunay tetrahedra and the subsequent use of the Delaunay tessellation as natural multidimensional (linear) interpolation grid for the corresponding density and velocity fields throughout the sample volume. The linearized model of the spatial galaxy distribution and the corresponding peculiar velocities of the PSCz galaxy sample, produced by Branchini et al., forms the input sample for the DTFE study. The DTFE maps reproduce the high-density supercluster regions in optimal detail, both their internal structure as well as their elongated or flattened shape. The corresponding velocity flows trace the bulk and shear flows marking the region extending from the Pisces-Perseus supercluster, via the Local Superclusters, towards the Hydra-Centaurus and the Shapley concentration. The most outstanding and unique feature of the DTFE maps is the sharply defined radial outflow regions in and around underdense voids, marking the dynamical importance of voids in the local Universe. The maximum expansion rate of voids defines a sharp cut-off in the DTFE velocity divergence probability distribution function. We found that on the basis of this cut-off DTFE manages to consistently

  4. Nonlinear analysis of generalized cross-field current instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Lui, Anthony T. Y.

    1993-01-01

    Analysis of the generalized cross-field current instability is carried out in which cross-field drift of both the ions and electrons and their temperatures are permitted to vary in time. The unstable mode under consideration is the electromagnetic generalization of the classical modified-two-stream instability. The generalized instability is made of the modified-two-stream and ion-Weibel modes. The relative importance of the features associated with the ion-Weibel mode and those of the modified-two-stream mode is assessed. Specific applications are made to the Earth's neutral sheet prior to substorm onset and to the Earth's bow shock. The numerical solution indicates that the ion-Weibel mode dominates in the Earth's neutral sheet environment. In contrast, the situation for the bow shock is dominated by the modified-two-stream mode. Notable differences are found between the present calculation and previous results on ion-Weibel mode which restrict the analysis to only parallel propagating waves. However, in the case of Earth's bow shock for which the ion-Weibel mode plays no important role, the inclusion of the electromagnetic ion response is found to differ little from the previous results which treats ions responding only to the electrostatic component of the excited waves.

  5. Computation of nonlinear ultrasound fields using a linearized contrast source method.

    PubMed

    Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A

    2013-08-01

    Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.

  6. Piezoelectric Field Enhanced Second-Order Nonlinear Optical Susceptibilities in Wurtzite GaN/AlGaN Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)

    1999-01-01

    Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.

  7. Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields.

    PubMed

    Carrubba, Simona; Frilot, Clifton; Chesson, Andrew L; Marino, Andrew A

    2007-05-01

    Recent electrophysiological evidence suggested the existence of a human magnetic sense, but the kind of dynamical law that governed the stimulus-response relationship was not established. We tested the hypothesis that brain potentials evoked by the onset of a weak, low-frequency magnetic field were nonlinearly related to the stimulus. A field of 1G, 60 Hz was applied for 2s, with a 5s inter-stimulus period, and brain potentials were recorded from occipital electrodes in eight subjects, each of whom were measured twice, with at least 1 week between measurements. The recorded signals were subjected to nonlinear (recurrence analysis) and linear (time averaging) analyses. Using recurrence analysis, magnetosensory evoked potentials (MEPs) were detected in each subject in both the initial and replicate studies, with one exception. All MEPs exhibited the expected latency but differed in dynamical characteristics, indicating that they were nonlinearly related to the stimulus. MEPs were not detected using time averaging, thereby further confirming their nonlinearity. Evolutionarily conditioned structures that help mediate linear field-transduction in lower life forms may be expressed and functionally utilized in humans, but in a role where they facilitate vulnerability to man-made environmental fields.

  8. Nonlinear instability of wormholes supported by exotic dust and a magnetic field

    SciTech Connect

    Sarbach, Olivier; Zannias, Thomas

    2010-02-15

    Recently, spherically symmetric, static wormholes supported by exotic dust and a radial magnetic field have been derived and argued to be stable with respect to linear radial fluctuations. In this report we point out that these wormholes are unstable due to the formation of shell-crossing singularities when the nonlinearities of the theory are taken into account.

  9. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.

    PubMed

    Plocková, Jana; Chmelík, Josef

    2006-06-23

    In previous papers, several approaches to programming of the resulting force field in GFFF were described and investigated. The experiments were dealing with flow-velocity and channel thickness, i.e. factors influencing hydrodynamic lift forces (HLF). The potential of density and viscosity of carrier liquid for field programming was predicted and demonstrated by preliminary experiments. This work is devoted to experimental verification of the influence of carrier liquid density and viscosity. Several carrier liquid density and simultaneously viscosity gradients using water-methanol mixtures are in this work implemented in the separation of a model silica mixture. Working with the water-methanol gradients, one is not able to separate the influence of density from the contribution of viscosity. However, we found experimental conditions to show the isolated effect of carrier liquid density (two water-methanol mixtures of equal viscosity differing in their densities). In order to demonstrate the isolated effect of viscosity, we implemented in this work a new system of (hydroxypropyl)methyl cellulose (HPMC) carrier liquids. Three different HPMC compositions enabled to vary the viscosity more than two times at almost constant density. With increasing carrier liquid viscosity, the focusing and elevating trend was clearly pronounced for 5 and 10 microm silica particles. By the isolated effect of increased viscosity, the centre of the 10 microm particle zone was elevated to the streamline at 16% of the channel height. These experiments have shown that the influence of carrier liquid viscosity on HLF should be taken into account even at higher levels above the channel bottom, i.e. beyond the near-wall region. Further, it is shown that higher value of carrier liquid viscosity improves the separation of the model mixture in terms of time and resolution.

  10. Vector fields with homogeneous nonlinearities and many limit cycles

    NASA Astrophysics Data System (ADS)

    Gasull, Armengol; Yu, Jiang; Zhang, Xiang

    2015-05-01

    Consider planar real polynomial differential equations of the form x ˙ = Lx +Xn (x), where x = (x, y) ∈R2, L is a 2 × 2 matrix and Xn is a homogeneous vector field of degree n > 1. Most known results about these equations, valid for infinitely many n, deal with the case where the origin is a focus or a node and give either non-existence of limit cycles or upper bounds of one or two limit cycles surrounding the origin. In this paper we improve some of these results and moreover we show that for n ≥ 3 odd there are equations of this form having at least (n + 1) / 2 limit cycles surrounding the origin. Our results include cases where the origin is a focus, a node, a saddle or a nilpotent singularity. We also discuss a mechanism for the bifurcation of limit cycles from infinity.

  11. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    PubMed

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  12. Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-09-01

    In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.

  13. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  14. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  15. The use of nonlinear dielectric spectroscopy to monitor the bioelectromagnetic effects of a weak pulsed magnetic field in real time.

    PubMed

    Davies, E; Woodward, A; Kell, D

    2000-01-01

    Nonlinear dielectric spectroscopy (NLDS) was used to detect interaction of a pulsed magnetic field (PMF) with membrane protein dynamics in aggregating Dictyostelium discoideum amoebae. In the experiments reported here, a strong nonlinear dielectric response of Dictyostelium discoideum cells is shown, and a distinctive nonlinear dielectric response of cells previously exposed to PMF is shown. The method of NLDS is shown to be capable of monitoring and charting the dynamic frequency response of the cell to an electromagnetic field.

  16. Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning

    2008-05-01

    The boundary integral equation (BIE) method was first proposed by Yan and Sakurai (2000) and used to extrapolate the nonlinear force-free magnetic field in the solar atmosphere. Recently, Yan and Li (2006) improved the BIE method and proposed the direct boundary integral equation (DBIE) formulation, which represents the nonlinear force-free magnetic field by direct integration of the magnetic field on the bottom boundary surface. On the basis of this new method, we devised a practical calculation scheme for the nonlinear force-free field extrapolation above solar active regions. The code of the scheme was tested by the analytical solutions of Low and Lou (1990) and was applied to the observed vector magnetogram of solar active region NOAA 9077. The results of the calculations show that the improvement of the new computational scheme to the scheme of Yan and Li (2006) is significant, and the force-free and divergence-free constraints are well satisfied in the extrapolated fields. The calculated field lines for NOAA 9077 present the X-shaped structure and can be helpful for understanding the magnetic configuration of the filament channel as well as the magnetic reconnection process during the Bastille Day flare on 14 July 2000.

  17. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  18. Coherent nonlinear optical studies of elementary processes in biological complexes: diagrammatic techniques based on the wave function versus the density matrix

    PubMed Central

    Biggs, Jason D.; Voll, Judith A.; Mukamel, Shaul

    2012-01-01

    Two types of diagrammatic approaches for the design and simulation of nonlinear optical experiments (closed-time path loops based on the wave function and double-sided Feynman diagrams for the density matrix) are presented and compared. We give guidelines for the assignment of relevant pathways and provide rules for the interpretation of existing nonlinear experiments in carotenoids. PMID:22753822

  19. Planarian activity differences when maintained in water pre-treated with magnetic fields: a nonlinear effect.

    PubMed

    Gang, Noa; Persinger, Michael A

    2011-12-01

    There have been multiple claims that exposing water to a static magnetic field affects its properties which influence living systems. To test this hypothesis, planarian subsequent to dissection were maintained in spring water that had been previously exposed for only one day to one of three (16, 160, or 1,600 G) intensity static magnetic fields or to a reference condition. Although there was no significant difference in regeneration rates over the subsequent seven-day period, there was a statistically significant nonlinear effect for planarian mobility and diffusion rates. Both mobility rates and diffusion velocity of a liquid within the water that had been exposed to the 16 G field was about twice that for water exposed to the other intensities. These results imply that nonlinear biophysical effects may emerge under specific conditions of intensity ranges for particular volumes of water.

  20. Nonlinear Correction to Absorption Spectrum under Irradiation of Microwave Field in Conventional BCS Superconductors

    NASA Astrophysics Data System (ADS)

    Jujo, Takanobu

    2017-02-01

    We investigate the absorption spectrum of s-wave superconductors under microwave pump field irradiation. The third-order response function is calculated in the dirty limit with the electron-phonon interaction included at finite temperatures. We find that the nonlinear correction to the linear absorption shows peculiar behavior when the pump field frequency is smaller than the superconducting gap. At finite temperatures, a negative nonlinear correction exists, which is caused by thermally excited quasiparticles. The vertex correction by impurity scattering is found to contain a dissipation mechanism by inelastic scattering (interaction between electrons and acoustic phonons) or nonlocality. We need this mechanism to obtain finite absorption in a nonequilibrium stationary state under a monochromatic external field. Although this term originates from the deformation of a one-particle state, there is also a final-state interaction (the amplitude mode). The latter term represents two-photon excitation and is almost independent of temperature.

  1. Nonlinear restoring forces and geometry influence on stability in near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Pinkuan; Ding, Han; Cao, Wenwu

    2011-04-01

    Stability is a key factor in near-field acoustic levitation (NFAL), which is a popular method for noncontact transportation of surface-sensitive objects. Since the physical principle of NFAL is based on nonlinear vibration and nonuniform pressure distribution of a plate resonator, traditional linearized stability analysis cannot address this problem correctly. We have performed a theoretical analysis on the levitation stability using a nonlinear squeeze film model including inertia effects and entrance pressure drop, and obtained nonlinear effective restoring force and moment. It was found that the nonuniform pressure distribution is mode-dependent, which determines the stability of the levitation system. Based on the theoretical understanding, we have designed a NFAL resonator with tapered cross section, which can provide higher stability for the levitating object than the rectangular cross-section resonator.

  2. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    SciTech Connect

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.

  3. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    SciTech Connect

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-15

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emerge in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.

  4. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques

    PubMed Central

    Viglierchio, David R.; Yamashita, Tom T.

    1983-01-01

    Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831

  5. Methanol clusters (CH3OH)n, n = 3-6 in external electric fields: density functional theory approach.

    PubMed

    Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K

    2011-07-14

    Structural evolution of cyclic and branched-cyclic methanol clusters containing three to six molecules, under the influence of externally applied uniform static electric field is studied within the density functional theory. Akin to the situation for water clusters, the electric field is seen to stretch the intermolecular hydrogen bonds, and eventually break the H-bonded network at certain characteristic threshold field values of field strength in the range 0.009-0.016 a.u., yielding linear or branched structures with a lower energy. These structural transitions are characterized by an abrupt increase in the electric dipole moment riding over its otherwise steady nonlinear increase with the applied field. The field tends to rupture the H-bonded structure; consequently, the number of hydrogen bonds decreases with increasing field strength. Vibrational spectra analyzed for fields applied perpendicular to the cyclic ring structures bring out the shifts in the OH ring vibrations (blueshift) and the CO stretch vibrations (redshift). For a given field strength, the blueshifts increase with the number of molecules in the ring and are found to be generally larger than those in the corresponding water cluster counterparts.

  6. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.

  7. Nano-imaging collagen by atomic force, near-field and nonlinear microscope

    NASA Astrophysics Data System (ADS)

    Lim, Ken Choong; Tang, Jinkai; Li, Hao; Ng, Boon Ping; Kok, Shaw Wei; Wang, Qijie; Zhang, Ying

    2015-03-01

    As the most abundant protein in the human body, collagen has a very important role in vast numbers of bio-medical applications. The unique second order nonlinear properties of fibrillar collagen make it a very important index in nonlinear optical imaging based disease diagnosis of the brain, skin, liver, colon, kidney, bone, heart and other organs in the human body. The second-order nonlinear susceptibility of collagen has been explored at the macroscopic level and was explained as a volume-averaged molecular hyperpolarizability. However, details about the origin of optical second harmonic signals from collagen fibrils at the molecular level are still not clear. Such information is necessary for accurate interpolation of bio-information from nonlinear optical imaging techniques. The later has shown great potential in collagen based disease diagnosis methodologies. In this paper, we report our work using an atomic force microscope (AFM), near field (SNOM) and nonlinear laser scanning microscope (NLSM) to study the structure of collagen fibrils and other pro-collagen structures.

  8. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-09-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.

  9. Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2011-11-30

    Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

  10. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    SciTech Connect

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  11. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-01

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  12. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  13. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  14. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  15. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  16. The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui

    2016-03-01

    In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.

  17. Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hesse, Markus C.; Salehi, Leili; Schmitz, Georg

    2013-09-01

    In diagnostic ultrasound imaging, the image reconstruction quality is crucial for reliable diagnosis. Applying reconstruction algorithms based on the acoustic wave equation, the obtained image quality depends significantly on the physical material parameters accounted for in the equation. In this contribution, we extend a proposed iterative nonlinear one-parameter compressibility reconstruction algorithm by the additional reconstruction of the object’s inhomogeneous mass density distribution. The improved iterative algorithm is able to reconstruct inhomogeneous maps of the object’s compressibility and mass density simultaneously using only one conventional linear transducer array at a fixed location for wave transmission and detection. The derived approach is based on an acoustic wave equation including spatial compressibility and mass density variations, and utilizes the Kaczmarz method for iterative material parameter reconstruction. We validate our algorithm numerically for an unidirectional pulse-echo breast imaging application, and thus generate simulated measurements acquired from a numerical breast phantom with realistic compressibility and mass density values. Applying these measurements, we demonstrate with two reconstruction experiments the necessity to calculate the mass density in case of tissues with significant mass density inhomogeneities. When reconstructing spatial mass density variations, artefacts in the breast’s compressibility image are reduced resulting in improved spatial resolution. Furthermore, the compressibility relative error magnitude within a diagnostically significant region of interest (ROI) decreases from 3.04% to 2.62%. Moreover, a second image showing the breast’s inhomogeneous mass density distribution is given to provide additional diagnostic information. In the compressibility image, a spatial resolution moderately higher than the classical half-wavelength limit is observed.

  18. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    SciTech Connect

    Spata, Michael

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  19. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  20. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation.

  1. Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen; Lin, Zhihong

    2013-10-01

    The zonal fields effect on the beta-induced Alfvén eigenmode (BAE) destabilized by the energetic particles in toroidal plasmas is studied through the gyrokinetic particle simulations. It is found that the localized zonal fields with a negative value around the mode rational surface are generated by the nonlinear BAE. In the weakly driven case, the zonal fields with a strong geodesic acoustic mode (GAM) component have weak effects on the nonlinear BAE evolution. In the strongly driven case, the zonal fields are dominated by a more significant zero frequency component and have stronger effects on the nonlinear BAE evolution.

  2. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    PubMed Central

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally. PMID:28270762

  3. Field-induced density wave in the heavy-fermion compound CeRhIn₅.

    PubMed

    Moll, Philip J W; Zeng, Bin; Balicas, Luis; Galeski, Stanislaw; Balakirev, Fedor F; Bauer, Eric D; Ronning, Filip

    2015-03-23

    Strong electron correlations lead to a variety of distinct ground states, such as magnetism, charge order or superconductivity. Understanding the competitive or cooperative interplay between neighbouring phases is an outstanding challenge in physics. CeRhIn₅ is a prototypical example of a heavy-fermion superconductor: it orders anti-ferromagnetically below 3.8 K, and moderate hydrostatic pressure suppresses the anti-ferromagnetic order inducing unconventional superconductivity. Here we show evidence for a phase transition to a state akin to a density wave (DW) under high magnetic fields (>27 T) in high-quality single crystal microstructures of CeRhIn₅. The DW is signalled by a hysteretic anomaly in the in-plane resistivity accompanied by non-linear electrical transport, yet remarkably thermodynamic measurements suggest that the phase transition involves only small portions of the Fermi surface. Such a subtle order might be a common feature among correlated electron systems, reminiscent of the similarly subtle charge DW state in the cuprates.

  4. Nonlinear dynamics of Josephson vortices in a film screen under dc and ac magnetic fields

    NASA Astrophysics Data System (ADS)

    Sheikhzada, A.; Gurevich, A.

    2014-11-01

    We present detailed numerical simulations of Josephson vortices in a long Josephson junction perpendicular to a thin film screen under strong dc and ac magnetic fields. By solving the sine-Gordon equation, we calculated the threshold magnetic field for penetration of fluxons as a function of frequency, and the power dissipated by oscillating fluxons as functions of the ac field amplitude and frequency. We considered the effects of superimposed ac and dc fields, and a bi-harmonic magnetic field resulting in a vortex ratchet dynamics. The results were used to evaluate the contribution of weak-linked grain boundaries to the nonlinear surface resistance of polycrystalline superconductors under strong electromagnetic fields, particularly thin film screens and resonator cavities.

  5. Contributions of the substrate electric field to the molecular adsorbate optical nonlinearities

    SciTech Connect

    Zouari, M.; Villaeys, A.A.

    2005-10-15

    The nonlinear optical response of an adsorbate, whose structure is altered by the inhomogeneous electrostatic field of the substrate, has been evaluated with a particular emphasis on the sum-frequency generation process. In the limiting case of an homogeneous electrostatic field, besides the contributions associated with the induced dipole moments, we have additional contributions which only exist if the adsorbed molecule has permanent dipole moments. Also, the Franck-Condon factors of the unperturbed molecule weight the internal couplings induced by the electrostatic field. For the more general inhomogeneous electrostatic field case, while the main observations remain valid, the Franck-Condon factors are modified by the molecular structure changes induced by the electrostatic field. In addition, we have a strong redistribution of the vibronic couplings resulting from the analytical Q dependence of the partial charge distribution which is a signature of the field inhomogeneities.

  6. From effective field theories to effective density functionals in and beyond the mean field

    NASA Astrophysics Data System (ADS)

    Grasso, M.; Lacroix, D.; van Kolck, U.

    2016-06-01

    Since the 1975 Nobel Prize in Physics, nuclear theory has evolved along two main directions. On the one hand, the energy-density functional (EDF) theory was established, which presently encompasses (by enlarging the EDF framework) all the mean-field and beyond-mean-field theories based on energy functionals produced by effective phenomenological interactions. Highly sophisticated structure and reaction models are currently available for the treatment of medium-mass and heavy nuclei. On the other hand, effective field theories (EFTs) have rendered possible the formulation of QCD as a low-energy hadronic theory. Ab initio methods have recently achieved remarkable success in the application of EFT or EFT-inspired potentials to structure analyses of light nuclei. Different but complementary competences have been developed during the past few decades in the EDF and EFT communities. Bridges and connections have in some cases been identified and constructed. We review here some of the developments that have been performed within the EDF theory and the EFT during recent years, with some emphasis on analogies and connections that may one day provide a unified picture of the two theories. Illustrations are given for infinite matter and finite nuclei.

  7. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    SciTech Connect

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  8. Magnetic-field-induced nonlinear optical responses in inversion symmetric Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto

    2016-12-01

    We show that under the effect of an external magnetic field, a photogalvanic effect and the generation of a second harmonic wave can be induced in inversion symmetric and time-reversal invariant Dirac semimetals and it is linear with the magnetic field. The mechanisms responsible for these nonlinear optical responses are the magnetochiral effect and the chiral magnetic effect. What makes possible that these two effects give rise to the discussed nonlinear optical effects is the presence of band bending effects in the dispersion relation in real Dirac semimetals. Some observable consequences of this phenomenon are the appearance of a dc current on the surface of the system when it is irradiated with linearly polarized light or a rotation of the polarization plane of the reflected second harmonic wave.

  9. Effects of nonlinear plasma wake field on the dust-lattice wave in complex plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The influence of a nonlinear ion wake field on the dust-lattice wave is investigated in complex dusty plasmas. The dispersion relation for the dust-lattice wave is derived from the equation of motion including the contribution due to the nearest-neighbour dust grain interaction. The results show that the nonlinear wake-field effect increases the wave frequency, especially at the maximum peak positions. It is found that the oscillatory behaviour of the dust-lattice wave enhances with an increase of the spacing of the dust grains. It is also found that the amplitude of the dust-lattice wave significantly decreases with an increase of the inter-dust grain distance. In addition, it is found that the amplitude of the dust-lattice wave increases with increasing Debye length. The variation of the dust-lattice wave due to the Mach number and plasma parameters is also discussed.

  10. Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil

    PubMed Central

    Tsai, Feng-Fang; Fan, Shou-Zen; Lin, Yi-Shiuan; Huang, Norden E.; Yeh, Jia-Rong

    2016-01-01

    Empirical mode decomposition (EMD) is an adaptive filter bank for processing nonlinear and non-stationary signals, such as electroencephalographic (EEG) signals. EMD works well to decompose a time series into a set of intrinsic mode functions with specific frequency bands. An IMF therefore represents an intrinsic component on its correspondingly intrinsic frequency band. The word of ‘intrinsic’ means the frequency is totally adaptive to the nature of a signal. In this study, power density and nonlinearity are two critical parameters for characterizing the amplitude and frequency modulations in IMFs. In this study, a nonlinearity level is quantified using degree of waveform distortion (DWD), which represents the characteristic of waveform distortion as an assessment of the intra-wave modulation of an IMF. In the application of anesthesia EEG analysis, the assessments of power density and DWD for a set of IMFs represent dynamic responses in EEG caused by two different anesthesia agents, Ketamine and Alfentanil, on different frequency bands. Ketamine causes the increase of power density and the decrease of nonlinearity on γ-band neuronal oscillation, which cannot be found EEG responses of group B using Alfentanil. Both agents cause an increase of power density and a decrease of nonlinearity on β-band neuronal oscillation accompany with a loss of consciousness. Moreover, anesthesia agents cause the decreases of power density and nonlinearity (i.e. DWD) for the low-frequency IMFs. PMID:27973590

  11. Non-linear regimes in mean-field full-sphere dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.

    2017-04-01

    The mean-field dynamo model is employed to study the non-linear dynamo regimes in a fully convective star of mass 0.3 M⊙ rotating with period of 10 d. For intermediate value of parameter of the turbulent magnetic Prandl number, PmT = 3, we found the oscillating dynamo regimes with period about 40 yr. The higher PmT results to longer dynamo periods. If the large-scale flows is fixed, we find that the dynamo transits from axisymmetric to non-axisymmetric regimes for the overcritical parameter of the α-effect. The change of dynamo regime occurs because of the non-axisymmetric non-linear α-effect. The situation persists in the fully non-linear dynamo models with regards for the magnetic feedback on the angular momentum balance and the heat transport in the star. It is found that the large-scale magnetic field quenches the latitudinal shear in the bulk of the star. However, the strong radial shear operates in the subsurface layer of the star. In the non-linear case, the profile of the angular velocity inside the star become close to the spherical surfaces. This supports the equator-ward migration of the axisymmetric magnetic field dynamo waves. It was found that the magnetic configuration of the star dominates by the regular non-axisymmetric mode m = 1. As a result of the differential rotation, it forms the Yin Yang magnetic polarity pattern with the strong (>500 G) poloidal magnetic field in polar regions.

  12. Tensor of the nonlinear polarizability of anisotropic medium and ``local'' field method

    NASA Astrophysics Data System (ADS)

    Lavric, V. V.; Ovander, L. N.; Shunyakov, V. T.

    1983-08-01

    The nonlinear polarizability tensor (NPT) for a molecular crystal of arbitrary symmetry has been obtained within the framework of polariton theory. Use of the Göppert-Mayer unitary transformation for the Hamiltonian of the crystal plus quantized electromagnetic field system made it possible to represent finally the result for the NPT in a compact form and to compare with results of semiphenomenological calculation of the NPT and to go out of the framework of the Gaitler-London approximation.

  13. The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance

    NASA Astrophysics Data System (ADS)

    Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.

    2016-08-01

    A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.

  14. Nonlinear E -mode clustering in Lagrangian space

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Pen, Ue-Li; Zhu, Hong-Ming

    2017-02-01

    We study the nonlinear E -mode clustering in Lagrangian space by using large scale structure N -body simulations and use the displacement field information in Lagrangian space to recover the primordial linear density field. We find that, compared to Eulerian nonlinear density fields, the E -mode displacement fields in Lagrangian space improves the cross-correlation scale k with initial density field by a factor of 6-7, containing 2 orders of magnitude more primordial information. This illustrates ability of potential density reconstruction algorithms, to improve the baryonic acoustic oscillation measurements from current and future large scale structure surveys.

  15. Characterization of the nonlinear propagation of diffracting, finite amplitude ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Wallace, Kirk Dennis

    The scope of this thesis is to investigate the nonlinear physics fundamental to the progressive distortion of a bounded finite amplitude ultrasonic beam. Emphasis is placed on the experimental characterization of the spatial dependence in harmonic frequency content for a finite amplitude ultrasonic field generated by a narrowband bounded source. Asymptotic forms of the Burgers equation are considered to facilitate analysis of finite amplitude measurements (Fubini solution) and simulation of strongly shocked waveforms (Fay solution). The impact of the Kramers-Kronig dispersion relationship on shock wave evolution in media with frequency dependent power law attenuation is demonstrated. A numerical simulation tool incorporating the complete form of the nonlinear Burgers equation into a linear angular spectrum description of the three dimensional ultrasonic field is developed and presented. Experimental validation of the numerical simulation tool is achieved through comparison with a series of detailed hydrophone measurements of the finite amplitude ultrasonic field generated by a clinical echocardiographic imaging system. Once validated, the simulation tool is used to assist the design and motivation of experimental measurements of intrinsic acoustic parameters in liquid mixtures. A novel experimental technique is utilized to determine both nonlinear and linear acoustic parameters in mixtures of isopropyl alcohol and water.

  16. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.

    PubMed

    Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G

    2008-01-01

    The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.

  17. Preprocessing of Hinode/SOT Vector Magnetograms for Nonlinear Force-Free Coronal Magnetic Field Modeling

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Thalmann, J. K.; Schrijver, C. J.; De Rosa, M. L.; Metcalf, T. R.

    2008-09-01

    The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field from underlying vector boundary data (for an overview see Schrijver et al. (2006)). However, we can only measure the magnetic field vector routinely with high accuracy in the photosphere with, e.g., Hinode/SOT, and unfortunately these data do not fulfill the force-free consistency condition as defined by Aly (1989). We must therefore apply some transformations to these data before nonlinear force-free extrapolation codes can be legitimately applied. To this end, we have developed a minimization procedure that uses the measured photospheric field vectors as input to approximate a more chromospheric like field (The method was dubbed preprocessing. See Wiegelmann et al. (2006) for details). The procedure includes force-free consistency integrals and spatial smoothing. The method has been intensively tested with model active regions (see Metcalf et al. 2008) and been applied to several ground based vector magnetogram data before. Here we apply the preprocessing program to photospheric magnetic field measurements with the Hinode/SOT instrument.

  18. Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators

    USGS Publications Warehouse

    Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.

    2003-01-01

    Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this

  19. Antarctic marine gravity field from high-density satellite altimetry

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.

    1992-01-01

    High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

  20. Nonlinear evolution of electron shear flow instabilities in the presence of an external guide magnetic field

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Büchner, Jörg; Muñoz, Patricio A.

    2017-03-01

    The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (half thickness close to an electron inertial length) formed in a quasi-steady state of collisionless magnetic reconnection, electron shear flow instabilities are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We present the results of investigations of the evolution of electron shear flow instabilities, from linear to nonlinear state, in guide field magnetic reconnection. The properties of the plasma turbulence resulting from the growth of instability and their dependence on the strength of the guide field are studied. For this sake, we utilize the three dimensional electron-magnetohydrodynamic simulations of electron current sheets. We show that, unlike the case of current sheets self-consistently embedded in anti-parallel magnetic fields, the evolution of thin electron current sheets in the presence of a finite external guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) is dominated by high wave number non-tearing mode instabilities. The latter causes the development of, first, a wavy structure of the current sheet. The turbulence, developed later, consists of current filaments and electron flow vortices. As a result of the nonlinear evolution of instability, the current sheet broadens simultaneously with its flattening in the central region mimicking a viscous-like turbulent dissipation. Later, the flattened current sheet bifurcates. During the time of bifurcation, the rate of the change of mean electron flow velocity is proportional to the magnitude of the flow velocity, suggesting a resistive-like dissipation. The turbulence energy cascades to shorter wavelengths preferentially in

  1. Analysis of Van Allen Probes Data Showing Nonlinear Electric Field Feedback During a Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.; Smith, L. K.; Skoug, R. M.; Niehof, J. T.; Spence, H.; Wygant, J. R.; Bonnell, J. W.; Smith, C. W.; Kletzing, C.; Ilie, R.; Ganushkina, N.

    2013-12-01

    Van Allen Probes data was examined to assess the role of nonlinear feedback in relationship to the spatial structure of hot ions in the inner magnetosphere. During the magnetic storm that peaked on June 1, 2013, localized electric field perturbations from the EFW instrument were observed in relationship to the plasma pressure peak (as identified by the HOPE H+ and O+ fluxes in the 1-40 keV range, as well as magnetic field perturbations from EMFISIS) with a systematic sinusoidal perturbation. Near apogee, it takes the Van Allen Probes 30-60 minutes to traverse a peak in the ion fluxes. Therefore, the electric field was averaged over several minutes to remove the higher-frequency wave oscillations, revealing the longer-baseline perturbation associated with the pressure peak. While the fluxes indicate that the satellite is passing through a pressure peak, the magnetic field perturbation reveals the spatial location of the pressure extrema relative to the spacecraft location. The pattern of these electric fields relative to the location of the plasma pressure peak is in agreement with the hypothesis based on theory and numerical simulation results that an azimuthally localized pressure peak should create a systematic and predictable small-scale reconfiguration of the electric field. This electric field modification is because the field-aligned currents near each end of the pressure crescent close via Pedersen currents, perturbing the electric field in this region, as regulated by the ionospheric conductance. The level of this reconfiguration, relative to the expected dawn-dusk electric field within the magnetosphere, indicates the intensity of the nonlinear feedback.

  2. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals.

    PubMed

    Khoo, Iam Choon

    2015-01-01

    We report the observation of enhanced nonlinear optical responses of methyl-red-doped blue-phase liquid crystals by application of a DC field. We have observed strong multi-order nonlinear grating diffractions characterized by a nonlinear index coefficient n(2)∼0.5  cm(2)/W using unfocused CW laser power of ∼1  mW and a DC field of a few V/μm. The underlying mechanisms are crystalline lattice and director axis reorientations by torques exerted by the DC field and photo-excited dye molecules.

  3. Local-field enhancement of optical nonlinearities in the AGZO nano-triangle array

    NASA Astrophysics Data System (ADS)

    Long, Hua; Bao, Lijiao; Wang, Kai; Liu, Shuhui; Wang, Bing

    2016-10-01

    Enhancement of the third order optical nonlinearities in Ga and Al co-doped ZnO (AGZO) nano-triangle array was investigated by performing a Z-scan method with a femtosecond laser (800 nm, 40 fs). The AGZO nano-triangle array was fabricated on silica substrates by nanosphere lithography (NSL) method, showing a surface plasmon resonance (SPR) peak around 3 μm. The two photon absorption (TPA) coefficient and nonlinear refractive index of the AGZO nano-triangle array were determined to be 340 cm/GW and 3.22 × 10-2 cm2/GW under an excitation intensity of 26 GW/cm2. It shows a 3.4-fold enhancement of the nonlinear refraction in the AGZO array with respect to that in the AGZO film, which attributes to the local field enhancement effect. The finite-difference time-domain (FDTD) simulation was in agreement with the experimental results. It indicates that the AGZO nano-triangle arrays have potential applications for nonlinear optical devices like all-optical switching, optical limiting and other types of signal processing.

  4. Waterbird nest density and nest survival in rice fields of southwestern Louisiana

    USGS Publications Warehouse

    Pierluissi, S.; King, Sammy L.; Kaller, Michael D.

    2010-01-01

    Rice fields in southwestern Louisiana provide breeding habitat for several waterbird species; however, little is known about nest density, nest survival and the importance of landscape context of rice fields in determining breeding activity. In 2004, 42 rice fields were searched for nests, and 40 were searched in 2005. Land uses surrounding rice fields, including irrigation canals, trees, crawfish ponds, rice, fallow and soybean fields, were examined to determine influence on nest density and survival. Nest densities were 13.5-16.0 nests/km2 for Purple Gallinules (Porphyrio martinica), 3.0-13.7 nests/km2 for Fulvous Whistling Ducks (Dendrocygna bicolor), 2.6-2.8 nests/km2 for Common Moorhens (Gallinula chloropus), 0.3-0.92 nests/km2 for Least Bitterns (Ixobrychus exilisi) and 0-0.6 nests/km2 for Mottled Ducks (Anas fulvigula). Nest survival was 52-79% for Purple Gallinules and 39-43% for Fulvous Whistling Ducks. Apparent nest success of Common Moorhens was 73-75%, 83% for Least Bitterns and 33% for Mottled Ducks. Purple Gallinule and Common Moorhen nest densities were highest in fields with a larger proportion of irrigation canals surrounding rice fields. Purple Gallinule nest densities were greater in fields devoid of trees and landscapes dominated by rice fields and pasture, rather than landscapes containing soybean fields and residential areas. Fulvous Whistling Duck nest densities were higher in agriculturally-dominated landscapes with few trees.

  5. Weyl fermions with arbitrary monopoles in magnetic fields: Landau levels, longitudinal magnetotransport, and density-wave ordering

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Roy, Bitan; Das Sarma, S.

    2016-11-01

    We theoretically address the effects of strong magnetic fields in three-dimensional Weyl semimetals (WSMs) built out of Weyl nodes with a monopole charge n . For n =1 , 2, and 3 we realize single, double, and triple WSM, respectively, and the monopole charge n determines the integer topological invariant of the WSM. Within the linearized continuum description, the quasiparticle spectrum is then composed of Landau levels (LLs), containing exactly n number of chiral zeroth Landau levels (ZLLs), irrespective of the orientation of the magnetic field. In the presence of strong backscattering, for example (due to quenched disorder associated with random impurities), these systems generically give rise to longitudinal magnetotransport. Restricting ourselves to the quantum limit (and assuming only the subspace of the ZLLs to be partially filled) and mainly accounting for Gaussian impurities, we show that the longitudinal magnetoconductivity (LMC) in all members of the Weyl family displays a positive linear-B scaling when the field is applied along the axis that separates the Weyl nodes. But, in double and triple WSM, LMC displays a smooth crossover to a nonlinear B dependence as the field is tilted away from such a high-symmetry direction. In addition, due to the enhanced density of states, the LL quantization can trigger instabilities toward the formation of translational symmetry-breaking density-wave orderings for sufficiently weak interaction (BCS instability), which gaps out the ZLLs. Concomitantly as the temperature (magnetic field) is gradually decreased (increased) the LMC becomes negative. Thus WSMs with arbitrary monopole charge (n ) can host an intriguing interplay of LL quantization, longitudinal magnetotransport (a possible manifestation of one-dimensional chiral or axial anomaly), and density-wave ordering, when placed in a strong magnetic field.

  6. Effects of external bounded noise on nonlinear dynamics of plasma density

    NASA Astrophysics Data System (ADS)

    Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T. C.

    2011-12-01

    Random fluctuations in electronic density can considerably influence the profile of the resonance and stability curves of a column plasma. The fluctuations affect the resonance in different ways depending on the order of the considered resonance. The purpose of this effort is to investigate the effects of bounded noise on the primary resonances of density fluctuation in plasma. Along these lines, the response and stability are considered and analyzed using both the method of multiple scales and stochastic averaging. Further, we unveil very interesting dynamic responses in the frequency response. The statistical moment is calculated and its stability condition established. Through numerical simulations, we show that the density perturbation may undergo hysteretic transitions induced by external noisy excitation. The response of the global system is affected by bounded noise as demonstrated through the Poincaré map.

  7. The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system

    SciTech Connect

    Krakowski, R.A.

    1988-01-01

    This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab. (LSP)

  8. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.

    PubMed

    Guo, Dapeng; Wang, Yonghuan; Li, Lingfeng; Wang, Xiaozhi; Luo, Jikui

    2015-01-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ-FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ-FAIMS system at ultra-high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td.

  9. Non-linear effects in a cold electron plasma with non-uniform density profile

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.; Shukla, P. K.

    2008-05-01

    A new step forward on the theory for two-dimensional wave propagation is outlined for a non-uniform plasma with a smooth density profile. A way to excite envelope solitary waves with certain shapes is described. The corresponding wave space structure is calculated, and the restrictions on the wave profile along the direction of wave propagation are noticed.

  10. Stationary variational estimates for the effective response and field fluctuations in nonlinear composites

    NASA Astrophysics Data System (ADS)

    Ponte Castañeda, Pedro

    2016-11-01

    This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.

  11. Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects

    NASA Astrophysics Data System (ADS)

    Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-11-01

    Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.

  12. Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects.

    PubMed

    Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-11-06

    Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.

  13. Nonlinear tearing mode interactions and mode locking in reversed field pinches

    SciTech Connect

    Hegna, C.C.

    1996-06-01

    The nonlinear interaction of a set of tearing instabilities and plasma flow is studied in a cylindrical plasma. An analytic theory of mode locking is developed which includes the effects of the localized electromagnetic torques, plasma inertia and cross-field viscosity. The calculation is specialized for the case of mode locking on the Madison Symmetric Torus (MST) reversed field pinch. In MST plasmas, a set of m = 1 tearing instabilities become phase locked and form a toroidally localized, rotating magnetic disturbance. An evolution equation for the phase velocity of this magnetic disturbance is derived which accounts for two types of electromagnetic torques. The external torques describe the interaction of the tearing modes with static magnetic perturbations located outside the plasma region. The interior torques describe the nonlinear interaction of three tearing modes which satisfy a wave number resonance condition. For conditions typical of MST, the internal torques dominate the external torques, which suggest the nonlinear interaction of tearing instabilities play a prominent role in the momentum degradation and mode locking.

  14. Waterfowl density on agricultural fields managed to retain water in winter

    USGS Publications Warehouse

    Twedt, D.J.; Nelms, C.O.

    1999-01-01

    Managed water on private and public land provides habitat for wintering waterfowl in the Mississippi Valley, where flood control projects have reduced the area of natural flooding. We compared waterfowl densities on rice, soybean, and moist-soil fields under cooperative agreements to retain water from 1 November through 28 February in Arkansas and Mississippi and assessed temporal changes in waterfowl density during winter in 1991-1992 and 1992-1993. Fields flooded earlier in Arkansas, but retained water later in Mississippi. Over winter, waterfowl densities decreased in Arkansas and increased in Mississippi. Densities of waterfowl, including mallard (Anas platyrhynchos), the most abundant species observed, were greatest on moist-soil fields. However, soybean fields had the greatest densities of northern shoveler (Spatula clypeata).

  15. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields.

    PubMed

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-21

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density ([Formula: see text]), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the ([Formula: see text]) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a 'density perturbation factor' or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  16. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution

    PubMed Central

    Gustafsson, Mats G. L.

    2005-01-01

    Contrary to the well known diffraction limit, the fluorescence microscope is in principle capable of unlimited resolution. The necessary elements are spatially structured illumination light and a nonlinear dependence of the fluorescence emission rate on the illumination intensity. As an example of this concept, this article experimentally demonstrates saturated structured-illumination microscopy, a recently proposed method in which the nonlinearity arises from saturation of the excited state. This method can be used in a simple, wide-field (nonscanning) microscope, uses only a single, inexpensive laser, and requires no unusual photophysical properties of the fluorophore. The practical resolving power is determined by the signal-to-noise ratio, which in turn is limited by photobleaching. Experimental results show that a 2D point resolution of <50 nm is possible on sufficiently bright and photostable samples. PMID:16141335

  17. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.

    PubMed

    Fan, Li; Ge, Huan; Zhang, Shu-yi; Gao, Hai-fei; Liu, Yong-hui; Zhang, Hui

    2013-06-01

    Nonlinear acoustic fields in transmission-line acoustic metamaterials based on a cylindrical pipe with periodically arranged side holes are studied, in which the dispersions and characteristic parameters of the nonlinear acoustic waves are obtained with the Bloch theory, and meanwhile the distributions of the fundamental wave (FW) and second harmonic wave (SHW) in the metamaterial are simulated. Three characteristic frequency bands are defined according to the relations between the frequencies of the FW, SHW, and the low-frequency forbidden band (LFB) in the metamaterial. Especially, when the FW is in the LFB while the SHW is outside the LFB, the SHW can transmit through the metamaterial although the FW is blocked, which exhibits the possibility to extract the information from the SHW instead of the FW. In addition, experiments are carried out to measure the distributions of the acoustic pressures for the FW and SHW along the metamaterial and the experimental results are in agreement with the theory.

  18. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement.

    PubMed

    Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie

    2016-06-09

    This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.

  19. Superoperator representation of nonlinear response: unifying quantum field and mode coupling theories.

    PubMed

    Mukamel, Shaul

    2003-08-01

    Computing response functions by following the time evolution of superoperators in Liouville space (whose vectors are ordinary Hilbert space operators) offers an attractive alternative to the diagrammatic perturbative expansion of many-body equilibrium and nonequilibrium Green's functions. The bookkeeping of time ordering is naturally maintained in real (physical) time, allowing the formulation of Wick's theorem for superoperators, giving a factorization of higher order response functions in terms of two fundamental Green's functions. Backward propagations and analytic continuations using artificial times (Keldysh loops and Matsubara contours) are avoided. A generating functional for nonlinear response functions unifies quantum field theory and the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expansions. Classical response functions are obtained without the explicit computation of stability matrices.

  20. Analytical Predictions of Field and Plasma Dynamics during Nonlinear Weibel-Mediated Flow Collisions

    NASA Astrophysics Data System (ADS)

    Ruyer, C.; Gremillet, L.; Bonnaud, G.; Riconda, C.

    2016-08-01

    The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al., Phys. Plasmas 22, 032102 (2015) for the weakly nonlinear ion Weibel instability in a symmetric two-stream system is shown to be consistent with recent experimental and simulation results. Large-scale kinetic simulations are then performed to clarify the spatiotemporal evolution of the magnetic-field and plasma properties in the subsequent strongly nonlinear phase leading to shock formation. A simple analytical model is proposed which captures the simulation results up to a point close to ion isotropization. Electron screening effects are found important in the instability dynamics, so that numerical simulations using a nonphysical electron mass should be considered with caution.

  1. Analytical Predictions of Field and Plasma Dynamics during Nonlinear Weibel-Mediated Flow Collisions.

    PubMed

    Ruyer, C; Gremillet, L; Bonnaud, G; Riconda, C

    2016-08-05

    The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al., Phys. Plasmas 22, 032102 (2015) for the weakly nonlinear ion Weibel instability in a symmetric two-stream system is shown to be consistent with recent experimental and simulation results. Large-scale kinetic simulations are then performed to clarify the spatiotemporal evolution of the magnetic-field and plasma properties in the subsequent strongly nonlinear phase leading to shock formation. A simple analytical model is proposed which captures the simulation results up to a point close to ion isotropization. Electron screening effects are found important in the instability dynamics, so that numerical simulations using a nonphysical electron mass should be considered with caution.

  2. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  3. Recovering the full velocity and density fields from large-scale redshift-distance samples

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai

    1989-01-01

    A new method for extracting the large-scale three-dimensional velocity and mass density fields from measurements of the radial peculiar velocities is presented. Galaxies are assumed to trace the velocity field rather than the mass. The key assumption made is that the Lagrangian velocity field has negligible vorticity, as might be expected from perturbations that grew by gravitational instability. By applying the method to cosmological N-body simulations, it is demonstrated that it accurately reconstructs the velocity field. This technique promises a direct determination of the mass density field and the initial conditions for the formation of large-scale structure from galaxy peculiar velocity surveys.

  4. Density functional theory for field emission from carbon nano-structures.

    PubMed

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission.

  5. Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media.

    PubMed

    Ramirez, E V Garcia; Carrasco, M L Arroyo; Otero, M M Mendez; Cerda, S Chavez; Castillo, M D Iturbe

    2010-10-11

    In this work we present a simple model that can be used to calculate the far field intensity distributions when a Gaussian beam cross a thin sample of nonlinear media but the response can be nonlocal.

  6. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement

    NASA Astrophysics Data System (ADS)

    Nan, Fan; Xie, Fang-Ming; Liang, Shan; Ma, Liang; Yang, Da-Jie; Liu, Xiao-Li; Wang, Jia-Hong; Cheng, Zi-Qiang; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Quan; Zeng, Jie

    2016-06-01

    This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities.This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell. Together with the Ag2S shell, the air gap can efficiently trap light, causing strong field confinement and nonlinear enhancement. The as-prepared Au/AuAg/Ag2S/PbS core-multishell nanorods display distinct localized surface plasmon resonance and nonlinear optical properties, demonstrating an effective pathway for maneuvering the optical properties of nanocavities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09151a

  7. The Effect of the Density Ratio on the Nonlinear Dynamics of the Unstable Fluid Interface

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.

    2003-01-01

    Here we report multiple harmonic theoretical solutions for a complete system of conservation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids with a finite density ratio in the general three-dimensional case. The analysis yields new properties of the bubble front dynamics. In either RTI or RMI, the obtained dependencies of the bubble velocity and curvature on the density ratio differ qualitatively and quantitatively from those suggested by the models of Sharp (1984), Oron et al. (2001), and Goncharov (2002). We show explicitly that these models violate the conservation laws. For the first time, our theory reveals an important qualitative distinction between the dynamics of the RT and RM bubbles.

  8. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  9. Entanglement of a General Formalism Λ-TYPE Three-Level Atom Interacting with a Single-Mode Field in the Presence of Nonlinearities

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Eied, A. A.; Abd Al-Kader, G. M.

    We investigate the evolution of the atomic quantum entropy and the atom-field entanglement in a system of a Λ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the entropy are analyzed.

  10. Entanglement of a General Formalism Ξ-TYPE Three-Level Atom Interacting with a Single-Mode Field in the Presence of Nonlinearities

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Eied, A. A.; Abd Al-Kader, G. M.

    We investigate the evolution of the atomic quantum entropy and the atom-field entanglement in a system of a Ξ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy are analyzed.

  11. Second-order nonlinear optical properties in a strained InGaN/AlGaN quantum well under the intense laser field

    NASA Astrophysics Data System (ADS)

    Karimi, M. J.; Vafaei, H.

    2015-02-01

    In this work, the optical rectification and the second harmonic generation coefficients in a strained InGaN/AlGaN quantum well are studied. Impacts of the spontaneous and piezoelectric polarization fields on the potential profile are taken into account. The energy levels and wave functions are calculated using the fourth-order Runge-Kutta method and optical properties are obtained using the compact density matrix approach. Effects of intense laser field, In composition, Al composition, the well width and barrier width on the second-order nonlinear optical properties are investigated. Results reveal that the confinement potential is considerably affected by the laser field and internal electric field. Results also indicate that the resonant peaks experience a red-shift with increasing the laser field strength and barrier width. Moreover, the resonant peaks suffer a blue-shift with the increase in In and Al compositions.

  12. Fabrication and Characterization of Cross-Linked Organic Thin Films with Nonlinear Mass Densities.

    PubMed

    Rashed, Md A; Laokroekkiat, Salinthip; Hara, Mitsuo; Nagano, Shusaku; Nagao, Yuki

    2016-06-14

    The preparation of urea (bonded) cross-linked multilayer thin films by sequential deposition of bifunctional and tetrafunctional molecular building blocks is demonstrated. Multilayer growth as a function of deposition cycles was inspected using UV-vis absorption spectroscopy. From infrared results, three characteristic infrared bands of amide I, amide II, and asymmetric νa(N-C-N) stretching confirmed the formation of polyurea networks by alternate dipping into solutions of amine and isocyanate functionality monomers. The deconvoluted component of the C 1s and N 1s spectra obtained by X-ray photoelectron spectroscopy shows clear evidence of stable polyurea networks. The enhancement of structural periodicity with film growth was demonstrated by grazing-incidence small-angle X-ray scattering measurements. The thin film near the substrate surface seems to have an amorphous structure. However, molecular ordering improves in the surface normal direction of the substrate with a certain number of deposited layers. Constant mass density was not observed with deposition cycles. The mass density increased up to 16% within deposited layers from proximate layers to those extending away from the substrate surface. This difference in the packing density might derive from the different degrees of cross-linking among layers proximate to the substrate surface and extending away from the substrate surface.

  13. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis.

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Fromenteau, Sebastien.; Cuesta, Antonio. J.

    2017-01-01

    The reconstruction algorithm introduced by Eisenstein et al. (2007), which is widely used in clustering analysis, is based on the inference of the first order Lagrangian displacement field from the Gaussian smoothed galaxy density field in redshift space. The 2smoothing scale applied to the density field affects the inferred displacement field that is used to move the galaxies, and partially 2erases the nonlinear evolution of the density field. In this article, we explore this crucial step 2in the reconstruction algorithm. We study the performance of the reconstruction technique using two metrics: first, we study the performance using the anisotropic clustering, extending previous studies focused on isotropic clustering; second, we study its effect on the displacement field. We find that smoothing has a strong effect in the quadrupole of the correlation function and affects the accuracy and precision 2with which we can measure DA(z) and H(z). We find that the optimal smoothing scale to use in the reconstruction algorithm applied to BOSS-CMASS is between 5-10 h-1Mpc. Varying from the "usual" 15h-1Mpc to 5h-1Mpc 2shows ˜ 0.3% variations in DA(z) and ˜ 0.4% H(z) and uncertainties are also reduced by 40% and 30% respectively. We also find that the accuracy of velocity field reconstruction depends strongly on the smoothing scale used for the density field. We measure the bias and uncertainties associated with different choices of smoothing length.

  14. Nonlinear normal mode interactions in the SF6 molecule studied with the aid of density functional theory

    NASA Astrophysics Data System (ADS)

    Chechin, G.; Ryabov, D.; Shcherbinin, S.

    2015-07-01

    Some exact interactions between vibrational modes in systems with discrete symmetry can be described by the theory of the bushes of nonlinear normal modes (NNMs) [G. M. Chechin and V. P. Sakhnenko, Phys. D (Amsterdam, Neth.) 117, 43 (1998), 10.1016/S0167-2789(98)80012-2]. Each bush represents a dynamical object conserving the energy of the initial excitation. The existence of bushes of NNMs is ensured by some group-theoretical selection rules. In G. M. Chechin et al. [Int. J. Nonlinear Mech. 38, 1451 (2003), 10.1016/S0020-7462(02)00081-1], existence and stability of the bushes of vibrational modes in the simple octahedral model of mass points interacting via Lennard-Jones potential were investigated. In the present paper, we study these dynamical objects by the density functional theory in the SF6 molecule, which possesses the same symmetry and structure. We have fully confirmed the results previously obtained in the framework of the group-theoretical approach and have found some properties of the bushes of NNMs.

  15. Effects of population density on corticosterone levels of prairie voles in the field

    PubMed Central

    Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.

    2015-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968

  16. Effects of population density on corticosterone levels of prairie voles in the field.

    PubMed

    Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M

    2016-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior.

  17. Differential fitness in field and forest explains density-independent habitat selection by gartersnakes.

    PubMed

    Halliday, William D; Blouin-Demers, Gabriel

    2016-07-01

    The ideal free distribution concept predicts that organisms will distribute themselves between habitats in a density-dependent manner so that individuals, on average, achieve the same fitness in each habitat. In ectotherms, environmental temperature has a strong impact on fitness, but temperature is not depletable and thus not density dependent. Can density-dependent habitat selection occur in ectotherms when habitats differ in thermal quality? We used an observational study of habitat selection by small snakes in field and forest, followed by manipulative habitat selection and fitness experiments with common gartersnakes in enclosures in field and forest to test this hypothesis. Snakes were much more abundant in the field, the habitat with superior thermal quality, than in the forest. Gartersnakes in our controlled experiment only used the forest habitat when snake density was highest and when food was more abundant in the forest; habitat selection was largely density independent, although there was weak evidence of density dependence. No female gartersnake gave birth in the forest enclosures, whereas half of the females gave birth in the field enclosures. Growth rates of females were higher in field than in forest enclosures. Overall, our data indicate that temperature appears to be the most important factor driving the habitat selection of gartersnakes, likely because temperature was more limiting than food in our study system. Snakes, or at least temperate snakes, may naturally exist at population densities low enough that they do not exhibit density-dependent habitat selection.

  18. Molecular structural, non-linear optical, second order perturbation and Fukui studies of Indole-3-Aldehyde using density functional calculations.

    PubMed

    Muthu, S; Maheswari, J Uma; Sundius, Tom

    2013-04-01

    Indole-3-Aldehyde is a new organic non-linear material having good second harmonic generation. The optimized molecular geometry, harmonic vibrational frequencies, infrared intensities of Indole-3-Aldehyde (I3A, C9H7NO) in the ground state were carried out by using density functional theory (B3LYP) method with 6-31G(d,p) basis set. A detailed interpretation of the infrared spectrum of Indole-3-Aldehyde is reported. The vibrational frequencies are calculated and compared with experimental FT-IR spectra. The theoretical spectrograms of FT-IR of the title compound have been constructed in addition, theoretical information like ONIOM, potential energy surface, NBO, and Fukui function are also calculated. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution.

  19. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    NASA Astrophysics Data System (ADS)

    Saja, D.; Joe, I. Hubert; Jayakumar, V. S.

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  20. Non-linear transport by solitons in nanofibers of polymers in high magnetic field

    NASA Astrophysics Data System (ADS)

    Kirova, N.; Brazovskii, S.; Choi, A.; Park, Y. W.

    2012-06-01

    Nonlinear local excitations like solitons, polarons, and bipolarons are known to be responsible for physical properties of conducting polymers. Recent experiments on nano-fibers in high electric and magnetic fields provide a further insight by demonstrating an effect of vanishing magnetoconductance (MC) in the polyacetylene (PA)-in contrast to other polymers. Here we present new experimental data and describe the theoretical model based on notion of solitons-dimerization kinks which can carry either the spin or the charge; they are allowed only in the PA with its degenerate ground state. The solitons experience a confinement force due to the interchange coupling which is erased by the electric field and disappears above critical field strength. The unbinding by tunneling allows for the transport of individual solitons, which sweeps off the spins residing at electronic intragap states associated with polarons, hence the vanishing MC.

  1. Different behavior of storm-time themospheric mass density response to merging E field for different type of magnetic storms

    NASA Astrophysics Data System (ADS)

    Ma, S. Y.; Zhou, Yunliang; Liu, Ruosi

    With the help of GRACE accelerometer observations and the solar wind and IMF OMNI data, a statistical investigation has been made on the relationships of merging electrical field, Em, with the storm-time changes in the upper thermospheric mass density for 35 great storms during 2002-2006. The linear control factors of Em on the storm-time changes of both mass density and its algorithm are examined, along with the delay times of density changes behind Em. The dependences of the control factors on the latitude and local time are investigated for different storm types. It is found that the influences of Em on the storm-time mass densities characterized by nonlinear control factors show different behavior for different types of storms. The influence intensity of Em on mass density is stronger for CIR-driven than for CME-driven storms, manifested as 2.7 times for CME-driven over CIR driven storm at dawn sector. In terms of the ratio of influence factor for CIR over CME, there is a larger intensification in dawn/dusk sector than in noon/midnight sector clearly. Besides, it is very interesting that, except for noon sector, the delay times of mass density changes in respect to Em at low latitudes are shorter than at mid-latitudes. This phenomenon seems in contravention of high latitude origin of mass density changes and consequent propagation equatorward. We surmise that this may imply some additional heating or disturbance sources rather than high latitude origin at working for low and/or mid-latitude mass density changes. One possible source is energetic neutral atom (ENA) precipitation of storm-time ring current origin caused by charge exchange between energetic RC (ring current) ions and cold atoms of geo-corona, another may be the coupling between low-latitude thermosphere and ionosphere associated with prompt penetration of interplanetary electric field that has larger penetration efficiency during night. Acknowledgements: Many thanks to Prof. Luehr for useful

  2. Density Waves in Saturn's Rings: Non-linear Dispersion and Moon Libration Effects

    NASA Astrophysics Data System (ADS)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Colwell, J. E.; Esposito, L. W.

    2008-05-01

    We analyze strong spiral density waves in stellar occultations by Saturn's A ring observed with the Cassini Ultraviolet Imaging Spectrograph (UVIS) and find that waves dispersion relation exhibits a clear deviation from the linear trend. All waves examined here reveal an intrinsic quadratic radial dependence on the wavenumber. We provide evidence that the deviation from the linear trend is caused by the ring's pressure term acting against the self-gravity of the ring particles. From the observed dispersion relation and using the theory of Goldreich and Tremaine (1978, 1979, ApJ) where the pressure is parameterized as p=σ c2, we measure the velocity dispersion c=2-5 mm/s in the A ring. Additionally, in all first order Pandora waves the dispersion relation exhibits a wiggly structure. Comparing 60 stellar UVIS occultations between 2004 and 2008 we infer that this wavenumber oscillation propagates away from the resonance location with a period of about 600 days. This inferred period is consistent with the 3:2 near corotation resonance between Pandora and Mimas (French et al., 2003, Icarus). The observed libration in wavenumber allows us to accurately measure the group velocity in the rings and obtain independent estimates of both surface density and velocity dispersion of the rings.

  3. Interplay of Density Gradients and Nonlinear Frequency Shifts in Stimulated Raman Scattering

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Williams, E. A.; Langdon, A. B.; Bers, A.; Ram, A. K.; Shoucri, M. M.

    2004-11-01

    In an inhomogeneous medium, parametric instabilities are only resonant over a finite region of space. A WKB analysis that accounts only for the wavenumber mismatch d(k_0-k_1-k_2)/dx, for a linear inhomogeneity and sufficiently large system, shows the convective gain is independent of the system size, and the relative directions of wave propagation and density gradient. (M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)). In Raman scattering, the resonant frequency of the electron plasma wave (EPW) depends on its amplitude (G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)). The EPW amplitude and therefore its frequency shift vary in space. We study how the inhomogeneity due to a density gradient and the spatially-varying frequency shift interact. The detunings due to wavenumber mismatch and frequency shift may counteract or enhance each other. We study these effects and their consequences for SRS saturation in inhomogeneous media with kinetic simulations using the 1-D, Eulerian Vlasov code ELVIS (D. J. Strozzi et al., Comp. Phys. Comm., accepted).

  4. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  5. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    SciTech Connect

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  6. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    SciTech Connect

    Rosnitskiy, P. Yuldashev, P. Khokhlova, V.

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.

  7. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    DOE PAGES

    Clayton, C. E.; Adli, E.; Allen, J.; ...

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less

  8. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  9. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi

    2015-10-01

    Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.

  10. Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas

    PubMed Central

    Papanikolaou, Amalia; Keliris, Georgios A.; Lee, Sangkyun; Logothetis, Nikos K.; Smirnakis, Stelios M.

    2016-01-01

    There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field (“artificial scotoma” or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions. PMID:26146195

  11. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  12. φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Simonetti, P.; Andersen, J. V.

    2000-08-01

    Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive

  13. Coupling Linearized Far-Field Boundary Conditions with Nonlinear Near-Field Solutions in Transonic Flow

    DTIC Science & Technology

    1988-02-29

    Plate and a NACA 64A010 Airfoil Section . 31 3. Spatial Variations of Velocity Potentials on a Flat Plate and MBB-A3 Airfoil Section ........ 32 4...39 14. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack w ith M = 0.80...44 22. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack 23. W ith M = 0.78

  14. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  15. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    NASA Astrophysics Data System (ADS)

    Volkova, E. A.; Popov, A. M.; Tikhonova, O. V.

    2013-03-01

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schrödinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  16. Estimation of stratospheric-mesospheric density fields from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.

    1974-01-01

    Description of a method for deriving horizontal density fields at altitudes above 30 km directly from satellite radiation measurements. The method is applicable to radiation measurements from any instrument with suitable transmittance weighting functions. Data such as those acquired by the Satellite Infrared Spectrometers on satellites Nimbus 3 and 4 are employed for demonstrating the use of the method for estimating stratospheric-mesospheric density fields.

  17. An investigation of magnetic field effects on plume density and temperature profiles of an applied-field MPD thruster

    NASA Technical Reports Server (NTRS)

    Bullock, S. Ray; Myers, R. M.

    1994-01-01

    Applied-field magnetoplasmadynamic (MPD) thruster performance is below levels required for primary propulsion missions. While MPD thruster performance has been found to increase with the magnitude of the applied-field strength, there is currently little understanding of the impact of applied-field shape on thruster performance. The results of a study in which a single applied-field thruster was operated using three solenoidal magnets with diameters of 12.7, 15.2, and 30.4-cm are presented. Thruster voltage and anode power deposition were measured for each applied field shape over a range of field strengths. Plume electron number density and temperature distributions were measured using a Langmuir probe in an effort to determine the effect of field shape on plume confinement by the diverging magnetic-field for each of the three magnetic field shapes. Results show that the dependence of the measured thruster characteristics on field shape were non-monotonic and that the field shape had a significant effect on the plume density and temperature profiles.

  18. Digital phase-stepping holographic interferometry in measuring 2-D density fields

    NASA Astrophysics Data System (ADS)

    Lanen, T. A. W. M.; Nebbeling, C.; van Ingen, J. L.

    1990-06-01

    This paper presents a holographic interferometer technique for measuring transparent (2-D or quasi 2-D) density fields. To be able to study the realization of such a field at a certain moment of time, the field is “frozen” on a holographic plate. During the reconstruction of the density field from the hologram the length of the path traversed by the reconstruction beam is diminished in equal steps by applying a computer controlled voltage to a piezo-electric crystal that translates a mirror. Four phase-stepped interferograms resulting from this pathlength variation are digitized and serve as input to an algorithm for computing the phase surface. The method is illustrated by measuring the basically 2-D density field existing around a heated horizontal cylinder in free convection.

  19. Nonlinear island dynamics in the presence of multiharmonic error-fields

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard; Rossi, Enrico

    2000-10-01

    We examine the behaviour of a helical magnetic island chain in a toroidal plasma in the presence of a multi-harmonic error-field. Singular perturbation theory is used to match the inner and outer solutions, order by order. We confirm the result of Thyagaraja [Phys. Fluids 24, 1719 (1981)] regarding the final saturated island width in the absence of an error-field. This result has been questioned by Norris [Plasma Phys. Contr. Fusion, 31, 699 (1989)]. In addition, we find that an m, n island couples non-linearly to overtone harmonic error-fields: i.e., error-fields of helicity lm, ln, where l>1. Expressions are obtained for the strength of this coupling. In the presence of overtone harmonic coupling, it is possible for an island chain interacting with a multi-harmonic error-field to experience a locking potential which is more complicated that the conventional sinusoidal potential. In particular, by careful tayloring of the error-field, it is possible to cause an island chain to lock in a stabilizing phase. According to conventional mode-locking theory, this is impossible. The implications of this result are discussed.

  20. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Wang, Yong; Zhou, Xin; Zhang, Q. M.; Zhang, Shihai

    2008-04-01

    In several low loss dielectric materials, it was observed that the energy loss remains very small under low and medium electric fields but dramatically increases at high field which is believed to be due to tunneling current. The increase of tunneling current at high field is due to the decrease of barrier width and height and is a universal phenomenon in all dielectric materials. Due to the requirement of high energy efficiency, high field conduction places a limit for the maximum operation field, which could be lower than the breakdown field and act as the limiting factor of energy density.

  1. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures.

    PubMed

    Ong, P V; Kioussis, Nicholas; Amiri, P Khalili; Wang, K L

    2016-07-18

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V(-1)m(-1)) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.

  2. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    NASA Astrophysics Data System (ADS)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-07-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V‑1m‑1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.

  3. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    PubMed Central

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-01-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V−1m−1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices. PMID:27424885

  4. Quantifying wave-breaking dissipation using nonlinear phase-resolved wave-field simulations

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Xiao, W.; Yue, D. K. P.

    2014-12-01

    We propose to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields using direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987). We implement a robust phenomenological-based energy dissipation model in HOS to capture the effect of wave-breaking dissipation on the overall wave-field evolution (Xiao et al 2013). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field δ(x,y,t), which provides the times, locations and intensity of wave breaking events (δ>δc). This is validated by comparison of HOS simulations with Airborne Terrain Mapper (ATM) measurements in the recent ONR Hi-Res field experiment. Figure (a) shows one frame of simulated wave-field (with dissipation model). Figure (b) is the corresponding measurement from ATM, where a large wave breaking event was captured. Figure (c) is the 3D view of the simulated wave-field with the colored region representing dissipation with δ>δc. The HOS predicted high-dissipation area is found to agree well with the measured breaking area. Based on HOS predicted high-dissipation area (δ>δc), we calculate Λ(c) (Phillips 1985), the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity c. Figure (d) shows the distribution Λ(c) calculated from HOS. For breaking speeds c greater than 5m/s, the simulated Λ(c) is in qualitative agreement with Phillips theoretical power-law of Λ(c)~c-6. From δ(x,y,t), we further quantify wave breaking by calculating the whitecap coverage rate Wr(t) and energy dissipation rate ΔE'(t), and study the evolution of Wr and ΔE' to understand the role of wave breaking in nonlinear wave-field evolution. We obtain HOS simulations

  5. Nonlinear susceptibility of a quantum spin glass under uniform transverse and random longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Magalhaes, S. G.; Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Nobre, F. D.

    2017-02-01

    The interplay between quantum fluctuations and disorder is investigated in a quantum spin-glass model, in the presence of a uniform transverse field Γ , as well as of a longitudinal random field hi, which follows a Gaussian distribution characterized by a width proportional to Δ . The interactions are infinite-ranged, and the model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure; in addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the applied fields is analyzed. This study is motivated by experimental investigations on the LiHoxY1 -xF4 compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility χ3, which have led to a considerable experimental and theoretical debate. We have analyzed two physically distinct situations, namely, Δ and Γ considered as independent, as well as these two quantities related, as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature Tf, with such phase being characterized by a nontrivial ergodicity breaking; moreover, Tf decreases by increasing Γ towards a quantum critical point at zero temperature. The situation where Δ and Γ are related [Δ ≡Δ (Γ )] appears to reproduce better the experimental observations on the LiHoxY1 -xF4 compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility χ3. In this later case, by increasing Γ gradually, χ3 becomes progressively rounded, presenting a maximum at a temperature T* (T*>Tf ), with both the amplitude of the maximum and the value of T* decreasing gradually. Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature T*, one for Tf

  6. Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2017-02-01

    Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born–Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.

  7. Nonlinear saturation of ideal interchange modes in a sheared magnetic field

    SciTech Connect

    Beklemishev, A.D.

    1990-09-01

    Pressure-driven ideal modes cannot completely interchange flux tubes of a sheared magnetic field; instead, they saturate, forming new helical equilibria. These equilibria are studied both analytically and numerically with reduced MHD equations in a flux-conserving Lagrangian representation. For unstable localized modes, the structure of the nonlinear layer generated around the resonant flux surface depends on the value of Mercier parameter D{sub M}. Its width is found to be proportional to the position of the inflection point on the linear eigenfunction. Perturbed surfaces in equilibrium always have folds, i.e., areas where the direction of the original reduced magnetic field is reserved. But only far from the instability threshold does the internal structure of the nonlinear layer resemble bubble' formation. The appearance of sheet currents and island-like structures along the resonant flux surface may be of interest for the description of forced reconnection in models with finite resistivity. Analytic results are found to be in agreement with 2-D numerical simulations. This study also includes the case of ballooning instability by representing nonlocal driving terms through the matching parameter {Delta}{prime}, which defines the outer boundary conditions for the interchange layer. 12 refs., 9 figs.

  8. Nonlinearity in MCF7 Cell Survival Following Exposure to Modulated 6 MV Radiation Fields

    PubMed Central

    Castiella, Marion; Franceries, Xavier; Cassol, Emmanuelle; Vieillevigne, Laure; Pereda, Veronica; Bardies, Manuel; Courtade-Saïdi, Monique

    2015-01-01

    The study of cell survival following exposure to nonuniform radiation fields is taking on particular interest because of the increasing evidence of a nonlinear relationship at low doses. We conducted in vitro experiments using the MCF7 breast cancer cell line. A 2.4 × 2.4 cm2 square area of a T25 flask was irradiated by a Varian Novalis accelerator delivering 6 MV photons. Cell survival inside the irradiation field, in the dose gradient zone and in the peripheral zone, was determined using a clonogenic assay for different radiation doses at the isocenter. Increased cell survival was observed inside the irradiation area for doses of 2, 10, and 20 Gy when nonirradiated cells were present at the periphery, while the cells at the periphery showed decreased survival compared to controls. Increased survival was also observed at the edge of the dose gradient zone for cells receiving 0.02 to 0.01 Gy when compared with cells at the periphery of the same flask, whatever the isocenter dose. These data are the first to report cell survival in the dose gradient zone. Radiotherapists must be aware of this nonlinearity in dose response. PMID:26740805

  9. Second order nonlinearity in Si by inhomogeneous strain and electric fields

    NASA Astrophysics Data System (ADS)

    Schilling, Jörg; Schriever, Clemens; Bianco, Federica; Cazzanelli, Massimo; Pavesi, Lorenzo

    2015-08-01

    The lack of a dipolar second order susceptibility (χ(2)) in silicon due to its centro-symmetric diamond lattice usually inhibits efficient second order nonlinear optical processes in the silicon bulk. Depositing stressed silicon nitride layers or growing a thermal oxide layer introduces an inhomogeneous strain into the silicon lattice and breaks the centro-symmetry of its crystal structure thereby creating a χ(2). This causes enhanced second harmonic generation and was observed in reflection and transmission measurements for wavelengths in the infrared. However strain is not the only means to break the structures symmetry. Fixed charges at the silicon nitride/silicon interface cause a high electric field close to the silicon interface which causes electric-field-induced-second-harmonic (EFISH) contributions too. The combination of both effects leads to χ(2) values which are estimated to be of the order as classic χ(2) materials like KDP or LiNiO3. This paves the way for the exploitation of other second order nonlinear processes in the area of silicon photonics and is an example how fundamental optical properties of materials can be altered by strain.

  10. The reconnection of magnetic fields between plasmas with different densities: Scaling relations

    SciTech Connect

    Borovsky, Joseph E.; Hesse, Michael

    2007-10-15

    Using two-dimensional compressible-magnetohydrodynamic computer simulations, the reconnection of magnetic fields between two plasmas with different mass densities is examined. Antiparallel, undriven merging is studied from a Harris-sheet initial condition with the sheet separating the two different plasmas. Reconnection is initiated with a resistive spot in the center of the Harris sheet. Density ratios from 1 to 320 are simulated. It is found that the rate of magnetic-field reconnection R is give approximately as R=0.07v{sub Ah}, where v{sub Ah}=B/[4{pi}(0.5{rho}{sub 1}+0.5{rho}{sub 1})]{sup 1/2} is a hybrid Alfven speed constructed by averaging the densities of the two plasmas. In the symmetric-density case, plasma jetting speeds are equal to the local E lowbar xB lowbar velocity; in the asymmetric-density cases, the plasma jetting speeds exceed the local E lowbar xB lowbar velocity. In the asymmetric cases, plasma jetting tends to be parallel to the local magnetic field. In the symmetric-density case the plasma jetting arises from the site of the X-line and resides in the region of magnetic-field reversal; in the asymmetric case, jetting tends to reside in the lower-density plasma.

  11. High resolution imaging in cross-section of a metal-oxide-semiconductor field-effect-transistor using super-higher-order nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Honda, K.; Cho, Y.

    2013-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can evaluate carrier or charge distribution in semiconductor devices. High sensitivity to capacitance variation enables SNDM to measure the super-high-order (higher than 3rd) derivative of local capacitance-voltage (C-V) characteristics directly under the tip (dnC/dVn,n = 3, 4, ...). We demonstrate improvement of carrier density resolution by measurement of dnC/dVn,n = 1, 2, 3, 4 (super-higher-order method) in the cross-sectional observation of metal-oxide-semiconductor field-effect-transistor.

  12. Energy flux density and angular momentum density of Pearcey-Gauss vortex beams in the far field

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Lu, G.; Zhong, X.

    2017-02-01

    The longitudinal and transverse energy flux density (EFD) and angular momentum density (AMD) of a Pearcey-Gauss vortex beam in the far field are studied using the vector angular spectrum representation and stationary phase method, where the influence of topological charge, noncanonical strength and off-axis distance of the embedded optical vortex on far-field vectorial structures of the corresponding beam is emphasized. For comparison, the EFD and AMD of the Pearcey-Gauss beam with non-vortex in the far field are also discussed. The results show that the longitudinal EFDs of the Pearcey-Gauss vortex beam exhibit parabolic patterns, and the number of parabolic dark zones equals the absolute value of topological charge of the embedded optical vortex in the input plane. While for the Pearcey-Gauss beam, the dark zones are not found owing to the non-vortex in the input plane. The motion of zero-intensity spot of whole beam appears by varying the off-axis distance. Noncanonical strength and off-axis distance both can adjust the magnitudes and directions of transverse EFD and control the spatial energy distributions of longitudinal EFD, but not change the net AMD.

  13. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. ||||

    1995-10-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, {ital Regular} {ital and} {ital Stochastic} {ital Motion} (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, {ital S}{approx_gt}1 GW/cm{sup 2}. We also discuss the possibility of experimentally observing this transition.

  14. Nonlinear algorithm for navigation of a moving object in magnetic field

    NASA Astrophysics Data System (ADS)

    Tkhorenko, M. Yu.; Karshakov, E. V.; Shevchenko, A. M.

    2017-01-01

    Consideration was given to the problem of relative positioning with the use of alternating magnetic field. The problem was shown to be solvable using a system of three magnetic dipoles emitting magnetic field at different frequencies. Ambiguity of its solution was discussed, and ways to resolve it were proposed. An algorithm for relative positioning based on the solution of this problem was proposed. Error equations of the positioning algorithm and the results of their analysis were presented. Calibration procedures, improving accuracy of relative positioning, are also considered. One of these procedures, based on nonlinear optimization techniques, was presented in greater details. The paper was supplied with several numerical examples demonstrating effectiveness of proposed algorithms in relative positioning.

  15. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, Lanxi; Lan, Wanli

    2016-10-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M , where M is the maximum of the absolute value of the velocity field of the laminar flow.

  16. Complexities of determining the Field-Aligned current density from LEO satellites.

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Friel, M. M.; Ohtani, S.; Muhleisen, M.; Gjerloev, A. W.; Martin, P.; Barnes, R. J.

    2015-12-01

    We show results from a study of the field-aligned currents (FAC) as derived from SWARM magnetic field perturbations. We calculate the FAC density using four different techniques and explain why they provide different results. Theoretical work, simulations and data are used to show that widely used techniques can provide current density estimates with errors of 1000%. These errors can be explained by spatial gradients in the currents and temporal variability of the currents as well as a breakdown of other fundamental assumptions. We apply the techniques to auroral crossings with THEMIS ASI coverage and use the SWARM magnetic field observations to calculate the current density. Finally, we show how to estimate the errors in the current density calculations.

  17. External dc bias field effects in the nonlinear ac stationary response of permanent dipoles in a uniaxial potential

    NASA Astrophysics Data System (ADS)

    Wei, Nijun; Coffey, William T.; Déjardin, Pirre-Michel; Kalmykov, Yuri P.

    External dc bias field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean field potential are studied via the rotational Brownian motion model. Postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments (the expectation value of the Legendre polynomials), the dielectric and Kerr effect ac stationary responses may be evaluated for arbitrary dc bias field strength via perturbation theory in the ac field. We have given two complementary approaches for treating the nonlinear effects. The first is based on perturbation theory allowing one to calculate the nonlinear ac stationary responses using powerful matrix methods. The second approach based on the accurate two-mode approximation [D.A. Garanin, Phys. Rev. E. 54, 3250 (1996)] effectively generalizes the existing results for dipolar systems in superimposed ac and dc fields to a mean field potential. The results apply both to nonlinear dielectric relaxation and dynamic Kerr effect of nematics and to magnetic birefringence relaxation of ferrofluids. Furthermore, the given methods of the solution of infinite hierarchies of multi-term recurrence relations are quite general and can be applied to analogous nonlinear response problems.

  18. Dependence of the density limit on the toroidal magnetic field on FTU

    NASA Astrophysics Data System (ADS)

    Pucella, G.; Tudisco, O.; Apicella, M. L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Buratti, P.; Calabrò, G.; Castaldo, C.; Cianfarani, C.; Cocilovo, V.; Dimatteo, L.; Esposito, B.; Frigione, D.; Gabellieri, L.; Giovannozzi, E.; Granucci, G.; Marinucci, M.; Marocco, D.; Martines, E.; Mazzitelli, G.; Mazzotta, C.; Nowak, S.; Ramogida, G.; Romano, A.; Tuccillo, A. A.; Zeng, L.; Zuin, M.

    2013-02-01

    The capability of predicting the density limit of a magnetically confined burning plasma is of crucial importance to establish the ultimate performance of a fusion power plant. The Greenwald density limit, commonly used as an empirical scaling law, predicts that the maximum achievable central line-averaged density is given by the relation \\bar{n}_G = k \\bar{J} , where \\bar{J} is the average plasma current density and k is the plasma elongation. However, several experiments have pointed out that such a limit can be overcome in the presence of peaked density profiles. This paper proposes a new empirical scaling law for a limiter tokamak operating in the low-energy confinement mode (L-mode) concerning the case of peaked density profiles associated with the presence of multifaceted asymmetric radiation from the edges. This result is based on dedicated experiments performed on the Frascati Tokamak Upgrade (FTU) under extremely clean machine conditions (Zeff = 1.0-1.5), in which the high-density domain is explored in a wide range of values of plasma current (Ip = 500-900 kA) and toroidal magnetic field (BT = 4-8 T). It is found that the maximum achievable central line-averaged density essentially depends on the toroidal magnetic field only and does not depend on the average plasma current density: the behaviour is explained in terms of density profile peaking in the high-density domain. As a confirmation that the limit is an edge limit, it is also shown that a Greenwald-like scaling (i.e. depending on the current density) actually holds for the edge line-averaged density (at r/a ≃ 4/5).

  19. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-01

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density (ρ,{{n}\\text{e}} ), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the (ρ,I,δ ) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a ‘density perturbation factor’ or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  20. Nonlinear force-free field extrapolation of the coronal magnetic field using the data obtained by the Hinode satellite

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning; Yan, Yihua

    2011-01-01

    The Hinode satellite can obtain high-quality photospheric vector magnetograms of solar active regions and the simultaneous coronal loop images in soft X-ray and extreme ultraviolet (EUV) bands. In this paper, we continue the work of He and Wang (2008) and apply the newly developed upward boundary integration computational scheme for the nonlinear force-free field (NLFFF) extrapolation of the coronal magnetic field to the photospheric vector magnetograms acquired by the Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode. Three time series vector magnetograms of the same solar active region, NOAA 10930, are selected for the NLFFF extrapolations, which were observed within the time interval of 26 h during 10-11 December 2006 when the active region crossed the central area of the Sun's disk. Parallel computation of the NLFFF extrapolation code was realized through OpenMP multithreaded, shared memory parallelism and Fortran 95 programming language for the extrapolation calculations. The comparison between the extrapolated field lines and the coronal loop images obtained by the X-Ray Telescope and the EUV Imaging Spectrometer of Hinode shows that, in the central area of the active region, the field line configurations generally agree with the coronal images, and the orientations of the field lines basically coincide with the coronal loop observations for all three successive magnetograms. This result supports the NLFFF model being used for tracing the time series evolution of the 3-D coronal magnetic structures as the responses of the quasi-equilibrium solar atmosphere to the vector magnetic field changes in the photosphere.

  1. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    SciTech Connect

    Beninato, A.; Baglio, S.; Andò, B.; Emery, T.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-09

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3} shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3}, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a “blueprint” for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or “target” B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  2. Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.

    2011-03-01

    In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.

  3. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    NASA Astrophysics Data System (ADS)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  4. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  5. Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.

    PubMed

    de Montferrand, Caroline; Lalatonne, Yoann; Bonnin, Dominique; Lièvre, Nicole; Lecouvey, Marc; Monod, Philippe; Russier, Vincent; Motte, Laurence

    2012-06-25

    The magnetic behavior at room temperature of maghemite nanoparticles of variable sizes (from 7 to 20 nm) is compared using a conventional super quantum interference device (SQUID) and a recently patented technology, called MIAplex. The SQUID usually measures the magnetic response versus an applied magnetic field in a quasi-static mode until high field values (from -4000 to 4000 kA m(-1)) to determine the field-dependence and saturation magnetization of the sample. The MIAplex is a handheld portable device that measures a signal corresponding to the second derivative of the magnetization around zero field (between -15 and 15 kA m(-1)). In this paper, the magnetic response of the size series is correlated, both in diluted and powder form, between the SQUID and MIAplex. The SQUID curves are measured at room temperature in two magnetic field ranges from -4000 to 4000 kA m(-1) (-5T to 5T) and from -15 to 15 kA m(-1). Nonlinear behavior at weak fields is highlighted and the magnetic curves for diluted solutions evolve from quasi-paramagnetic to superparamagnetic behavior when the size of the nanoparticles increases. For the 7-nm sample, the fit of the magnetization with the Langevin model weighted with log-normal distribution corresponds closely to the magnetic size. This confirms the accuracy of the model of non-interacting superparamagnetic particles with a magnetically frustrated surface layer of about 0.5 nm thickness. For the other samples (10-nm to 21-nm), the experimental weak-field magnetization curves are modeled by more than one population of magnetically responding species. This behavior is consistent with a chemically uniform but magnetically distinct structure composed of a core and a magnetically active nanoparticle canted shell. Accordingly the weak-field signature corresponds to the total assembly of the nanoparticles. The impact of size polydispersity is also discussed.

  6. Field and imaging properties of two orthogonally polarized Gaussian optical beams with a nonlinear parabolic graded-index rod lens

    NASA Astrophysics Data System (ADS)

    Li, Yucui

    1996-04-01

    The field and imaging formulas of two orthogonally polarized Gaussian light beams through a nonlinear parabolic graded-index rod lens are derived by use of a variational approach and the ABCD law of Gaussian beam propagation. The effects of power and position of one optical beam on the field and propagation and imaging properties of the other optical beam are analyzed.

  7. System and method for magnetic current density imaging at ultra low magnetic fields

    SciTech Connect

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  8. Transition from Fowler-Nordheim field emission to space charge limited current density

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Verboncoeur, J. P.

    2006-07-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β >10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.

  9. Transition from Fowler-Nordheim field emission to space charge limited current density

    SciTech Connect

    Feng, Y.; Verboncoeur, J. P.

    2006-07-15

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement {beta}>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.

  10. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories

    PubMed Central

    Cavagnetto, F; Calabrese, M; Houssami, N

    2013-01-01

    Objective: To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging–Reporting and Data System (BI-RADS) categories, using automated software. Methods: Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity©, developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. Results: The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (p<0.0001). There was a good correlation between the BI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, p<0.01 and r=0.48, p<0.01, respectively). Conclusion: Using DBT, breast density values were lower than those obtained using 2D FFDM, with a non-linear relationship across the BI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. Advances in knowledge: On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories. PMID:24029631

  11. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  12. Effects of larval density in Ambystoma opacum: An experiment in large-scale field enclosures

    SciTech Connect

    Scott, D.E. )

    1990-02-01

    This experiment was designed to measure the effects of larval density on larval traits in the salamander Ambystoma opacum, and to ascertain whether previous studies conducted at smaller spatial scales or higher densities produced artifactual results. Density effects on larval growth, body size at metamorphosis, length of larval period, and survival to metamorphosis were studied in A. opacum in large-scale (41 m{sup 2} and 23 m{sup 2}) field enclosures in two temporary ponds. Each enclosure contained indigenous populations of prey (zooplankton and insects) and predators, as well as the range of microhabitats present in these natural ponds. Initial larval densities were chosen to represent high and low levels of naturally occurring mean densities. The results suggest that, in natural ponds, the importance of intraspecific competition is dependent upon hydroperiod, and the intensity of competition influences predation risk. Thus, both density-dependent and density-independent factors affect body size and recruitment of larval A. opacum into the adult population. The use of large-scale field enclosures has advantages and disadvantages: it allows the examination of density-dependent processes under natural conditions and provides high statistical power because of low variability in larval traits; however, experimental designs must be simple and underlying mechanisms are difficult to identify.

  13. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    NASA Astrophysics Data System (ADS)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  14. Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    NASA Astrophysics Data System (ADS)

    Teed, Robert J.; Proctor, Michael R. E.

    2016-05-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed `shear dynamo' mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the non-linear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.

  15. Stochastic dynamics of electric dipole in external electric fields: A perturbed nonlinear pendulum approach

    NASA Astrophysics Data System (ADS)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2013-06-01

    The motion of a dipole in external electric fields is considered in the framework of nonlinear pendulum dynamics. A stochastic layer is formed near the separatrix of the dipole pendulum in a restoring static electric field under the periodic perturbation by plane-polarized electric fields. The width of the stochastic layer depends on the direction of the forcing field variation, and this width can be evaluated as a function of perturbation frequency, amplitude, and duration. A numerical simulation of the approximate stochastic layer width of a perturbed pendulum yields a multi-peak frequency spectrum. It is described well enough at high perturbation amplitudes by an analytical estimation based on the separatrix map with an introduced expression of the most effective perturbation phase. The difference in the fractal dimensions of the phase spaces calculated geometrically and using the time-delay reconstruction is attributed to the predominant development of periodic and chaotic orbits, respectively. The correlation of the stochastic layer width with the phase space fractal dimensions is discussed.

  16. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  17. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Drake, J. F.; Mozer, F.

    2015-12-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  18. Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  19. Dayside electron density structures organised by the Martian crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Dieval, C.; Wild, J. A.; Morgan, D. D.; Andrews, D. J.; Gurnett, D. A.

    2015-12-01

    The Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard Mars Express is able to detect remotely the Martian topside electron densities down to the main ionospheric peak. In the ionospheric mode it transmits a sequence of pulses in the frequency range 0.1 to 5.5 MHz and measures the delay of reception of the reflected signals returned by the ionospheric plasma layers below the spacecraft. Previous studies using MARSIS have investigated localized electron density structures in the dayside Martian ionosphere, located in areas of typically near-vertical or oblique orientation of the Martian crustal magnetic fields. These crustal fields are remnants of the now extinct global Martian dipole magnetic field, with the strongest fields in the Southern hemisphere reaching up to |B| > 200 nT at altitudes of 400 km. These density structures are often detected as apparent upwellings above the surrounding ideally horizontally stratified ionosphere. Previous studies searched the density structures at a fixed sounding frequency of 1.9 MHz (equivalent to a plasma density of 4.47·104 cm-3), which is a typical frequency at which they are detected. In addition, these studies did not account for the signal dispersion due to the propagation through the ionosphere, which causes larger time delays for receiving the radar echoes, and therefore an underestimation of the altitude of these structures. In the present work we propose to use a statistical dataset of such density structures detected on the dayside of Mars by MARSIS in areas of oblique crustal fields, to determine the interval of densities for which the structures are found to make apparent upwellings. Then we use the corresponding electron density profiles corrected for signal dispersion, to determine the real altitudes of the density structures, their vertical extent and their plasma scale heights compared to the surrounding ionosphere. These new informations give critical hints for uncovering their origins

  20. The study of relatively low density stellar matter in presence of strong quantizing magnetic field

    SciTech Connect

    Nag, Nandini; Ghosh, Sutapa; Chakrabarty, Somenath

    2009-03-15

    The effect of strong quantizing magnetic field on the equation of state of matter at the outer crust region of magnetars is studied. The density of such matter is low enough compared to the matter density at the inner crust or outer core region. Based on the relativistic version of semi-classical Thomas-Fermi-Dirac model in presence of strong quantizing magnetic field a formalism is developed to investigate this specific problem. The equation of state of such low density crustal matter is obtained by replacing the compressed atoms/ions by Wigner-Seitz cells with nonuniform electron density. The results are compared with other possible scenarios. The appearance of Thomas-Fermi induced electric charge within each Wigner-Seitz cell is also discussed.

  1. Critical current density and current distribution in field cooled superconducting disks

    NASA Astrophysics Data System (ADS)

    Bernstein, Pierre; Noudem, Jacques; Dupont, Louis

    2016-07-01

    Applications of bulk superconductors concern superconducting motors and generators, the levitation of vehicles, the generation of high magnetic fields with small size cryo-magnets, the shielding of magnetic fields and other applications. For all of them, it is essential to determine the critical current density, and to understand the effect of the shape and size of the bulks on the properties of interest. In this contribution, we show how the combination of levitation force and trapped field measurements allow one to determine the characteristics and the potential performances of superconducting disks using analytical modeling. As examples of applications we detail the effects of the magnetizing field and of the bulk sheet critical current density on the levitation force. An important result of the reported measurements is that in field-cooled samples, the shielding currents possibly do not flow along the whole thickness of the disks.

  2. Characterization of structural vibration: Field descriptors based on energy density and intensity

    NASA Astrophysics Data System (ADS)

    Linjama, Jukka

    Measurement of energy flow in acoustical and vibrational fields is usually based on the detection of one linear field quantity (e.g. sound pressure) and its spatial gradient, two transducers being used for the measurement. This report first reviews the quantities which can be obtained from the measurement of acoustical intensity with a two-microphone probe: intensity and the energy densities. A set of 'field descriptors', relative quantities giving a measure of propagating (active) character of the waves in the sound field, is proposed. These energetic quantities are based entirely on the transversal velocity measured and the gradient of that velocity, and are available when the two-transducer method of bending wave intensity is used. Examples of the energy densities and field descriptors measured in an aluminum plate are presented, and proposals for further work are given.

  3. Polarization fields and phase space densities in storage rings: Stroboscopic averaging and the ergodic theorem

    NASA Astrophysics Data System (ADS)

    Ellison, James A.; Heinemann, Klaus

    2007-10-01

    A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion coupled to the orbital dynamics is then defined, resulting in a class of spin-orbit motions which are important for storage rings. Phase space densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization fields and phase space densities. Due to the 2π time periodicity of the spin-orbit equations of motion the polarization field, taken at a sequence of increasing time values θ,θ+2π,θ+4π,…, gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the Birkhoff ergodic theorem, that under very general conditions the Cesàro averages of that sequence converge almost everywhere on phase space to a polarization field which is 2π-periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded. The machinery developed is also shown to work for the stroboscopic average of phase space densities associated with the orbital dynamics. This yields a large family of periodic phase space densities and, as an example, a quite detailed analysis of the so-called betatron motion in a storage ring is presented.

  4. The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma

    SciTech Connect

    Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B. Ghorbanalilu, M.

    2015-03-15

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of the electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.

  5. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  6. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  7. Dataset on coherent control of fields and induced currents in nonlinear multiphoton processes in a nanosphere

    PubMed Central

    McArthur, Duncan; Hourahine, Ben; Papoff, Francesco

    2015-01-01

    We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699

  8. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  9. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  10. Vacuum polarization of massive spinor and vector fields in the spacetime of a nonlinear black hole

    SciTech Connect

    Matyjasek, Jerzy

    2007-10-15

    Building on general formulas obtained from the approximate renormalized effective action, the stress-energy tensor of the quantized massive spinor and vector fields in the spacetime of the regular black hole is constructed. Such a black hole is the solution to the coupled system of nonlinear electrodynamics and general relativity. A detailed analytical and numerical analysis of the stress-energy tensor in the exterior region is presented. It is shown that for small values of the charge as well as large distances from the black hole the leading behavior of the stress-energy tensor is similar to that in the Reissner-Nordstroem geometry. Important differences appear when the inner horizon becomes close to the event horizon. A special emphasis is put on the extremal configuration and it is shown that the stress-energy tensor is regular inside the event horizon of the extremal black hole.

  11. Scalar field-perfect fluid correspondence and non-linear perturbation equations

    SciTech Connect

    Mainini, Roberto

    2008-07-15

    The properties of dynamical dark energy (DE) and, in particular, the possibility that it can form or contribute to stable inhomogeneities have been widely debated in recent literature, and also in association with a possible coupling between DE and dark matter (DM). In order to clarify this issue, in this paper we present a general framework for the study of the non-linear phases of structure formation, showing the equivalence of two possible descriptions of DE: a scalar field {phi} self-interacting through a potential V ({phi}) and a perfect fluid with an assigned negative equation of state w(a). This enables us to show that, in the presence of coupling, the mass of DE quanta may increase where large DM condensations are present, with the result that also DE may be involved in the clustering process.

  12. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  13. The density dependence of H-mode access at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Brunner, D.; Hubbard, A. E.; Labombard, B.; Rice, J.; Terry, J.; Tolman, E.; Cziegler, I.; Edlund, E.

    2016-10-01

    Experimental investigations on Alcator C-Mod explore the power requirements, and local edge threshold conditions, for H-mode transitions, while accessing reactor-relevant plasma densities and toroidal magnetic fields from 2.5T to 8T. As on many tokamaks, the power threshold for H-mode Pth does not increase monotonically with density, but actually rises significantly below a particular value of ne (the so-called `low-density limit' for H-mode). Such behavior can not be reproduced by current scaling laws used to project the power threshold for H-mode on future devices, which tend to assume a power law form, e.g. Pth BTxney . Considerably more complicated dependencies are suggested by experiments, which indicate that the low-density branch moves to higher values of density as BT is increased. We extend this examination to magnetic fields that meet and surpass the ITER design field, and interpret the results in the context of candidate models to explain the upturn in Pth at low density. Supported by USDoE Award DE-FC02-99ER54512.

  14. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    SciTech Connect

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  15. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction

  16. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  17. Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays

    SciTech Connect

    Wang, Lin; Gao, Fengmei; Chen, Shanliang; Yang, Weiyou; Li, Chengming

    2015-09-21

    The density of the nanowires is one of the key issues for their field emission (FE) properties of the nanoarrays, since it plays an important role on the electron emission sites and field screening effect. Here, we reported the nanowire-density-dependent FE properties of the n-type 3C-SiC nanoarrays. The highly oriented and large-scale SiC nanoarrays were grown on the 6H-SiC wafer via pyrolysis of polyureasilazane by adjusting the thicknesses of Au films used as the catalysts. The densities of the nanoarrays were tunable to be ∼2.9 × 10{sup 7}, ∼4.0 × 10{sup 7}, and ∼5.7 × 10{sup 7} nanowires/cm{sup 2} by controlling the Au film thicknesses of 50, 70, and 90 nm, respectively. The measured FE characteristics disclosed that the turn-on fields of the samples could be tailored to be of ∼1.79, 1.57, and 1.95 V/μm with the increase of the densities, suggesting that a suitable nanowire density could favor the enhanced electron emission from the SiC nanoarrays with improved emission sites and limited field screening effects.

  18. Aspects of flow visualization and density field monitoring of stratified flows

    NASA Astrophysics Data System (ADS)

    Davies, Peter A.

    Stratified flows which have considerable and wide-range engineering relevance, particularly in the areas of offshore and coastal engineering, and air and water modeling are reviewed. Particular attention is given to internal waves and solitons in estuaries, shallow seas, fjords, and the deep oceans; pollutant dispersion in the atmosphere and coastal waters; energy storage and management systems; ventilation and fire safety; saline intrusion; rotating machinery; velocity measurements based on nonintrusive techniques; density field data; velocity measurements based on intrusive techniques; and density field monitoring.

  19. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    NASA Astrophysics Data System (ADS)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-01-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  20. Electric field-induced second-order nonlinear optical effects in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Timurdogan, E.; Poulton, C. V.; Byrd, M. J.; Watts, M. R.

    2017-02-01

    The symmetry of crystalline silicon inhibits a second-order optical nonlinear susceptibility, χ(2), in complementary metal-oxide-semiconductor-compatible silicon photonic platforms. However, χ(2) is required for important processes such as phase-only modulation, second-harmonic generation (SHG) and sum/difference frequency generation. Here, we break the crystalline symmetry by applying direct-current fields across p-i-n junctions in silicon ridge waveguides and induce a χ(2) proportional to the large χ(3) of silicon. The obtained χ(2) is first used to perturb the permittivity (the direct-current Kerr effect) and achieve phase-only modulation. Second, the spatial distribution of χ(2) is altered by periodically patterning p-i-n junctions to quasi-phase-match pump and second-harmonic modes and realize SHG. We measure a maximum SHG efficiency of P2ω/Pω2 = 13 ± 0.5% W‑1 at λω = 2.29 µm and with field-induced χ(2) = 41 ± 1.5 pm V-1. We expect such field-induced χ(2) in silicon to lead to a new class of complex integrated devices such as carrier-envelope offset frequency stabilizers, terahertz generators, optical parametric oscillators and chirp-free modulators.

  1. Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption

    NASA Astrophysics Data System (ADS)

    Ding, Chenliang; Wei, Jingsong

    2016-01-01

    The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.

  2. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    NASA Astrophysics Data System (ADS)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-03-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  3. Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes

    SciTech Connect

    Buividovich, P. V.

    2011-02-15

    We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators. We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion parameters. A stochastic solution of the self-consistency conditions can be implemented as a 'memory' of the random process, so that some parameters of the process are estimated from its previous history. We illustrate this idea on the two-dimensional O(N) sigma model. The extension to non-Abelian lattice gauge theories is discussed.

  4. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  5. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  6. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    SciTech Connect

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  7. Structure and Stability of Magnetic Fields in Solar Active Region 12192 Based on the Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  8. High current density and low turn-on field from aligned Cd(OH)2 nanosheets

    NASA Astrophysics Data System (ADS)

    Bagal, Vivekanand S.; Patil, Girish P.; Deore, Amol B.; Baviskar, Prashant K.; Suryawanshi, Sachin R.; More, Mahendra A.; Chavan, Padmakar G.

    2016-04-01

    High current density of 9.8 mA/cm2 was drawn at an applied field of 4.1 V/μm from aligned Cd(OH)2 nanosheets and low turn-on field of 1.4 V/μm was found for the emission current density of 10 μA/cm2. The aligned Cd(OH)2 nanosheets were synthesized by CBD technique on Cadmium foil. To the best of our knowledge this is the first report on the field emission studies of Cd(OH)2 nanosheets. Simple synthesis route coupled with superior field emission properties indicate the possible use of Cd(OH)2 nanosheets for micro/nanoelectronic devices.

  9. Thermospheric topside neutral density, ionospheric anomalous electric field and resistivity measurements by active experiment at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Rietveld, Michael; Blagoveshchenskaya, Nataly; Yamazaki, Yosuke

    2016-07-01

    We have developed an active ground-based technique to estimate the topside thermospheric neutral density as well as topside ionospheric anomalous electric field and resistivity at EISCAT, combining the EISCAT UHF radar, HF heater and optics. When pumping the ionosphere the F-region electron temperature is significantly raised, increasing the upward plasma pressure gradient in the topside ionosphere, resulting in observed ion up-flow along the magnetic field line. Simultaneously, pump-induced suprathermal electrons produce artificial optical emissions. Using the modified ion-momentum equation, the thermospheric neutral density is estimated. Alternatively, using the MSIS model the field-aligned anomalous electric field is estimated. From the optical data the suprathermal electron flux is estimated, giving an estimate of the anomalous resistivity. Results from recent observations at EISCAT are presented.

  10. Information theory lateral density distribution for Earth inferred from global gravity field

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1981-01-01

    Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.

  11. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  12. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    SciTech Connect

    Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  13. Non-stationary and non-linear dispersive medium as external field which generates the squeezed states

    NASA Technical Reports Server (NTRS)

    Lobashov, A. A.; Mostepanenko, V. M.

    1993-01-01

    The theory of quantum effects in nonlinear dielectric media is developed. The nonlinear dielectric media is influenced by an external pumping field. The diagonalization of the Hamiltonian of a quantized field is obtained by the canonical Bogoliubov transformations. The transformations allow us to obtain the general expressions for the number of created photons and for the degree of squeezing. In the case of a plane pumping wave, for example, the results are calculated by using the zero order of the secular perturbation theory, with small parameters characterizing the medium nonlinearity. The Heisenberg equations of motion are obtained for non-stationary case and a commonly used Hamiltonian is derived from the first principles of quantum electrodynamics.

  14. Light scattering, field localization and local density of states in co-axial plasmonic nanowires.

    PubMed

    Lawrence, Nate; Dal Negro, Luca

    2010-07-19

    Based on analytical scattering theory, we develop a multipolar expansion method to investigate systematically the near-field enhancement, far-field scattering and Local Density of States (LDOS) spectra in concentric metal-insulator-metal (MIM) cylindrical nanostructures, or coaxial plasmonic nanowires (CPNs). We demonstrate that these structures support distinctive plasmonic resonances with strongly reduced scattering in the far-field zone and significant electric field enhancement in deep sub-wavelength dielectric regions. Additionally, we study systematically the effects of geometrical parameters and dielectric index on the near-field and far-field plasmonic response of CPNs in the visible and near infrared spectral range. Finally, we demonstrate that CPNs provide a convenient approach for engineering strong (almost three orders of magnitude) LDOS enhancement in sub-wavelength dielectric gaps at multiple frequencies. These results enable the engineering of multiband optical detectors and CPNs-based light emitters with simultaneously enhanced excitation and emission rates for nanoplasmonics.

  15. Cosmological magnetic field: a fossil of density perturbations in the early universe.

    PubMed

    Ichiki, Kiyotomo; Takahashi, Keitaro; Ohno, Hiroshi; Hanayama, Hidekazu; Sugiyama, Naoshi

    2006-02-10

    The origin of the substantial magnetic fields that are found in galaxies and on even larger scales, such as in clusters of galaxies, is yet unclear. If the second-order couplings between photons and electrons are considered, then cosmological density fluctuations, which explain the large-scale structure of the universe, can also produce magnetic fields on cosmological scales before the epoch of recombination. By evaluating the power spectrum of these cosmological magnetic fields on a range of scales, we show here that magnetic fields of 10(-18.1) gauss are generated at a 1-megaparsec scale and can be even stronger at smaller scales (10(-14.1) gauss at 10 kiloparsecs). These fields are large enough to seed magnetic fields in galaxies and may therefore have affected primordial star formation in the early universe.

  16. Spectral Element Method Simulation of Linear and Nonlinear Electromagnetic Field in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Ma

    The goal of this dissertation is to implement the spectral element method to calculate the electromagnetic properties of various semiconductor nano-structures, including photonic crystal, photonic crystal slab, finite size photonic crystal block, nano dielectric sphere. The linear electromagnetic characteristics, such as band structure and scattering properties, can be calculated by this method with high accuracy. In addition, I have explored the application of the spectral element method in nonlinear and quantum optics. The effort will focus on second harmonic generation and quantum dot nonlinear dynamics. The electromagnetic field can be simulated in both frequency domain and time domain. Each method has different application for research and engineering. In this dissertation, the first half of the dissertation discusses the frequency domain solver, and the second half of the dissertation discusses the time domain solver. For frequency domain simulation, the basic equation is the second order vector Helmholtz equation of the electric field. This method is implemented to calculate the band structure of photonic crystals consisting of dielectric material as well as metallic materials. Because the photonic crystal is periodic, only one unit cell need to be simulated in the computational domain, and a periodic boundary condition is applied. The spectral accuracy is inspected. Adding the radiation boundary condition at top and bottom of the computational region, the scattering properties of photonic crystal slab can be calculated. For multiple layers photonic crystal slab, the block-Thomas algorithm is used to increase the efficiency of the calculation. When the simulated photonic crystals are finite size, unlike an infinitely periodic system, the periodic boundary condition does not apply. In order to increase the efficiency of the simulation, the domain decomposition method is implemented. The second harmonic generation, which is a kind of nonlinear optical effect

  17. Density-functional study of model bidisperse ferrocolloids in an external magnetic field.

    PubMed

    Range, Gabriel M; Klapp, Sabine H L

    2005-06-08

    We present phase diagrams of a model bidisperse ferrocolloid consisting of a binary mixture of dipolar hard spheres (DHSs) under the influence of an external magnetic field. The dipole moments of the particles are chosen proportional to the particle volume to mimic real ferrocolloids, and we focus on dipole-dominated systems where isotropic attractive interactions are absent. Our results are based on density-functional theory in the modified mean-field (MMF) approximation. For one-component DHS fluids in external fields, and for corresponding mixtures dominated by one of the components, MMF theory predicts the tricritical point of the transition between an isotropic gas and a ferromagnetic liquid occurring at zero field to be changed into a critical point separating two magnetically ordered phases of different density. The corresponding critical temperature displays a nonmonotonic dependence on the field strength. Completely different behavior is found for the critical temperature related to the demixing phase transitions appearing in strongly asymmetric mixtures [G. M. Range and S. H. L. Klapp, Phys. Rev. E 70, 061407 (2004)]. For such systems, we find a monotonic decrease of the demixing critical temperature with increasing field. The field strength dependence of the critical temperature can therefore be tuned between nonmonotonic and monotonic behaviors just by changing the composition of the mixture--e.g., by adjusting the chemical potentials. This allows us to efficiently control the influence of external magnetic fields on the phase behavior over a large temperature interval.

  18. Density-functional study of model bidisperse ferrocolloids in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Range, Gabriel M.; Klapp, Sabine H. L.

    2005-06-01

    We present phase diagrams of a model bidisperse ferrocolloid consisting of a binary mixture of dipolar hard spheres (DHSs) under the influence of an external magnetic field. The dipole moments of the particles are chosen proportional to the particle volume to mimic real ferrocolloids, and we focus on dipole-dominated systems where isotropic attractive interactions are absent. Our results are based on density-functional theory in the modified mean-field (MMF) approximation. For one-component DHS fluids in external fields, and for corresponding mixtures dominated by one of the components, MMF theory predicts the tricritical point of the transition between an isotropic gas and a ferromagnetic liquid occurring at zero field to be changed into a critical point separating two magnetically ordered phases of different density. The corresponding critical temperature displays a nonmonotonic dependence on the field strength. Completely different behavior is found for the critical temperature related to the demixing phase transitions appearing in strongly asymmetric mixtures [G. M. Range and S. H. L. Klapp, Phys. Rev. E 70, 061407 (2004)]. For such systems, we find a monotonic decrease of the demixing critical temperature with increasing field. The field strength dependence of the critical temperature can therefore be tuned between nonmonotonic and monotonic behaviors just by changing the composition of the mixture—e.g., by adjusting the chemical potentials. This allows us to efficiently control the influence of external magnetic fields on the phase behavior over a large temperature interval.

  19. Photochemical response of the nighttime mesosphere to electric field heating—Onset of electron density enhancements

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2016-05-01

    Onsets of electron density enhancements in the upper nighttime mesosphere produced by electric field heating of electrons are examined using a photochemical model that accounts for 29 dynamic species via a set of 156 reactions. Physical mechanisms are identified which result in electron density enhancements that continuously increase for up to several seconds after electric field heating, establishing the conditions under which early VLF scattering is either "fast" (<20 ms) or slower (>20 ms, including "slow," ≥500 ms). During heating, O- ions are produced by heterolysis, e- + O2 → e- + O- + O+, and dissociative attachment, e-+ O2 → O- + O. Following heating, a significant proportion of O- ions associatively detach with molecular oxygen, O- + O2 → O3 + e-, and atomic oxygen, O- + O → O2 + e-. If enough O- ions are produced during heating such that O- detachment exceeds electron loss (predominantly attachment, e- + O3 → O2- + O, and/or electron-ion recombination), electron densities will continue to increase after heating has ended. Consequently, the total risetime of electron density enhancements produced by electric field heating is controlled by the duration of the electric field heating and (in some cases) the effects of O- detachment following heating.

  20. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  1. Density limit studies in the tokamak and the reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Spizzo, G.; Pucella, G.; Tudisco, O.; Zuin, M.; Agostini, M.; Alessi, E.; Auriemma, F.; Bin, W.; Buratti, P.; Carraro, L.; Cavazzana, R.; Ciaccio, G.; De Masi, G.; Esposito, B.; Galperti, C.; Garavaglia, S.; Granucci, G.; Marinucci, M.; Marrelli, L.; Martines, E.; Mazzotta, C.; Minelli, D.; Moro, A.; Puiatti, M. E.; Scarin, P.; Sozzi, C.; Spolaore, M.; Schmitz, O.; Vianello, N.; White, R. B.

    2015-04-01

    The ITER scenarios and the project of DEMO involve stable operation above the Greenwald density, which justifies efforts to understand and overcome the density limit, this last observed as a disruptive termination of tokamak discharges and a thermal crash (with no disruption) of stellarator and reversed-field pinch (RFP) ones. Both in the tokamak and the RFP, new findings show that the high density limit is not governed by a unique, theoretically well-determined physical phenomenon, but by a combination of complex mechanisms involving two-fluid effects, electrostatic plasma response to magnetic islands and plasma-wall interaction. In this paper we will show new evidence challenging the traditional picture of the ‘Greenwald limit’, in particular with reference to the role of thermal instabilities and the edge radial electric field Er in the development of this limit.

  2. Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Smerdon, J. E.; Kaplan, A.; Tolwinski-Ward, S. E.; González-Rouco, J. F.

    2014-12-01

    Climate field reconstructions (CFRs) of the global annual surface air temperature (SAT) field and associated global area-weighted mean annual temperature (GMAT) are derived in a collection of pseudoproxy experiments for the past millennium. Pseudoproxies are modeled from temperature (T), precipitation (P), T+P, and VS-Lite (VSL), a nonlinear and multivariate proxy system model for tree ring widths. Spatial patterns of reconstruction skill and spectral bias for the T+P and VSL-derived CFRs are similar to those previously shown using temperature-only pseudoproxies but demonstrate overall degraded skill and spectral bias for SAT reconstruction. Analysis of GMAT spectra nevertheless suggests that the true GMAT frequency spectrum is resolved by those pseudoproxies (T, T+P, and VSL) that contain some temperature information. The results suggest that mixed temperature and moisture-responding paleoclimate data may produce actual GMAT reconstructions with skill, error, and spectral characteristics like those expected from univariate and linear temperature responders, but spatially resolved CFR results should be analyzed cautiously.

  3. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.

    PubMed

    Theunissen, F E; Sen, K; Doupe, A J

    2000-03-15

    The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli.

  4. The quench map in an integrable classical field theory: nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Caudrelier, Vincent; Doyon, Benjamin

    2016-11-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-Bäcklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.

  5. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  6. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  7. Internal Radiation Field in the Nonlinear Transfer Problem for a One-Dimensional Anisotropic Medium. II

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2016-06-01

    It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.

  8. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  9. Theory of small-scale density and electric field fluctuations in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1992-01-01

    Recently, it has been reported that small-scale (lambda about 0.1-2 km) density irregularities occur during 100-Hz electric field bursts in the nightside ionosphere of Venus. This paper provides a detailed analysis of the lower-hybrid-drift instability as a mechanism to generate the observed irregularities. A fully electromagnetic theory is developed that is relevant to the finite beta plasma in Venus's ionosphere and includes collisional effects (e.g., electron-ion, electron-neutral, and ion-neutral collisions). The key features of the analysis that favor this instability are the following: (1) it is a flute mode and propagates orthogonal to the ambient magnetic field; (2) it is a relatively short wavelength mode and the Doppler-shifted frequency can be greater than about 100 Hz; (3) it can produce both electric field and density fluctuations, as well as magnetic field fluctuations in a finite beta plasma; and (4) it is most unstable in low-beta plasmas so that it is likely to occur in the low-density, high-magnetic-field ionospheric holes. These features are consistent with observational results.

  10. Field-induced spin-density wave beyond hidden order in URu2Si2

    PubMed Central

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-01-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations. PMID:27762260

  11. Potential, velocity, and density fields from sparse and noisy redshift-distance samples - Method

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Faber, Sandra M.

    1990-01-01

    A method for recovering the three-dimensional potential, velocity, and density fields from large-scale redshift-distance samples is described. Galaxies are taken as tracers of the velocity field, not of the mass. The density field and the initial conditions are calculated using an iterative procedure that applies the no-vorticity assumption at an initial time and uses the Zel'dovich approximation to relate initial and final positions of particles on a grid. The method is tested using a cosmological N-body simulation 'observed' at the positions of real galaxies in a redshift-distance sample, taking into account their distance measurement errors. Malmquist bias and other systematic and statistical errors are extensively explored using both analytical techniques and Monte Carlo simulations.

  12. Field-induced spin-density wave beyond hidden order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-10-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.

  13. Laboratory study of magnetic reconnection with a guide field and density asymmetry across the current sheet

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Yoo, J.; Ji, H.; Jara-Almonte, J.; Fox, W.; Yamada, M.

    2016-10-01

    It has been known that the diamagnetic drift can stabilize the tearing mode, which is used to explain incomplete reconnection during sawtooth oscillations in Tokamaks. Swisdak et al. propose that reconnection with a strong guide field and pressure asymmetry is suppressed when the relative drift speed between ions and electrons along the outflow direction exceeds the upstream Alfvén speed. Swisdak's argument has been supported by space observations, but the exact mechanism of suppression has not been conclusively verified. We will conduct experiments in MRX to study suppression of reconnection with a strong guide field and density asymmetry. We will apply a guide field strength of about 2-3 times of the reconnecting field and achieve a density ratio up to 10. By systematically changing the guide field strength, we will investigate how the electron diamagnetic drift can affect profiles of the magnetic/electric field and patterns of the ion/electron flow. Finally, we will study how these modified field profiles and flow patterns contribute to reduction of the reconnection rate. This work is supported by DOE Contract No. DE-AC0209CH11466.

  14. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  15. Thermosolutal Marangoni effects on the inclined flow of a binary liquid with variable density. II. Nonlinear analysis and simulations

    NASA Astrophysics Data System (ADS)

    D'Alessio, S. J. D.; Pascal, J. P.

    2016-12-01

    A weighted residual approximation is used to derive a reduced model to analyze the stability of a binary liquid film flowing down a heated incline discussed in Part I. Nonlinear simulations are carried out and reveal a permanent wave structure arising in unstable flow configurations. In addition, a weakly nonlinear analysis is performed and yields a Benney-type equation which has been solved both analytically and numerically. Good agreement between the linear stability analysis, weighted residual model, and weakly nonlinear analysis is found.

  16. Ultrafast Relaxation Dynamics of a High Density Electron-Hole Plasma in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Reitze, Dave H.; Kono, Junichiro; Belyanin, Alexey; Solomon, Glenn; McGill, Steve

    2009-03-01

    We study the inter-Landau level relaxation dynamics of a dense electron-hole plasma in high magnetic fields (up to 31 T). Intense 150 fs pump pulses create carrier densities approaching 10^13/cm^2 in In0.2Ga0.8As/GaAs multiple quantum wells. Relaxation dynamics are probed as a function of Landau level (LL) and magnetic field using time-resolved transient absorption (TRTA) and time-resolved photoluminescence (TRPL), which provide complementary information about the relaxation processes. Manifestly non-exponential decays of the TRTA signals are observed at high fields (above 15 T). TRPL emissions measured in the plane of the wells reveal the presence of multiple emission bursts from the LLs at high magnetic fields, suggesting a complicated relaxation process mediated by the field whereby carriers get trapped in a specific LL, emit PL though recombination, and then `reload' as the carriers relax down to the previously occupied LLs.

  17. Field-induced spin-density wave in (TMTSF)2NO3

    NASA Astrophysics Data System (ADS)

    Vignolles, David; Audouard, Alain; Nardone, Marc; Brossard, Luc; Bouguessa, Sabrina; Fabre, Jean-Marc

    2005-01-01

    Interlayer magnetoresistance of the Bechgaard salt (TMTSF)2NO3 is investigated up to 50 T under pressures of a few kilobars. This compound, the Fermi surface of which is quasi-two-dimensional at low temperature, is a semimetal under pressure. Nevertheless, a field-induced spin-density wave is evidenced at 8.5 kbars above ˜20T . This state is characterized by a drastically different spectrum of the quantum oscillations compared to the low-pressure spin-density wave state.

  18. Second-order solution for determining density and velocity fields of galaxies

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt

    1993-01-01

    In this Letter, I use second-order Lagrangian perturbation theory to calculate an analytical expression relating density to velocity in a gravitating system. This solution can be used to compare peculiar velocity field measurements with observations of large-scale structure. The predictions of both linear theory and second-order theory are compared with the results of N-body simulations. While linear theory systematically overestimates the velocity flows in high-density regions, the second-order corrections calculated herein remove this systematic error.

  19. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects

    NASA Astrophysics Data System (ADS)

    Mustafa, M.; Khan, Junaid Ahmad

    2015-07-01

    Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

  20. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE PAGES

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  1. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    SciTech Connect

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along the $1\\bar{1}0$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.

  2. Tomographic reconstruction of three-dimensional density fields using laser speckle photography and laser interferometry projections

    NASA Astrophysics Data System (ADS)

    Ko, Hanseo

    The reconstruction accuracies of Fourier convolution (FC) and algebraic reconstruction technique (ART) are examined for laser speckle photography and laser interferometry. Computer synthesized phantoms are used to calculate asymmetric density fields for limited cases of 5 and 3 projections. To simulate experimental uncertainties, random noise levels are imposed on projected data before they are used for reconstruction. Experiments are also performed for a speckle photography system, a Mach- Zehnder interferometer, and an oxygen analyzer for a half-blocked nozzle and a two-hole nozzle to measure asymmetric helium density fields. Reconstructed density fields are calculated by the FC and the ART from projected data of the speckle photography and the interferometry. The reconstructed fields are compared with the results of the directly measured data using oxygen analyzer. The non-algebraic ART requires a modification for its use for laser speckle photography. Both the ART and the FC have been used for both non- algebraic speckle photography and algebraic interferometry. The present ART method shows a significant improvement in the reconstruction accuracy over the existing Fourier convolution (FC) method.

  3. On Density and Velocity Fields and beta from the IRAS PSCZ Survey

    NASA Astrophysics Data System (ADS)

    Schmoldt, Inga M.; Saar, Veikko; Saha, Prasenjit; Branchini, E.; Efstathiou, G. P.; Frenk, C. S.; Keeble, O.; Maddox, S.; McMahon, R.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; Sutherland, W. J.; Tadros, H.; White, S. D. M.

    1999-09-01

    We present a version of the Fourier-Bessel method first introduced by Fisher and coworkers and Zaroubi and coworkers with two extensions: (1) we amend the formalism to allow a generic galaxy weight that can be constant, rather than the more conventional overweighting of galaxies at high distances, and (2) we correct for the masked zones by extrapolation of Fourier-Bessel modes rather than by cloning from the galaxy distribution in neighboring regions. We test the procedure extensively on N-body simulations and find that it gives generally unbiased results but that the reconstructed velocities tend to be overpredicted in high-density regions. Applying the formalism to the PSCz redshift catalog, we find that beta=0.7+/-0.5 from a comparison of the reconstructed Local Group velocity to the cosmic microwave background dipole. From an anisotropy test of the velocity field, we find that beta=1 cold dark matter models normalized to the current cluster abundance can be excluded with 90% confidence. The density and velocity fields reconstructed agree with the fields found by Branchini and coworkers on most points. We find a back infall into the Great Attractor region (Hydra-Centaurus region), but tests suggest that this may be an artifact. We identify all the major clusters in our density field and confirm the existence of some previously identified possible ones.

  4. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  5. A density spike on astrophysical scales from an N-field waterfall transition

    NASA Astrophysics Data System (ADS)

    Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.

    2015-09-01

    Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.

  6. Non-destructive, in-field determination of wood density in tropical forests

    NASA Astrophysics Data System (ADS)

    Torello-Raventos, Mireia; Page, Tony; Ford, Andrew; Metcalfe, Dan; Lloyd, Jon; Bird, Michael

    2014-05-01

    Tropical forests are a significant store of terrestrial carbon1,2,3, and quantification of the above-ground carbon stocks provides a way to improve understanding of vegetation dynamics in the face of climate change. The determination of carbon stocks in tropical forests usually relies on a combination of remote sensing data and allometric models that predict tree biomass4, with extensive requirements for the collection of field data. Tropical forests usually contain a high diversity of tree species, with a wide range of wood densities and the wood density of tropical trees may vary considerably across their diameter5,6. In addition, field core extraction and laboratory processing for wood density determination are time consuming and costly. In this study, wood density has been indirectly determined by a novel ultrasonic, field-based method across different tropical forests types and climates through Australia, Vanuatu and Papua New Guinea and compared against laboratory wood density determinations on the same samples. The data set comprises 1500 measurements on living trees to study the intraspecific and interspecific variation of wood density across tree species ranging from soft to hardwoods and also along the stem of standing trees. Regression analysis suggests a positive relationship between ultrasonic velocity and intraspecific and interspecific variation of wood density indicating a potential use for this technique for carbon inventory development in tropical forests The technique may be particularly valuable for directly measuring the wood density of large trees, which can contain one third of the total proportion of above ground carbon biomass in tropical forests7 and are particularly onerous to core to the pith to measure average wood density across the whole stem by traditional techniques. This study will in the development of predictive relationships between wood density and environmental variables to infer carbon stocks at local and global scale through

  7. Field-Line Tracing from Locations of Polar Cap Neutral Density Anomalies to the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.

    2015-12-01

    Localized neutral density enhancement in the polar cap above 70o magnetic latitude have been frequently observed during major geomagnetic storms. It has been suggested that energy input responsible for producing localized neutral density spikes is the dominant energy deposition in the polar cap. To better understand the origin of polar cap neutral density anomalies (PCNDAs) we trace magnetic field lines from the polar cap region at about 400 km to the magnetosphere using the data-based Tsyganenko magnetic field model TS05 [Tsyganenko and Sitnov, 2005] for the periods when CHAMP detected PCNDAs during major magnetic storms with the minimum Dst < -100 nT. The magnetopause boundary is specified according to the three-dimensional asymmetric magnetopause model recently developed by Lin et al. [2010]. The closest distance to the magnetopause along the traced field line path is determined as a function of time. The tracing results indicate that depending on Dst and locations PCNDAs could be connected through magnetic field lines either to the nightside magnetopause or to the magnetotail lobe. For some events field lines originating from a portion of the PCNDA region are found to cross the equatorial plane in the near earth tail region. We discuss the results to help elucidate the coupling between the magnetosphere and the thermosphere and its roles in producing polar cap density anomalies. ReferencesLin, R. L., X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong (2010), A three-dimensional asymmetric magnetopause model, J. Geophys. Res., 115, A04207, doi:10.1029/2009JA014235.Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.

  8. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    NASA Astrophysics Data System (ADS)

    Shi, Pengpeng; Jin, Ke; Zheng, Xiaojing

    2016-04-01

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress-strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress-magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  9. Search for long-living topological solutions of the nonlinear ϕ4 field theory

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Alexander E.; Lizunova, Mariya A.

    2017-03-01

    We look for long-living topological solutions of classical nonlinear (1 +1 )-dimensional φ4 field theory. To that effect we use the well-known cut-and-match method. In this framework, new long-living states are obtained in both topological sectors. In particular, in one case a highly excited state of a kink is found. We discover several ways of energy reset. In addition to the expected emission of wave packets (with small amplitude), for some selected initial conditions the production of kink-antikink pairs results in a large energy reset. Also, the topological number of a kink in the central region changes in the contrast of conserving full topological number. At lower excitation energies there is a long-living excited vibrational state of the kink; this phenomenon is the final stage of all considered initial states. Over time this excited state of the kink changes to a well-known linearized solution—a discrete kink excitation mode. This method yields a qualitatively new way to describe the large-amplitude bion, which was detected earlier in the kink-scattering processes in the nontopological sector.

  10. Cosmological Inflation with Multiple Fields and the Theory of Density Fluctuations

    NASA Astrophysics Data System (ADS)

    van Tent, B. J. W.

    2002-09-01

    Inflation is a stage of extremely rapid expansion in the very early universe. It was proposed to solve a number of problems in the standard Big Bang theory. In particular it others an explanation for the origin of structures like (clusters of) galaxies on the one hand (by generating small density fluctuations that act as gravitational seeds), and for the largescale homogeneity of the universe on the other hand (because of the enormous expansion). Inflation is driven by one or more scalar fields with an appropriate potential. In this thesis we develop an analytical formalism to describe the generation of density fluctuations during inflation with multiple scalar fields. We allow these fields to live on a non-trivial (curved) field manifold, as is often the case in high-energy theories. We also treat the evolution of the fluctuations after inflation, until the time of recombination when the cosmic microwave background radiation was formed. Using our formalism observations of the CMBR can then be used to set constraints on the parameters in (multiple-field) inflation models. In more detail this thesis covers the following topics. After introductory chapters on cosmology in general and single-field inflation, the theory of inflation with multiple fields and a general (non-trivial) field metric is derived. In particular we introduce a basis in field space that is induced by the background dynamics and allows a clear distinction between effectively single-field and truly multiple-field effects. The important slow-roll approximation is generalized to the case of multiple fields. Next we derive how scalar and tensor fluctuations are generated from a quantum origin during multiple-field inflation, paying special attention to the transition that occurs when a perturbation mode crosses the Hubble scale. Using some simplifying assumptions the evolution of both adiabatic and isocurvature perturbation modes after inflation is treated. The final results are expressions for the

  11. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering

    NASA Astrophysics Data System (ADS)

    Sharaborin, D. K.; Dulin, V. M.; Lobasov, A. S.; Markovich, D. M.

    2016-10-01

    This paper presents an evaluation of the density distribution in swirling turbulent premixed flames. The measurement principle is based on registration of spontaneous Raman scattering, when the reacting gas flow is illuminated by a laser sheet. Evaluation of 1D and 2D distributions of density and temperature were performed in a laminar Bunsen flame as a test case for validation of experimental technique. Time-averaged 2D images of the scattering during rovibronic transitions of nitrogen molecules were captured in turbulent premixed low-swirl and high-swirl (Re = 5000) propane-air flames in a wide range of equivalence ratio. The obtained density fields are useful for better understanding of heat and mass transfer in swirl-stabilized turbulent flames and for validation of CFD results.

  12. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    PubMed

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  13. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities.

    PubMed

    Stam, Rianne

    2014-06-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices.

  14. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  15. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  16. E-Field Conditioning and Charging Memory in Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Brunson, Jerilyn; Dennison, J. R.

    2006-10-01

    Accurate measurement of electronic properties in extremely high resistivity materials must take into account a number of ways in which the measurements influence the materials properties being probed. These can include the strength of the applied electric field, the number of successive exposures to an applied field, the duration of exposure, and recovery time allowed during exposure cycles. An extensive series of constant voltage measurements of the resistivity of low density polyethylene samples were taken to determine consistency of measured resistivity results, the effects of varying electric field amplitude, and the extent of charging memory. Higher electric fields were found to lower the resistivity, as predicted by hopping conductivity models of polymers. Measurements at a particular voltage showed that the dark current resistivity approach successively lower values with repeated exposure.

  17. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  18. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  19. Ideal charge-density-wave order in the high-field state of superconducting YBCO.

    PubMed

    Jang, H; Lee, W-S; Nojiri, H; Matsuzawa, S; Yasumura, H; Nie, L; Maharaj, A V; Gerber, S; Liu, Y-J; Mehta, A; Bonn, D A; Liang, R; Hardy, W N; Burns, C A; Islam, Z; Song, S; Hastings, J; Devereaux, T P; Shen, Z-X; Kivelson, S A; Kao, C-C; Zhu, D; Lee, J-S

    2016-12-20

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ([Formula: see text]) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to [Formula: see text], given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an "ideal" disorder-free cuprate.

  20. Megagauss field generation for high-energy-density plasma science experiments.

    SciTech Connect

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-10-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

  1. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    DOE PAGES

    Jang, H.; Lee, W. -S.; Nojiri, H.; ...

    2016-12-05

    Here, the existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well asmore » significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less

  2. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    SciTech Connect

    Jang, H.; Lee, W. -S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y. -J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z. -X.; Kivelson, S. A.; Kao, C. -C.; Zhu, D.; Lee, J. -S.

    2016-12-05

    Here, the existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.

  3. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    PubMed Central

    Jang, H.; Lee, W.-S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y.-J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z.-X.; Kivelson, S. A.; Kao, C.-C.; Zhu, D.; Lee, J.-S.

    2016-01-01

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate. PMID:27930313

  4. Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family

    NASA Astrophysics Data System (ADS)

    Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.

    1994-10-01

    We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.

  5. Current density and poloidal magnetic field for toroidal elliptic plasmas with triangularity

    SciTech Connect

    Martin, P.; Haines, M.G.; Castro, E.

    2005-08-15

    Changes in the poloidal magnetic field around a tokamak magnetic surface due to different values of triangularity and ellipticity are analyzed in this paper. The treatment here presented allows the determination of the poloidal magnetic field from knowledge of the toroidal current density. Different profiles of these currents are studied. Improvements in the analytic forms of the magnetic surfaces have also been found. The treatment has been performed using a recent published system of coordinates. Suitable analytic equations have been used for the elliptic magnetic surfaces with triangularity and Shafranov shift.

  6. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  7. The VIMOS Public Extragalactic Redshift Survey. Reconstruction of the redshift-space galaxy density field&

    NASA Astrophysics Data System (ADS)

    Granett, B. R.; Branchini, E.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.

    2015-11-01

    Aims: Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the keyparameters that describe the galaxy density field and its spatial correlations in redshift space. Methods: We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results: We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at redshift 0.7. Appendices are available in electronic form at http://www.aanda.org

  8. Regeneration and control of human fibroblast cell density by intermittently delivered pulsed electric fields.

    PubMed

    Golberg, Alexander; Bei, Marianna; Sheridan, Robert L; Yarmush, Martin L

    2013-06-01

    Proliferative scarring is a human disease with neither available effective treatment nor relevant animal model. One of the hypotheses for scar formation involves deregulation of fibroblast signaling and delayed apoptosis. Here, we introduce a new chemical-free method for fibroblast density control in culture by intermittently delivered pulsed electric fields (IDPEF), which cause irreversible damage to cell membranes. Using 5-100 pulses with electric field strength of 150 V/mm, pulse duration 70 µs, and frequency of 1 Hz, we investigated the effects of PEF application on growth, death, and regeneration of normal human dermal fibroblasts in culture. We found that the fraction of fibroblasts that survive depends on the number of pulses applied and follows a Weibull distribution. We have successfully developed an IDPEF protocol that controls fibroblasts density in culture. Specifically, through application of IDPEF every 72 h for 12 days, we maintain a normal human dermal fibroblast density in the 3.1 ± 0.2 × 10(5) -1.4 ± 0.2 × 10(5)  cell/mL range. Our results suggest that IDPEFs may prove useful as a non-chemical method for fibroblast density control in human wound healing.

  9. Numerical and exact density functional studies of light atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Wuming

    2005-11-01

    Although current density functional theory (CDFT) was proposed almost two decades ago, rather little progress has been made in development and application of this theory, in contrast to many successful applications that ordinary density functional theory (DFT) has enjoyed. In parallel with early DFT exploration, we have made extensive studies on atom-like systems in an external magnetic field. The objectives are to advance our comparative understanding of the DFT and CDFT descriptions of such systems. A subsidiary objective is to provide extensive data on light atoms in high fields, notably those of astrophysical interest. To address the cylindrical symmetry induced by the external field, an efficient, systematic way to construct high quality basis sets within anisotropic Gaussians is provided. Using such basis sets, we did extensive Hartree-Fock and DFT calculations on helium through carbon atoms in a wide range of B fields. The applicability and limitations of modern DFT and CDFT functionals for atomic systems in such fields is analyzed. An exact soluble two-electron model system, Hooke's atom (HA), is studied in detail. Analogously with known results for zero field, we developed exact analytical solutions for some specific confinement and field strengths. Exact DFT and CDFT quantities for the HA in B fields, specifically exchange and correlation functionals were obtained and compared with results from approximate functionals. Major qualitative differences were identified. A major overall conclusion of the work is that the vorticity variable, introduced in CDFT to ensure gauge invariance, is rather difficult to handle computationally. The difficulty is severe enough to suggest that it might be profitable to seek an alternative gauge-invariance formulation of the current-dependence in DFT.

  10. Axonal and dendritic density field estimation from incomplete single-slice neuronal reconstructions

    PubMed Central

    van Pelt, Jaap; van Ooyen, Arjen; Uylings, Harry B. M.

    2014-01-01

    Neuronal information processing in cortical networks critically depends on the organization of synaptic connectivity. Synaptic connections can form when axons and dendrites come in close proximity of each other. The spatial innervation of neuronal arborizations can be described by their axonal and dendritic density fields. Recently we showed that potential locations of synapses between neurons can be estimated from their overlapping axonal and dendritic density fields. However, deriving density fields from single-slice neuronal reconstructions is hampered by incompleteness because of cut branches. Here, we describe a method for recovering the lost axonal and dendritic mass. This so-called completion method is based on an estimation of the mass inside the slice and an extrapolation to the space outside the slice, assuming axial symmetry in the mass distribution. We validated the method using a set of neurons generated with our NETMORPH simulator. The model-generated neurons were artificially sliced and subsequently recovered by the completion method. Depending on slice thickness and arbor extent, branches that have lost their outside parents (orphan branches) may occur inside the slice. Not connected anymore to the contiguous structure of the sliced neuron, orphan branches result in an underestimation of neurite mass. For 300 μm thick slices, however, the validation showed a full recovery of dendritic and an almost full recovery of axonal mass. The completion method was applied to three experimental data sets of reconstructed rat cortical L2/3 pyramidal neurons. The results showed that in 300 μm thick slices intracortical axons lost about 50% and dendrites about 16% of their mass. The completion method can be applied to single-slice reconstructions as long as axial symmetry can be assumed in the mass distribution. This opens up the possibility of using incomplete neuronal reconstructions from open-access data bases to determine population mean mass density fields

  11. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Astrophysics Data System (ADS)

    Benson, R. F.

    1985-06-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  12. Atomic density functional and diagram of structures in the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  13. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  14. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    SciTech Connect

    Benson, R.F.

    1985-06-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated. 15 references.

  15. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    SciTech Connect

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references.

  16. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model

  17. Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.

    2009-01-01

    DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients

  18. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field

    SciTech Connect

    Mehdian, H. Kargarian, A.; Hajisharifi, K.

    2015-06-15

    In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.

  19. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x

    NASA Astrophysics Data System (ADS)

    Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. V.; Forgan, E. M.; Hayden, S. M.

    2016-05-01

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ~0.123, we find that a field (B~10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B~15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.

  20. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x.

    PubMed

    Chang, J; Blackburn, E; Ivashko, O; Holmes, A T; Christensen, N B; Hücker, M; Liang, Ruixing; Bonn, D A; Hardy, W N; Rütt, U; Zimmermann, M V; Forgan, E M; Hayden, S M

    2016-05-05

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.

  1. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x

    PubMed Central

    Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. v.; Forgan, E. M.; Hayden, S M

    2016-01-01

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested. PMID:27146255

  2. Effect of lung and target density on small-field dose coverage and PTV definition

    SciTech Connect

    Higgins, Patrick D. Ehler, Eric D.; Cho, Lawrence C.; Dusenbery, Kathryn E.

    2015-04-01

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy was delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.

  3. Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.

    2002-12-01

    The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing

  4. The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field

    NASA Technical Reports Server (NTRS)

    Anderson, Jennifer L. B.; Schultz, P. H.

    2005-01-01

    The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.

  5. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  6. Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model

    NASA Astrophysics Data System (ADS)

    Helbing, D.; Moussaid, M.

    2009-06-01

    Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.

  7. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  8. Anomalous Magnetic Field Dependence of Charge Carrier Density in Ferromagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Kuivalainen, P.; Sinkkonen, J.; Stubb, T.

    1980-01-01

    This paper reports calculations of temperature and magnetic field dependent thermal and optical activation energies of a shallow donor state and the energy of the conduction band edge in a ferromagnetic semiconductor. The formation of the bound magnetic polaron (BMP), i.e., a magnetically polarized cluster associated with the donor electron, is taken into account. The solution of a set of coupled equations for the energy of a donor electron and for the local non-uniform magnetization around the donor center indicates that the activation energies have their maxima near the Curie temperature and decrease with the application of a magnetic field. This decrease leads to a strong magnetic field dependence of the charge carrier density nc explains well the giant negative magnetoresistance of EuSe observed experimentally at low temperatures.

  9. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  10. Scaling laws for the critical current density of NbN films in high magnetic fields

    SciTech Connect

    Hampshire, D.P. . Dept. of Physics); Gray, K.E.; Kampwirth, R.T. )

    1992-08-01

    We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean's model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.

  11. Scaling laws for the critical current density of NbN films in high magnetic fields

    SciTech Connect

    Hampshire, D.P.; Gray, K.E.; Kampwirth, R.T.

    1992-08-01

    We have measured the critical current density (Jc) of two NbN films (500 {Angstrom} and 1550 {Angstrom} thick) as a function of temperature in magnetic fields up to 25 Tesla using transport measurements. In both films, the functional form of the volume pinning force F{sub p} obeys the Fietz - Webb scaling law throughout the entire magnetic field and temperature range such that: F{sub p}=J{sub c} {times} B= {alpha}B{sub c2}{sup m}(T)b{sup {1/2}} (1-b){sup 2} = {alpha}*(1-T/T{sub c}){sup m}b{sup {1/2}}(1-b){sup 2} where {alpha} and {alpha}* are constants dependent on the film, B{sub c2}(T) is the upper critical field, b = B/B{sub c2}(T) is the reduced magnetic field, {Tc} is the critical temperature and we find m = 2.7 {plus_minus} 0.1. Over a limited range of magnetic fields close to B{sub c2}(T), we can approximate this functional form by: F{sub p} = {Beta}B{sub c2}{sup M}(T)b(1-b){sup 2}={Beta}*(1-T/{Tc}){sup M}b(1-b){sup 2} where {Beta} and {Beta}* are constants and we find M = 2.6{plus_minus}0.2. Values of J{sub c} derived from D.C. magnetisation data obtained using Bean`s model show qualitative agreement with the transport measurements throughout the superconducting phase. Despite the marked granularity in the microstructure of these films, we interpret our results as evidence that a flux pinning mechanism determines the transport current density in NbN films in high magnetic fields.

  12. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  13. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  14. Electromagnetic field versus circuit weight training on bone mineral density in elderly women

    PubMed Central

    Elsisi, Hany Farid Eid Morsy; Mousa, Gihan Samir Mohamed; ELdesoky, Mohamed Taher Mahmoud

    2015-01-01

    Background and purpose Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD) in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF) or circuit weight training (CWT) on short-run basis (after 12 weeks). Patients and methods Thirty elderly women, aged 60–70 years, were randomly assigned into two groups (magnetic field and CWT) (n=15 each group). The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2–L4) and femoral neck, trochanter, and Ward’s triangle were evaluated before and after 12 weeks of treatment. Results Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05). But magnetic field seems to have more beneficially and statistically significant effect than does CWT. Conclusion It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women. PMID:25834412

  15. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  16. Rhyolite domes in the Krafla area, North Iceland. Densities and deformation fields

    NASA Astrophysics Data System (ADS)

    Agustsdottir, T.; Einarsson, P.; Gudmundsson, M. T.

    2009-12-01

    Krafla is a central volcano in the Northern Volcanic Zone (NVZ) of Iceland. It began forming about 200 000 years BP, has a caldera, and is transected by a N10°A trending fissure swarm. Krafla’s products are mostly basaltic but rhyolite domes have formed around the caldera rims. Krafla’s products were mostly erupted during the last glacial period, 110 000 years BP to 10 000 years BP. Silicic rocks in Iceland are generally associated with central volcanoes and are often emplaced on or around caldera rims. Rhyolite magma can rise, due to buoyancy forces and either form a cryptodome in the shallow crust or rise to the surface, where it erupts. Due to its high viscosity and resistance to flow it often accumulates and forms a lava dome over the vent. A gravity survey was carried out in the area of Krafla in 2007 and 2008 to determine the mean bulk density values of rhyolite domes. Data on density and volumes is essential for meaningful modelling of the emplacement of cryptodomes and lava domes. Such data are scarce. Profiles were measured over three formations, ranging in size from Hlidarfjall (310 m high and 2 km long), formed under ice 90 000 years BP, to Hrafntinnuhryggur (80 m high and 2,5 km long) formed 24 000 years BP under a glacier to Hraunbunga (125 m high and 1,8 km long) formed 10 000 years BP. Mean bulk density for each formation was obtained by the Nettleton method. The results are that all the domes have low densities, reflecting both low grain-density and high porosity. The domes’s density values are significantly smaller than those of the surroundings, creating a density contrast possibly sufficient to drive the ascent of rhyolite magma. Furthermore, results from gravity data demonstrate that these formations are neither buried by younger volcanic eruptives nor are any roots detected. The domes studied were therefore emplaced as vent-forming domes. Additionally, we propose a model to describe the deformation field above a rising batch of magma

  17. Low density mesostructures of confined dipolar particles in an external field.

    PubMed

    Richardi, J; Weis, J-J

    2011-09-28

    Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009)].

  18. Dynamics of low-density ultracold plasmas in externally applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Wilson, Truman M.

    The experiments described in this thesis were focused on the influence of external electric and magnetic fields and electron evaporation on the evolution of ultracold plasmas (UCPs). The UCPs were created from the photoionization of 85Rb which was first captured in a magneto-optical trap (MOT) and then magnetically trapped and transferred by a set of magnetic coils attached to a motorized translation stage to a region of the vacuum chamber with a set of electrodes. The first experiment studied the response of the UCP to sharp electric field pulses, which included 2 cycles of a sine wave pulse. These experiments showed a resonant response to the 2 cycles of rf that was density dependent, but was not a collision based mechanism. Instead, the response was caused by a rapid energy transfer to individual electrons through the collective motion of the electron cloud in the UCP. This density-dependent response allowed us to develop a technique for measuring the expansion rate of the UCPs in our system. It was also observed in second set of experiments that electron evaporation from the UCP had a significant effect on the amount of energy that was transferred to the ions to drive the UCP expansion. Model calculations show that we should expect electron evaporation to have a more significant influence on the UCP expansion rate at the relatively low densities of the UCPs that we create compared to other experiments. By modeling electron evaporation during expansion, our data are consistent with evaporation reducing the electron temperature significantly, which lowers the overall UCP expansion rate. In addition to these studies, we also performed an experiment in which it was observed that in the presence of a magnetic field there was a significant increase in the initial UCP expansion rate coupled with a deceleration of the ion expansion at later times in the UCP evolution. Our observations to date are consistent with the magnetic field influencing electron screening and UCP

  19. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  20. Nonlinear control design for stressed power systems using normal forms of vector fields

    NASA Astrophysics Data System (ADS)

    Jang, Gilsoo

    Large stressed interconnected power systems exhibit complicated dynamic behavior when subjected to disturbances. This nonlinear complex behavior is not well analyzed with present tools, and a complete theoretical analysis of this is not feasible in large systems. In stressed power systems, due to the presence of increased nonlinearity and the existence of nonlinear modal interactions, there exist some limitation to the use of conventional linear control design techniques. Therefore there is a need to understand the nature of nonlinear modal interactions and their influences on control performance for optimal controller setting. This work deals with control design in power systems using the method of normal forms. The objective of this work is to understand the effect of the nonlinear modal interaction on control performance and to develop a procedure to design controls incorporating the nonlinear information. For power systems equipped with fast exciters, the exciter gains have crucial influence on the system dynamic behavior. In order to be able to tune the exciter gains for optimal system performance, one has to understand, how the system response changes with different gain settings. In linear analysis, this consists of determining the eigenvalues for various gains, and computing the sensitivity of the eigenvalues under gain variations. If one takes into account the influence of the second order normal forms on the system response, then the corresponding interaction coefficients and their sensitivity with respect to gain variations has to be studied as well. This is the topic of the study presented here. The concept of nonlinear participation factors, and sensitivity of the normal forms coefficient, together with linear participation factors and eigenvalue sensitivity are used to vary control settings. The control settings are varied to obtain improved stability and to reduce the nonlinearity in the system. The proposed procedure was applied to the 50-generator

  1. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation

    PubMed Central

    Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  2. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation.

    PubMed

    Cissé, S; Ghaout, S; Babah Ebbe, M A; Kamara, S; Piou, C

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate.

  3. Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave

    NASA Astrophysics Data System (ADS)

    C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae

    2015-09-01

    Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.

  4. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging

    NASA Astrophysics Data System (ADS)

    Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf

    2014-04-01

    The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.

  5. Evaluating the diffusive equilibrium models: Comparison with the IMAGE RPI field-aligned electron density measurements

    NASA Astrophysics Data System (ADS)

    Ozhogin, P.; Song, P.; Tu, J.; Reinisch, B. W.

    2014-06-01

    The diffusive equilibrium models that are widely used by the space physics community to describe the plasma densities in the plasmasphere are evaluated with field-aligned electron density measurements from the radio plasma imager (RPI) instrument onboard the IMAGE satellite. The original mathematical form of the diffusive equilibrium model was based on the hydrostatic equilibrium along the magnetic field line with the centrifugal force and the field-aligned electrostatic force as well as a large number of simplifying approximations. Six free parameters in the mathematical form have been conventionally determined from observations. We evaluate four sets of the parameters that have been reported in the literature. The evaluation is made according to the equatorial radial distance dependence, latitudinal dependence at a given radial distance, and the combined radial and latitudinal dependences. We find that the mathematical form given in the diffusive equilibrium model is intrinsically incompatible with the measurements unless another large number of free parameters are artificially introduced, which essentially changes the nature of a theoretical model to an empirical model.

  6. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  7. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    NASA Astrophysics Data System (ADS)

    Jang, H.; Lee, W.-S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y.-J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z.-X.; Kivelson, S. A.; Kao, C.-C.; Zhu, D.; Lee, J.-S.

    2016-12-01

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.

  8. A comparison of calibration data from full field digital mammography units for breast density measurements

    PubMed Central

    2013-01-01

    Background Breast density is a significant breast cancer risk factor measured from mammograms. The most appropriate method for measuring breast density for risk applications is still under investigation. Calibration standardizes mammograms to account for acquisition technique differences prior to making breast density measurements. We evaluated whether a calibration methodology developed for an indirect x-ray conversion full field digital mammography (FFDM) technology applies to direct x-ray conversion FFDM systems. Methods Breast tissue equivalent (BTE) phantom images were used to establish calibration datasets for three similar direct x-ray conversion FFDM systems. The calibration dataset for each unit is a function of the target/filter combination, x-ray tube voltage, current × time (mAs), phantom height, and two detector fields of view (FOVs). Methods were investigated to reduce the amount of calibration data by restricting the height, mAs, and FOV sampling. Calibration accuracy was evaluated with mixture phantoms. We also compared both intra- and inter-system calibration characteristics and accuracy. Results Calibration methods developed previously apply to direct x-ray conversion systems with modification. Calibration accuracy was largely within the acceptable range of ± 4 standardized units from the ideal value over the entire acquisition parameter space for the direct conversion units. Acceptable calibration accuracy was maintained with a cubic-spline height interpolation, representing a modification to previous work. Calibration data is unit specific, can be acquired with the large FOV, and requires a minimum of one reference mAs sample. The mAs sampling, calibration accuracy, and the necessity for machine specific calibration data are common characteristics and in agreement with our previous work. Conclusion The generality of our calibration approach was established under ideal conditions. Evaluation with patient data using breast cancer status

  9. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    NASA Astrophysics Data System (ADS)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  10. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    SciTech Connect

    Priyesh, K. V.; Thayyullathil, Ramesh Babu

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  11. Elucid—exploring the local universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics

    SciTech Connect

    Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Lin, W. P.; Jing, Y. P.

    2014-10-10

    Simulating the evolution of the local universe is important for studying galaxies and the intergalactic medium in a way free of cosmic variance. Here we present a method to reconstruct the initial linear density field from an input nonlinear density field, employing the Hamiltonian Markov Chain Monte Carlo (HMC) algorithm combined with Particle-mesh (PM) dynamics. The HMC+PM method is applied to cosmological simulations, and the reconstructed linear density fields are then evolved to the present day with N-body simulations. These constrained simulations accurately reproduce both the amplitudes and phases of the input simulations at various z. Using a PM model with a grid cell size of 0.75 h {sup –1} Mpc and 40 time steps in the HMC can recover more than half of the phase information down to a scale k ∼ 0.85 h Mpc{sup –1} at high z and to k ∼ 3.4 h Mpc{sup –1} at z = 0, which represents a significant improvement over similar reconstruction models in the literature, and indicates that our model can reconstruct the formation histories of cosmic structures over a large dynamical range. Adopting PM models with higher spatial and temporal resolutions yields even better reconstructions, suggesting that our method is limited more by the availability of computer resource than by principle. Dynamic models of structure evolution adopted in many earlier investigations can induce non-Gaussianity in the reconstructed linear density field, which in turn can cause large systematic deviations in the predicted halo mass function. Such deviations are greatly reduced or absent in our reconstruction.

  12. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    NASA Technical Reports Server (NTRS)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  13. Magnetohydrodynamics of high-energy-density-plasma in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Matsuo, Kazuki; Nagatomo, Hideo; Sano, Takayoshi; Zhang, Zhe; Sakawa, Youichi; Hara, Yukiko; Shimogawara, Hiroshi; Airikawa, Yasunobu; Sakata, Shouhei; Law, Kingfaifarley; Lee, Seungho; Kojima, Sadaoki; Katou, Hiroki; Shigemori, Keisuke; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-10-01

    The magneto-hydrodynamics (MHD) of a high-energy-density-plasma (HEDP) in a strong external magnetic field contains a lot of fundamental and essential physics related to astro- and solar- physics and B-assisted inertial confinement fusion energy development. Especially, hydrodynamic instability in a strong magnetic field is a key physics for success of B-assisted inertial confinement fusion. Hydrodynamic instability growth is affected by strong magnetic field as a result of non-uniform heat flow. Experiments were conducted with a corrugated plastic target that is set between a pair of capacitor-coil. A pair of capacitor-coil targets was used to generate spatially uniform magnetic field. The plastic targets were irradiated by an intense laser pulse having 1013 W/cm2 of intensity. Temporal evolution of perturbation growth was observed with x-ray backlight technique. Enhancement of the perturbation growth in strong magnetic field was observed experimentally, and the result was consistent with hydrodynamic simulation.

  14. Nonuniqueness of magnetic fields and energy derivatives in spin-polarized density functional theory.

    PubMed

    Gál, T; Ayers, P W; De Proft, F; Geerlings, P

    2009-10-21

    The effect of the recently uncovered nonuniqueness of the external magnetic field B(r) corresponding to a given pair of density n(r) and spin density n(s)(r) on the derivative of the energy functional of spin-polarized density functional theory, and its implications for the definition of chemical reactivity descriptors, is examined. For ground states, the nonuniqueness of B(r) implies the nondifferentiability of the energy functional E(v,B)[n,n(s)] with respect to n(s)(r). It is shown, on the other hand, that this nonuniqueness allows the existence of the one-sided derivatives of E(v,B)[n,n(s)] with respect to n(s)(r). Although the N-electron ground state can always be obtained from the minimization of E(v,B)[n,n(s)] without any constraint on the spin number N(s)=integraln(s)(r)dr, the Lagrange multiplier mu(s) associated with the fixation of N(s) does not vanish even for ground states. Mu(s) is identified as the left- or right-side derivative of the total energy with respect to N(s), which justifies the interpretation of mu(s) as a (spin) chemical potential. This is relevant not only for the spin-polarized generalization of conceptual density functional theory, the spin chemical potential being one of the elementary reactivity descriptors, but also for the extension of the thermodynamical analogy of density functional theory for the spin-polarized case. For higher-order reactivity indices, B(r)'s nonuniqueness has similar implications as for mu(s), leading to a split of the indices with respect to N(s) into one-sided reactivity descriptors.

  15. Density functional theory predictions for blue luminescence and nonlinear optical properties of carbon-doped gallium nitride

    NASA Astrophysics Data System (ADS)

    Hu, XiaoLin; Zhang, YongFan; Zhuang, NaiFeng; Li, JunQian

    2010-12-01

    The TD-B3LYP method and the plane-wave formalism of DFT method were applied to predict the blue luminescence and nonlinear optical effect of C-doped GaN, respectively. The introduction of carbon dopant will generate different acceptor or donor levels, which are mainly composed by p electronic state, within the energy gap of GaN. Exploring the calculated luminescence spectra based on the optimized excited-state structure, C N:GaN exhibits high luminescence intensity and has nice monochromatic property. In addition, the corresponding second-order nonlinear optical coefficients are considerable, χ(2)xzx=-15.07 pm/V and χ(2)zzz=26.91 pm/V, which are about 28 times and 50 times of the second-order optical coefficient of KDP crystal.

  16. Development and Construction of an Interferometer for Optical Measurements of Density Fields

    NASA Technical Reports Server (NTRS)

    Zobel, Th.

    1947-01-01

    A method of interference is described in the present report which promises profitable application in aeronautical research. The physical foundation of the method and a simple method of adjustment are briefly discussed. The special technical construction of the instrument is described which guarantees its use also in the case of vibrations of the surrounding space and permits the investigation of unsteady phenomena. It is found that the interference method will make the small differences in density in the flow field around the body even at low speeds. (40 m/sec) optically measurable.

  17. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field

    PubMed Central

    2012-01-01

    The exciton binding energy of an asymmetrical GaAs-Ga1−xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418

  18. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  19. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime.

    PubMed

    Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko

    2015-09-14

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.