An integrable shallow water equation with linear and nonlinear dispersion.
Dullin, H R; Gottwald, G A; Holm, D D
2001-11-05
We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases.
The zero dispersion limits of nonlinear wave equations
Tso, T.
1992-01-01
In chapter 2 the author uses functional analytic methods and conservation laws to solve the initial-value problem for the Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the nonlinear Schroedinger equation for initial data that satisfy some suitable conditions. In chapter 3 the energy estimates are used to show that the strong convergence of the family of the solutions of the KdV equation obtained in chapter 2 in H[sup 3](R) as [epsilon] [yields] 0; also, it is shown that the strong L[sup 2](R)-limit of the solutions of the BBM equation as [epsilon] [yields] 0 before a critical time. In chapter 4 the author uses the Whitham modulation theory and averaging method to find the 2[pi]-periodic solutions and the modulation equations of the KdV equation, the BBM equation, the Klein-Gordon equation, the NLS equation, the mKdV equation, and the P-system. It is shown that the modulation equations of the KdV equation, the K-G equation, the NLS equation, and the mKdV equation are hyperbolic but those of the BBM equation and the P-system are not hyperbolic. Also, the relations are studied of the KdV equation and the mKdV equation. Finally, the author studies the complex mKdV equation to compare with the NLS equation, and then study the complex gKdV equation.
Long time behavior of some nonlinear dispersive equations
NASA Astrophysics Data System (ADS)
Deng, Yu
This thesis is divided into two parts. The first part consists of Chapters 2 and 3, in which we study the random data theory for the Benjamin-Ono equation on the periodic domain. In Chapter 2 we shall prove the invariance of the Gibbs measure associated to the Hamiltonian E1 of the equation, which was constructed in [49]. Despite the fact that the support of the Gibbs measure contains very rough functions that are not even in L2, we have successfully established the global dynamics by combining probabilistic arguments, Xs,b type estimates and the hidden structure of the equation. In Chapter 3, which is joint work with N. Tzvetkov and N. Visciglia, we extend this invariance result to the weighted Gaussian measures associated with the higher order conservation laws E2 and E3, thus completing the collection of invariant measures (except for the white noise), given the result of [51]. The second part concerns the global behavior of solutions to quasilinear dispersive systems in Rd with suitably small data. In Chapter 4 we shall prove global existence and scattering for small data solutions to systems of quasilinear Klein-Gordon equations with arbitrary speed and mass in 3 D, which extends the results in [20] and [32]. Moreover, the methods introduced here are quite general, and can be applied in a number of different situations. In Chapter 5, we briefly discuss how these methods, together with other techniques, are used in recent joint work with A. Ionescu and B. Pausader to study the 2D Euler-Maxwell system.
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Christov, Ivan C.
2015-08-20
We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.
Modeling Solution of Nonlinear Dispersive Partial Differential Equations using the Marker Method
Jerome L.V. Lewandowski
2005-01-25
A new method for the solution of nonlinear dispersive partial differential equations is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details.
Construction of the wave operator for non-linear dispersive equations
NASA Astrophysics Data System (ADS)
Tsuruta, Kai Erik
In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.
Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.
Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow
NASA Astrophysics Data System (ADS)
Zhijian, Yang
2006-01-01
The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say [alpha], it proves that when [alpha]>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when [alpha][greater-or-equal, slanted]5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2
nonlinear term, the local solutions of the Cauchy problem blow up in finite time.
Dispersion relation of the nonlinear Klein-Gordon equation through a variational method.
Amore, Paolo; Raya, Alfredo
2006-03-01
We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the linear delta expansion. All the results obtained in this article are fully analytical, never involve the use of special functions, and can be used to obtain systematic approximations to the exact results to any desired degree of accuracy. We compare our findings with similar results in the literature and show that our approach leads to better and simpler results.
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
NASA Astrophysics Data System (ADS)
Al-Akhaly, Galal A.; Dey, Bishwajyoti
2011-09-01
We show the existence of a type of excitation, which we term as “gap compactonlike,” within the gap of the linear spectrum of a system of coupled Kortweg-de Vries equations with linear and nonlinear dispersions. Since the solutions lie in the gap region of the spectra, they avoid resonance with the linear oscillatory wave and, therefore, do not decay into radiations. These types of solutions are important in energy localization and transport in polymers and biopolymers, optical systems, etc.
NASA Astrophysics Data System (ADS)
Lee, C. T.; Lee, C. C.
2015-04-01
This paper introduces a systematic approach to investigate a higher order nonlinear dispersive wave equation for modeling different wave modes. We present both the conventional KdV-type soliton and anomaly type solitons for the equation. We also show the conservation laws and Hamiltonian structures for the equation. Our results suggest that the underlying equation has more interacting soliton phenomena than one would have known for the classical KdV and Boussinesq equation.
NASA Astrophysics Data System (ADS)
Bona, J. L.; Chen, M.; Saut, J.-C.
2004-05-01
In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.
NASA Astrophysics Data System (ADS)
Li, Jin Hua; Chan, Hiu Ning; Chiang, Kin Seng; Chow, Kwok Wing
2015-11-01
Breathers and rogue waves of special coupled nonlinear Schrödinger systems (the Manakov equations) are studied analytically. These systems model the orthogonal polarization modes in an optical fiber with randomly varying birefringence. Studies earlier in the literature had shown that rogue waves can occur in these Manakov systems with dispersion and nonlinearity of opposite signs, and that the criterion for the existence of rogue waves correlates closely with the onset of modulation instability. In the present work the Hirota bilinear transform is employed to calculate the breathers (pulsating modes), and rogue waves are obtained as a long wave limit of such breathers. In terms of wave profiles, a 'black' rogue wave (intensity dropping to zero) and the transition to a four-petal configuration are elucidated analytically. Sufficiently strong modulation instabilities of the background may overwhelm or mask the development of the rogue waves, and such thresholds are correlated to actual physical properties of optical fibers. Numerical simulations on the evolution of breathers are performed to verify the prediction of the analytical formulations.
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Bulut, Hasan
2015-10-01
In this study, we have studied to obtain some new analytical solutions to the (1 + 1)-dimensional nonlinear Dispersive Modified Benjamin-Bona-Mahony equation by using modified exp-function method. We have submitted the general structure of modified exp-function method. We have founded some new analytical solutions such as hyperbolic and rational function solutions. Afterward, we have plotted 2D and 3D surfaces of analytical solutions obtained in this study by using computer programming wolfram Mathematica 9.
NASA Astrophysics Data System (ADS)
Zayed, Elsayed M. E.; Al-Nowehy, Abdul-Ghani; Elshater, Mona E. M.
2017-06-01
The (G^'/G)-expansion method, the improved Sub-ODE method, the extended auxiliary equation method, the new mapping method and the Jacobi elliptic function method are applied in this paper for finding many new exact solutions including Jacobi elliptic solutions, solitary solutions, singular solitary solutions, trigonometric function solutions and other solutions to the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity whose balance number is not positive integer. The used methods present a wider applicability for handling the nonlinear partial differential equations. A comparison of our new results with the well-known results is made. Also, we compare our results with each other yielding from these five integration tools.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
NASA Astrophysics Data System (ADS)
Germaschewski, K.; Grauer, R.; Bergé, L.; Mezentsev, V. K.; Juul Rasmussen, J.
2001-05-01
The self-focusing and splitting mechanisms of waves governed by the cubic nonlinear Schrödinger equation with anisotropic dispersion are investigated numerically by means of an adaptive mesh refinement code. Wave-packets having a power far above the self-focusing threshold undergo a transversal compression and are shown to split into two symmetric peaks. These peaks can sequentially decay into smaller-scale structures developing near the front edge of a shock, as long as their individual power remains above threshold, until the final dispersion of the wave. Their phase and amplitude dynamics are detailed and compared with those characterizing collapsing objects with no anisotropic dispersion. Their ability to mutually coalesce is also analyzed and modeled from the interaction of Gaussian components. Next, bunch-type and snake-type instabilities, which result from periodic modulations driven by even and odd localized modes, are studied. The influence of the initial wave amplitude, the amplitude and wavenumber of the perturbations on the interplay of snake and bunch patterns are finally discussed.
Fujioka, J; Espinosa, A
2015-11-01
In this article, we show that if the nonlinear Schrödinger (NLS) equation is generalized by simultaneously taking into account higher-order dispersion, a quintic nonlinearity, and self-steepening terms, the resulting equation is interesting as it has exact soliton solutions which may be (depending on the values of the coefficients) stable or unstable, standard or "embedded," fixed or "moving" (i.e., solitons which advance along the retarded-time axis). We investigate the stability of these solitons by means of a modified version of the Vakhitov-Kolokolov criterion, and numerical tests are carried out to corroborate that these solitons respond differently to perturbations. It is shown that this generalized NLS equation can be derived from a Lagrangian density which contains an auxiliary variable, and Noether's theorem is then used to show that the invariance of the action integral under infinitesimal gauge transformations generates a whole family of conserved quantities. Finally, we study if this equation has the Painlevé property.
NASA Astrophysics Data System (ADS)
Fujioka, J.; Espinosa, A.
2015-11-01
In this article, we show that if the nonlinear Schrödinger (NLS) equation is generalized by simultaneously taking into account higher-order dispersion, a quintic nonlinearity, and self-steepening terms, the resulting equation is interesting as it has exact soliton solutions which may be (depending on the values of the coefficients) stable or unstable, standard or "embedded," fixed or "moving" (i.e., solitons which advance along the retarded-time axis). We investigate the stability of these solitons by means of a modified version of the Vakhitov-Kolokolov criterion, and numerical tests are carried out to corroborate that these solitons respond differently to perturbations. It is shown that this generalized NLS equation can be derived from a Lagrangian density which contains an auxiliary variable, and Noether's theorem is then used to show that the invariance of the action integral under infinitesimal gauge transformations generates a whole family of conserved quantities. Finally, we study if this equation has the Painlevé property.
NASA Astrophysics Data System (ADS)
Zhang, Guo-Bao; Ma, Ruyun
2014-10-01
This paper is concerned with the traveling wave solutions and the spreading speeds for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, which is motivated by an age-structured population model with time delay. We first prove the existence of traveling wave solution with critical wave speed c = c*. By introducing two auxiliary monotone birth functions and using a fluctuation method, we further show that the number c = c* is also the spreading speed of the corresponding initial value problem with compact support. Then, the nonexistence of traveling wave solutions for c < c* is established. Finally, by means of the (technical) weighted energy method, we prove that the traveling wave with large speed is exponentially stable, when the initial perturbation around the wave is relatively small in a weighted norm.
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
Integrable nonlinear relativistic equations
NASA Astrophysics Data System (ADS)
Hadad, Yaron
This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's field equation for diagonal metrics that depend on three variables. The symmetric Chiral field equation is studied using the Zakharov-Mikhailov transform, with which its infinitely many local conservation laws are derived and its solitons on diagonal backgrounds are studied. It is also proven that it is equivalent to a novel equation that poses a fascinating similarity to the Sinh-Gordon equation. For the 1+1 Einstein equation the Belinski-Zakharov transformation is explored. It is used to derive explicit formula for N gravitational solitons on arbitrary diagonal background. In particular, the method is used to derive gravitational solitons on the Einstein-Rosen background. The similarities and differences between the attributes of the solitons of the symmetric Chiral field equation and those of the 1+1 Einstein equation are emphasized, and their origin is pointed out. For the 1+2 Einstein equation, new equations describing diagonal metrics are derived and their compatibility is proven. Different gravitational waves are studied that naturally extend the class of Bondi-Pirani-Robinson waves. It is further shown that the Bondi-Pirani-Robinson waves are stable with respect to perturbations of the spacetime. Their stability is closely related to the stability of the Schwarzschild black hole and the relation between the two allows to conjecture about the stability of a wide range of gravitational phenomena. Lastly, a new set of equations that describe weak gravitational waves is derived. This new system of equations is closely and fundamentally connected with the nonlinear Schrodinger equation and can be properly called the nonlinear Schrodinger-Einstein equations. A few preliminary solutions are constructed.
Kumar, Shiva; Shao, Jing; Liang, Xiaojun
2014-12-29
In the presence of pre-dispersion, an exact solution of nonlinear Schrödinger equation (NLSE) is derived for impulse input. The phase factor of the exact solution is obtained in a closed form using the exponential integral. The nonlinear interaction among periodically placed impulses launched at the input is investigated, and the condition under which these pulses do not exchange energy is examined. It is found that if the complex weights of the impulses at the input have a secant-hyperbolic envelope and a proper chirp factor, they will propagate over long distances without exchanging energy. To describe their interaction, a discrete version of NLSE is derived. The derived equation is a form of discrete self-trapping (DST) equation, which is found to admit fundamental and higher order soliton solutions in the presence of high pre-dispersion. Nonlinear eigenmodes derived here may be useful for description of signal propagation and nonlinear interaction in highly pre-dispersion fiber-optic systems.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Taflove, Allen
1992-01-01
The initial results for femtosecond electromagnetic soliton propagation and collision obtained from first principles, i.e., by a direct time integration of Maxwell's equations are reported. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of 2D and 3D optical soliton propagation, scattering, and switching from the full-vector Maxwell's equations.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1974-01-01
For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.
NASA Astrophysics Data System (ADS)
Manikandan, K.; Senthilvelan, M.
2016-07-01
We construct spatiotemporal localized envelope solutions of a (3 + 1)-dimensional nonlinear Schrödinger equation with varying coefficients such as dispersion, nonlinearity and gain parameters through similarity transformation technique. The obtained localized rational solutions can serve as prototypes of rogue waves in different branches of science. We investigate the characteristics of constructed localized solutions in detail when it propagates through six different dispersion profiles, namely, constant, linear, Gaussian, hyperbolic, logarithm, and exponential. We also obtain expressions for the hump and valleys of rogue wave intensity profiles for these six dispersion profiles and study the trajectory of it in each case. Further, we analyze how the intensity of another localized solution, namely, breather, changes when it propagates through the aforementioned six dispersion profiles. Our studies reveal that these localized solutions co-exist with the collapsing solutions which are already found in the (3 + 1)-dimensional nonlinear Schrödinger equation. The obtained results will help to understand the corresponding localized wave phenomena in related fields.
NASA Astrophysics Data System (ADS)
Arshad, M.; Seadawy, Aly R.; Lu, Dianchen
2017-08-01
The higher-order nonlinear Schrödinger equation (NLSE) with fourth-order dispersion, cubic-quintic terms, self-steepening and nonlinear dispersive terms describes the propagation of extremely short pulses in optical fibers. In this paper, the elliptic function, bright and dark solitons and solitary wave solutions of higher-order NLSE are constructed by employing a modified extended direct algebraic method, which has important applications in applied mathematics and physics. Furthermore, we also present the formation conditions of the bright and dark solitons for this equation. The modulation instability is utilized to discuss the stability of these solutions, which shows that all solutions are exact and stable. Many other higher-order nonlinear evolution equations arising in applied sciences can also be solved by this powerful, effective and reliable method.
Nonlinear gyrokinetic equations
Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.
1983-03-01
Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.
Nonlinear differential equations
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1972-01-01
The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi
2017-05-01
This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.
NASA Astrophysics Data System (ADS)
Bona, G.; Chen, J. A.; Saut, Jing Ping
2002-08-01
Considered herein are a number of variants of the classical Boussinesq system and their higher-order generalizations. Such equations were first derived by Boussinesq to describe the two-way propagation of small-amplitude, long wavelength, gravity waves on the surface of water in a canal. These systems arise also when modeling the propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on the modeling of dispersion, the resulting system may or may not have a linearization about the rest state which is well posed. Even when well posed, the linearized system may exhibit a lack of conservation of energy that is at odds with its status as an approximation to the Euler equations. In the present script, we derive a four-parameter family of Boussinesq systems from the two-dimensional Euler equations for free-surface flow and formulate criteria to help decide which of these equations one might choose in a given modeling situation. The analysis of the systems according to these criteria is initiated.
Dispersion managed solitons in the presence of saturated nonlinearity
NASA Astrophysics Data System (ADS)
Hundertmark, Dirk; Lee, Young-Ran; Ried, Tobias; Zharnitsky, Vadim
2017-10-01
The averaged dispersion managed nonlinear Schrödinger equation with saturated nonlinearity is considered. It is shown that under rather general assumptions on the saturated nonlinearity, the ground state solution corresponding to the dispersion managed soliton can be found for both zero residual dispersion and positive residual dispersion. The same applies to diffraction management solitons, which are a discrete version describing certain waveguide arrays.
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Wave-equation dispersion inversion
NASA Astrophysics Data System (ADS)
Li, Jing; Feng, Zongcai; Schuster, Gerard
2017-03-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Refuge versus dispersion in the logistic equation
NASA Astrophysics Data System (ADS)
Cintra, W.; Morales-Rodrigo, C.; Suárez, A.
2017-06-01
In this paper we consider a logistic equation with nonlinear diffusion arising in population dynamics. In this model, there exists a refuge where the species grows following a Malthusian law and, in addition, there exists also a non-linear diffusion representing a repulsive dispersion of the species. We prove existence and uniqueness of positive solution and study the behavior of this solution with respect to the parameter λ, the growth rate of the species. Mainly, we use bifurcation techniques, the sub-supersolution method and a construction of appropriate large solutions.
Nonlinear equations of 'variable type'
NASA Astrophysics Data System (ADS)
Larkin, N. A.; Novikov, V. A.; Ianenko, N. N.
In this monograph, new scientific results related to the theory of equations of 'variable type' are presented. Equations of 'variable type' are equations for which the original type is not preserved within the entire domain of coefficient definition. This part of the theory of differential equations with partial derivatives has been developed intensively in connection with the requirements of mechanics. The relations between equations of the considered type and the problems of mathematical physics are explored, taking into account quasi-linear equations, and models of mathematical physics which lead to equations of 'variable type'. Such models are related to transonic flows, problems involving a separation of the boundary layer, gasdynamics and the van der Waals equation, shock wave phenomena, and a combustion model with a turbulent diffusion flame. Attention is also given to nonlinear parabolic equations, and nonlinear partial differential equations of the third order.
Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium.
Lee, Wonjung; Kovačič, Gregor; Cai, David
2013-02-26
In this work, we examine the important theoretical question of whether dispersion relations can arise from purely nonlinear interactions among waves that possess no linear dispersive characteristics. Using two prototypical examples of nondispersive waves, we demonstrate how nonlinear interactions can indeed give rise to effective dispersive-wave-like characteristics in thermal equilibrium. Physically, these example systems correspond to the strong nonlinear coupling limit in the theory of wave turbulence. We derive the form of the corresponding dispersion relation, which describes the effective dispersive structures, using the generalized Langevin equations obtained in the Zwanzig-Mori projection framework. We confirm the validity of this effective dispersion relation in our numerical study using the wavenumber-frequency spectral analysis. Our work may provide insight into an important connection between highly nonlinear turbulent wave systems, possibly with no discernible dispersive properties, and the dispersive nature of the corresponding renormalized waves.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
Ultrafast spatiotemporal coupling in nonlinear dispersive media
NASA Astrophysics Data System (ADS)
Ryan, Andrew Thomas
1997-10-01
In this thesis the results of a systematic investigation into the behavior of ultrashort optical pulses propagating in dispersive media with a Kerr nonlinearity (and intensity-dependent refractive index) are presented. The effect of the nonlinear index is to couple the spatial and temporal behaviors of the optical field together in a process known as spatiotemporal coupling. In the first chapter, a review of the previous work done in describing spatiotemporal coupling is presented as well as a discussion of its relevance to the remaining chapters. Optical wave propagation in general is described by Maxwell's equations. In the second chapter Maxwell's equations are used to derive the various forms of the nonlinear Schrodinger equation (NSE) which describe optical wave propagation in the presence of a Kerr nonlinearity. The different forms of the NSE account for different propagation geometries and conditions. The numerical model based on the NSE which is used to derive many of the results in the remainder of the thesis is also described. In chapter three, the numerical model is employed to give a thorough description of the dynamics of the pulse behavior in the presence of spatiotemporal coupling. An explanation of enhanced beam-broadening in self-defocusing media and localized pulse compression in normally dispersive self-focusing media are presented. The remaining two chapters describe experimental conditions under which spatiotemporal coupling may become important. In chapter four, the model is used to describe a means to exploit the ultrafast Kerr nonlinearity to achieve pulse compression with spatial phase modulation. The process relies on the nonlinear coupling among the overlapping subbeams produced by the modulation resulting in an intensity-dependence of the steering angles of the several peaks of the modulated pulse. In the fifth and final chapter, the influence of spatiotemporal coupling on Z-scan measurements of the nonlinear refractive index is
Nonlinear Dispersion of Magnetostatic Surface Waves on Ferromagnetic Films
NASA Astrophysics Data System (ADS)
A, D. Boardman; Bao, Jiashan; Wang, Qi; Cai, Yingshi; S, A. Nikitov
1991-11-01
The wave equation of nonlinear magnetostatic surface waves (MSSW) on ferromagnetic films is derived and its solution is found. The nonlinear dispersion relation of MSSW is discussed. Our result shows that the wave power has a little effect to the frequency shift of MSSW with lower frequency, but has a considerably larger effect to that with higher frequency within the band.
Manikandan, K; Senthilvelan, M
2016-07-01
We construct spatiotemporal localized envelope solutions of a (3 + 1)-dimensional nonlinear Schrödinger equation with varying coefficients such as dispersion, nonlinearity and gain parameters through similarity transformation technique. The obtained localized rational solutions can serve as prototypes of rogue waves in different branches of science. We investigate the characteristics of constructed localized solutions in detail when it propagates through six different dispersion profiles, namely, constant, linear, Gaussian, hyperbolic, logarithm, and exponential. We also obtain expressions for the hump and valleys of rogue wave intensity profiles for these six dispersion profiles and study the trajectory of it in each case. Further, we analyze how the intensity of another localized solution, namely, breather, changes when it propagates through the aforementioned six dispersion profiles. Our studies reveal that these localized solutions co-exist with the collapsing solutions which are already found in the (3 + 1)-dimensional nonlinear Schrödinger equation. The obtained results will help to understand the corresponding localized wave phenomena in related fields.
Nonlinear acoustic wave equations with fractional loss operators.
Prieur, Fabrice; Holm, Sverre
2011-09-01
Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations.
Linear superposition in nonlinear equations.
Khare, Avinash; Sukhatme, Uday
2002-06-17
Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions.
Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A.
2010-01-01
We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060
NASA Astrophysics Data System (ADS)
Dakova, D.; Dakova, A.; Slavchev, V.; Staykov, P.; Kovachev, L.
2016-01-01
In last two decades the phenomena resulting from the evolution of ultra-short laser pulses in nonlinear dispersive medium actively are being studied. The most commonly used equation for describing the dynamics of optical pulses in one-dimensional and planar waveguides is the standard nonlinear Schrodinger equation (NSE). It works very well for nanosecond and picosecond laser pulses, but in the frames of femtosecond optics, it is necessary two additional terms to be included. They are responsible for higher order of linear dispersion and dispersion of nonlinearity. These effects are significant in the range of ultra-short light pulses. In the present paper, it is presented a theoretical model of the propagation of optical solitons. We found an exact analytical soliton solution of the modified NSE, including third order of linear dispersion and dispersion of nonlinearity. It is possible to observe a soliton as a result of the dynamic balance between effects of higher order of dispersion and nonlinearity.
Nonlinear dispersive similariton: spectral interferometric study
Zeytunyan, A S; Khachikyan, T J; Palandjan, K A; Esayan, G L; Muradyan, L Kh
2010-06-23
A similariton formed in a passive optical fibre is experimentally found and investigated by spectral interferometry completely characterising the complex radiation field. A nonlinear dispersive character of similariton formation leads to chirp linearisation and spectrotemporal similarity of this similariton. (nonlinear optical phenomena)
Numerical study of fractional nonlinear Schrödinger equations.
Klein, Christian; Sparber, Christof; Markowich, Peter
2014-12-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
Computational studies of nonlinear dispersive plasma systems
NASA Astrophysics Data System (ADS)
Qian, Xin
Plasma systems with dispersive waves are ubiquitous. Dispersive waves have the property that their wave velocity depends on the wave number of the wave. These waves show up in weakly as well as strongly coupled plasmas, and play a significant role in the underlying plasma dynamics. Dispersive waves bring new challenges to the computer simulation of nonlinear phenomena. The goal of this thesis is to discuss two computational studies of plasma phenomena, one drawn from strongly coupled complex or dusty plasmas, and the other from weakly coupled hydrogen plasmas. In the realm of dusty plasmas, we focus on the problem of three-dimensional (3D) Mach cones which we study by means of Molecular Dynamics (MD) simulations, assuming that the dust particles interact via a Yukawa potential. While laboratory and MD simulations have explored thoroughly the properties of Mach cones in 2D, elucidating the important role of dispersive waves in the formation of multiple cones, the simulations presented in this thesis represent the first 3D MD studies of Mach cones in strongly coupled dusty plasmas. These results have qualitative similarities with experimental observations on 3D Mach cones from the PK-3 plus project, which studies complex plasmas under microgravity conditions aboard the International Space station. In the realm of weakly coupled plasmas, we present results on the application of non-oscillatory central schemes to Hall MHD reconnection problems, in which the presence of dispersive whistler waves presents a formidable challenge for numerical algorithms that rely on explicit time-stepping schemes. In particular, we focus on the semi-discrete central formulation of Kurganov and Tadmor (2000), which has the advantage that it allow for larger time steps, and with significantly smaller numerical viscosity, than fully discrete schemes. We implement the Hall MHD equations through the CentPACK software package that implements the Kurganov-Tadmor formulation for a wide range of
Systems of Nonlinear Hyperbolic Partial Differential Equations
1997-12-01
McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear
Wave modulation in a nonlinear dispersive medium
Kim, Y.C.; Khadra, L.; Powers, E.J.
1980-11-01
A model describing the simultaneous amplitude and phase modulation of a carrier wave propagating in a nonlinear dispersive medium is developed in terms of nonlinear wave-wave interactions between the sidebands and a low frequency wave. It is also shown that the asymmetric distribution of sidebands is determined by the wavenumber dependence of the coupling coefficient. Digital complex demodulation techniques are used to study modulated waves in a weakly ionized plasma and the experimental results support the analytical model.
NASA Astrophysics Data System (ADS)
Hidayat, A.; Listanti, A.; Latifah, E.; Wisodo, H.; P, Nugroho A.; Taufiq, A.
2017-05-01
Influence of coupling and intermodal dispersion coefficient on pulse splitting in double core optical fibre was investigated by using solutions of normalized coupled nonlinear Schrödinger equations. It was found that if coupling coefficient and intermodal dispersion coefficient was small, and then nonlinearity cannot balance intermodal dispersion effect. Consequently, pulse was distorted. Furthermore, if intermodal dispersion coefficient was large enough, then pulse splitting occurred. Increasing coupling coefficient avoids pulse splitting and the pulse was stable.
Additivity of nonlinear biomass equations
Bernard R. Parresol
2001-01-01
Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...
NASA Astrophysics Data System (ADS)
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Elliptically polarised cnoidal waves in a medium with spatial dispersion of cubic nonlinearity
Makarov, Vladimir A; Perezhogin, I A; Petnikova, V M; Potravkin, N N; Shuvalov, Vladimir V
2012-02-28
We present new specific analytic solutions of a system of nonlinear Schroedinger equations, corresponding to elliptically polarised cnoidal waves in an isotropic gyrotropic medium with spatial dispersion of cubic nonlinearity and second-order frequency dispersion under the conditions of formation of the waveguides of the same type for each of the circularly polarised components of the light field.
Soliton solutions to coupled nonlinear wave equations in (2 + 1)-dimensions
NASA Astrophysics Data System (ADS)
Jawad, A. J. M.; Johnson, S.; Yildirim, A.; Kumar, S.; Biswas, A.
2013-03-01
This paper implemented the tanh method to solve a few coupled nonlinear wave equations in (2 + 1)-dimensions. They are the Konopelchenko-Dubrovsky equation, dispersive long wave equation and the Riemann wave equation. Additionally, the traveling wave hypothesis is used to extract a few more solutons to some of these equations. Finally, the numerical simulations supplement these analytical results.
Nonlinear Poisson Equation for Heterogeneous Media
Hu, Langhua; Wei, Guo-Wei
2012-01-01
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects.
Nonlinear gyrokinetic equations for tokamak microturbulence
Hahm, T.S.
1988-05-01
A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.
Nonlinear optical characterization of Disperse Orange 3
NASA Astrophysics Data System (ADS)
Derkowska-Zielinska, Beata; Fedus, Kamil; Wang, Hongzhen; Cassagne, Christophe; Boudebs, Georges
2017-10-01
The nonlinear optical responses of Disperse Orange 3 (DO3) dissolved in tetrahydrofuran (THF) with different concentrations were investigated by Z-scan D4σ technique employing 12 ps and 17 ps pulses of Nd:YAG laser at 532 nm and 1064 nm, respectively. The comparison of the experimental results at both wavelengths demonstrates the strong influence of the resonant phenomena related to the linear absorption on the nonlinear response at 532 nm. In particular, DO3 solution was found to exhibit negative resonant nonlinear refraction with negligible saturable and multi-photon absorption. Moreover, the competition between negative and positive nonlinear refractive indices (n2) of the solute and the solvent was observed at low concentrations. The linear dependence of n2 on the latter quantity allowed to estimate an effective second-order hyperpolarizability of DO3 molecule at 532 nm.
Robust iterative method for nonlinear Helmholtz equation
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2017-08-01
A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Identification for a Nonlinear Periodic Wave Equation
Morosanu, C.; Trenchea, C.
2001-07-01
This work is concerned with an approximation process for the identification of nonlinearities in the nonlinear periodic wave equation. It is based on the least-squares approach and on a splitting method. A numerical algorithm of gradient type and the numerical implementation are given.
Polynomial solutions of nonlinear integral equations
NASA Astrophysics Data System (ADS)
Dominici, Diego
2009-05-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Hybrid approach for nonlinear wave equation
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Mareev, Vladimir
2017-07-01
The solution of nonintegrable nonlinear equations is very difficult even numerically and practically impossible by standard analytical technic. New view, offered by heterogeneous computational systems, gives some new possibilities, but also need novel approaches for numerical realization of pertinent algorithms. We shall give some examples of such analysis on the base of nonlinear wave's evolution study in multiphase media with chemical reaction.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Evolution equation for non-linear cosmological perturbations
Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch
2011-11-01
We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.
Lax integrable nonlinear partial difference equations
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Nagavigneshwari, G.
2015-03-01
A systematic investigation to derive nonlinear lattice equations governed by partial difference equations admitting specific Lax representation is presented. Further whether or not the identified lattice equations possess other characteristics of integrability namely Consistency Around the Cube (CAC) property and linearizability through a global transformation is analyzed. Also it is presented that how to derive higher order ordinary difference equations or mappings from the obtained lattice equations through periodic reduction and investigated whether they are measure preserving or linearizable and admit sufficient number of integrals leading to their integrability.
Numerical study of fractional nonlinear Schrödinger equations
Klein, Christian; Sparber, Christof; Markowich, Peter
2014-01-01
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604
On a class of nonlinear dispersive-dissipative interactions
Rosenau, P.
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.
On Coupled Rate Equations with Quadratic Nonlinearities
Montroll, Elliott W.
1972-01-01
Rate equations with quadratic nonlinearities appear in many fields, such as chemical kinetics, population dynamics, transport theory, hydrodynamics, etc. Such equations, which may arise from basic principles or which may be phenomenological, are generally solved by linearization and application of perturbation theory. Here, a somewhat different strategy is emphasized. Alternative nonlinear models that can be solved exactly and whose solutions have the qualitative character expected from the original equations are first searched for. Then, the original equations are treated as perturbations of those of the solvable model. Hence, the function of the perturbation theory is to improve numerical accuracy of solutions, rather than to furnish the basic qualitative behavior of the solutions of the equations. PMID:16592013
Efficient numerical methods for nonlinear Schrodinger equations
NASA Astrophysics Data System (ADS)
Liang, Xiao
The nonlinear Schrodinger equations are widely used to model a number of important physical phenomena, including solitary wave propagations in optical fibers, deep water turbulence, laser beam transmissions, and the Bose-Einstein condensation, just to mention a few. In the field of optics and photonics, the systems of nonlinear Schrodinger equations can be used to model multi-component solitons and the interaction of self-focusing laser beams. In three spatial dimensions, the nonlinear Schrodinger equation is known as the Gross-Pitaevskii equation, which models the soliton in a low-cost graded-index fiber. Recently, research on nonlinear space fractional Schrodinger equations, which capture the self-similarity in the fractional environment, has become prevalent. Our study includes the systems of multi-dimensional nonlinear space fractional Schrodinger equations. To solve the systems of multi-dimensional nonlinear Schrodinger equations efficiently, several novel numerical methods are presented. The central difference and quartic spline approximation based exponential time differencing Crank-Nicolson method is introduced for solving systems of one- and two-dimensional nonlinear Schrodinger equations. A local extrapolation is employed to achieve fourth-order accuracy in time. The numerical examples include the transmission of a self-focusing laser beam. The local discontinuous Galerkin methods combined with the fourth-order exponential time differencing Runge-Kutta time discretization are studied for solving the systems of nonlinear Schrodinger equations with hyperbolic terms, which are critical in modeling optical solitons in the birefringent fibers. The local discontinuous Galerkin method is able to achieve any order of accuracy in space, thanks to the usage of piecewise polynomial spaces. The exponential time differencing methods are employed to deal with the coupled nonlinearities for the reason that there is no need to solve nonlinear systems at every time step
Langevin equation model of dispersion in the convective boundary layer
Nasstrom, J S
1998-08-01
This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
On implicit abstract neutral nonlinear differential equations
Hernández, Eduardo; O’Regan, Donal
2016-04-15
In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Embedded eigenvalues and the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Asad, R.; Simpson, G.
2011-03-01
A common challenge in proving asymptotic stability of solitary waves is understanding the spectrum of the operator associated with the linearized flow. The existence of eigenvalues can inhibit the dispersive estimates key to proving stability. Following the work of Marzuola and Simpson [Nonlinearity 52, 389 (2011)], 10.1088/0951-7715/24/2/003, we prove the absence of embedded eigenvalues for a collection of nonlinear Schrödinger equations, including some one and three dimensional supercritical equations, and the three dimensional cubic-quintic equation. Our results also rule out nonzero eigenvalues within the spectral gap and end point resonances. The proof is computer assisted as it depends on the signs of certain inner products which do not readily admit analytic representations. Our source code is available for verification at http://hdl.handle.net/1807/26121.
Asymptotic solutions of weakly nonlinear, dispersive wave-propagation problems by Fourier analysis
Srinivasan, R.
1989-01-01
A perturbation method based on Fourier analysis and multiple scales is introduced for solving weakly nonlinear, dispersive wave propagation problems with Fourier transformable initial conditions. Asymptotic solutions are derived for the weakly nonlinear cubic Schroedinger (NLS) equation with variable coefficients and the weakly nonlinear Kortewegde-Vries (KdV) equation; the results for the NLS equation are verified by comparison with numerical solutions. In the special case of constant coefficients, the asymptotic solution for the weakly nonlinear NLS equation agrees to leading order with previously derived results in the literature; in general, this is not true to higher orders. Therefore previous asymptotic results for the strongly nonlinear Schroedinger equation can be valid only for restricted initial conditions. Similar conclusions apply to the KdV equation.
Effect of chromatic dispersion on nonlinear phase noise.
Green, A G; Mitra, P P; Wegener, L G L
2003-12-15
We consider the combined effects of amplified spontaneous emission noise, optical Kerr nonlinearity, and chromatic dispersion on phase noise in an optical communication system. The effect of amplified spontaneous emission noise and Kerr nonlinearity were considered previously by Gordon and Mollenauer [Opt. Lett. 15, 1351 (1990)], and the effect of nonlinearity was found to be severe. We investigate the effect of chromatic dispersion on phase noise and show that it can either enhance or suppress the nonlinear noise amplification. For large absolute values of dispersion the nonlinear effect is suppressed, and the phase noise is reduced to its linear value. For a range of negative values of dispersion, however, nonlinear phase noise is enhanced and exhibits a maximum related to the modulation instability found in amplitude fluctuations. Nonlinear phase noise is quenched by these effects even in dispersion-compensated systems; the degree of suppression is sensitively dependent on the dispersion map. We demonstrate these results analytically with a simple linearized model.
Algorithms For Integrating Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
Loomba, Shally; Kaur, Harleen
2013-12-01
We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.
Exact solutions for nonlinear foam drainage equation
NASA Astrophysics Data System (ADS)
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2017-02-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Christodoulides, D N; Joseph, R L
1984-06-01
The propagation of nonlinear optical pulses in fibers is discussed, taking into account physical effects arising from nonlinearity, dispersion, and transverse confinement. The wave equation is solved by treating the radial dependence of the field in an exact way. The conditions supporting bright solitary waves are presented and compared with previous results.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise
NASA Astrophysics Data System (ADS)
Cabot, M. A.
The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.
The Stochastic Nonlinear Damped Wave Equation
Barbu, V. Da Prato, G.
2002-12-19
We prove the existence of an invariant measure for the transition semigroup associated with a nonlinear damped stochastic wave equation in R{sup n} of the Klein-Gordon type. The uniqueness of the invariant measure and the structure of the corresponding Kolmogorov operator are also studied.
A combination method for solving nonlinear equations
NASA Astrophysics Data System (ADS)
Silalahi, B. P.; Laila, R.; Sitanggang, I. S.
2017-01-01
This paper discusses methods for finding solutions of nonlinear equations: the Newton method, the Halley method and the combination of the Newton method, the Newton inverse method and the Halley method. Computational results in terms of the accuracy, the number of iterations and the running time for solving some given problems are presented.
Derivation of an applied nonlinear Schroedinger equation
Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.
2015-01-01
We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release
The Whitham approach to dispersive shocks in systems with cubic-quintic nonlinearities
NASA Astrophysics Data System (ADS)
Crosta, M.; Trillo, S.; Fratalocchi, A.
2012-09-01
By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose-Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.
A new dispersion-relation preserving method for integrating the classical Boussinesq equation
NASA Astrophysics Data System (ADS)
Jang, T. S.
2017-02-01
In this paper, a dispersion-relation preserving method is proposed for nonlinear dispersive waves, starting from the oldest weakly nonlinear dispersive wave mathematical model in shallow water waves, i.e., the classical Boussinesq equation. It is a semi-analytic procedure, however, which preserves, as a distinctive feature, the dispersion-relation imbedded in the model equation without adding (unwelcome) numerical effects, i.e., the proposed method has the same dispersion-relation as the original classical Boussinesq equation. This remarkable (dispersion-relation) preserving property is proved mathematically for small wave motion in present study. The property is also numerically examined by observing both the local wave number and the local frequency of a slowly varying water-wave group. The dispersion-relation preserving method proposed here is powerful as well for observing nonlinear wave phenomena such as solitary waves and their collision. In fact, the main features of nonlinear wave characteristics are clearly seen through not only a single propagating solitary wave but counter-propagating (head-on) solitary wave collisions. They are compared with known (exact) nonlinear solutions, the results of which represent a major improvement over existing solution formulations in the literature.
Analytical solutions with the improved (G’/G)-expansion method for nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Bekir, Ahmet; Akbulut, Arzu
2016-10-01
To seek the exact solutions of nonlinear partial differential equations (NPDEs), the improved (G'/G)-expansion method is proposed in the present work. With the aid of symbolic computation, this effective method is applied to construct exact solutions of the (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and (3+1)- dimensional Kudryashov-Sinelshchikov equation. As a result, new types of exact solutions are obtained.
Higher-order nonlinear Schrodinger equations for simulations of surface wavetrains
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey
2016-04-01
Numerous recent results of numerical and laboratory simulations of waves on the water surface claim that solutions of the weakly nonlinear theory for weakly modulated waves in many cases allow a smooth generalization to the conditions of strong nonlinearity and dispersion, even when the 'envelope' is difficult to determine. The conditionally 'strongly nonlinear' high-order asymptotic equations still imply the smallness of the parameter employed in the asymptotic series. Thus at some (unknown a priori) level of nonlinearity and / or dispersion the asymptotic theory breaks down; then the higher-order corrections become useless and may even make the description worse. In this paper we use the higher-order nonlinear Schrodinger (NLS) equation, derived in [1] (the fifth-order NLS equation, or next-order beyond the classic Dysthe equation [2]), for simulations of modulated deep-water wave trains, which attain very large steepness (below or beyond the breaking limit) due to the Benjamin - Feir instability. The results are compared with fully nonlinear simulations of the potential Euler equations as well as with the weakly nonlinear theories represented by the nonlinear Schrodinger equation and the classic Dysthe equation with full linear dispersion [2]. We show that the next-order Dysthe equation can significantly improve the description of strongly nonlinear wave dynamics compared with the lower-order asymptotic models. [1] A.V. Slunyaev, A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926-941 (2005). [2] K. Trulsen, K.B. Dysthe, A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281-289 (1996).
Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
NASA Astrophysics Data System (ADS)
Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan
2016-05-01
This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.
Amplitude-dependent Lamb wave dispersion in nonlinear plates.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J
2016-08-01
The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching.
Taming the nonlinearity of the Einstein equation.
Harte, Abraham I
2014-12-31
Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.
Lattice Boltzmann model for nonlinear convection-diffusion equations.
Shi, Baochang; Guo, Zhaoli
2009-01-01
A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.
Explicit integration of Friedmann's equation with nonlinear equations of state
Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong E-mail: gwg1@damtp.cam.ac.uk
2015-05-01
In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2017-02-01
Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.
Nonlinear and Dispersive Optical Pulse Propagation
NASA Astrophysics Data System (ADS)
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
NASA Astrophysics Data System (ADS)
Ndzana, Fabien, II; Mohamadou, Alidou; Kofané, Timoléon Crépin
2007-07-01
The dynamics of nonlinear pulse propagation in an average dispersion-managed soliton system is governed by a constant coefficient nonlinear Schrödinger (NLS) equation. For a special set of parameters the constant coefficient NLS equation is completely integrable. The same constant coefficient NLS equation is also applicable to optical fiber systems with phase modulation or pulse compression. We also investigate MI arising in the cubic-quintic nonlinear Schrödinger equation for ultrashort pulse propagation. Within this framework, we derive ordinary differential equations (ODE's) for the time evolution of the amplitude and phase of modulation perturbations. Analyzing the ensuing ODE's, we derive the classical modulational instability criterion and identify it numerically. We show that the quintic nonlinearity can be essential for the stability of solutions. The evolutions of modulational instability are numerically investigated and the effects of the quintic nonlinearity on the evolutions are examined. Numerical simulations demonstrate the validity of the analytical predictions.
Forces Associated with Nonlinear Nonholonomic Constraint Equations
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Hodges, Dewey H.
2010-01-01
A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.
1988-09-01
decomposed into a series of associated aperiodic solitary waves, as can be achieved for solutions of the KdV equation [11], is still under investigation. 3...The organization of the paper is as follows: In Section 2, we discuss aperiodic and periodic solitary wave solutions of a model equation with...Periodic Solitary Wave Solutions of the Nonlinear Klein Gordon Equation without Dispersion We shall take, as our model equation , the nonlinear Klein
NASA Astrophysics Data System (ADS)
Gupta, A. K.; Ray, S. Saha
2014-09-01
In this paper, KdV-Burger-Kuramoto equation involving instability, dissipation, and dispersion parameters is solved numerically. The numerical solution for the fractional order KdV-Burger-Kuramoto (KBK) equation has been presented using two-dimensional Legendre wavelet method. The approximate solutions of nonlinear fractional KBK equation thus obtained by Legendre wavelet method are compared with the exact solutions. The present scheme is very simple, effective and convenient for obtaining numerical solution of the KBK equation.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
Sharma, R. P. Sharma, Swati Gaur, Nidhi
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.
Numerical solutions of nonlinear wave equations
Kouri, D.J.; Zhang, D.S.; Wei, G.W.; Konshak, T.; Hoffman, D.K.
1999-01-01
Accurate, stable numerical solutions of the (nonlinear) sine-Gordon equation are obtained with particular consideration of initial conditions that are exponentially close to the phase space homoclinic manifolds. Earlier local, grid-based numerical studies have encountered difficulties, including numerically induced chaos for such initial conditions. The present results are obtained using the recently reported distributed approximating functional method for calculating spatial derivatives to high accuracy and a simple, explicit method for the time evolution. The numerical solutions are chaos-free for the same conditions employed in previous work that encountered chaos. Moreover, stable results that are free of homoclinic-orbit crossing are obtained even when initial conditions are within 10{sup {minus}7} of the phase space separatrix value {pi}. It also is found that the present approach yields extremely accurate solutions for the Korteweg{endash}de Vries and nonlinear Schr{umlt o}dinger equations. Our results support Ablowitz and co-workers{close_quote} conjecture that ensuring high accuracy of spatial derivatives is more important than the use of symplectic time integration schemes for solving solitary wave equations. {copyright} {ital 1999} {ital The American Physical Society}
Modulational instability in the full-dispersion Camassa-Holm equation
NASA Astrophysics Data System (ADS)
Hur, Vera Mikyoung; Pandey, Ashish Kumar
2017-07-01
We determine the stability and instability of a sufficiently small and periodic travelling wave to long-wavelength perturbations, for a nonlinear dispersive equation which extends a Camassa-Holm equation to include all the dispersion of water waves and the Whitham equation to include nonlinearities of medium-amplitude waves. In the absence of the effects of surface tension, the result qualitatively agrees with the Benjamin-Feir instability of a Stokes wave. In the presence of the effects of surface tension, it qualitatively agrees with those from formal asymptotic expansions of the physical problem and improves upon that for the Whitham equation, predicting the critical wave number at the strong surface tension limit. We discuss the modulational stability and instability in the Camassa-Holm equation and other related models.
Nonlinear progressive wave equation for stratified atmospheres.
Edward McDonald, B; Piacsek, Andrew A
2011-11-01
The nonlinear progressive wave equation (NPE) [McDonald and Kuperman, J. Acoust. Soc. Am. 81, 1406-1417 (1987)] is expressed in a form to accommodate changes in the ambient atmospheric density, pressure, and sound speed as the time-stepping computational window moves along a path possibly traversing significant altitude differences (in pressure scale heights). The modification is accomplished by the addition of a stratification term related to that derived in the 1970s for linear range-stepping calculations and later adopted into Khokhlov-Zabolotskaya-Kuznetsov-type nonlinear models. The modified NPE is shown to preserve acoustic energy in a ray tube and yields analytic similarity solutions for vertically propagating N waves in isothermal and thermally stratified atmospheres.
Dispersion-engineered and highly nonlinear microstructured polymer optical fibres
NASA Astrophysics Data System (ADS)
Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole
2009-05-01
We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.
Exact and explicit solitary wave solutions to some nonlinear equations
Jiefang Zhang
1996-08-01
Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Dispersion of sound in dilute suspensions with nonlinear particle relaxation.
Kandula, Max
2010-03-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of omegatau(d), where omega is the circular frequency and tau(d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Ada Programming for Solving Nonlinear Equations
NASA Astrophysics Data System (ADS)
Wu, Trong
This paper introduces the Ada programming for solving non-linear equations over a new class of real numbers which are based on the concepts of model numbers and rough numbers for a given computer system. We will study structures of Ada interval computation over model numbers and rough numbers. To do these, we must revise commonly interval computation from compact intervals to closed-open intervals for their initial intervals. This way, we can promise that the final resulting interval will always be a shorter than the result from the ordinary interval computation. Two examples are presented, one is use Newton method and the other is apply iterative method for solving non-line equations. The Ada programs and their the approximated solutions are given in both decimal and binary values.
Invariant metrics, contractions and nonlinear matrix equations
NASA Astrophysics Data System (ADS)
Lee, Hosoo; Lim, Yongdo
2008-04-01
In this paper we consider the semigroup generated by the self-maps on the open convex cone of positive definite matrices of translations, congruence transformations and matrix inversion that includes symplectic Hamiltonians and show that every member of the semigroup contracts any invariant metric distance inherited from a symmetric gauge function. This extends the results of Bougerol for the Riemannian metric and of Liverani-Wojtkowski for the Thompson part metric. A uniform upper bound of the Lipschitz contraction constant for a member of the semigroup is given in terms of the minimum eigenvalues of its determining matrices. We apply this result to a variety of nonlinear equations including Stein and Riccati equations for uniqueness and existence of positive definite solutions and find a new convergence analysis of iterative algorithms for the positive definite solution depending only on the least contraction coefficient for the invariant metric from the spectral norm.
Stationary states of extended nonlinear Schrödinger equation with a source
NASA Astrophysics Data System (ADS)
Borich, M. A.; Smagin, V. V.; Tankeev, A. P.
2007-02-01
Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.
Galerkin Methods for Nonlinear Elliptic Equations.
NASA Astrophysics Data System (ADS)
Murdoch, Thomas
Available from UMI in association with The British Library. Requires signed TDF. This thesis exploits in the nonlinear situation the optimal approximation property of the finite element method for linear, elliptic problems. Of particular interest are the steady state semiconductor equations in one and two dimensions. Instead of discretising the differential equations by the finite element method and solving the nonlinear algebraic equations by Newton's method, a Newton linearisation of the continuous problem is preferred and a sequence of linear problems solved until some convergence criterion is achieved. For nonlinear Poisson equations, this approach reduces to solving a sequence of linear, elliptic, self -adjoint problems, their approximation by the finite element being optimal in a suitably defined energy norm. Consequently, there is the potential to recover a smoother representation of the underlying solution at each step of the Newton iteration. When this approach is applied to the continuity equations for semiconductor devices, a sequence of linear problems of the form -_{nabla }(anabla u - bu) = f must be solved. The Galerkin method in its crude form does not adequately represent the true solution: however, generalising the framework to permit Petrov-Galerkin approximations remedies the situation. For one dimensional problems, the work of Barrett and Morton allows an optimal test space to be chosen at each step of the Newton iteration so that the resulting approximation is near optimal in a norm closely related to the standard L^2 norm. More detailed information about the underlying solution can then be obtained by recovering a solution of an appropriate form. For two-dimensional problems, since the optimal test functions are difficult to find in practice, an upwinding method due to Heinrich et.al. is used at each step of the Newton iteration. Also, a framework is presented in which various upwind methods may be compared. The thesis also addresses the
ERIC Educational Resources Information Center
Ozdemir, Burhanettin
2017-01-01
The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…
Strongly Nonlinear Integral Equations of Hammerstein Type
Browder, Felix E.
1975-01-01
This paper studies the solution of the nonlinear Hammerstein equation u(x) + ʃ k(x,y)f[y,u(y)]μ(dy) = h(x) in the singular case, i.e., where the linear operator K with kernel k(x,y) is not defined for all the range of the nonlinear mapping F given by Fu(y) = f[y,u(y)] over the whole class X of functions u which are potential solutions of the equation. An existence theorem is derived under relatively minimal assumptions upon k and f, namely that (Ku,u) ≥ 0, that K maps L1 into L1loc and is compact from L1 [unk] L∞ into L1loc, that f(y,s) has the same sign as s for ǀsǀ ≥ R, and that for each constant r > 0, ǀf(y,s)ǀ ≤ gr(y) for ǀsǀ ≤ r where g is bounded and summable. The proof is obtained by combining a priori bounds, a truncation procedure, and a convergence argument using the Dunford-Pettis theorem. PMID:16578727
Notes on the Modified Nonlinear Schrodinger Equation
NASA Astrophysics Data System (ADS)
Pizzo, N. E.; Melville, W. K.
2011-12-01
In this study, we present the derivation of a modified Nonlinear Schrodinger equation (MNLSE) based on variational calculus. Using weakly nonlinear theory we derive an averaged Lagrangian, which in turn yields a slightly modified version of the MNLSE that conserves wave action. We also explore ramifications of the MNLSE with respect to the coupling between mean currents and non-uniform radiation stresses. We present this in the context of breaking waves and the free long waves they generate (Kristian Dysthe, personal communication). It has been noted in laboratory experiments (Meza et al, 1999) that breaking waves transfer some energy to modes far below the peak frequency of the spectrum. The transfer mechanism is widely believed to be the result of nonlinear four wave resonant interactions; however, the coupling between breaking-induced non-uniform radiation stresses and long wave radiation suggests a potential alternative explanation. Through direct numerical simulations, along with the theory, we test the feasibility of this mechanism by comparing it to data from wave tank experiments (Drazen et al., 2008).
Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions.
Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N
2015-02-01
We present breather solutions of the quintic integrable equation of the Schrödinger hierarchy. This equation has terms describing fifth-order dispersion and matching nonlinear terms. Using a Darboux transformation, we derive first-order and second-order breather solutions. These include first- and second-order rogue-wave solutions. To some extent, these solutions are analogous with the corresponding nonlinear Schrödinger equation (NLSE) solutions. However, the presence of a free parameter in the equation results in specific solutions that have no analogues in the NLSE case. We analyze new features of these solutions.
Nonlinear Dynamics of the Leggett Equation
NASA Astrophysics Data System (ADS)
Ragan, Robert J.
1995-01-01
We study the nonlinear dynamics of spin-polarized Fermi liquids. Our starting point is the equation of motion for the magnetization derived by Leggett and Rice, which accounts for spin-rotation effects in the limit of small polarization. We also include later modifications to the theory by Meyerovich, and Jeon and Mullin, which account for polarization dependences of the transport coefficients. In the analysis of NMR experiments the methods of current research can be summarized as follows: (a) to linearize the Leggett equation by considering small amplitude oscillations (small tip angles), (b) to use perturbation theory to account for small spin-rotation effects, (c) to exploit the simple helical solution which describes spin-echo experiments. In this thesis, we report progress in several directions: (1) We extend the linear theory to describe bounded spin diffusion with spin-rotation and finite-polarization effects. The analysis is valid for arbitrary tip angles and arbitrary degree of nonlinearity. (2) We show that because of the spin-rotation effect, the helical solution exhibits a Castiang instability for large tip angles. In the limit of small damping, we use the inverse scattering theory developed by Levy to display the full nonlinear evolution of the instabilities. (3) We use perturbation theory to show that anisotropy in the spin diffusion coefficients gives rise to multiple spin echoes, even in the absence of spin -rotation effects. This description applies to experiments on ^3He-^4He solutions at ^3He concentrations of 3-5%. This experiment provides a unique means of verifying the theory of Jeon and Mullin. We also report some exact results in the theory of anisotropic spin diffusion.
Nonlinearity compensation using dispersion-folded digital backward propagation.
Zhu, Likai; Li, Guifang
2012-06-18
A computationally efficient dispersion-folded (D-folded) digital backward propagation (DBP) method for nonlinearity compensation of dispersion-managed fiber links is proposed. At the optimum power level of long-haul fiber transmission, the optical waveform evolution along the fiber is dominated by the chromatic dispersion. The optical waveform and, consequently, the nonlinear behavior of the optical signal repeat at locations of identical accumulated dispersion. Hence the DBP steps can be folded according to the accumulated dispersion. Experimental results show that for 6,084 km single channel transmission, the D-folded DBP method reduces the computation by a factor of 43 with negligible penalty in performance. Simulation of inter-channel nonlinearity compensation for 13,000 km wavelength-division multiplexing (WDM) transmission shows that the D-folded DBP method can reduce the computation by a factor of 37.
Power-law spatial dispersion from fractional Liouville equation
Tarasov, Vasily E.
2013-10-15
A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.
Nonlinear integral equations for the sausage model
NASA Astrophysics Data System (ADS)
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Nonlinear scalar field equations involving the fractional Laplacian
NASA Astrophysics Data System (ADS)
Byeon, Jaeyoung; Kwon, Ohsang; Seok, Jinmyoung
2017-04-01
In this paper we study the existence, regularity, radial symmetry and decay property of a mountain pass solution for nonlinear scalar field equations involving the fractional Laplacian under an almost optimal class of continuous nonlinearities.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang
2014-11-01
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose-Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton.
Some new solutions of nonlinear evolution equations with variable coefficients
NASA Astrophysics Data System (ADS)
Virdi, Jasvinder Singh
2016-05-01
We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.
Nonlinear Parabolic Equations Involving Measures as Initial Conditions.
1981-09-01
CHART N N N Afl4Uf’t 1N II Il MRC Technical Summary Report # 2277 0 NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS I Haim Brezis ...NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS Haim Brezis and Avner Friedman Technical Summary Report #2277 September 1981...with NRC, and not with the authors of this report. * s ’a * ’ 4| NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS Haim Brezis
Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics
NASA Astrophysics Data System (ADS)
Clamond, Didier; Dutykh, Denys; Mitsotakis, Dimitrios
2017-04-01
For surface gravity waves propagating in shallow water, we propose a variant of the fully nonlinear Serre-Green-Naghdi equations involving a free parameter that can be chosen to improve the dispersion properties. The novelty here consists in the fact that the new model conserves the energy, contrary to other modified Serre's equations found in the literature. Numerical comparisons with the Euler equations show that the new model is substantially more accurate than the classical Serre equations, especially for long time simulations and for large amplitudes.
NASA Astrophysics Data System (ADS)
Das, Amiya; Ganguly, Asish
2017-07-01
The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Yan, Zhenya
2013-04-28
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail.
Bifurcation and stability for a nonlinear parabolic partial differential equation
NASA Technical Reports Server (NTRS)
Chafee, N.
1973-01-01
Theorems are developed to support bifurcation and stability of nonlinear parabolic partial differential equations in the solution of the asymptotic behavior of functions with certain specified properties.
Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems
NASA Astrophysics Data System (ADS)
Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios
2015-11-01
We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.
On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients.
Abdel-Gawad, Hamdy I; Osman, Mohamed
2015-07-01
In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg-de Vries (vcKdV) equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE's.
On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients
Abdel-Gawad, Hamdy I.; Osman, Mohamed
2014-01-01
In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV) equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s. PMID:26199750
NASA Astrophysics Data System (ADS)
Xie, Xi-Yang; Tian, Bo; Liu, Lei; Guan, Yue-Yang; Jiang, Yan
2017-06-01
In this paper, we investigate a generalized nonautonomous nonlinear equation, which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. Under certain integrable constraints, bilinear forms, bright one- and two-soliton solutions are obtained. Via certain transformation, we investigate the properties of the solitons with the first-order dispersion parameter σ1(x, t), second-order dispersion parameter σ2(x, t), third-order dispersion parameter σ3(x, t), phase modulation and gain (loss) v(x, t). Soliton propagation and collision are graphically presented and analyzed: One soliton is shown to maintain its amplitude and width during the propagation. When we choose σ1(x, t), σ2(x, t) and σ3(x, t) differently, travelling direction of the soliton is found to alter. v(x, t) is observed to affect the amplitude of the soliton. Head-on collision between the two solitons is presented with σ1(x, t), σ2(x, t), σ3(x, t) and v(x, t) as the constants, and solitons' amplitudes are the same before and after the collision. When σ1(x, t), σ2(x, t) and σ3(x, t) are chosen as certain functions, the solitons' traveling directions change during the collision. v(x, t) can influence the amplitudes of the two solitons.
Exact solutions to nonlinear delay differential equations of hyperbolic type
NASA Astrophysics Data System (ADS)
Vyazmin, Andrei V.; Sorokin, Vsevolod G.
2017-01-01
We consider nonlinear delay differential equations of hyperbolic type, including equations with varying transfer coefficients and varying delays. The equations contain one or two arbitrary functions of a single argument. We present new classes of exact generalized and functional separable solutions. All the solutions involve free parameters and can be suitable for solving certain model problems as well as testing numerical and approximate analytical methods for similar and more complex nonlinear differential-difference equations.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation
NASA Astrophysics Data System (ADS)
Whitfield, A. J.; Johnson, E. R.
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America
Forced nonlinear Schrödinger equation with arbitrary nonlinearity
NASA Astrophysics Data System (ADS)
Cooper, Fred; Khare, Avinash; Quintero, Niurka R.; Mertens, Franz G.; Saxena, Avadh
2012-04-01
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction (g2)/(κ+1)(ψψ)κ+1 in the presence of the external forcing terms of the form re-i(kx+θ)-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where vk=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq˙(t)<0, where p(t) is the normalized canonical momentum p(t)=(1)/(M(t))(∂L)/(∂q˙), and q˙(t) is the solitary wave velocity. Here M(t)=∫dxψ(x,t)ψ(x,t). Stability is also studied using a “phase portrait” of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave.
Construction of the soliton states of the quantum nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Lu-ming, Duan; Guang-can, Guo
1995-09-01
The quantum nonlinear schrödinger equation (QNSE) is exactly solved by Beth's ansatz method and we give a reasonable definition of the quantum soliton states. From the definition we construct the soliton states of the QNSE from its bound-state solutions. The dispersion effect of the quantum soliton is also exactly analysed.
Nonlinear Schrödinger equation with complex supersymmetric potentials
NASA Astrophysics Data System (ADS)
Nath, D.; Roy, P.
2017-03-01
Using the concept of supersymmetry we obtain exact analytical solutions of nonlinear Schrödinger equation with a number of complex supersymmetric potentials and power law nonlinearity. Linear stability of these solutions for self-focusing as well as de-focusing nonlinearity has also been examined.
Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng
2013-03-25
The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.
Nonlinear equation for Farley–Buneman waves in multispecies plasma
Litt, S. K.; Smolyakov, A. I. Bains, A. S.; Pokhotelov, O. A.; Onishchenko, O. G.; Horton, W.
2016-05-15
The nonlinear equation describing the Farley–Buneman (FB) waves in multispecies collisional plasmas is derived by employing the multiple-scale reduction analysis. It is shown that the presence of several ion species with different collisionalities and different ion masses removes the degeneracy of the nonlinear equation and generates the nonlinear terms resulting in wave steepening and wave breaking. This effect may be responsible for formation of one-dimensional coherent FB waves of a finite amplitude.
Exploring the nonlinear cloud and rain equation.
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=N/(ατH0)), suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
Exploring the nonlinear cloud and rain equation
NASA Astrophysics Data System (ADS)
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
On the nonlinear Schrodinger equation with nonzero boundary conditions
NASA Astrophysics Data System (ADS)
Fagerstrom, Emily
This thesis is concerned with the study of the nonlinear Schrodinger (NLS) equation, which is important both from a physical and a mathematical point of view. In physics, it is a universal model for the evolutions of weakly nonlinear dispersive wave trains. As such it appears in many physical contexts, such as optics, acoustics, plasmas, biology, etc. Mathematically, it is a completely integrable, infinite-dimensional Hamiltonian system, and possesses a surprisingly rich structure. This equation has been extensively studied in the last 50 years, but many important questions are still open. In particular, this thesis contains the following original contributions: NLS with real spectral singularities. First, the focusing NLS equation is considered with decaying initial conditions. This situation has been studied extensively before, but the assumption is almost always made that the scattering coefficients have no real zeros, and thus the scattering data had no poles on the real axis. However, it is easy to produce example potentials with this behavior. For example, by modifying parameters in Satsuma-Yajima's sech potential, or by choosing a "box" potential with a particular area, one can obtain corresponding scattering entries with real zeros. The inverse scattering transform can be implemented by formulating the modified Jost eigenfunctions and the scattering data as a Riemann Hilbert problem. But it can also be formulated by using integral kernels. Doing so produces the Gelf'and-Levitan-Marchenko (GLM) equations. Solving these integral equations requires integrating an expression containing the reflection coefficient over the real axis. Under the usual assumption, the reflection coefficient has no poles on the real axis. In general, the integration contour cannot be deformed to avoid poles, because the reflection coefficient may not admit analytic extension off the real axis. Here it is shown that the GLM equations may be (uniquely) solved using a principal value
Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2015-10-01
The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.
Finite element characterization of chromatic dispersion in nonlinear holey fibers.
Fujisawa, Takeshi; Koshiba, Masanori
2003-06-30
Chromatic dispersion characteristics of nonlinear photonic crystal fibers are, for the first time to our knowledge, theoretically investigated. A self-consistent numerical approach based on the full-vector finite-element method in terms of all the components of electric fields is described for the steady-state analysis of axially-nonsymmetrical nonlinear optical fibers. Electric fields obtained with this approach can be directly utilized for evaluating nonlinear refractive index distributions. To eliminate nonphysical, spurious solutions and to accurately model curved boundaries of circular air holes, curvilinear hybrid edge/nodal elements are introduced. It is found from the numerical results that under high optical intensity, chromatic dispersion characteristics become different from those of the linear state due to optical Kerr-effect nonlinearity, especially in short wavelength region.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
NASA Astrophysics Data System (ADS)
Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.
2014-07-01
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz-Kaup-Newell-Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Zhou Ruguang
2007-01-15
A procedure of nonlinearization of spectral problem that allows to impose reality conditions or restriction conditions on potentials is presented. As applications, integrable decompositions of the nonlinear Schroedinger equation and the real-valued modified Korteweg-de Vries equation are obtained.
Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
Cooper, Fred; Khare, Avinash; Quintero, Niurka R; Mertens, Franz G; Saxena, Avadh
2012-04-01
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq ̇(t)<0, where p(t) is the normalized canonical momentum p(t)=1/M(t)∂L/∂q ̇, and q ̇(t) is the solitary wave velocity. Here M(t)=∫dxψ*(x,t)ψ(x,t). Stability is also studied using a "phase portrait" of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave.
Nonlinear Evolution Equations in Banach Spaces.
relationship to the evolution equation is studied. The results obtained extend several known existence theorems and provide generalized solutions of the evolution equation in more general cases. (Author)
Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj
2015-04-20
We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.
Latchio Tiofack, Camus G; Mohamadou, Alidou; Kofané, Timoléon C; Moubissi, Alain B
2009-12-01
We consider a higher-order complex Ginzburg-Landau equation, with the fourth-order dispersion and cubic-quintic nonlinear terms, which can describe the propagation of an ultrashort subpicosecond or femtosecond optical pulse in an optical fiber system. We investigate the modulational instability (MI) of continuous wave solution of this equation. Several types of modulational instability gains are shown to exist in both the anomalous and normal dispersion regimes. We find that depending on the sign of the fourth-order dispersion coefficient, the MI appears for normal and anomalous dispersion regime. Simulations of the full system demonstrate that the development of the MI leads to establishment of a regular or chaotic array of pulses, a chain of well-separated peaks with continuously growing or decaying amplitudes depending on the sign of the loss/gain coefficient and higher-order dispersions terms. Comparison of the calculations with reported numerical results shows a satisfactory agreement.
The effect of nonlinearity on unstable zones of Mathieu equation
NASA Astrophysics Data System (ADS)
Saryazdi, M. Gh
2017-03-01
Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.
On a generalized Kirchhoff equation with sublinear nonlinearities
NASA Astrophysics Data System (ADS)
Santos Júnior, João R.; Siciliano, Gaetano
2017-07-01
In this paper we consider a generalized Kirchhoff? equation in a bounded domain under the effect of a sublinear nonlinearity. Under suitable assumptions on the data of the problem we show that, with a simple change of variable, the equation can be reduced to a classical semilinear equation and then studied with standard tools.
Additive nonlinear biomass equations: A likelihood-based approach
David L. R. Affleck; Ulises Dieguez-Aranda
2016-01-01
Since Parresolâs (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...
Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang
2014-11-15
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested.
Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan; Dougherty, Rachael
2016-08-01
Lump-type solutions, rationally localized in many directions in the space, are analyzed for nonlinear differential equations derived from generalized bilinear differential equations. By symbolic computations with Maple, positive quadratic and quartic polynomial solutions to two classes of generalized bilinear differential equations on f are computed, and thus, lump-type solutions are presented to the corresponding nonlinear differential equations on u, generated from taking a transformation of dependent variables u = 2(ln f)x.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Peierls-Nabarro potential profile of discrete nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Al Khawaja, U.; Al-Marzoug, S. M.; Bahlouli, H.
2017-05-01
We derive an analytic formula for the Peierls-Nabarro (PN) potential of a discrete nonlinear Schro¨dinger equation with cubic focusing nonlinearity. The potential is given in terms of the ratio between the strength of nonlinearity and dispersion spanning the whole range between strongly localised to smoothly moving solitons. The essential features that characterize the on-site and inter-site stationary states are obtained. The soliton's center-of-mass dynamics is also described. The derivation is performed variationaly using two trial functions with good agreement with the exact numerical calculation.
Drift-free kinetic equations for turbulent dispersion.
Bragg, A; Swailes, D C; Skartlien, R
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
NASA Astrophysics Data System (ADS)
Yu, Fajun; Li, Li
2015-07-01
A high-order dispersive cubic-quintic Gross-Pitaevskii (HDCQGP) equation (a generalized variable coefficients nonlinear Schrödinger equation with the third and fourth-order and the cubic-quintic nonlinear terms) is considered, and is transformed into a standard cubic-quintic nonlinear Schrödinger equation (NLSE). By using the generalized tanh-function method, we study exact solutions of the HDCQGP equation with time-modulated potential and nonlinearity. In particular, based on the similarity transformation, we report several families of non-autonomous wave solutions of the HDCQGP equation with snaking behaviors and different amplitude surfaces. At last, we consider the numerical simulation of two solitons collision for the NLSE with different parameters. These results may raise the possibility of relative experiments and potential applications.
Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre
2012-10-01
A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.
Linearized oscillation theory for a nonlinear delay impulsive equation
NASA Astrophysics Data System (ADS)
Berezansky, Leonid; Braverman, Elena
2003-12-01
For a scalar nonlinear impulsive delay differential equationwith rk(t)≥0,hk(t)≤t, limj-->∞ τj=∞, such an auxiliary linear impulsive delay differential equationis constructed that oscillation (nonoscillation) of the nonlinear equation can be deduced from the corresponding properties of the linear equation. Coefficients rk(t) and delays are not assumed to be continuous. Explicit oscillation and nonoscillation conditions are established for some nonlinear impulsive models of population dynamics, such as the impulsive logistic equation and the impulsive generalized Lasota-Wazewska equation which describes the survival of red blood cells. It is noted that unlike nonimpulsive delay logistic equations a solution of a delay impulsive logistic equation may become negative.
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Shintani, Seine A.
2015-12-01
We consider the Rayleigh-Lamb-type equation for propagating pulsive waves excited by aortic-valve closure at end-systole in the human heart wall. We theoretically investigate the transcendental dispersion equation of pulsive waves for the asymmetrical zero-order mode of the Lamb wave. We analytically find a simple dispersion equation with a universal constant for a small Lamb wavenumber. We show that the simple dispersion equation can qualitatively explain the myocardial noninvasive measurements in vivo of pulsive waves in the human heart wall. We can also consistently estimate the viscoelastic constant of the myocardium in the human heart wall using the simple dispersion equation for a small Lamb wavenumber instead of using a complex nonlinear optimization.
Cosmic neutrinos: A dispersive and nonlinear fluid
NASA Astrophysics Data System (ADS)
Inman, Derek; Pen, Ue-Li
2017-03-01
We present a description of cosmic neutrinos as a dispersive fluid. In this approach, the neutrino phase space is reduced to density and velocity fields alongside a scale-dependent sound speed. This sound speed depends on redshift, the initial neutrino phase space density and the cold dark matter gravitational potential. The latter is a new coupling between neutrinos and large scale structure not described by previous fluid approaches. We compute the sound speed in linear theory and find that it asymptotes to constants at small and large scales regardless of the gravitational potential. By comparing with neutrino N-body simulations, we measure the small scale sound speed and find it to be lower than linear theory predictions. This allows for an explanation of the discrepancy between N-body and linear response predictions for the neutrino power spectrum: neutrinos are still driven predominantly by the cold dark matter, but the sound speed on small scales is not stable to perturbations and decreases. Finally, we present a calibrated model for the neutrino power spectrum that requires no additional integrations outside of standard Boltzmann codes.
Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.
1993-01-01
The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p < 1, while fast (fight heIicity) wave packets hardly steepen for any beta. Substantial regions of opposite helicity form on the leading side of steepened Alfven wave packets. This behavior differs qualitatively from that exhibited by the solutions to the derivative nonlinear Schrodinger (DNLS) equation.
Variable-coefficient extended mapping method for nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Xia, Tiecheng
2008-03-01
In this Letter, a variable-coefficient extended mapping method is proposed to seek new and more general exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients and ( 2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, many new and more general exact solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear evolution equations in mathematical physics.
Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation.
1980-06-01
Equation (1) may also be considered as an ordinary differential equation on a Banach space. This is the setting I prefer, as it usually seems much more... NONLINEAR WAVE EQUATION ~0 by gc~ Paul Massatt Lefschetz Center for Dynamical Systems Division of Applied Mathematics Brown University Providence, Rhode...Interim -) DAMPED NONLINEAR WAVE EQUATION . 6. PERFORMING 0G. RMRT UMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(O) PAUL!MASSATT 47 -Xo AFdSR-76-3,992 / 9
Late-time attractor for the cubic nonlinear wave equation
Szpak, Nikodem
2010-08-15
We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.
Differentiability at lateral boundary for fully nonlinear parabolic equations
NASA Astrophysics Data System (ADS)
Ma, Feiyao; Moreira, Diego R.; Wang, Lihe
2017-09-01
For fully nonlinear uniformly parabolic equations, the first derivatives regularity of viscosity solutions at lateral boundary is studied under new Dini type conditions for the boundary, which is called Reifenberg Dini conditions and is weaker than usual Dini conditions.
Lipschitz regularity results for nonlinear strictly elliptic equations and applications
NASA Astrophysics Data System (ADS)
Ley, Olivier; Nguyen, Vinh Duc
2017-10-01
Most of Lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.
Comparative study of homotopy continuation methods for nonlinear algebraic equations
NASA Astrophysics Data System (ADS)
Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.
2014-07-01
We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).
Whitham modulation equations, coalescing characteristics, and dispersive Boussinesq dynamics
NASA Astrophysics Data System (ADS)
Ratliff, Daniel J.; Bridges, Thomas J.
2016-10-01
Whitham modulation theory with degeneracy in wave action is considered. The case where all components of the wave action conservation law, when evaluated on a family of periodic travelling waves, have vanishing derivative with respect to wavenumber is considered. It is shown that Whitham modulation equations morph, on a slower time scale, into the two way Boussinesq equation. Both the 1 + 1 and 2 + 1 cases are considered. The resulting Boussinesq equation arises in a universal form, in that the coefficients are determined from the abstract properties of the Lagrangian and do not depend on particular equations. One curious by-product of the analysis is that the theory can be used to confirm that the two-way Boussinesq equation is not a valid model in shallow water hydrodynamics. Modulation of nonlinear travelling waves of the complex Klein-Gordon equation is used to illustrate the theory.
Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.
2015-12-15
The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.
A Nonlinear Hyperbolic Volterra Equation in Viscoelasticity.
1980-06-01
35L55, 35L67, 47H10, 47H15 Key Words: nonlinear viscoelastic motion, materials with memory, stress- strain relaxation functions, nonlinear Volterra...homogeneous body. Here the dissipation mechanism which is induced by memory effects of the viscoelastic materials (stress-strain relaxation function - the...GREENBERG, J. M., A priori estimates for flows in dissipative materials , J. Math. Anal. Appl. 60 (1977), 617-630. CMD/JAN/scr Ii -31- SECURITY
Integrable nonlocal nonlinear Schrödinger equation.
Ablowitz, Mark J; Musslimani, Ziad H
2013-02-08
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contrasted with the classical nonlinear Schrödinger equation.
Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.
Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N
2014-09-01
We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.
The Fluid Dynamic Limit of the Nonlinear Boltzmann Equation,
1980-02-01
dynamics is ’ . strongly nonlinear. Previously, Glikson [4] and Kaniel and Shinbrot [10 showed existence locally in time. Global existence of solutions... Glikson , A., On the existence of general solutions of the initial-value problem for the nonlinear Boltzmann equation with a cut-off, Arch. Rational
NASA Astrophysics Data System (ADS)
Tariq, Kalim Ul-Haq; Seadawy, A. R.
The Boussinesq equation with dual dispersion and modified Korteweg-de Vries-Kadomtsev-Petviashvili equations describe weakly dispersive and small amplitude waves propagating in a quasi three-dimensional media. In this article, we study the analytical Bright-Dark solitary wave solutions for (3 + 1)-dimensional Breaking soliton equation, Boussinesq equation with dual dispersion and modified Korteweg-de Vries-Kadomtsev-Petviashvili equation have been extracted. These results hold numerous travelling wave solutions that are of key importance in elucidating some physical circumstance. The technique can also be functional to other sorts of nonlinear evolution equations in contemporary areas of research.
Nonlinear Dispersive ALFVÉN Waves in Magnetoplasmas
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Eliasson, B.; Stenflo, L.; Bingham, R.
2008-03-01
Large amplitude Alfvén waves are frequently found in magnetized space and laboratory plasmas. Our objective here is to discuss the linear and nonlinear properties of dispersive Alfvén waves (DAWs) in a uniform magnetoplasma. We first consider the effects of finite frequency (ω/ωci) and ion gyroradius on inertial and kinetic Alfvén waves, where ωci is the ion gyrofrequency. Next, we focus on nonlinear effects caused by the dispersive Alfvén waves. Such effects include the plasma density enhancement and depression by the Alfvén wave ponderomotive force, nonlinear interactions among the DAWs, the generation of zonal flows by the DAWs, as well as the electron and ion heating due to wave-particle interactions. The relevance of our investigation to the appearance of nonlinear dispersive Alfvén waves in the Earth's auroral acceleration region, in the solar corona, and in the Large Plasma Device (LAPD) at UCLA is discussed.
Invariant tori for a class of nonlinear evolution equations
Kolesov, A Yu; Rozov, N Kh
2013-06-30
The paper looks at quite a wide class of nonlinear evolution equations in a Banach space, including the typical boundary value problems for the main wave equations in mathematical physics (the telegraph equation, the equation of a vibrating beam, various equations from the elastic stability and so on). For this class of equations a unified approach to the bifurcation of invariant tori of arbitrary finite dimension is put forward. Namely, the problem of the birth of such tori from the zero equilibrium is investigated under the assumption that in the stability problem for this equilibrium the situation arises close to an infinite-dimensional degeneracy. Bibliography: 28 titles.
Nonlinear interaction of long dispersive Kelvin waves in deep natural basins
NASA Astrophysics Data System (ADS)
Budnev, Nikolay M.; Lovtsov, Sergey V.; Portyanskaya, Inna A.; Rastegin, Alexey E.; Rubtsov, Valeriy Yu.
2010-05-01
Nonlinear phenomena are of great importance for complete understanding of dynamical processes in fluids. However, direct studies of hydrodynamic equations seem to be very hard just due to nonlinear terms. Many approaches to nonlinear dispersive waves are related to the technique of multiple scales. It is one of most seminal ways to obtain those models that combine possibility of analytic investigation with actual effects of nonlinearity. Consideration of long Kelvin waves within the linear theory is well known issue of geophysical hydrodynamics. An influence of boundary effects leads to dispersion of Kelvin waves. At the same time, mutual balance between dispersive and nonlinear terms in motion equations can provide a formation of stable localized structures so-called solitary waves. When stratification is essential, different vertical modes of oscillation are typically excited. Corresponding analysis of vertical structure for solitary Rossby waves has been developed in many works, mainly due to Redekopp. But proper treatment of large-scale Kelvin waves seems to be not indicated in the literature. The principal aim of our work is to fill this lacuna. The present work has been partially inspired by temperature monitoring data obtained in south area of Lake Baikal. Under conditions of winter stratification, specific displacements of fragments of temperature profile from up to down were observed within upper layer. It is valuable that a shape of moving fragment remains almost undistorted. After ending this temperature decreasing, the temperature profile was rectified to initial shape. In all the years of observations, vertical displacements reach several tens of meters with duration of several days. These phenomena were interpreted as manifestation of long dispersive Kelvin waves, especially due to direction of propagation along the coastline. Regularly observed displacements from up to down may be evidences for nonlinear character of wave dynamics. Indeed, internal
The nonlinear modified equation approach to analyzing finite difference schemes
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1981-01-01
The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.
Solutions to Class of Linear and Nonlinear Fractional Differential Equations
NASA Astrophysics Data System (ADS)
Abdel-Salam, Emad A.-B.; Hassan, Gamal F.
2016-02-01
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag-Leffler function methods. The obtained results recover the well-know solutions when α = 1.
Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N
2013-07-01
The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N
2015-03-01
We analyze the quintic integrable equation of the nonlinear Schrödinger hierarchy that includes fifth-order dispersion with matching higher-order nonlinear terms. We show that a breather solution of this equation can be converted into a nonpulsating soliton solution on a background. We calculate the locus of the eigenvalues on the complex plane which convert breathers into solitons. This transformation does not have an analog in the standard nonlinear Schrödinger equation. We also study the interaction between the new type of solitons, as well as between breathers and these solitons.
Generation of Nonlinear Evolution Equations by Reductions of the Self-Dual Yang—Mills Equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Hon-Wah, Tam
2014-02-01
With the help of some reductions of the self-dual Yang Mills (briefly written as sdYM) equations, we introduce a Lax pair whose compatibility condition leads to a set of (2 + 1)-dimensional equations. Its first reduction gives rise to a generalized variable-coefficient Burgers equation with a forced term. Furthermore, the Burgers equation again reduces to a forced Burgers equation with constant coefficients, the standard Burgers equation, the heat equation, the Fisher equation, and the Huxley equation, respectively. The second reduction generates a few new (2 + 1)-dimensional nonlinear integrable systems, in particular, obtains a kind of (2 + 1)-dimensional integrable couplings of a new (2 + 1)-dimensional integrable nonlinear equation.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
GHM method for obtaining rationalsolutions of nonlinear differential equations.
Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo
2015-01-01
In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.
Nonlinear partial differential equations: Integrability, geometry and related topics
NASA Astrophysics Data System (ADS)
Krasil'shchik, Joseph; Rubtsov, Volodya
2017-03-01
Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.
Nonlinear Schrödinger equation on graphs: recent results and open problems.
Noja, Diego
2014-01-28
In this paper, an introduction to the new subject of nonlinear dispersive Hamiltonian equations on graphs is given. The focus is on recently established properties of solutions in the case of the nonlinear Schrödinger (NLS) equation. Special consideration is given to the existence and behaviour of solitary solutions. Two subjects are discussed in some detail concerning the NLS equation on a star graph: the standing waves of the NLS equation on a graph with a δ interaction at the vertex, and the scattering of fast solitons through a Y-junction in the cubic case. The emphasis is on a description of concepts and results and on physical context, without reporting detailed proofs; some perspectives and more ambitious open problems are discussed.
Nonlinear flap-lag axial equations of a rotating beam
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1977-01-01
It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.
Entropy and convexity for nonlinear partial differential equations.
Ball, John M; Chen, Gui-Qiang G
2013-12-28
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.
Entropy and convexity for nonlinear partial differential equations
Ball, John M.; Chen, Gui-Qiang G.
2013-01-01
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768
Nonlinear flap-lag axial equations of a rotating beam
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1977-01-01
It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.
The numerical dynamic for highly nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Model Predictive Control for Nonlinear Parabolic Partial Differential Equations
NASA Astrophysics Data System (ADS)
Hashimoto, Tomoaki; Yoshioka, Yusuke; Ohtsuka, Toshiyuki
In this study, the optimal control problem of nonlinear parabolic partial differential equations (PDEs) is investigated. Optimal control of nonlinear PDEs is an open problem with applications that include fluid, thermal, biological, and chemically-reacting systems. Model predictive control with a fast numerical solution method has been well established to solve the optimal control problem of nonlinear systems described by ordinary differential equations. In this study, we develop a design method of the model predictive control for nonlinear systems described by parabolic PDEs. Our approach is a direct infinite dimensional extension of the model predictive control method for finite-dimensional systems. The objective of this paper is to develop an efficient algorithm for numerically solving the model predictive control problem of nonlinear parabolic PDEs. The effectiveness of the proposed method is verified by numerical simulations.
Relations between nonlinear Riccati equations and other equations in fundamental physics
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-10-01
Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.
Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
Maestas, Joseph T; Collis, Jon M
2016-03-01
The nonlinear progressive wave equation (NPE) is a time-domain formulation of the Euler fluid equations designed to model low-angle wave propagation using a wave-following computational domain. The wave-following frame of reference permits the simulation of long-range propagation and is useful in modeling blast wave effects in the ocean waveguide. Existing models do not take into account frequency-dependent sediment attenuation, a feature necessary for accurately describing sound propagation over, into, and out of the ocean sediment. Sediment attenuation is addressed in this work by applying lossy operators to the governing equation that are based on a fractional Laplacian. These operators accurately describe frequency-dependent attenuation and dispersion in typical ocean sediments. However, dispersion within the sediment is found to be a secondary process to absorption and effectively negligible for ranges of interest. The resulting fractional NPE is benchmarked against a Fourier-transformed parabolic equation solution for a linear case, and against the analytical Mendousse solution to Burgers' equation for the nonlinear case. The fractional NPE is then used to investigate the effects of attenuation on shock wave propagation.
Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations
NASA Astrophysics Data System (ADS)
Wan, Renhui; Chen, Jiecheng
2016-08-01
In this paper, we obtain global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations. Our works are consistent with the corresponding works by Elgindi-Widmayer (SIAM J Math Anal 47:4672-4684, 2015) in the special case {A=κ=1}. In addition, our result concerning the SQG equation can be regarded as the borderline case of the work by Cannone et al. (Proc Lond Math Soc 106:650-674, 2013).
Dispersion of the nonlinear susceptibility in gold nanoantennas
NASA Astrophysics Data System (ADS)
Knittel, V.; Fischer, M. P.; Vennekel, M.; Rybka, T.; Leitenstorfer, A.; Brida, D.
2017-09-01
Femtosecond optical pulses tunable in the near infrared are exploited to drive third harmonic generation (THG) and incoherent multiphoton photoluminescence (MPPL) in gold plasmonic nanoantennas. By comparing the yield of the two processes concurrently occurring on the same nanostructure, we extract the coherent third-order response of the antenna. Its contribution is enhanced at shorter excitation wavelengths allowing the observation of dispersion in the nonlinear susceptibility of gold.
The Jeffcott equations in nonlinear rotordynamics
NASA Technical Reports Server (NTRS)
Zalik, R. A.
1987-01-01
The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.
Generalized nonlinear Proca equation and its free-particle solutions
NASA Astrophysics Data System (ADS)
Nobre, F. D.; Plastino, A. R.
2016-06-01
We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.
Baranwal, Vipul K; Pandey, Ram K; Singh, Om P
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.
A general non-linear multilevel structural equation mixture model
Kelava, Augustin; Brandt, Holger
2014-01-01
In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and Moosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation mixture model (GNM-SEMM) that combines recent semiparametric non-linear structural equation models (Kelava and Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models (Muthén and Asparouhov, 2009) for clustered and non-normally distributed data. The proposed approach allows for semiparametric relationships at the within and at the between levels. We present examples from the educational science to illustrate different submodels from the general framework. PMID:25101022
Nonlinear waves described by the generalized Swift-Hohenberg equation
NASA Astrophysics Data System (ADS)
Ryabov, P. N.; Kudryashov, N. A.
2017-01-01
We study the wave processes described by the generalized Swift-Hohenberg equation. We show that the traveling wave reduction of this equation does not pass the Kovalevskaya test. Some solitary wave solutions and kink solutions of the generalized Swift-Hohenberg equation are found. We use the pseudo-spectral algorithm to perform the numerical simulation of the wave processes described by the mixed boundary value problem for the generalized Swift-Hohenberg equation. This algorithm was tested on the obtained solutions. Some features of the nonlinear waves evolution described by the generalized Swift-Hohenberg equation are studied.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
Fisher equation for anisotropic diffusion: simulating South American human dispersals.
Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L
2007-09-01
The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.
Cylindrical Pulsons in Nonlinear Relativistic Wave Equations
NASA Astrophysics Data System (ADS)
Geicke, J.
1984-05-01
Numerical results to the Higgs scalar equation and the sine-Gordon equation with cylindrical symmetry are reported. Two separated energy regions are found where a Higgs kink develops into pulsons when reaching the origin r = 0, while only for higher energies a reflection is observed. The pulsons to both equations are studied in detail by modifying the initial kink shapes. In comparison with the spherical pulsons the cylindrical ones are extremely long-lived. For amplitudes slightly below half the distance between two (neighboured) vacua of the theories no decrease of the amplitudes and no perceivable radiation have been obtained by the numerical solution, examined during a time of order 1000. On the other hand, "heavy" sine-Gordon pulsons (with amplitudes 3π ~ 4π) are found to decay fast during a time t approx 100 in cylindrical symmetry.
The Jeffcott equations in nonlinear rotordynamics
NASA Technical Reports Server (NTRS)
Zalik, R. A.
1989-01-01
The solutions of the Jeffcott equations describing the behavior of a rotating shaft are investigated analytically, with a focus on the case where deadband is taken into account. Bounds on the solutions are obtained from those for the linearized equations, and the onset of destructive vibrations is predicted by analyzing the Fourier transforms of the solutions; good agreement with numerical solutions and power-spectrum density plots is demonstrated. It is suggested that the present analytical approach could be applied to determine cryogenic-pump stability margins in flight and hot-fire ground testing of launch vehicles such as the Space Shuttle.
Effects of nonlinearity and substrate's deformability on modulation instability in NKG equation
NASA Astrophysics Data System (ADS)
Tchakoutio Nguetcho, Aurélien Serge; Wamba, Étienne
2017-09-01
This article investigates combined effects of nonlinearities and substrate's deformability on modulational instability. For that, we consider a lattice model based on the nonlinear Klein-Gordon equation with an on-site potential of deformable shape. Such a consideration enables to broaden the description of energy-localization mechanisms in various physical systems. We consider the strong-coupling limit and employ semi-discrete approximation to show that nonlinear wave modulations can be described by an extended nonlinear Schrödinger equation containing a fourth-order dispersion component. The stability of modulation of carrier waves is scrutinized and the following findings are obtained analytically. The various domains of gains and instabilities are provided based upon various combinations of the parameters of the system. The instability gains strongly depend on nonlinear terms and on the kind of shape of the substrate. According to the system's parameters, our model can lead to different sets of known equations such as those in a negative index material embedded into a Kerr medium, glass fibers, resonant optical fiber and others. Consequently, some of the results obtained here are in agreement with those obtained in previous works. The suitable combination of nonlinear terms with the deformability of the substrate can be utilized to specifically control the amplitude of waves and consequently to stabilize their propagations. The results of analytical investigations are validated and complemented by numerical simulations.
Nonlinear Resonance and Duffing's Spring Equation
ERIC Educational Resources Information Center
Fay, Temple H.
2006-01-01
This note discusses the boundary in the frequency--amplitude plane for boundedness of solutions to the forced spring Duffing type equation. For fixed initial conditions and fixed parameter [epsilon] results are reported of a systematic numerical investigation on the global stability of solutions to the initial value problem as the parameters F and…
Nonlinear Resonance and Duffing's Spring Equation II
ERIC Educational Resources Information Center
Fay, T. H.; Joubert, Stephan V.
2007-01-01
The paper discusses the boundary in the frequency-amplitude plane for boundedness of solutions to the forced spring Duffing type equation x[umlaut] + x + [epsilon]x[cubed] = F cos[omega]t. For fixed initial conditions and for representative fixed values of the parameter [epsilon], the results are reported of a systematic numerical investigation…
Non-Linear Spring Equations and Stability
ERIC Educational Resources Information Center
Fay, Temple H.; Joubert, Stephan V.
2009-01-01
We discuss the boundary in the Poincare phase plane for boundedness of solutions to spring model equations of the form [second derivative of]x + x + epsilonx[superscript 2] = Fcoswt and the [second derivative of]x + x + epsilonx[superscript 3] = Fcoswt and report the results of a systematic numerical investigation on the global stability of…
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Lo Re, Carlo
2016-12-01
We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow water equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dynamic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the vertical momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain using unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes encountered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.
Multi-diffusive nonlinear Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Ribeiro, Mauricio S.; Casas, Gabriela A.; Nobre, Fernando D.
2017-02-01
Nonlinear Fokker-Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker-Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker-Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker-Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution.
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Bulut, Hasan
2015-10-01
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
NASA Astrophysics Data System (ADS)
Chen, Junchao; Li, Biao
2011-12-01
In this paper, the generalized sub-equation method is extended to investigate localized nonlinear waves of the one-dimensional nonlinear Schrödinger equation (NLSE) with potentials and nonlinearities depending on time and on spatial coordinates. With the help of symbolic computation, three families of analytical solutions of this NLS-type equation are presented. Based on these solutions, periodically and quasiperiodically oscillating solitons (dark and bright) and moving solitons are observed. Some implications to Bose-Einstein condensates are also discussed
Transport equations for subdiffusion with nonlinear particle interaction.
Straka, P; Fedotov, S
2015-02-07
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.
Periodic orbits in nonlinear wave equations on networks
NASA Astrophysics Data System (ADS)
Caputo, J. G.; Khames, I.; Knippel, A.; Panayotaros, P.
2017-09-01
We consider a cubic nonlinear wave equation on a network and show that inspecting the normal modes of the graph, we can immediately identify which ones extend into nonlinear periodic orbits. Two main classes of nonlinear periodic orbits exist: modes without soft nodes and others. For the former which are the Goldstone and the bivalent modes, the linearized equations decouple. A Floquet analysis was conducted systematically for chains; it indicates that the Goldstone mode is usually stable and the bivalent mode is always unstable. The linearized equations for the second type of modes are coupled, they indicate which modes will be excited when the orbit destabilizes. Numerical results for the second class show that modes with a single eigenvalue are unstable below a threshold amplitude. Conversely, modes with multiple eigenvalues always seem unstable. This study could be applied to coupled mechanical systems.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Tchinang Tchameu, J. D.; Togueu Motcheyo, A. B.; Tchawoua, C.
2016-09-01
The discrete multi-rogue waves (DMRW) as solution of the discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearities is studied numerically. These biological rogue waves represent the complex probability amplitude of finding an amide-I vibrational quantum at a site. We observe that the growth in the higher order saturable nonlinearity implies the formation of DMRW including an increase in the short-living DMRW and a decrease in amplitude of the long-living DMRW.
An Efficient Numerical Solution of Nonlinear Hunter-Saxton Equation
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Delkhosh, Mehdi
2017-05-01
In this paper, the nonlinear Hunter-Saxton equation, which is a famous partial differential equation, is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions (B-GFCF) collocation method. First, using the quasilinearization method, the equation is converted into a sequence of linear partial differential equations (LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.
Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
Chan, H N; Malomed, B A; Chow, K W; Ding, E
2016-01-01
Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
Cylindrical nonlinear Schroedinger equation versus cylindrical Korteweg-de Vries equation
Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.
2008-10-15
A correspondence between the family of cylindrical nonlinear Schroedinger (cNLS) equations and the one of cylindrical Korteweg-de Vries (cKdV) equations is constructed. It associates non stationary solutions of the first family with the ones of the second family. This is done by using a correspondence, recently found, between the families of generalized NLS equation and generalized KdV equation, and their solutions in the form of travelling waves, respectively. In particular, non-stationary soliton-like solutions of the cNLS equation can be associated with non-stationary soliton-like solutions of cKdV equation.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.
Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang
2011-04-15
By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.
Yang Xiao; Du Dianlou
2010-08-15
The Poisson structure on C{sup N}xR{sup N} is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
Burgers' equation and the evolution of nonlinear second sound
NASA Astrophysics Data System (ADS)
Davidowitz, Hananel; L'vov, Yuri; Steinberg, Victor
A systematic, experimental and numerical search for subharmonic generation and/or amplification was conducted at intermediate times and moderate Reynolds numbers in nonlinear second sound near the superfluid transition. We found that the nonlinear acoustic waves are dynamically monotonic in the sense that only energy cascades to smaller and smaller scales (until the dissipation scale) exist. There is no indication of a decay of monochromatic waves to waves of lower wave numbers. This precludes the existence of a decay instability in Burgers' equation as has been discussed in the literature. We thus extend the theoretical proof of Sinai concerning the absence of subharmonics in the solutions of Burger's equation to intermediate times.
Decay and stability for nonlinear hyperbolic equations
NASA Astrophysics Data System (ADS)
Marcati, Pierangelo
This paper deals with the asymptotic stability of the null solution of a semilinear partial differential equation. The La Salle Invariance Principle has been used to obtain the stability results. The first result is given under quite general hypotheses assuming only the precompactness of the orbits and the local existence. In the second part, under some restrictions, sufficient conditions for precompactness of the orbits and decay of solutions are given. An existence and uniqueness theorem is proved in the Appendix. Some examples are given.
NASA Astrophysics Data System (ADS)
Nikitenkova, S.; Singh, N.; Stepanyants, Y.
2015-12-01
In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains propagating in a media with the double dispersion occurring both at small and large wavenumbers. We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos. Ocean. Phys. (Engl. Transl.) 17, 55-59 (1981)] which describes both surface and internal long waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak, whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For unidirectional waves propagating in one direction, only the considered set of equations reduces to the Gardner-Ostrovsky equation which is applicable only within a finite range of wavenumbers. We derive the nonlinear Schrödinger equation (NLSE) which describes the evolution of narrow-band wave-trains and show that within a more general bi-directional equation the wave-trains, similar to that derived from the Ostrovsky equation, are also modulationally stable at relatively small wavenumbers k < kc and unstable at k > kc, where kc is some critical wavenumber. The NLSE derived here has a wider range of applicability: it is valid for arbitrarily small wavenumbers. We present the analysis of coefficients of the NLSE for different signs of coefficients of the governing equation and compare them with those derived from the Ostrovsky equation. The analysis shows that for weakly dispersive waves in the range of parameters where the Gardner-Ostrovsky equation is valid, the cubic nonlinearity does not contribute to the nonlinear coefficient of NLSE; therefore, the NLSE can be correctly derived from the Ostrovsky equation.
Nikitenkova, S; Singh, N; Stepanyants, Y
2015-12-01
In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains propagating in a media with the double dispersion occurring both at small and large wavenumbers. We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos. Ocean. Phys. (Engl. Transl.) 17, 55-59 (1981)] which describes both surface and internal long waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak, whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For unidirectional waves propagating in one direction, only the considered set of equations reduces to the Gardner-Ostrovsky equation which is applicable only within a finite range of wavenumbers. We derive the nonlinear Schrödinger equation (NLSE) which describes the evolution of narrow-band wave-trains and show that within a more general bi-directional equation the wave-trains, similar to that derived from the Ostrovsky equation, are also modulationally stable at relatively small wavenumbers k < kc and unstable at k > kc, where kc is some critical wavenumber. The NLSE derived here has a wider range of applicability: it is valid for arbitrarily small wavenumbers. We present the analysis of coefficients of the NLSE for different signs of coefficients of the governing equation and compare them with those derived from the Ostrovsky equation. The analysis shows that for weakly dispersive waves in the range of parameters where the Gardner-Ostrovsky equation is valid, the cubic nonlinearity does not contribute to the nonlinear coefficient of NLSE; therefore, the NLSE can be correctly derived from the Ostrovsky equation.
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
Conservation laws of inviscid Burgers equation with nonlinear damping
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2014-06-01
In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).
Intermittency and solitons in the driven dissipative nonlinear Schroedinger equation
NASA Technical Reports Server (NTRS)
Moon, H. T.; Goldman, M. V.
1984-01-01
The cubic nonlinear Schroedinger equation, in the presence of driving and Landau damping, is studied numerically. As the pump intensity is increased, the system exhibits a transition from intermittency to a two-torus to chaos. The laminar phase of the intermittency is also a two-torus motion which corresponds in physical space to two identical solitons of amplitude determined by a power-balance equation.
Existence of stationary states for nonlinear Dirac equations
NASA Astrophysics Data System (ADS)
Merle, F.
We generalize the previous result of Cazenave and Vasquez on the existence of stationary states for nonlinear Dirac equations of the form i∑ μ3 = 0 γμ∂μΨ - mΨ + L( ΨΨ) Ψ = 0. We seek solutions which are separable in spherical coordinates and we then make use of a shooting method to solve the associated problem for ordinary differential equations.
Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations
NASA Astrophysics Data System (ADS)
Brandolese, Lorenzo
2014-08-01
We unify a few of the best known results on wave breaking for the Camassa-Holm equation (by R. Camassa, A. Constantin, J. Escher, L. Holm, J. Hyman and others) in a single theorem: a sufficient condition for the breakdown is that is strictly negative in at least one point . Such blowup criterion looks more natural than the previous ones, as the condition on the initial data is purely local in the space variable. Our method relies on the introduction of two families of Lyapunov functions. Contrary to McKean's necessary and sufficient condition for blowup, our approach applies to other equations that are not integrable: we illustrate this fact by establishing new local-in-space blowup criteria for an equation modeling nonlinear dispersive waves in elastic rods.
Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khamis, E. G.; Tovbis, A.
2016-09-01
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.
Modeling highly-dispersive transparency in planar nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Potravkin, N. N.; Makarov, V. A.; Perezhogin, I. A.
2017-02-01
We consider propagation of light in planar optical metamaterial, which basic element is composed of two silver stripes, and it possesses strong dispersion in optical range. Our method of numerical modeling allows us to take into consideration the nonlinearity of the material and the effects of light self-action without considerable increase of the calculation time. It is shown that plasmonic resonances originating in such a structure result in multiple enhancement of local field and high sensitivity of the transmission coefficient to the intensity of incident monochromatic wave.
NASA Astrophysics Data System (ADS)
Liu, Hong-Zhun; Sun, Xiao-Quan; Chen, Li-Jiang
2014-07-01
This article shows that all novel exact solutions in the commented paper are not admitted by the original generalized Klein-Gordon equation and active-dissipative dispersive media equation. In addition, we present general solutions of certain auxiliary equation with sixth-degree nonlinear term. Then, based on above general solutions, we find that five cases in their Table 1 is shown to be incorrect.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Case-Deletion Diagnostics for Nonlinear Structural Equation Models
ERIC Educational Resources Information Center
Lee, Sik-Yum; Lu, Bin
2003-01-01
In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
Dispersion characteristics of step index single mode optical fiber with Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
In this paper is presented an approximate solution for the fundamental mode of the step-index optical fiber with taking into account the Kerr nonlinearity. The solution is obtained by a known method of Gauss approximation. The derivation of the characteristic equation for the equivalent mode spot radius and analytical expressions for the propagation constant and its first, second and third derivatives are described. The analytical formulas for time delay and chromatic dispersion are given too. Based on the obtained analytical solution there were calculated the dependencies from the optical power the parameters of fundamental mode for the sample of the step-index optical fiber.
Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo
2016-06-01
A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.
Javan, N. Sepehri Homami, S. H. H.
2015-02-15
Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.
A new perturbative approach to nonlinear partial differential equations
Bender, C.M.; Boettcher, S. ); Milton, K.A. )
1991-11-01
This paper shows how to solve some nonlinear wave equations as perturbation expansions in powers of a parameter that expresses the degree of nonlinearity. For the case of the Burgers equation {ital u}{sub {ital t}}+{ital uu}{sub {ital x}}={ital u}{sub {ital xx}}, the general nonlinear equation {ital u}{sub {ital t}}+{ital u}{sup {delta}}{ital u}{sub {ital x}}={ital u}{sub {ital xx}} is considered and expanded in powers of {delta}. The coefficients of the {delta} series to sixth order in powers of {delta} is determined and Pade summation is used to evaluate the perturbation series for large values of {delta}. The numerical results are accurate and the method is very general; it applies to other well-studied partial differential equations such as the Korteweg--de Vries equation, {ital u}{sub {ital t}}+{ital uu}{sub {ital x}} ={ital u}{sub {ital xxx}}.
Long-time relaxation processes in the nonlinear Schroedinger equation
Ovchinnikov, Yu. N.; Sigal, I. M.
2011-03-15
The nonlinear Schroedinger equation, known in low-temperature physics as the Gross-Pitaevskii equation, has a large family of excitations of different kinds. They include sound excitations, vortices, and solitons. The dynamics of vortices strictly depends on the separation between them. For large separations, some kind of adiabatic approximation can be used. We consider the case where an adiabatic approximation can be used (large separation between vortices) and the opposite case of a decay of the initial state, which is close to the double vortex solution. In the last problem, no adiabatic parameter exists (the interaction is strong). Nevertheless, a small numerical parameter arises in the problem of the decay rate, connected with an existence of a large centrifugal potential, which leads to a small value of the increment. The properties of the nonlinear wave equation are briefly considered in the Appendix A.
Shock-wave structure using nonlinear model Boltzmann equations.
NASA Technical Reports Server (NTRS)
Segal, B. M.; Ferziger, J. H.
1972-01-01
The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.
Shock-wave structure using nonlinear model Boltzmann equations.
NASA Technical Reports Server (NTRS)
Segal, B. M.; Ferziger, J. H.
1972-01-01
The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.
Curl forces and the nonlinear Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Plastino, A. R.; Tsallis, C.
2016-12-01
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q -Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
NASA Astrophysics Data System (ADS)
Li, Ping-Wah
1994-12-01
In his paper [J. Acoust. Soc. Am. 77, 2050 (1985)] Blackstock presented a generalized Burgers equation for the propagation of one-dimensional weakly nonlinear waves in various media. His results, and the approach he employed there, however, are limited to harmonic waves. In this paper, we present a general approach to model nonlinear waves of more general wave forms that propagate in media with arbitrary absorption and dispersion relations. The resulting equation is again called the generalized Burgers equation (to follow the terminology of the literature). It is found that steady shock solutions for various media can be described by the corresponding simplified version of the equation. An efficient numerical method by means of spectral analysis is developed for solving the generalized Burgers equation. Typical results exemplified by the case of a sinusoidal wave source are also reported in this paper.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
1/f noise from nonlinear stochastic differential equations
NASA Astrophysics Data System (ADS)
Ruseckas, J.; Kaulakys, B.
2010-03-01
We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fβ noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fβ noise, and provides further insights into the origin of 1/fβ noise.
Effects Of Relative Strength Of Dispersion On The Formation Of Nonlinear Waves In Dusty Plasmas
Asgari, H.; Muniandy, S. V.; Wong, C. S.; Yap, S. L.
2009-07-07
In this paper, we studied the effect of strength of dispersion on the formation of solitons and shock waves in un-magnetized dusty plasma using the reductive perturbative technique. Different relational forms of strength parameter epsilon were chosen such a way that it altered the stretching of space, x and time, t variables, thereby leading to different nonlinearities. First, we considered the form zeta = sq root(epsilon(x-v{sub 0}t)) and tau = sq root(epsilont), where v{sub 0} is the phase velocity, with 0
NASA Astrophysics Data System (ADS)
Othman, N.; Shah, N. S. M.; Tay, K. G.; Pakarzadeh, H.; Cholan, N. A.; Talib, R.
2017-09-01
The highly-nonlinear fiber is the ideal gain medium for many applications particularly because its dispersion can be easily engineered. However, the modification of the fiber dispersion will affect the higher-order dispersion coefficients. Hence, this paper investigates the effect of highly-nonlinear dispersion-shifted fiber dispersion profile on the higher-order dispersion coefficients which are the fourth-order and sixth-order dispersion coefficients. The dispersion profile was modified by varying the slope at zero-dispersion wavelength. The fourth-order dispersion coefficient exhibits changes from positive to negative value as the slope at zero-dispersion wavelength is getting higher. Meanwhile, sixth-order dispersion coefficient remains with the positive value even though it shows the reduction as the slope is increased, however it will eventually become negative when the dispersion is high enough. In short, the values of both fourth-order and sixth-order dispersion coefficients at zero-dispersion wavelength decrease when the slope increases.
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe
2016-06-01
We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.
Collapse for the higher-order nonlinear Schrödinger equation
Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; ...
2016-02-01
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less
Collapse for the higher-order nonlinear Schrödinger equation
Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; Horikis, T. P.; Karachalios, N. I.; Kevrekidis, P. G.
2016-02-01
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data, are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.
Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Liu, Yi; Grelu, Philippe
2016-06-01
We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.
On the fully-nonlinear shallow-water generalized Serre equations
NASA Astrophysics Data System (ADS)
Dias, Frédéric; Milewski, Paul
2010-02-01
A fully-nonlinear weakly dispersive system for the shallow water wave regime is presented. In the simplest case the model was first derived by Serre in 1953 and rederived various times since then. Two additions to this system are considered: the effect of surface tension, and that of using a different reference fluid level to describe the velocity field. It is shown how the system can be further expanded by consistent exchanges of spatial and time derivatives. Properties of the solitary waves of the resulting system as well as a symmetric splitting of the equations based on the Riemann invariants of the hyperbolic shallow water system are presented. The latter leads to a fully-nonlinear one-way model and, upon further approximations, existing weakly nonlinear models. Our study also helps clarify the differences or similarities between existing models.
Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two
NASA Astrophysics Data System (ADS)
Chiron, David; Scheid, Claire
2016-02-01
We investigate numerically the two-dimensional travelling waves of the nonlinear Schrödinger equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy-momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities. Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross-Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified KP-I asymptotic in the transonic limit, various multiplicity results and "one-dimensional spreading" phenomena.
NASA Astrophysics Data System (ADS)
Sen, Pranay K.; Kumar, Abhay; Sen, Pratima
1999-06-01
Using semiclassical time dependent perturbation treatment, the coherence radiation-semiconductor interaction under ultrashort pulsed near band-gap resonant excitation regime has been analytically investigated in a narrow direct-gap semiconductor waveguide structure. The role of excitonic effect is incorporated to study transient pulse propagation effects in GAs/AlGaAs waveguide duly irradiated by a 100 fs Ti:Sapphire laser. Nonlinear Schroedinger equation is employed to examine the role of group velocity dispersion and nonlinear optical effect on the transmission characteristics of the pulse at various excitation intensities and waveguide lengths. The results suggest the occurrence of pulse break-up and pulse narrowing during propagation of the pulse through the GaAs/AlGaAs waveguide.
Modulational instability in fractional nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Zhang, Lifu; He, Zenghui; Conti, Claudio; Wang, Zhiteng; Hu, Yonghua; Lei, Dajun; Li, Ying; Fan, Dianyuan
2017-07-01
Fractional calculus is entering the field of nonlinear optics to describe unconventional regimes, as disorder biological media and soft-matter. Here we investigate spatiotemporal modulational instability (MI) in a fractional nonlinear Schrödinger equation. We derive the MI gain spectrum in terms of the Lévy indexes and a varying number of spatial dimensions. We show theoretically and numerically that the Lévy indexes affect fastest growth frequencies and MI bandwidth and gain. Our results unveil a very rich scenario that may occur in the propagation of ultrashort pulses in random media and metamaterials, and may sustain novel kinds of propagation invariant optical bullets.
Peiponen, Kai-Erik; Saarinen, Jarkko J.; Svirko, Yuri
2004-04-01
Dispersion relations and sum rules for nonlinear susceptibilities are derived using complex analysis and especially the concept of a meromorphic function. The dispersion relations and sum rules provide frames to investigate the consistency between the theory and experiments.
Liu, Jianguo; Xue, Lifang; Wang, Yingjian; Kai, Guiyun; Dong, Xiaoyi
2007-11-01
We numerically investigated the impacts of the imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber (MF). The statistical results show that the imperfect geometry structure degrades the high nonlinearity and fluctuates the chromatic dispersion in a MF. Moreover, the smaller air holes and the larger pitch are more likely to maintain the properties of nonlinearity and chromatic dispersion. Finally, the nonlinearity and chromatic dispersion are more insensitive to air-hole nonuniformity than to air-hole disorder. All of these will provide references for designing and fabricating MF.
Kedziora, D J; Ankiewicz, A; Chowdury, A; Akhmediev, N
2015-10-01
We present an infinite nonlinear Schrödinger equation hierarchy of integrable equations, together with the recurrence relations defining it. To demonstrate integrability, we present the Lax pairs for the whole hierarchy, specify its Darboux transformations and provide several examples of solutions. These resulting wavefunctions are given in exact analytical form. We then show that the Lax pair and Darboux transformation formalisms still apply in this scheme when the coefficients in the hierarchy depend on the propagation variable (e.g., time). This extension thus allows for the construction of complicated solutions within a greatly diversified domain of generalised nonlinear systems.
Nonlinearity, PT Symmetry, Twist, and Disorder in Discrete Nonlinear Schroedinger Equation
NASA Astrophysics Data System (ADS)
Castro-Castro, Claudia K.
The study of optical fiber arrays has drawn a great deal of attention in the field of nonlinear physics during the past few years since they provide spatially inhomogeneous structures for guiding light signals. We analyze the management and control of light transfer in nonlinear multi-core fibers. We utilize mathematical modeling and numerical simulations to specifically show how nonlinearity, coupling, geometric twist, and balanced gain/loss relate to existence and stability of nonlinear optical modes modeled by the Discrete Nonlinear Schrodinger Equation (DNLS). In addition, we explore the effects of the inherent variability on the fiber core diameter (disorder) by building a statistical understanding of the formation of low or high-amplitude (localized/breather) states, and the long-time asymptotics of DNLS with low-amplitude initial conditions.
Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces
NASA Astrophysics Data System (ADS)
Guo, Zihua
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation ∂u+|∂u+uu=0, u(x,0)=u(x), is locally well-posed in the Sobolev spaces H for s>1-α if 0⩽α⩽1. The new ingredient is that we generalize the methods of Ionescu, Kenig and Tataru (2008) [13] to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and Tzvetkov (2001) [21]. Moreover, as a bi-product we prove that if 0<α⩽1 the corresponding modified equation (with the nonlinearity ±uuu) is locally well-posed in H for s⩾1/2-α/4.
Unleashing Empirical Equations with "Nonlinear Fitting" and "GUM Tree Calculator"
NASA Astrophysics Data System (ADS)
Lovell-Smith, J. W.; Saunders, P.; Feistel, R.
2017-10-01
Empirical equations having large numbers of fitted parameters, such as the international standard reference equations published by the International Association for the Properties of Water and Steam (IAPWS), which form the basis of the "Thermodynamic Equation of Seawater—2010" (TEOS-10), provide the means to calculate many quantities very accurately. The parameters of these equations are found by least-squares fitting to large bodies of measurement data. However, the usefulness of these equations is limited since uncertainties are not readily available for most of the quantities able to be calculated, the covariance of the measurement data is not considered, and further propagation of the uncertainty in the calculated result is restricted since the covariance of calculated quantities is unknown. In this paper, we present two tools developed at MSL that are particularly useful in unleashing the full power of such empirical equations. "Nonlinear Fitting" enables propagation of the covariance of the measurement data into the parameters using generalized least-squares methods. The parameter covariance then may be published along with the equations. Then, when using these large, complex equations, "GUM Tree Calculator" enables the simultaneous calculation of any derived quantity and its uncertainty, by automatic propagation of the parameter covariance into the calculated quantity. We demonstrate these tools in exploratory work to determine and propagate uncertainties associated with the IAPWS-95 parameters.
Numerical solution of control problems governed by nonlinear differential equations
Heinkenschloss, M.
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
Physical dynamics of quasi-particles in nonlinear wave equations
NASA Astrophysics Data System (ADS)
Christov, Ivan; Christov, C. I.
2008-02-01
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.
Lin, Guang; Tartakovsky, Alexandre M.
2010-04-01
In this study, we solve the three-dimensional stochastic Darcy's equation and stochastic advection-diffusion-dispersion equation using a probabilistic collocation method (PCM) on sparse grids. Karhunen-Lo\\`{e}ve (KL) decomposition is employed to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The numerical examples which demonstrate the convergence of PCM are presented. It appears that the faster convergence rate in the variance can be obtained by using the Jacobi-chaos representing the truncated Gaussian distributions than using the Hermite-chaos for the Gaussian distribution. The effect of dispersion coefficient on the mean and standard deviation of the hydraulic head and solute concentration is investigated. Additionally, we also study how the statistical properties of the hydraulic head and solute concentration vary while using different types of random distributions and different standard deviations of random hydraulic conductivity.
Attenuation, dispersion and nonlinearity effects in graphene-based waveguides
Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra
2015-01-01
Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299
Dispersion of nonresonant third-order nonlinearities in Silicon Carbide.
De Leonardis, Francesco; Soref, Richard A; Passaro, Vittorio M N
2017-01-18
In this paper we present a physical discussion of the indirect two-photon absorption (TPA) occuring in silicon carbide with either cubic or wurtzite structure. Phonon-electron interaction is analyzed by finding the phonon features involved in the process as depending upon the crystal symmetry. Consistent physical assumptions about the phonon-electron scattering mechanisms are proposed in order to give a mathematical formulation to predict the wavelength dispersion of TPA and the Kerr nonlinear refractive index n2. The TPA spectrum is investigated including the effects of band nonparabolicity and the influence of the continuum exciton. Moreover, a parametric analysis is presented in order to fit the experimental measurements. Finally, we have estimated the n2 in a large wavelength range spanning the visible to the mid-IR region.
Dispersion of nonresonant third-order nonlinearities in Silicon Carbide
NASA Astrophysics Data System (ADS)
de Leonardis, Francesco; Soref, Richard A.; Passaro, Vittorio M. N.
2017-01-01
In this paper we present a physical discussion of the indirect two-photon absorption (TPA) occuring in silicon carbide with either cubic or wurtzite structure. Phonon-electron interaction is analyzed by finding the phonon features involved in the process as depending upon the crystal symmetry. Consistent physical assumptions about the phonon-electron scattering mechanisms are proposed in order to give a mathematical formulation to predict the wavelength dispersion of TPA and the Kerr nonlinear refractive index n2. The TPA spectrum is investigated including the effects of band nonparabolicity and the influence of the continuum exciton. Moreover, a parametric analysis is presented in order to fit the experimental measurements. Finally, we have estimated the n2 in a large wavelength range spanning the visible to the mid-IR region.
Dispersion of nonresonant third-order nonlinearities in Silicon Carbide
De Leonardis, Francesco; Soref, Richard A.; Passaro, Vittorio M. N.
2017-01-01
In this paper we present a physical discussion of the indirect two-photon absorption (TPA) occuring in silicon carbide with either cubic or wurtzite structure. Phonon-electron interaction is analyzed by finding the phonon features involved in the process as depending upon the crystal symmetry. Consistent physical assumptions about the phonon-electron scattering mechanisms are proposed in order to give a mathematical formulation to predict the wavelength dispersion of TPA and the Kerr nonlinear refractive index n2. The TPA spectrum is investigated including the effects of band nonparabolicity and the influence of the continuum exciton. Moreover, a parametric analysis is presented in order to fit the experimental measurements. Finally, we have estimated the n2 in a large wavelength range spanning the visible to the mid-IR region. PMID:28098223
On the Amplitude Equations for Weakly Nonlinear Surface Waves
NASA Astrophysics Data System (ADS)
Benzoni-Gavage, Sylvie; Coulombel, Jean-François
2012-09-01
Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.
Solving nonlinear evolution equation system using two different methods
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.
2015-12-01
This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.
Numerical Solution of a Nonlinear Integro-Differential Equation
NASA Astrophysics Data System (ADS)
Buša, Ján; Hnatič, Michal; Honkonen, Juha; Lučivjanský, Tomáš
2016-02-01
A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm.
Nonzero solutions of nonlinear integral equations modeling infectious disease
Williams, L.R.; Leggett, R.W.
1982-01-01
Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.
Connecting orbits for nonlinear differential equations at resonance
NASA Astrophysics Data System (ADS)
Kokocki, Piotr
We study the existence of orbits connecting stationary points for the first order differential equations being at resonance at infinity, where the right hand side is the perturbations of a sectorial operator. Our aim is to prove an index formula expressing the Conley index of associated semiflow with respect to appropriately large ball, in terms of special geometrical assumptions imposed on the nonlinearity. We also prove that the geometrical assumptions are generalization of the well-known in literature Landesman-Lazer and strong resonance conditions. Obtained index formula will be used to derive the criteria determining the existence of orbits connecting stationary points for the heat equation being at resonance at infinity.
Inverse Problem of Variational Calculus for Nonlinear Evolution Equations
NASA Astrophysics Data System (ADS)
Ali, Sk. Golam; Talukdar, B.; Das, U.
2007-06-01
We couple a nonlinear evolution equation with an associated one and derive the action principle. This allows us to write the Lagrangian density of the system in terms of the original field variables rather than Casimir potentials. We find that the corresponding Hamiltonian density provides a natural basis to recast the pair of equations in the canonical form. Amongst the case studies presented the KdV and modified KdV pairs exhibit bi-Hamiltonian structure and allow one to realize the associated fields in physical terms.
Singular Solutions of Fully Nonlinear Elliptic Equations and Applications
NASA Astrophysics Data System (ADS)
Armstrong, Scott N.; Sirakov, Boyan; Smart, Charles K.
2012-08-01
We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of {R^n} , and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragmén-Lindelöf result as well as a principle of positive singularities in certain Lipschitz domains.
Quadratic nonlinear Klein-Gordon equation in one dimension
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Naumkin, Pavel I.
2012-10-01
We study the initial value problem for the quadratic nonlinear Klein-Gordon equation vtt + v - vxx = λv2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ R, where v0 and v1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah ["Normal forms and quadratic nonlinear Klein-Gordon equations," Commun. Pure Appl. Math. 38, 685-696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort ["Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1," Ann. Sci. Ec. Normale Super. 34(4), 1-61 (2001)].
The exotic conformal Galilei algebra and nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Cherniha, Roman; Henkel, Malte
2010-09-01
The conformal Galilei algebra (CGA) and the exotic conformal Galilei algebra (ECGA) are applied to construct partial differential equations (PDEs) and systems of PDEs, which admit these algebras. We show that there are no single second-order PDEs invariant under the CGA but systems of PDEs can admit this algebra. Moreover, a wide class of nonlinear PDEs exists, which are conditionally invariant under CGA. It is further shown that there are systems of non-linear PDEs admitting ECGA with the realisation obtained very recently in [D. Martelli and Y. Tachikawa, arXiv:0903.5184v2 [hep-th] (2009)]. Moreover, wide classes of non-linear systems, invariant under two different 10-dimensional subalgebras of ECGA are explicitly constructed and an example with possible physical interpretation is presented.
Loss of Energy Concentration in Nonlinear Evolution Beam Equations
NASA Astrophysics Data System (ADS)
Garrione, Maurizio; Gazzola, Filippo
2017-05-01
Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Nonlinear plasmonic dispersion and coupling analysis in the symmetric graphene sheets waveguide.
Jiang, Xiangqian; Yuan, Haiming; Sun, Xiudong
2016-12-15
We study the nonlinear dispersion and coupling properties of the graphene-bounded dielectric slab waveguide at near-THz/THz frequency range, and then reveal the mechanism of symmetry breaking in nonlinear graphene waveguide. We analyze the influence of field intensity and chemical potential on dispersion relation, and find that the nonlinearity of graphene affects strongly the dispersion relation. As the chemical potential decreases, the dispersion properties change significantly. Antisymmetric and asymmetric branches disappear and only symmetric one remains. A nonlinear coupled mode theory is established to describe the dispersion relations and its variation, which agrees with the numerical results well. Using the nonlinear couple model we reveal the reason of occurrence of asymmetric mode in the nonlinear waveguide.
Nonlinear plasmonic dispersion and coupling analysis in the symmetric graphene sheets waveguide
NASA Astrophysics Data System (ADS)
Jiang, Xiangqian; Yuan, Haiming; Sun, Xiudong
2016-12-01
We study the nonlinear dispersion and coupling properties of the graphene-bounded dielectric slab waveguide at near-THz/THz frequency range, and then reveal the mechanism of symmetry breaking in nonlinear graphene waveguide. We analyze the influence of field intensity and chemical potential on dispersion relation, and find that the nonlinearity of graphene affects strongly the dispersion relation. As the chemical potential decreases, the dispersion properties change significantly. Antisymmetric and asymmetric branches disappear and only symmetric one remains. A nonlinear coupled mode theory is established to describe the dispersion relations and its variation, which agrees with the numerical results well. Using the nonlinear couple model we reveal the reason of occurrence of asymmetric mode in the nonlinear waveguide.
Nonlinear plasmonic dispersion and coupling analysis in the symmetric graphene sheets waveguide
Jiang, Xiangqian; Yuan, Haiming; Sun, Xiudong
2016-01-01
We study the nonlinear dispersion and coupling properties of the graphene-bounded dielectric slab waveguide at near-THz/THz frequency range, and then reveal the mechanism of symmetry breaking in nonlinear graphene waveguide. We analyze the influence of field intensity and chemical potential on dispersion relation, and find that the nonlinearity of graphene affects strongly the dispersion relation. As the chemical potential decreases, the dispersion properties change significantly. Antisymmetric and asymmetric branches disappear and only symmetric one remains. A nonlinear coupled mode theory is established to describe the dispersion relations and its variation, which agrees with the numerical results well. Using the nonlinear couple model we reveal the reason of occurrence of asymmetric mode in the nonlinear waveguide. PMID:27976749
Chaoticons described by nonlocal nonlinear Schrödinger equation.
Zhong, Lanhua; Li, Yuqi; Chen, Yong; Hong, Weiyi; Hu, Wei; Guo, Qi
2017-01-30
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-like properties (with invariant statistic width and interaction of quasi-elastic collisions).
Chaoticons described by nonlocal nonlinear Schrödinger equation
Zhong, Lanhua; Li, Yuqi; Chen, Yong; Hong, Weiyi; Hu, Wei; Guo, Qi
2017-01-01
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-like properties (with invariant statistic width and interaction of quasi-elastic collisions). PMID:28134268
Fast neural solution of a nonlinear wave equation
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.
Fast neural solution of a nonlinear wave equation
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.
Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas
Veeresha, B. M.; Sen, A.; Kaw, P. K.
2008-09-07
A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.
Stabilisation of second-order nonlinear equations with variable delay
NASA Astrophysics Data System (ADS)
Berezansky, Leonid; Braverman, Elena; Idels, Lev
2015-08-01
For a wide class of second-order nonlinear non-autonomous models, we illustrate that combining proportional state control with the feedback that is proportional to the derivative of the chaotic signal allows to stabilise unstable motions of the system. The delays are variable, which leads to more flexible controls permitting delay perturbations; only delay bounds are significant for stabilisation by a delayed control. The results are applied to the sunflower equation which has an infinite number of equilibrium points.
Solution behaviors in coupled Schrödinger equations with full-modulated nonlinearities
NASA Astrophysics Data System (ADS)
Pınar, Zehra; Deliktaş, Ekin
2017-02-01
The nonlinear partial differential equations have an important role in real life problems. To obtain the exact solutions of the nonlinear partial differential equations, a number of approximate methods are known in the literature. In this work, a time- space modulated nonlinearities of coupled Schrödinger equations are considered. We provide a large class of Jacobi-elliptic solutions via the auxiliary equation method with sixth order nonlinearity and the Chebyshev approximation.
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani
2016-01-01
It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg–de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg–de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg–de Vries solitary wave. PMID:26997887
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion.
Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani
2016-01-01
It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg-de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg-de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg-de Vries solitary wave.
Nonlinear Schrödinger equation from generalized exact uncertainty principle
NASA Astrophysics Data System (ADS)
Rudnicki, Łukasz
2016-09-01
Inspired by the generalized uncertainty principle, which adds gravitational effects to the standard description of quantum uncertainty, we extend the exact uncertainty principle approach by Hall and Reginatto (2002 J. Phys. A: Math. Gen. 35 3289), and obtain a (quasi)nonlinear Schrödinger equation. This quantum evolution equation of unusual form, enjoys several desired properties like separation of non-interacting subsystems or plane-wave solutions for free particles. Starting with the harmonic oscillator example, we show that every solution of this equation respects the gravitationally induced minimal position uncertainty proportional to the Planck length. Quite surprisingly, our result successfully merges the core of classical physics with non-relativistic quantum mechanics in its extremal form. We predict that the commonly accepted phenomenon, namely a modification of a free-particle dispersion relation due to quantum gravity might not occur in reality.
Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation.
Kamchatnov, A M; Kraenkel, R A; Umarov, B A
2002-09-01
Asymptotic behavior of initially "large and smooth" pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrödinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp upsilon(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Derivation of the Biot-Savart equation from the nonlinear Schrödinger equation.
Bustamante, Miguel D; Nazarenko, Sergey
2015-11-01
We present a systematic derivation of the Biot-Savart equation from the nonlinear Schrödinger equation, in the limit when the curvature radius of vortex lines and the intervortex distance are much greater than the vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian expressed in terms of vortex lines,H=κ(2)/8π∫(|s-s'|>ξ(*))(ds·ds')/|s-s'|,with cutoff length ξ(*)≈0.3416293/√(ρ(0)), where ρ(0) is the background condensate density far from the vortex lines and κ is the quantum of circulation.
Nonlinear Optical Wave Equation for Micro- and Nano-Structured Media and Its Application
2013-03-01
AFRL-AFOSR-UK-TR-2013-0012 Nonlinear Optical Wave Equation for Micro - and Nano - Structured Media and Its Application Dr...September 2012 4. TITLE AND SUBTITLE Nonlinear Optical Wave Equation for Micro - and Nano - Structured Media and Its...Equation, Nano -structed Media, Nonlinear Fiber Lasers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 12
Mechanical balance laws for fully nonlinear and weakly dispersive water waves
NASA Astrophysics Data System (ADS)
Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios
2016-10-01
The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.
Makarov, V A; Petnikova, V M; Shuvalov, V V
2015-09-30
Three unusual classes of particular analytical solutions to a system of four nonlinear equations are found for slowly varying complex amplitudes of circularly polarised components of the electric field. The system describes the self-action and interaction of two elliptically polarised plane waves collinearly propagating in an isotropic medium with second-order frequency dispersion and spatial dispersion of cubic nonlinearity. The solutions correspond to self-consistent combinations of two elliptically polarised cnoidal waves whose mutually orthogonal polarisation components vary in accordance with pairwise identical laws during propagation. At the same time, the amplitudes of the component with the same circular polarisation are proportional to two different elliptic Jacobi functions with the same periods. (nonlinear optical phenomena)
Xie, Xi-Yang; Tian, Bo Wang, Yu-Feng; Sun, Ya; Jiang, Yan
2015-11-15
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.
Atom wall dispersive forces from the master equation formalism
NASA Astrophysics Data System (ADS)
Mendes, T. N. C.; Farina, C.
2007-06-01
Using the general expressions for level shifts obtained from the master equation for a small system interacting with a large one considered as a reservoir, we calculate the dispersive potentials between an atom and a wall in the dipole approximation. We analyse in detail the particular case of a two-level atom in the presence of a perfectly conducting wall. We study the van der Waals as well as the resonant interactions. All distance regimes as well as the high and low temperature regimes are considered. We show that the Casimir-Polder interaction cannot be considered as a direct result of the vacuum fluctuations only. Concerning the interaction between the atom and the wall at high temperatures, we show that a saturation of the potential for all distances occurs. This saturated potential coincides precisely with that obtained in the London-van der Waals limit.
On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Cuccagna, Scipio; Mizumachi, Tetsu
2008-11-01
We consider nonlinear Schrödinger equations iu_t +Δ u +β (|u|^2)u=0 , text{for} (t,x)in mathbb{R}× mathbb{R}^d, where d ≥ 3 and β is smooth. We prove that symmetric finite energy solutions close to orbitally stable ground states converge to a sum of a ground state and a dispersive wave as t → ∞ assuming the so called the Fermi Golden Rule (FGR) hypothesis. We improve the “sign condition” required in a recent paper by Gang Zhou and I.M.Sigal.
1986-04-30
TenCate , who is supported by ONR Contract NOOO I 4-84-K-0574, in the completion of work on pure tones that interact in higher order modes of a...rectangular duct.26 Through collaboration with TenCate , Lind has acquired experience with the same experimental apparatus that he will use beginning I June...34 J. Acoust. Soc. " .. Am. 65.1127-1133(1979). 36. J. A TenCate and K F. Hamilton, "Dispersive nonlinear wave interactions in a rectangular duct," In
Equations for Nonlinear MHD Convection in Shearless Magnetic Systems
Pastukhov, V.P.
2005-07-15
A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.
Complete integrability of nonlocal nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Gerdjikov, V. S.; Saxena, A.
2017-01-01
Based on the completeness relation for the squared solutions of the Lax operator L, we show that a subset of nonlocal equations from the hierarchy of nonlocal nonlinear Schrödinger equations (NLS) is a completely integrable system. The spectral properties of the Lax operator indicate that there are two types of soliton solutions. The relevant action-angle variables are parametrized by the scattering data of the Lax operator. The notion of the symplectic basis, which directly maps the variations of the potential of L to the variations of the action-angle variables has been generalized to the nonlocal case. We also show that the inverse scattering method can be viewed as a generalized Fourier transform. Using the trace identities and the symplectic basis, we construct the hierarchy Hamiltonian structures for the nonlocal NLS equations.
Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc
2013-11-01
This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown.
Nonlinear electrostatic drift Kelvin-Helmholtz instability
NASA Technical Reports Server (NTRS)
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
Liu, Yan; Yan, Jing; Han, Genquan
2014-09-20
In this paper, we propose a new dual slot based on rib-like structure, which exhibits a flat and near-zero dispersion over a 198 nm wide wavelength range. Chromatic dispersion of dual-slot silicon (Si) waveguide is mainly determined by waveguide dispersion due to the manipulating mode effective area rather than by the material dispersion. Moreover, the nonlinear coefficient and effective mode area of the waveguide are also explored in detail. A nonlinear coefficient of 1460/m/W at 1550 nm is achieved, which is 10 times larger than that of the Si rib waveguide. By changing different waveguide variables, both the dispersion and nonlinear coefficient can be tailored, thus enabling the potential for a highly nonlinear waveguide with uniform dispersion over a wide wavelength range, which could benefit the performance of broadband optical signal systems.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Evaluation of model fit in nonlinear multilevel structural equation modeling
Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G.
2013-01-01
Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated. PMID:24624110
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
NASA Astrophysics Data System (ADS)
Zhang, Z.; Popa, D.; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-01
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-14
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Approximate analytic solutions to coupled nonlinear Dirac equations
NASA Astrophysics Data System (ADS)
Khare, Avinash; Cooper, Fred; Saxena, Avadh
2017-03-01
We consider the coupled nonlinear Dirac equations (NLDEs) in 1 + 1 dimensions with scalar-scalar self-interactions g12 / 2 (ψ bar ψ) 2 + g22/2 (ϕ bar ϕ) 2 + g32 (ψ bar ψ) (ϕ bar ϕ) as well as vector-vector interactions of the form g1/22 (ψ bar γμ ψ) (ψ bar γμ ψ) + g22/2 (ϕ bar γμ ϕ) (ϕ bar γμ ϕ) + g32 (ψ bar γμ ψ) (ϕ bar γμ ϕ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ =e - iω1 t {R1 cos θ ,R1 sin θ }, ϕ =e - iω2 t {R2 cos η ,R2 sin η }, and assuming that θ (x) , η (x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri (x) which are valid for small values of g32 / g22 and g32 / g12. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ± ∞.
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Approximate analytic solutions to coupled nonlinear Dirac equations
Khare, Avinash; Cooper, Fred; Saxena, Avadh
2017-01-30
Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g12/2(more » $$\\bar{ψ}$$ψ)2 + g22/2($$\\bar{Φ}$$Φ)2 + g23($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g12/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g22/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g23($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e–iω1tR1cosθ,R1sinθΦ=e–iω2tR2cosη,R2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g32/g22 and g32/g12. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Bao, Weizhu; Besse, Christophe
2013-12-01
In this paper, we begin with the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) for modeling Bose-Einstein condensation (BEC) and nonlinear optics as well as other applications, and discuss their dynamical properties ranging from time reversible, time transverse invariant, mass and energy conservation, and dispersion relation to soliton solutions. Then, we review and compare different numerical methods for solving the NLSE/GPE including finite difference time domain methods and time-splitting spectral method, and discuss different absorbing boundary conditions. In addition, these numerical methods are extended to the NLSE/GPE with damping terms and/or an angular momentum rotation term as well as coupled NLSEs/GPEs. Finally, applications to simulate a quantized vortex lattice dynamics in a rotating BEC are reported.
Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian
2012-12-15
We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.
Continuous symmetries of certain nonlinear partial difference equations and their reductions
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Nagavigneshwari, G.
2014-09-01
In this article, Quispel, Roberts and Thompson type of nonlinear partial difference equation with two independent variables is considered and identified five distinct nonlinear partial difference equations admitting continuous point symmetries quadratic in the dependent variable. Using the degree growth of iterates the integrability nature of the obtained nonlinear partial difference equations is discussed. It is also shown how to derive higher order ordinary difference equations from the periodic reduction of the identified nonlinear partial difference equations. The integrability nature of the obtained ordinary difference equations is investigated wherever possible.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
NASA Astrophysics Data System (ADS)
Khare, Avinash; Saxena, Avadh
2014-03-01
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ4, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn2(x, m), it also admits solutions in terms of dn^2(x,m) ± sqrt{m} cn(x,m) dn(x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
Khare, Avinash; Saxena, Avadh
2014-03-15
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.
New Analytical Solution for Nonlinear Shallow Water-Wave Equations
NASA Astrophysics Data System (ADS)
Aydin, Baran; Kânoğlu, Utku
2017-03-01
We solve the nonlinear shallow water-wave equations over a linearly sloping beach as an initial-boundary value problem under general initial conditions, i.e., an initial wave profile with and without initial velocity. The methodology presented here is extremely simple and allows a solution in terms of eigenfunction expansion, avoiding integral transform techniques, which sometimes result in singular integrals. We estimate parameters, such as the temporal variations of the shoreline position and the depth-averaged velocity, compare with existing solutions, and observe perfect agreement with substantially less computational effort.
New Analytical Solution for Nonlinear Shallow Water-Wave Equations
NASA Astrophysics Data System (ADS)
Aydin, Baran; Kânoğlu, Utku
2017-08-01
We solve the nonlinear shallow water-wave equations over a linearly sloping beach as an initial-boundary value problem under general initial conditions, i.e., an initial wave profile with and without initial velocity. The methodology presented here is extremely simple and allows a solution in terms of eigenfunction expansion, avoiding integral transform techniques, which sometimes result in singular integrals. We estimate parameters, such as the temporal variations of the shoreline position and the depth-averaged velocity, compare with existing solutions, and observe perfect agreement with substantially less computational effort.
Fourth order wave equations with nonlinear strain and source terms
NASA Astrophysics Data System (ADS)
Liu, Yacheng; Xu, Runzhang
2007-07-01
In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.
Some existence results on nonlinear fractional differential equations.
Baleanu, Dumitru; Rezapour, Shahram; Mohammadi, Hakimeh
2013-05-13
In this paper, by using fixed-point methods, we study the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem D(α)u(t)=f(t,u(t)) with a Riemann-Liouville fractional derivative via the different boundary-value problems u(0)=u(T), and the three-point boundary condition u(0)=β(1)u(η) and u(T)=β(2)u(η), where T>0, t∈I=[0,T], 0<α<1, 0<η
Pseudorecurrence and chaos of cubic-quintic nonlinear Schroedinger equation
Zhou, C.; Lai, C.H.
1996-12-01
Recurrence, pseudorecurrence, and chaotic solutions for a continuum Hamiltonian system in which there exist spatial patterns of solitary wave structures are investigated using the nonlinear Schrodinger equation (NSE) with cubic and quintic terms. The theoretical analyses indicate that there may exist Birkhoff`s recurrence for the arbitrary parameter values. The numerical experiments show that there may be Fermi-Pasta-Ulam (FPU) recurrence, pseudorecurrence, and chaos when different initial conditions are chosen. The fact that the system energy is effectively shared by finite Fourier modes suggests that it may be possible to describe the continuum system in terms of some effective degrees of freedom.
Numerical solution of nonlinear Hammerstein fuzzy functional integral equations
NASA Astrophysics Data System (ADS)
Enkov, Svetoslav; Georgieva, Atanaska; Nikolla, Renato
2016-12-01
In this work we investigate nonlinear Hammerstein fuzzy functional integral equation. Our aim is to provide an efficient iterative method of successive approximations by optimal quadrature formula for classes of fuzzy number-valued functions of Lipschitz type to approximate the solution. We prove the convergence of the method by Banach's fixed point theorem and investigate the numerical stability of the presented method with respect to the choice of the first iteration. Finally, illustrative numerical experiment demonstrate the accuracy and the convergence of the proposed method.
Vortex Solutions of the Defocusing Discrete Nonlinear Schroedinger Equation
Cuevas, J.; Kevrekidis, P. G.; Law, K. J. H.
2009-09-09
We consider the existence, stability and dynamical evolution of dark vortex states in the two-dimensional defocusing DNLS equation, a model of interest both to atomic physics and to nonlinear optics. Our considerations are chiefly based on initializing such vortex configurations at the anti-continuum limit of zero coupling between adjacent sites, and continuing them to finite values of the coupling. Discrete defocusing vortices become unstable past a critical coupling strength and, subsequently feature a cascade of alternating stabilization-destabilization windows for any finite lattice.
Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet
2017-01-01
Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2016-10-01
An investigation of Lie point symmetries for systems of time fractional partial differential equations including Ito system, coupled Burgers equations, coupled Korteweg de Vries equations, Hirota-Satsuma coupled KdV equations, and coupled nonlinear Hirota equations has been done. Using the obtained symmetries, each one of the systems is reduced to the nonlinear system of fractional ordinary differential equations involving Erdélyi-Kober fractional differential operator depending on a parameter α.
New variable separation solutions for the generalized nonlinear diffusion equations
NASA Astrophysics Data System (ADS)
Fei-Yu, Ji; Shun-Li, Zhang
2016-03-01
The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1982-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.
Self-focusing and modulational analysis for nonlinear Schroedinger equations
Weinsten, M.I.
1982-01-01
For the initial-value problem (IVP) for the nonlinear Schroedinger equation, a sufficient condition for the existence of a unique global solution of the IVP is found. The condition is derived by solving a variational problem to obtain the best constant for a classical interpolation estimate of Nirenberg and Gagliardo. A systematic analysis of the singular structure is presented here for the first time. Methods apply to the general critical case. Linear modulational stability of the ground state relative to small perturbations in NLS and/or the initial data is established in the subcritical case. A sufficient condition for the existence of a unique global solution of a generalized Korteweg-de Vries equation is obtained in terms of the solitary (traveling) wave solution.
Ergodicity for Nonlinear Stochastic Equations in Variational Formulation
Barbu, Viorel Da Prato, Giuseppe
2006-03-15
This paper is concerned with nonlinear partial differential equations of the calculus of variation (see [13]) perturbed by noise. Well-posedness of the problem was proved by Pardoux in the seventies (see [14]), using monotonicity methods.The aim of the present work is to investigate the asymptotic behaviour of the corresponding transition semigroup P{sub t}. We show existence and, under suitable assumptions, uniqueness of an ergodic invariant measure {nu}. Moreover, we solve the Kolmogorov equation and prove the so-called 'identite du carre du champs'. This will be used to study the Sobolev space W{sup 1,2}(H,{nu}) and to obtain information on the domain of the infinitesimal generator of P{sub t}.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589
Shock formation and non-linear dispersion in a microvascular capillary network.
Pop, S R; Richardson, G; Waters, S L; Jensen, O E
2007-12-01
Temporal and spatial fluctuations are a common feature of blood flow in microvascular networks. Among many possible causes, previous authors have suggested that the non-linear rheological properties of capillary blood flow (notably the Fåhraeus effect, the Fåhraeus-Lindqvist effect and the phase-separation effect at bifurcations) may be sufficient to generate temporal fluctuations even in very simple networks. We have simulated blood flow driven by a fixed pressure drop through a simple arcade network using coupled hyperbolic partial differential equations (PDEs) that incorporate well-established empirical descriptions of these rheological effects, accounting in particular for spatially varying haematocrit distributions; we solved the PDE system using a characteristic-based method. Our computations indicate that, under physiologically realistic conditions, there is a unique steady flow in an arcade network which is linearly stable and that plasma skimming suppresses the oscillatory decay of perturbations. In addition, we find that non-linear perturbations to haematocrit distributions can develop shocks via the Fåhraeus effect, providing a novel mechanism for non-linear dispersion in microvascular networks.
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Prakash, P.
2017-01-01
We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.
Approximate symmetry and solutions of the nonlinear Klein-Gordon equation with a small parameter
NASA Astrophysics Data System (ADS)
Rahimian, Mohammad; Toomanian, Megerdich; Nadjafikhah, Mehdi
In this paper, the Lie approximate symmetry analysis is applied to investigate new solutions of the nonlinear Klein-Gordon equation with a small parameter. The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. The hyperbolic function method and Riccati equation method are employed to solve some of the obtained reduced ordinary differential equations. We construct new analytical solutions with a small parameter which is effectively obtained by the proposed method.
NASA Astrophysics Data System (ADS)
Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua
2014-11-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
A numerical dressing method for the nonlinear superposition of solutions of the KdV equation
NASA Astrophysics Data System (ADS)
Trogdon, Thomas; Deconinck, Bernard
2014-01-01
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg-de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t.
Nonlinear periodic waves solutions of the nonlinear self-dual network equations
Laptev, Denis V. Bogdan, Mikhail M.
2014-04-15
The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.
Belmonte-Beitia, J.; Cuevas, J.
2011-03-15
In this paper, we give a proof of the existence of stationary dark soliton solutions or heteroclinic orbits of nonlinear equations of Schroedinger type with periodic inhomogeneous nonlinearity. The result is illustrated with examples of dark solitons for cubic and photorefractive nonlinearities.
Harmonic admittance and dispersion equations--the theorem.
Plessky, Viktor P; Biryukov, Sergey V; Koskela, Julius
2002-04-01
The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the harmonic admittance. Here, we show that a strict reverse relationship also exists: the harmonic admittance of a periodic system of electrodes may always be expressed as the ratio of two determinants, which have been specifically constructed to describe the eigen-modes of the open- and short-circuited systems. There is no need to solve these equations to find the admittance. The existence of a connection between the excitation and propagation problems was recognized within the coupling-of-modes theory by Chen and Haus and was recently used to model surface transverse waves by Koskela et al., but a rigorous mathematical proof was only found later by Biryukov. Here, we reproduce this theorem in detail, give some examples of calculations based on this theorem, and compare the results with measured admittance curves.
Charged anisotropic matter with linear or nonlinear equation of state
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-15
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
Ankiewicz, Adrian
2016-07-01
Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.
An effective analytic approach for solving nonlinear fractional partial differential equations
NASA Astrophysics Data System (ADS)
Ma, Junchi; Zhang, Xiaolong; Liang, Songxin
2016-08-01
Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.
Numerical modeling considerations for an applied nonlinear Schrödinger equation.
Pitts, Todd A; Laine, Mark R; Schwarz, Jens; Rambo, Patrick K; Hautzenroeder, Brenna M; Karelitz, David B
2015-02-20
A model for nonlinear optical propagation is cast into a split-step numerical framework via a variable stencil-size Crank-Nicolson finite-difference method for the linear step and a choice of two different nonlinear integration schemes for the nonlinear step. The model includes Kerr, Raman scattering, and ionization effects (as well as linear and nonlinear shock, diffraction, and dispersion). We demonstrate the practical importance of numerical effects when interpreting computational studies of high-intensity optical pulse propagation in physical materials. Examples demonstrate the significant error that can arise in discrete, limited precision implementations as one attempts to improve practical operator accuracy through increased operator support size and sampling frequency. We also demonstrate the effect of the method used to obtain the finite-difference operator coefficients defining the equations ultimately used in the discrete model. Smooth, plausible, but incorrect solutions may result from these numerical effects. This implies the necessity of a complete, precise description of all numerical methods when reporting results of computational physics investigations in order to ensure proper interpretation and reproducibility.
NASA Astrophysics Data System (ADS)
Djoko, Martin; Kofane, T. C.
2017-07-01
We investigate the propagation of dissipative optical bullets under the combined influence of dispersion, diffraction, gain, loss, spectral filtering, Raman effect and cubic-quintic-septic nonlinearities. Using the Maxwell equations, we derive a basic equation modeling the propagation of ultrashort optical solitons in optical fiber, named the higher-order (3+1)D cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. Considering this higher-order (3+1)D CQS-CGL equation, we use a variational approach to obtain a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations that we obtained are investigated numerically in order to observe the behavior of pulse parameters along the optical fiber. A fully direct numerical simulation of the higher-order (3+1)D CQS-CGL equation finally tests the results of the variational approach. A good agreement between analytical and numerical methods is observed. Among different behaviors, bell-shaped dissipative light bullets, double, triple and quadruple bullet complexes are obtained under certain parameter values for anomalous, zero and normal chromatic dispersion regimes.
NASA Astrophysics Data System (ADS)
Hopkins, James; Gaudette, Jamie; Mehta, Priyanth
2013-10-01
With the advent of digital signal processing (DSP) in optical transmitters and receivers, the ability to finely tune the ratio of pre and post dispersion compensation can be exploited to best mitigate the nonlinear penalties caused by the Kerr effect. A portion of the nonlinear penalty in optical communication channels has been explained by an increase in peak to average power ratio (PAPR) inherent in highly dispersed signals. The standard approach for minimizing these impairments applies 50% pre dispersion compensation and 50% post dispersion compensation, thereby decreasing average PAPR along the length of the cable, as compared with either 100% pre or post dispersion compensation. In this paper we demonstrate that simply considering the net accumulated dispersion, and applying 50/50 pre/post dispersion is not necessarily the best way to minimize PAPR and subsequent Kerr nonlinearities. Instead, we consider the cumulative dispersion along the entire length of the cable, and, taking into account this additional information, derive an analytic formula for the minimization of PAPR. Alignment with simulation and experimental measurements is presented using a commercially available 100Gb/s dual-polarization binary phase-shift-keying (DP-BPSK) coherent modem, with transmitter and receiver DSP. Measurements are provided from two different 5000km dispersion managed Submarine test-beds, as well as a 3800km terrestrial test-bed with a mixture of SMF-28 and TWRS optical fiber. This method is shown to deviate significantly from the conventional 50/50 method described above, in dispersion managed communications systems, and more closely aligns with results obtained from simulation and data collected from laboratory test-beds.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Hedberg, C. M.
2015-01-01
The stationary profile in the focal region of a focused nonlinear acoustic wave is described. Three models following from the Khokhlov-Zabolotskaya (KZ) equation with three independent variables are used: (i) the simplified one-dimensional Ostrovsky-Vakhnenko equation, (ii) the system of equations for paraxial series expansion of the acoustic field in powers of transverse coordinates, and (iii) the KZ equation reduced to two independent variables. The structure of the last equation is analogous to the Westervelt equation. Linearization through the Legendre transformation and reduction to the well-studied Euler-Tricomi equation is shown. At high intensities the stationary profiles are periodic sequences of arc sections having singularities of derivative in their matching points. The occurrence of arc profiles was pointed out by Makov. These appear in different nonlinear systems with low-frequency dispersion. Profiles containing discontinuities (shock fronts) change their form while passing through the focal region and are non-stationary waves. The numerical estimations of maximum pressure and intensity in the focus agree with computer calculations and experimental measurements.
A small dispersion limit to the long wave-short wave interaction equations
NASA Astrophysics Data System (ADS)
Muslu, Gulcin M.; Kesici, Emine; Oruc, Goksu
2017-07-01
We study the small dispersion limit for the three coupled long wave-short wave interaction (LSI) equations, numerically. For this aim, a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge Kutta method in time is constructed. To understand the small dispersion limit, plane wave and solitary wave solutions of LSI equations are considered.
Chaos in the fractional order nonlinear Bloch equation with delay
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Magin, Richard L.; Bhalekar, Sachin; Daftardar-Gejji, Varsha
2015-08-01
The Bloch equation describes the dynamics of nuclear magnetization in the presence of static and time-varying magnetic fields. In this paper we extend a nonlinear model of the Bloch equation to include both fractional derivatives and time delays. The Caputo fractional time derivative (α) in the range from 0.85 to 1.00 is introduced on the left side of the Bloch equation in a commensurate manner in increments of 0.01 to provide an adjustable degree of system memory. Time delays for the z component of magnetization are inserted on the right side of the Bloch equation with values of 0, 10 and 100 ms to balance the fractional derivative with delay terms that also express the history of an earlier state. In the absence of delay, τ = 0 , we obtained results consistent with the previously published bifurcation diagram, with two cycles appearing at α = 0.8548 with subsequent period doubling that leads to chaos at α = 0.9436 . A periodic window is observed for the range 0.962 < α < 0.9858 , with chaos arising again as α nears 1.00. The bifurcation diagram for the case with a 10 ms delay is similar: two cycles appear at the value α = 0.8532 , and the transition from two to four cycles at α = 0.9259 . With further increases in the fractional order, period doubling continues until at α = 0.9449 chaos ensues. In the case of a 100 millisecond delay the transitions from one cycle to two cycles and two cycles to four cycles are observed at α = 0.8441 , and α = 0.8635 , respectively. However, the system exhibits chaos at much lower values of α (α = 0.8635). A periodic window is observed in the interval 0.897 < α < 0.9341 , with chaos again appearing for larger values of α . In general, as the value of α decreased the system showed transitions from chaos to transient chaos, and then to stability. Delays naturally appear in many NMR systems, and pulse programming allows the user control over the process. By including both the fractional derivative and time delays in
Study of nonlinear waves described by the cubic Schroedinger equation
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Exact multisoliton solutions of general nonlinear Schrödinger equation with derivative.
Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing
2014-01-01
Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.
2014-09-30
nonlinear Schrodinger equation. It is well known that dark solitons are exact solutions of such equation. In the present paper it has been shown that gray...in numerical computations of Nonlinear Schrodinger equation, and in the optical fibers experiments. In particular it has been shown that the
Exact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative
Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing
2014-01-01
Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions. PMID:25013858
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
NASA Astrophysics Data System (ADS)
Canoglu, Ahmet; Güldogan, Bahri; Salihoglu, Selâmi
We obtain new integrable coupled nonlinear partial differential equations by assuming the soliton connection having values in orthogonal-symplectic Lie superalgebras [B(m, n), C(n), D(m, n)]. These equations are coupled Nonlinear Schrödinger equations on various super symmetric spaces.
Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence
Hahm, T. S.; Wang, Lu; Madsen, J.
2008-08-01
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ_{i}<< ρ_{θ¡} ~ L_{E} ~ L_{p} << R (here ρ_{i} is the thermal ion Larmor radius and ρ_{θ¡} = B/B_{θ}] ρ_{i}), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρ_{i} ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τ_{i} ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.
An almost symmetric Strang splitting scheme for nonlinear evolution equations.
Einkemmer, Lukas; Ostermann, Alexander
2014-07-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
A new method for parameter estimation in nonlinear dynamical equations
NASA Astrophysics Data System (ADS)
Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao
2015-01-01
Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.
Implementation of nonreflecting boundary conditions for the nonlinear Euler equations
NASA Astrophysics Data System (ADS)
Atassi, Oliver V.; Galán, José M.
2008-01-01
Computationally efficient nonreflecting boundary conditions are derived for the Euler equations with acoustic, entropic and vortical inflow disturbances. The formulation linearizes the Euler equations near the inlet/outlet boundaries and expands the solution in terms of Fourier-Bessel modes. This leads to an 'exact' nonreflecting boundary condition, local in space but nonlocal in time, for each Fourier-Bessel mode of the perturbation pressure. The perturbation velocity and density are then calculated using acoustic, entropic and vortical mode splitting. Extension of the boundary conditions to nonuniform swirling flows is presented for the narrow annulus limit which is relevant to many aeroacoustic problems. The boundary conditions are implemented for the nonlinear Euler equations which are solved in space using the finite volume approximation and integrated in time using a MacCormack scheme. Two test problems are carried out: propagation of acoustic waves in an annular duct and the scattering of a vortical wave by a cascade. Comparison between the present exact conditions and commonly used approximate local boundary conditions is made. Results show that, unlike the local boundary conditions whose accuracy depends on the group velocity of the scattered waves, the present conditions give accurate solutions for a range of problems that have a wide array of group velocities. Results also show that this approach leads to a significant savings in computational time and memory by obviating the need to store the pressure field and calculate the nonlocal convolution integral at each point in the inlet and exit boundaries.
Al Khawaja, U.
2010-05-15
We derive the integrability conditions of nonautonomous nonlinear Schroedinger equations using the Lax pair and similarity transformation methods. We present a comparative analysis of these integrability conditions with those of the Painleve method. We show that while the Painleve integrability conditions restrict the dispersion, nonlinearity, and dissipation/gain coefficients to be space independent and the external potential to be only a quadratic function of position, the Lax Pair and the similarity transformation methods allow for space-dependent coefficients and an external potential that is not restricted to the quadratic form. The integrability conditions of the Painleve method are retrieved as a special case of our general integrability conditions. We also derive the integrability conditions of nonautonomous nonlinear Schroedinger equations for two- and three-spacial dimensions.
1997-01-01
Eulerian methods use a xed spatial grid such as optimal test function methods of Christie and coworkers Barrett and Morton Celia et al...is too large the SDM will introduce excessive numerical dispersion and seriously smear the numerical solutions Unfortunately an optimal choice of...onedimensional nonlinear advectiondiusion equations Ewing and Wang a b also developed ELLAM schemes for the solution of one
Nonlinear dirac and diffusion equations in 1+1 dimensions from stochastic considerations
Maharana
2000-08-01
We generalize the method of obtaining fundamental linear partial differential equations such as the diffusion and Schrodinger equation, the Dirac, and the telegrapher's equation from a simple stochastic consideration to arrive at a certain nonlinear form of these equations. A group classification through a one-parameter group of transformations for two of these equations is also carried out.
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio
2014-01-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530
NASA Astrophysics Data System (ADS)
Reyes, M. A.; Gutiérrez-Ruiz, D.; Mancas, S. C.; Rosu, H. C.
2016-01-01
We present an approach to the bright soliton solution of the nonlinear Schrödinger (NLS) equation from the standpoint of introducing a constant potential term in the equation. We discuss a “nongauge” bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sechp solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations when p = 2.
NASA Astrophysics Data System (ADS)
D'Aguanno, Giuseppe; Menyuk, Curtis R.
2017-03-01
Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study, both analytically and computationally, the general properties of nonlinear frequency comb generation at an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons and broadband frequency combs can be excited when both branches are pumped for a suitable choice of the pump powers and the detuning parameters. A deterministic path for soliton generation is found. Contribution to the Topical Issue "Theory and applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Yan, Zhenya; Chen, Yong
2017-07-01
We investigate the nonlinear Schrödinger (NLS) equation with generalized nonlinearities and complex non-Hermitian potentials and present the novel parity-time-( PT-) symmetric potentials for the NLS equation with power-law nonlinearities supporting some bright solitons. For distinct types of PT-symmetric potentials including Scarf-II, Hermite-Gaussian, and asymptotically periodic potentials, we, respectively, explore the phase transitions for the linear Hamiltonian operators. Moreover, we analytically find stable bright solitons in the generalized NLS equations with several types of PT-symmetric potentials, and their stability is corroborated by the linear stability spectrum and direct wave-propagation simulations. Interactions of two solitons are also explored. More interestingly, we find that the nonlinearity can excite the unstable linear modes (i.e., possessing broken linear PT-symmetric phase) to stable nonlinear modes. The results may excite potential applications in nonlinear optics, Bose-Einstein condensates, and relevant fields.
NASA Astrophysics Data System (ADS)
Yan, Zhenya; Chen, Yong
2017-07-01
We investigate the nonlinear Schrödinger (NLS) equation with generalized nonlinearities and complex non-Hermitian potentials and present the novel parity-time-( P T -) symmetric potentials for the NLS equation with power-law nonlinearities supporting some bright solitons. For distinct types of P T -symmetric potentials including Scarf-II, Hermite-Gaussian, and asymptotically periodic potentials, we, respectively, explore the phase transitions for the linear Hamiltonian operators. Moreover, we analytically find stable bright solitons in the generalized NLS equations with several types of P T -symmetric potentials, and their stability is corroborated by the linear stability spectrum and direct wave-propagation simulations. Interactions of two solitons are also explored. More interestingly, we find that the nonlinearity can excite the unstable linear modes (i.e., possessing broken linear P T -symmetric phase) to stable nonlinear modes. The results may excite potential applications in nonlinear optics, Bose-Einstein condensates, and relevant fields.
NASA Astrophysics Data System (ADS)
Musammil, N. M.; Porsezian, K.; Nithyanandan, K.; Subha, P. A.; Tchofo Dinda, P.
2017-09-01
We present the study of the dark soliton dynamics in an inhomogeneous fiber by means of a variable coefficient modified nonlinear Schrödinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
Canonical equations of Hamilton for the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liang, Guo; Guo, Qi; Ren, Zhanmei
2015-09-01
We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.
Self-similar solutions for a nonlinear radiation diffusion equation
Garnier, Josselin; Malinie, Guy; Saillard, Yves; Cherfils-Clerouin, Catherine
2006-09-15
This paper considers the hydrodynamic equations with nonlinear conduction when the internal energy and the opacity have power-law dependences in the density and in the temperature. This system models the situation in which a dense solid is brought into contact with a thermal bath. It supports self-similar solutions that depend on the surface temperature. The self-similar solution can exhibit a shock wave followed by an ablation front if the surface temperature does not increase too fast in time, but it can exhibit a heat front followed by an isothermal shock otherwise. These flows are carefully studied in order to clarify the role of the initial solid density in the energy absorption and the ablation process. Comparisons with numerical simulations show excellent agreement.
Rogue waves of a (3 + 1) -dimensional nonlinear evolution equation
NASA Astrophysics Data System (ADS)
Shi, Yu-bin; Zhang, Yi
2017-03-01
General high-order rogue waves of a (3 + 1) -dimensional Nonlinear Evolution Equation ((3+1)-d NEE) are obtained by the Hirota bilinear method, which are given in terms of determinants, whose matrix elements possess plain algebraic expressions. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. Two subclass of nonfundamental rogue waves are analyzed in details. By proper means of the regulations of free parameters, the dynamics of multi-rogue waves and high-order rogue waves have been illustrated in (x,t) plane and (y,z) plane by three dimensional figures.
Nonequilibrium discrete nonlinear Schrödinger equation.
Iubini, Stefano; Lepri, Stefano; Politi, Antonio
2012-07-01
We study nonequilibrium steady states of the one-dimensional discrete nonlinear Schrödinger equation. This system can be regarded as a minimal model for the stationary transport of bosonic particles such as photons in layered media or cold atoms in deep optical traps. Due to the presence of two conserved quantities, namely, energy and norm (or number of particles), the model displays coupled transport in the sense of linear irreversible thermodynamics. Monte Carlo thermostats are implemented to impose a given temperature and chemical potential at the chain ends. As a result, we find that the Onsager coefficients are finite in the thermodynamic limit, i.e., transport is normal. Depending on the position in the parameter space, the "Seebeck coefficient" may be either positive or negative. For large differences between the thermostat parameters, density and temperature profiles may display an unusual nonmonotonic shape. This is due to the strong dependence of the Onsager coefficients on the state variables.
Bifurcations in a Mathieu equation with cubic nonlinearities: Part II
NASA Astrophysics Data System (ADS)
Ng, Leslie; Rand, Richard
2002-09-01
In a previous paper [Chaos Solitons Fract. 14(2) (2002) 173], the authors investigated the dynamics of the equation: d2x /dt 2+(δ+ɛ cost)x+ɛ Ax 3+Bx 2dx /dt +Cx dx /dt 2+D dx /dt 3=0 We used the method of averaging in the neighborhood of the 2:1 resonance in the limit of small forcing and small nonlinearity. We found that a degenerate bifurcation point occurs in the resulting slow flow and some of the bifurcations near this point were looked at. In this work we present additional results concerning the bifurcations around this point using analytic techniques and AUTO. An analytic approximation for a heteroclinic bifurcation curve is obtained. Additional results on the bifurcations of periodic orbits in the slow flow are also presented.
A globalization procedure for solving nonlinear systems of equations
NASA Astrophysics Data System (ADS)
Shi, Yixun
1996-09-01
A new globalization procedure for solving a nonlinear system of equationsF(x)D0 is proposed based on the idea of combining Newton step and the steepest descent step WITHIN each iteration. Starting with an arbitrary initial point, the procedure converges either to a solution of the system or to a local minimizer off(x)D1/2F(x)TF(x). Each iteration is chosen to be as close to a Newton step as possible and could be the Newton step itself. Asymptotically the Newton step will be taken in each iteration and thus the convergence is quadratic. Numerical experiments yield positive results. Further generalizations of this procedure are also discussed in this paper.
Solitons and other solutions to the coupled nonlinear Schrödinger type equations
NASA Astrophysics Data System (ADS)
El-Borai, M. M.; El-Owaidy, H. M.; Ahmed, Hamdy M.; Arnous, A. H.; Mirzazadeh, M.
2017-06-01
Nonlinear Schrödinger type equations arise from a wide variety of fields, such as fluids, nonlinear optics, the theory of deep water waves, plasma physics, and so on. In this paper, two integration schemes are employed to obtain solitons, periodic waves and other forms of solutions of the coupled nonlinear Schrödinger type equations. The two schemes that are studied in this paper are the Bäcklund transformation of Riccati equation and the trial solution method.
Estimation of Delays and Other Parameters in Nonlinear Functional Differential Equations.
1981-12-01
FSTIMATION OF DELAYS AND OTHER PARAMETERS IN NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS by K. T. Banks and P. L. Daniel December 1981 LCDS Report #82...ESTIMATION OF DELAYS AND OTHER PARAMETERS IN NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS H. T. Banks and P. L. Daniel ABSTRACT We discuss a spline...based approximation scheme for nonlinear nonautonomous delay differential equations . Convergence results (using dissipative type estimates on the
NASA Astrophysics Data System (ADS)
Larecki, Wieslaw; Banach, Zbigniew
2014-01-01
This paper analyzes the propagation of the waves of weak discontinuity in a phonon gas described by the four-moment maximum entropy phonon hydrodynamics involving a nonlinear isotropic phonon dispersion relation. For the considered hyperbolic equations of phonon gas hydrodynamics, the eigenvalue problem is analyzed and the condition of genuine nonlinearity is discussed. The speed of the wave front propagating into the region in thermal equilibrium is first determined in terms of the integral formula dependent on the phonon dispersion relation and subsequently explicitly calculated for the Dubey dispersion-relation model: |k|=ωc-1(1+bω2). The specification of the parameters c and b for sodium fluoride (NaF) and semimetallic bismuth (Bi) then makes it possible to compare the calculated dependence of the wave-front speed on the sample’s temperature with the empirical relations of Coleman and Newman (1988) describing for NaF and Bi the variation of the second-sound speed with temperature. It is demonstrated that the calculated temperature dependence of the wave-front speed resembles the empirical relation and that the parameters c and b obtained from fitting respectively the empirical relation and the original material parameters of Dubey (1973) are of the same order of magnitude, the difference being in the values of the numerical factors. It is also shown that the calculated temperature dependence is in good agreement with the predictions of Hardy and Jaswal’s theory (Hardy and Jaswal, 1971) on second-sound propagation. This suggests that the nonlinearity of a phonon dispersion relation should be taken into account in the theories aiming at the description of the wave-type phonon heat transport and that the Dubey nonlinear isotropic dispersion-relation model can be very useful for this purpose.
Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations
Kushner, Harold J.
2012-08-15
This two-part paper deals with 'foundational' issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
NASA Astrophysics Data System (ADS)
Yin, Jiu-Li; Zhao, Liu-Wei; Tian, Li-Xin
2014-02-01
The nonlinear Schrödinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.
Lax Pairs and Integrability Conditions of Higher-Order Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Asad-uz-zaman, M.; Chachou Samet, H.; Khawaja, U. Al
2016-08-01
We derive the Lax pairs and integrability conditions of the nonlinear Schrödinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with derivative terms are considered. The Lax pairs and integrability conditions for some of the well-known nonlinear Schrödinger equations, including a new equation which was not considered previously in the literature, are then derived as special cases. We show most clearly with a similarity transformation that the higher-order terms restrict the integrability to linear potential in contrast with quadratic potential for the standard nonlinear Schrödinger equation.
Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.
1983-03-01
Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron
Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas
Masood, W.; Rizvi, H.
2011-09-15
Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.
Chabchoub, A.; Kibler, B.; Finot, C.; Millot, G.; Onorato, M.; Dudley, J.M.; Babanin, A.V.
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.
NASA Astrophysics Data System (ADS)
Weerasekara, Gihan; Maruta, Akihiro
2017-01-01
The dynamics of the optical rogue wave phenomenon in the framework of integrable higher-order nonlinear Schrödinger equation (HNLSE) including the third order dispersion term is presented in this paper. When rogue waves generate through soliton collision, the colliding solitons' eigenvalues of the associated equation of HNLSE should be constant in the vicinity of rogue wave generation. Our results reveal that soliton collision is one of the generation mechanisms of optical rogue waves in anomalous dispersion fiber by taking the third order dispersion into consideration in the HNLSE based model.
Local error estimates for discontinuous solutions of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1989-01-01
Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.
Nonlinear Schrödinger equation with spatiotemporal perturbations.
Mertens, Franz G; Quintero, Niurka R; Bishop, A R
2010-01-01
We investigate the dynamics of solitons of the cubic nonlinear Schrödinger equation (NLSE) with the following perturbations: nonparametric spatiotemporal driving of the form f(x,t)=a exp[iK(t)x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a collective-coordinate-theory which yields a set of ordinary differential equations (ODEs) for our four collective coordinates. These ODEs are solved analytically and numerically for the case of a constant, spatially periodic force f(x). The soliton position exhibits oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the oscillations is much smaller than the period of f(x). In order to find out for which regions the above solutions are stable, we calculate the time evolution of the soliton momentum P(t) and the soliton velocity V(t): This is a parameter representation of a curve P(V) which is visited by the soliton while time evolves. Our conjecture is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is.
ON NONLINEAR EQUATIONS OF THE FORM F(x,\\, u,\\, Du,\\, \\Delta u) = 0
NASA Astrophysics Data System (ADS)
Soltanov, K. N.
1995-02-01
The Dirichlet problem for equations of the form F(x,\\, u,\\, Du,\\, \\Delta u) = 0 and also the initial boundary value problem for a parabolic equation with a nonlinearity are studied.Bibliography: 11 titles.
NONLINEAR OPTICAL PHENOMENA: Dispersive regime of spectral compression
NASA Astrophysics Data System (ADS)
Kutuzyan, A. A.; Mansuryan, T. G.; Esayan, G. L.; Akopyan, R. S.; Muradyan, Kh
2008-04-01
The role of the group velocity dispersion in the spectral compression of subpicosecond laser pulses is analysed based on numerical and experimental studies. It is shown that the group velocity dispersion in an optical fibre can substantially change the physical pattern of the spectral compression process.
NASA Astrophysics Data System (ADS)
Parand, K.; Shahini, M.; Dehghan, Mehdi
2009-12-01
Lane-Emden equation is a nonlinear singular equation in the astrophysics that corresponds to the polytropic models. In this paper, a pseudospectral technique is proposed to solve the Lane-Emden type equations on a semi-infinite domain. The method is based on rational Legendre functions and Gauss-Radau integration. The method reduces solving the nonlinear ordinary differential equation to solve a system of nonlinear algebraic equations. The comparison of the results with the other numerical methods shows the efficiency and accuracy of this method.
Carasso, Alfred S
2013-01-01
Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. PMID:26401430
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Gao, Hui; Xu, Tianzhou; Fan, Tianyou; Wang, Gangwei
2017-03-01
The Born-Infeld equation is an important nonlinear partial differential equation in theoretical and mathematical physics. The Lie group method is used for simplifying the nonlinear partial differential equation, which is partly solved, in which there are some difficulties; to overcome the difficulties, we develop a power series method, and find the solutions in analytic form. In the mean time, a wave propagation (traveling wave) method is developed for solving the equation, and analytic solutions are also constructed.
NASA Astrophysics Data System (ADS)
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
Li, Xuyou; Xu, Zhenlong; Ling, Weiwei; Liu, Pan
2014-10-10
A novel (to our knowledge) type of photonic crystal fiber (PCF) with high nonlinearity and flattened dispersion is proposed. The propagation characteristics of chromatic dispersion, effective area, and nonlinearity are studied numerically by using the full-vector finite element method. Several PCF designs with high nonlinearity and nearly zero flattened dispersion or broadband flattened, and even ultraflattened, dispersion over different wavelength bands are obtained by optimizing the structural parameters. One optimized PCF has a nearly zero ultraflattened dispersion of 2.3 ps/(nm·km) with a dispersion variation of 0.2 ps/(nm·km) over the C+L+U wavelength bands. In addition, the dispersion slope and nonlinear coefficient at 1.55 μm can be up to 2.2×10(-3) ps/nm(2)·km and 33.2 W(-1)·km(-1), respectively. The designs proposed in this paper have bright prospects for applications in all-optical format conversion, supercontinuum generation, optical wavelength conversion, and many other fields.
NASA Astrophysics Data System (ADS)
Wu, Hong-Yu; Jiang, Li-Hong
2017-09-01
From a generic transformation, a (3+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity is studied and exact spatiotemporal soliton cluster solutions are derived. When the azimuthal parameter m = 0, Gaussian solitons are constructed. For the modulation depth q = 1 and the azimuthal parameter m\
New Traveling Wave Solutions for a Class of Nonlinear Evolution Equations
NASA Astrophysics Data System (ADS)
Bai, Cheng-Jie; Zhao, Hong; Xu, Heng-Ying; Zhang, Xia
The deformation mapping method is extended to solve a class of nonlinear evolution equations (NLEEs). Many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, and Jacobian elliptic function solutions, are obtained by a simple algebraic transformation relation between the solutions of the NLEEs and those of the cubic nonlinear Klein-Gordon (NKG) equation.
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
Wang, L H; Porsezian, K; He, J S
2013-05-01
In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrödinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations in classical Heisenberg spin chain. Such solutions have a parameter γ(1), denoting the strength of the higher-order effects. From the numerical plots of the rational solutions, the compression effects of the breather and rogue waves produced by γ(1) are discussed in detail.
Localized solutions of extended discrete nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Umarov, B. A.; Ismail, Nazmi Hakim Bin; Hadi, Muhammad Salihi Abdul; Hassan, T. H.
2017-09-01
We consider the extended discrete nonlinear Schrödinger (EDNLSE) equation which includes the nearest neighbor nonlinear interaction in addition to the on-site cubic and quintic nonlinearities. This equation describes nonlinear excitations in dipolar Bose-Einstein condensate in a periodic optical lattice. We are particularly interested with the existence and stability conditions of localized nonlinear excitations of different types. The problem is tackled numerically, by application of Newton methods and by solving the eigenvalue problem for linearized system near the exact solution. Also the modulational instability of plane wave solution is discussed.
NASA Astrophysics Data System (ADS)
Klein, C.; Peter, R.
2015-06-01
We present a detailed numerical study of solutions to general Korteweg-de Vries equations with critical and supercritical nonlinearity, both in the context of dispersive shocks and blow-up. We study the stability of solitons and show that they are unstable against being radiated away and blow-up. In the L2 critical case, the blow-up mechanism by Martel, Merle and Raphaël can be numerically identified. In the limit of small dispersion, it is shown that a dispersive shock always appears before an eventual blow-up. In the latter case, always the first soliton to appear will blow up. It is shown that the same type of blow-up as for the perturbations of the soliton can be observed which indicates that the theory by Martel, Merle and Raphaël is also applicable to initial data with a mass much larger than the soliton mass. We study the scaling of the blow-up time t∗ in dependence of the small dispersion parameter ɛ and find an exponential dependence t∗(ɛ) and that there is a minimal blow-up time t0∗ greater than the critical time of the corresponding Hopf solution for ɛ → 0. To study the cases with blow-up in detail, we apply the first dynamic rescaling for generalized Korteweg-de Vries equations. This allows to identify the type of the singularity.
Analysis of the small dispersion limit of a non-integrable generalized Korteweg-de Vries equation
NASA Astrophysics Data System (ADS)
Zakeri, Gholam-Ali; Yomba, Emmanuel
2013-08-01
A generalized non-integrable Korteweg-de Vries (KdV) equation is investigated for the qualitative behavior of its solutions with a small dispersion limit. We obtained two reduced ordinary differential equations using a similarity analysis and discussed the solutions of generalized KdV (gKdV) by employing singular perturbation and asymptotic methods. We found a new closed form solution and provided various approximate solutions. We have shown that for sech-type initial value data the cumulative primitive function of the gKdV solution converges point-wise as the coefficient of the dispersive term goes to zero. Our numerical experiments provide strong evidence that for each fixed time, the solutions of gKdV are bounded by well-defined envelopes as the coefficient of the dispersion term goes to zero. We have shown that for a higher order of nonlinearity, the soliton becomes shaper, with a larger amplitude, but remains bounded. Comparatively, for a smaller coefficient of the dispersion term, its base gets smaller and the soliton becomes narrower, but the amplitude of the soliton remains the same.
An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
Linear homotopy solution of nonlinear systems of equations in geodesy
NASA Astrophysics Data System (ADS)
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
Bursting processes in plasmas and relevant nonlinear model equations
Basu, B.; Coppi, B.
1995-01-01
Important intrinsic plasma instabilities manifest themselves in the form of periodic bursts of fluctuations rather than as a state of stationary fluctuations, which a conventional application of quasilinear theory would lead to expect. A set of coupled nonlinear equations for the time evolution of the fluctuation amplitude and of the driving factor of the relevant instability is shown to have the features necessary to reproduce the variety of bursts that are observed experimentally. These are the periodicity, the duration, and the shape of the bursts, special consideration being given to the excitation of modes by high-energy particle populations in thermalized plasmas and to a model for the transition from a bursting state to one of stationary fluctuations. A model is introduced that is relevant to the case where the spatial dependence of the mode amplitude is important. The application of the given analysis to the bursty wave emissions observed in space is discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Nonlinear dispersive evolution of coherent trapped particle structures in collisionless plasmas
NASA Astrophysics Data System (ADS)
Mandal, Debraj; Sharma, Devendra
2016-10-01
The nonlinear limit of the collective perturbations in plasma is characterized by the onset of amplitude dependence in the wave dispersion. In a special class of nonlinear effects having origin in plasma kinetic theory, this amplitude dependence is removed only by collisions such that perturbations have no linear counterpart in collisionless limit and must follow a nonlinear dispersion relation (NDR). Exploring whether these fundamentally nonlinear perturbations can be driven unstable without entropy production might transform the character of the linear threshold based operating mechanism of the plasma turbulence that relies on well defined discrete spectrum prescribed by the linear plasma dispersion. In our multiscale, exact mass ratio, kinetic simulations the evolution of fundamentally nonlinear trapped particle structures is explored on both fast and slow ion and electron acoustic branches of the associated Nonlinear dispersion relation, respectively. The propagating structures that mutually interact exhibit a near continuum of the phase velocities and show microscopic evolution of the separatrix between streaming and trapped particle regions in the phase space, describing the subtle continuity between discrete and continuum bases of the plasma turbulence.
Analytical approximate solution for nonlinear space—time fractional Klein—Gordon equation
NASA Astrophysics Data System (ADS)
Khaled, A. Gepreel; Mohamed, S. Mohamed
2013-01-01
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space—time fractional derivatives Klein—Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space—time fractional derivatives Klein—Gordon equation. This method introduces a promising tool for solving many space—time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
A new solution procedure for a nonlinear infinite beam equation of motion
NASA Astrophysics Data System (ADS)
Jang, T. S.
2016-10-01
Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.
NASA Astrophysics Data System (ADS)
Wang, Yue-Yue; Dai, Chao-Qing
2012-08-01
With the help of the similarity transformation connected the variable-coefficient (3+1)-dimensional nonlinear Schrödinger equation with the standard nonlinear Schrödinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the real time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value To to achieve the sustained and restrained spatiotemporal rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporal rogue waves can also be realized by setting different values of X0.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S. S.; Magagula, V. M.; Sibanda, P.
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252
Solitary-wave interaction. [model equation solutions for long waves in dispersive media
NASA Technical Reports Server (NTRS)
Bona, J. L.; Pritchard, W. G.; Scott, L. R.
1980-01-01
The interaction of solitary-wave solutions of a model equation for long waves in dispersive media is examined numerically. It is found that the waves do not emerge from the interaction unscathed. Instead, two new solitary waves, having slightly different amplitudes from the original waves, together with a small dispersive tail are generated as a result of the interaction.
Numerical Schemes for a Model for Nonlinear Dispersive Waves.
1983-11-01
2604 November 1983 ABSTRACT A description is given of a number of numerical schemes to solve an evolution equation Athat arises when modelling the...travel at constant speed and whose shape is independent of time. One of the models, the Korteweg -de Vries equation , has been studied extensively, both...inital-value problem for the Korteweg -de Vries equation y~~~-2u 0(I) ut + ux + Buu x +fYu inO, Department of Mathematics, University of Chicago, Chicago
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2003-04-01
In this paper based on a system of Riccati equations with variable coefficients, we present a new Riccati equation with variable coefficients expansion method and its algorithm, which are direct and more powerful than the tanh-function method, sine-cosine method, the generalized hyperbolic-function method and the generalized Riccati equation with constant coefficient expansion method to construct more new exact solutions of nonlinear differential equations in mathematical physics. A pair of generalized Hamiltonian equations is chosen to illustrate our algorithm such that more families of new exact solutions are obtained which contain soliton-like solution and periodic solutions. This algorithm can also be applied to other nonlinear differential equations.
Konotop, V.V.; Pacciani, P.
2005-06-24
It is proven that periodically varying and sign definite nonlinearity in a general case does not prevent collapse in two-dimensional and three-dimensional nonlinear Schroedinger equations: at any oscillation frequency of the nonlinearity blowing up solutions exist. Contrary to the results known for a sign-alternating nonlinearity, an increase of the frequency of oscillations accelerates collapse. The effect is discussed from the viewpoint of scaling arguments. For the three-dimensional case a sufficient condition for the existence of collapse is rigorously established. The results are discussed in the context of the mean field theory of Bose-Einstein condensates with time-dependent scattering length.
Finite element method for non-linear dispersive wave analysis
NASA Astrophysics Data System (ADS)
Cheng, Jung-Yu; Kawahara, Mutsuto
1993-09-01
This report presents the finite element method for the analysis of the short wave problem expressed by the Boussinesq equation. The Boussinesq equation considers the effect of wave crest curvature. The standard Galerkin finite element method is employed for the spatial discretization using the triangular finite element based on the linear interpolation function. The combination of the explicit and the quasi-explicit schemes-- i.e., the explicit scheme for the continuum equation and the quasi-explicit scheme for the momentum equation--is employed for the discretization in time. To show the applicability of the present method to the practical problem, the simulation of wave propagation in one-dimensional and two-dimensional channel flows is carried out. The numerical results are in good agreement with the experimental results being. The practical example for Miyako Bay is presented.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued
A family of nonlinear Schrödinger equations admitting q-plane wave solutions
NASA Astrophysics Data System (ADS)
Nobre, F. D.; Plastino, A. R.
2017-08-01
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
A simple and direct method for generating travelling wave solutions for nonlinear equations
Bazeia, D. Das, Ashok; Silva, A.
2008-05-15
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
Guo, Boling; Ling, Liming; Liu, Q P
2012-02-01
In this paper, we construct a generalized Darboux transformation for the nonlinear Schrödinger equation. The associated N-fold Darboux transformation is given in terms of both a summation formula and determinants. As applications, we obtain compact representations for the Nth-order rogue wave solutions of the focusing nonlinear Schrödinger equation and Hirota equation. In particular, the dynamics of the general third-order rogue wave is discussed and shown to exhibit interesting structures.
Hierarchies of nonlinear integrable equations and their symmetries in 2 + 1 dimensions
NASA Astrophysics Data System (ADS)
Cheng, Yi
1990-11-01
For a given nonlinear integrable equation in 2 + 1 dimensions, an approach is described to construct the hierarchies of equations and relevant Lie algebraic properties. The commutability and noncommutability of equations of the flow, their symmetries and mastersymmetries are then derived as direct results of these algebraic properties. The details for the modified Kadomtsev-Petviashvilli equation are shown as an example and the main results for the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Katera-Sawada equation are given.
NASA Astrophysics Data System (ADS)
Selima, Ehab S.; Seadawy, Aly R.; Yao, Xiaohua
2016-12-01
The three-dimensional (3-D) nonlinear and dispersive PDEs system for surface waves propagating at undisturbed water surface under the gravity force and surface tension effects are studied. By applying the reductive perturbation method, we derive the (2 + 1) -dimensions form of the Davey-Stewartson (DS) system for the modulation of 2-D harmonic waves. By using the simplest equation method, we find exact traveling wave solutions and a general form of the multiple-soliton solution of the DS model. The dispersion analysis as well as the conservation law of the DS system are discussed. It is revealed that the consistency of the results with the conservation of the potential energy increases with increasing Ursell parameter. Also, the stability of the ODEs form of the DS system is presented by using the phase portrait method.
Dispersion Effects in Nonlinear Light Propagation in 1-D Fiber Gratings
2007-11-02
Fundamentos Matemáticos E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid 28040 Madrid, SPAIN Contents 1 Introduction...is based on the analysis and numerical simulations of the so-called nonlinear coupled mode equations (NLCME). This system of equations accounts for the
Non-Linear Noise Contributions in Highly Dispersive Optical Transmission Systems
NASA Astrophysics Data System (ADS)
Matera, Francesco
2016-01-01
This article reports an analytical investigation, confirmed by numerical simulations, about the non-linear noise contribution in single-channel systems adopting generic modulation-detection formats in long links with both managed and unmanaged dispersion compensation and its impact in system performance. This noise contribution is expressed in terms of a pulse non-linear interaction length and permits a simple calculation of the Q-factor. Results point out the dependence of this non-linear noise on the number of amplifiers spans, N, according to the adopted chromatic dispersion compensation scheme, the modulation-detection format, and the signal baud rate. It is also shown how the effects of polarization multiplexing can be taken into account and how this single-channel non-linear noise contribution can be used in a wavelength-division multiplexing (WDM) environment.
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
Perfectly matched layer absorbing boundary condition for nonlinear two-fluid plasma equations
NASA Astrophysics Data System (ADS)
Sun, X. F.; Jiang, Z. H.; Hu, X. W.; Zhuang, G.; Jiang, J. F.; Guo, W. X.
2015-04-01
Numerical instability occurs when coupled Maxwell equations and nonlinear two-fluid plasma equations are solved using finite difference method through parallel algorithm. Thus, a perfectly matched layer (PML) boundary condition is set to avoid the instability caused by velocity and density gradients between vacuum and plasma. A splitting method is used to first decompose governing equations to time-dependent nonlinear and linear equations. Then, a proper complex variable is used for the spatial derivative terms of the time-dependent nonlinear equation. Finally, with several auxiliary function equations, the governing equations of the absorbing boundary condition are derived by rewriting the frequency domain PML in the original physical space and time coordinates. Numerical examples in one- and two-dimensional domains show that the PML boundary condition is valid and effective. PML stability depends on the absorbing coefficient and thickness of absorbing layers.
NASA Astrophysics Data System (ADS)
Zhang, B.; Billings, S. A.
2015-08-01
Although a vast number of techniques for the identification of nonlinear discrete-time systems have been introduced, the identification of continuous-time nonlinear systems is still extremely difficult. In this paper, the Nonlinear Difference Equation with Moving Average noise (NDEMA) model which is a general representation of nonlinear systems and contains, as special cases, both continuous-time and discrete-time models, is first proposed. Then based on this new representation, a systematic framework for the identification of nonlinear continuous-time models is developed. The new approach can not only detect the model structure and estimate the model parameters, but also work for noisy nonlinear systems. Both simulation and experimental examples are provided to illustrate how the new approach can be applied in practice.
A nonlinear Klein–Gordon equation for relativistic superfluidity
NASA Astrophysics Data System (ADS)
Waldron, Oliver; Van Gorder, Robert A.
2017-10-01
Many neutron star features can be accurately modeled only if one assumes that a significant portion of the neutron star interior is in a superfluid state and if relativitic effects are considered, and possible solutions to the underlying mathematical models include vortex solutions. It was recently shown that vorticity in relativistic superfluids can be studied under the framework of a nonlinear Klein–Gordon (NLKG) model in general curvilinear coordinates where the phase dynamics of solutions to this equation give rise to superfluidity (Xiong et al 2014 Phys. Rev. D 90 125019), and some numerical solutions were obtained. The aim of this paper will be to extract asymptotic solutions to obtain a better qualitative understanding of the possible relativistic superfluid dynamics possible under the NLKG model. We obtain asymptotic results for both spherically symmetric and cylindrically symmetric solutions, demonstrating that the solutions actually appear more regular in the relativistic regime compared to the non-relativistic limit. In fact, the asymptotic and numerical solutions actually show the best agreement in the relativistic case. We demonstrate that the relativistic effects actually tend to regularize or stabilize the solutions, relative to the non-relativistic solutions, which is an interesting finding. We then obtain a Thomas–Fermi-like perturbation result in the very large-mass limit where the kinetics become negligible relative to the self-interaction term (at leading order). We finally extend the NLKG model by assuming a curved spacetime with a metric generally used to model the space surrounding a neutron star, which is a novel generalization of the NLKG model to curved spacetime. We again obtain solutions in the large-mass limit for this case, and find that for such a spacetime non-stationary states (rather than simply stationary states) are possible in the large-mass limit.
NASA Astrophysics Data System (ADS)
Rasmussen, K. Ø.; Christiansen, P. L.; Johansson, M.; Gaididei, Yu. B.; Mingaleev, S. F.
1998-03-01
A one-dimensional discrete nonlinear Schrödinger (DNLS) model with the power dependence, r- s on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exploited and the results of both approaches are compared. Both on-site and inter-site stationary states are investigated. It is shown that for s sufficiently large all features of the model are qualitatively the same as in the DNLS model with nearest-neighbor interaction. For s less than some critical value, scr, there is an interval of bistability where two stable stationary states exist at each excitation number. The bistability of on-site solitons may occur for dipole-dipole dispersive interaction ( s = 3), while scr for inter-site solitions is close to 2.1. In the framework of the DNLS equation with nearest-neighbor coupling we discuss the stability of highly localized, “breather-like”, excitations under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the breather is always finite and in a large parameter region inversely proportional to the noise variance for fixed damping and nonlinearity. We also find that the decay rate of the breather decreases with increasing nonlinearity and with increasing damping.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1980-01-01
A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2016-09-01
We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
The zero dispersion limit for the Korteweg-deVries KdV equation
Lax, Peter D.; Levermore, C. David
1979-01-01
We use the inverse scattering method to determine the weak limit of solutions of the Korteweg-deVries equation as dispersion tends to zero. The limit, valid for all time, is characterized in terms of a quadratic programming problem which can be solved with the aid of function theoretic methods. For large t, the solutions satisfy Whitham's averaged equations at some times and the equations found by Flaschka et al. at other times. PMID:16592690
The zero dispersion limit for the Korteweg-deVries KdV equation.
Lax, P D; Levermore, C D
1979-08-01
We use the inverse scattering method to determine the weak limit of solutions of the Korteweg-deVries equation as dispersion tends to zero. The limit, valid for all time, is characterized in terms of a quadratic programming problem which can be solved with the aid of function theoretic methods. For large t, the solutions satisfy Whitham's averaged equations at some times and the equations found by Flaschka et al. at other times.
NASA Astrophysics Data System (ADS)
Nazari, Farshid; Mohammadian, Abdolmajid; Zadra, Ayrton; Charron, Martin
2013-03-01
Stability concerns are always a factor in the numerical solution of nonlinear diffusion equations, which are a class of equations widely applicable in different fields of science and engineering. In this study, a modified extended backward differentiation formulae (ME BDF) scheme is adapted for the solution of nonlinear diffusion equations, with a special focus on the atmospheric boundary layer diffusion process. The scheme is first implemented and examined for a widely used nonlinear ordinary differential equation, and then extended to a system of two nonlinear diffusion equations. A new temporal filter which leads to significant improvement of numerical results is proposed, and the impact of the filter on the stability and accuracy of the results is investigated. Noteworthy improvements are obtained as compared to other commonly used numerical schemes. Linear stability analysis of the proposed scheme is performed for both systems, and analytical stability limits are presented.
Toda, Kiyoshi; Furuse, Hisamoto
2006-12-01
A viscosity equation for concentrated solutions or suspensions is derived as an extension of Einstein's hydrodynamic viscosity theory for dilute dispersions of spherical particles. The derivation of the equation is based on the calculation of dissipation of mechanical energy into heat in the dispersion, subtracting the energy dissipation in the portion of solutes or particles. The viscosity equation derived thus was well fitted to the viscosity-concentration relationship of the concentrated aqueous solutions of glucose and sucrose. For the suspensions of bakers' yeast, the concentration dependency of viscosity was expressed well with some modification for the flow pattern around suspended particles. It is suggested that these viscosity equations can be widely applied to both diluted and concentrated dispersions of various solutes and particles.
Nonexistence of small, odd breathers for a class of nonlinear wave equations
NASA Astrophysics Data System (ADS)
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio
2016-11-01
In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and φ ^4 and φ ^6 models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9-74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.
Eigenvalue cutoff in the cubic-quintic nonlinear Schrödinger equation.
Prytula, Vladyslav; Vekslerchik, Vadym; Pérez-García, Víctor M
2008-08-01
Using theoretical arguments, we prove the numerically well-known fact that the eigenvalues of all localized stationary solutions of the cubic-quintic (2+1) -dimensional nonlinear Schrödinger equation exhibit an upper cutoff value. The existence of the cutoff is inferred using Gagliardo-Nirenberg and Hölder inequalities together with Pohozaev identities. We also show that, in the limit of eigenvalues close to zero, the eigenstates of the cubic-quintic nonlinear Schrödinger equation behave similarly to those of the cubic nonlinear Schrödinger equation.
Finding all solutions of nonlinear equations using the dual simplex method
NASA Astrophysics Data System (ADS)
Yamamura, Kiyotaka; Fujioka, Tsuyoshi
2003-03-01
Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.
Nonexistence of small, odd breathers for a class of nonlinear wave equations
NASA Astrophysics Data System (ADS)
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio
2017-05-01
In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and φ ^4 and φ ^6 models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9-74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.
A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity
NASA Astrophysics Data System (ADS)
Liu, Jiansheng
2014-07-01
Dispersion equation is an important tool for analyzing propagation properties of acoustic waves in layered structures. For Love wave (LW) sensors, the dispersion equation with an isotropic-considered substrate is too rough to get accurate solutions; the full dispersion equation with a piezoelectric-considered substrate is too complicated to get simple and practical expressions for optimizing LW-based sensors. In this work, a dispersion equation is introduced for Love waves in a layered structure with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive expression for mass sensitivity is also derived based on the dispersion equation. The new equations are in simple forms similar to the previously reported simplified model with an isotropic substrate. By introducing the Maxwell-Weichert model, these equations are also applicable to the LW device incorporating a viscoelastic guiding layer; the mass velocity sensitivity and the mass propagation loss sensitivity are obtained from the real part and the imaginary part of the complex mass sensitivity, respectively. With Love waves in an elastic SiO2 layer on an ST-90°X quartz structure, for example, comparisons are carried out between the velocities and normalized sensitivities calculated by using different dispersion equations and corresponding mass sensitivities. Numerical results of the method presented in this work are very close to those of the method with a piezoelectric-considered substrate. Another numerical calculation is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too big, the effect on the real part of the velocity and the mass velocity sensitivity is relatively small; the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding layer.
NASA Astrophysics Data System (ADS)
Gogoi, R.; Kalita, L.; Devi, N.
2010-02-01
Much interest was shown towards the studies on nonlinear stability in the late sixties. Plasma instabilities play an important role in plasma dynamics. More attention has been given towards stability analysis after recognizing that they are one of the principal obstacles in the way of a successful resolution of the problem of controlled thermonuclear fusion. Nonlinearity and dispersion are the two important characteristics of plasma instabilities. Instabilities and nonlinearity are the two important and interrelated terms. In our present work, the continuity and momentum equations for both ions and electrons together with the Poisson equation are considered as cold plasma model. Then we have adopted the modified reductive perturbation technique (MRPT) from Demiray [1] to derive the higher order equation of the Nonlinear Schrödinger equation (NLSE). In this work, detailed mathematical expressions and calculations are done to investigate the changing character of the modulation of ion acoustic plasma wave through our derived equation. Thus we have extended the application of MRPT to derive the higher order equation. Both progressive wave solutions as well as steady state solutions are derived and they are plotted for different plasma parameters to observe dark/bright solitons. Interesting structures are found to exist for different plasma parameters.
Numerical schemes for a model for nonlinear dispersive waves
NASA Technical Reports Server (NTRS)
Bona, J. L.; Pritchard, W. G.; Scott, L. R.
1985-01-01
A description is given of a number of numerical schemes to solve an evolution equation (Korteweg-deVries) that arises when modelling the propagation of water waves in a channel. The discussion also includes the results of numerical experiments made with each of the schemes. It is suggested, on the basis of these experiments, that one of the schemes may have (discrete) solitary-wave solutions.
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
NASA Astrophysics Data System (ADS)
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
Slyusarchuk, V. E. E-mail: V.Ye.Slyusarchuk@NUWM.rv.ua
2014-06-01
The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the H-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the H-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24 titles. (paper)
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-08
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
NASA Astrophysics Data System (ADS)
Rashidi, M. M.; Erfani, E.
2009-09-01
In this study, we present a numerical comparison between the differential transform method (DTM) and the homotopy analysis method (HAM) for solving Burgers' and nonlinear heat transfer problems. The first differential equation is the Burgers' equation serves as a useful model for many interesting problems in applied mathematics. The second one is the modeling equation of a straight fin with a temperature dependent thermal conductivity. In order to show the effectiveness of the DTM, the results obtained from the DTM is compared with available solutions obtained using the HAM [M.M. Rashidi, G. Domairry, S. Dinarvand, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 708-717; G. Domairry, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 489-499] and whit exact solutions. The method can easily be applied to many linear and nonlinear problems. It illustrates the validity and the great potential of the differential transform method in solving nonlinear partial differential equations. The obtained results reveal that the technique introduced here is very effective and convenient for solving nonlinear partial differential equations and nonlinear ordinary differential equations that we are found to be in good agreement with the exact solutions.
Ndzana, Fabien; Mohamadou, Alidou; Kofané, Timoléon C
2008-12-01
We study wave propagation in a nonlinear transmission line with dissipative elements. We show analytically that the telegraphers' equations of the electrical transmission line can be modeled by a pair of continuous coupled complex Ginzburg-Landau equations, coupled by purely nonlinear terms. Based on this system, we investigated both analytically and numerically the modulational instability (MI). We produce characteristics of the MI in the form of typical dependence of the instability growth rate on the wavenumbers and system parameters. Generic outcomes of the nonlinear development of the MI are investigated by dint of direct simulations of the underlying equations. We find that the initial modulated plane wave disintegrates into waves train. An apparently turbulent state takes place in the system during the propagation.
Some exact solutions of a system of nonlinear Schroedinger equations in three-dimensional space
Moskalyuk, S.S.
1988-02-01
Interactions that break the symmetry of systems of nonrelativistic Schroedinger equations but preserve their symmetry with respect to one-parameter subgroups of the Schroedinger group are described. Ansatzes for invariant solutions and the corresponding systems of reduced equations in invariant variables for Galileo-invariant Schroedinger equations are found. Exact solutions for the system of nonlinear Schroedinger equations in three-dimensional space for the generalized Hubbard model are obtained.
The (G'/G)-expansion method for the nonlinear time fractional differential equations
NASA Astrophysics Data System (ADS)
Unsal, Omer; Guner, Ozkan; Bekir, Ahmet; Cevikel, Adem C.
2017-01-01
In this paper, we obtain exact solutions of two time fractional differential equations using Jumarie's modified Riemann-Liouville derivative which is encountered in mathematical physics and applied mathematics; namely (3 + 1)-dimensional time fractional KdV-ZK equation and time fractional ADR equation by using fractional complex transform and (G/'G )-expansion method. It is shown that the considered transform and method are very useful in solving nonlinear fractional differential equations.
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya
2017-01-01
The effect of derivative nonlinearity and parity-time-symmetric (PT -symmetric) potentials on the wave propagation dynamics is explored in the derivative nonlinear Schrödinger equation, where the physically interesting Scarf-II and harmonic-Hermite-Gaussian potentials are chosen. We study numerically the regions of unbroken and broken linear PT -symmetric phases and find some stable bright solitons of this model in a wide range of potential parameters even though the corresponding linear PT -symmetric phases are broken. The semielastic interactions between particular bright solitons and exotic incident waves are illustrated such that we find that particular nonlinear modes almost keep their shapes after interactions even if the exotic incident waves have evidently been changed. Moreover, we exert the adiabatic switching on PT -symmetric potential parameters such that a stable nonlinear mode with the unbroken linear PT -symmetric phase can be excited to another stable nonlinear mode belonging to the broken linear PT -symmetric phase.
Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems
NASA Astrophysics Data System (ADS)
Gomes, S. N.; Pradas, M.; Kalliadasis, S.; Papageorgiou, D. T.; Pavliotis, G. A.
2015-08-01
We present an alternative methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. We show that with an appropriate choice of time-dependent controls we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, traveling waves (single and multipulse ones or bound states), and spatiotemporal chaos. We exemplify our methodology with the generalized Kuramoto-Sivashinsky equation, a paradigmatic model of spatiotemporal chaos, which is known to exhibit a rich spectrum of wave forms and wave transitions and a rich variety of spatiotemporal structures.
Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M
2011-01-01
We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.
Equations of state and bump Cepheids. II - Non-linear results
NASA Astrophysics Data System (ADS)
Kanbur, Shashi M.
1992-06-01
The Hummer-Mihalas-Dappen (MHD, 1988) and a simple Saha type equation of state are used to obtain nonlinear pulsation characteristics of a grid of models spanning the Hertzsprung sequence (Cox, 1974). The grid of models is taken from Simon and Davis (1983) who used the Los Alamos equation of state in their computations. The result is a sensitivity analysis of theoretical nonlinear bump Cepheid models to the equation of state employed in the calculation. The results obtained with these equations of state are different, though not enough to resolve the Cepheid bump mass discrepancy (Stobie 1969; Simon and Schmidt, 1976; Simon, 1986).
Nonlinear effect of dispersal rate on spatial synchrony of predator-prey cycles.
Fox, Jeremy W; Legault, Geoffrey; Legault, Geoff; Vasseur, David A; Einarson, Jodie A
2013-01-01
Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (<0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.
Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics
NASA Astrophysics Data System (ADS)
Kakhktsyan, V. M.; Khachatryan, A. Kh.
2013-07-01
A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.
NASA Astrophysics Data System (ADS)
Yang, Zhijian; Liu, Zhiming
2017-03-01
The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\
Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations
NASA Astrophysics Data System (ADS)
Byun, Sun-Sig; Lee, Mikyoung; Palagachev, Dian K.
2016-03-01
We prove global regularity in weighted Lebesgue spaces for the viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equations. As a consequence, regularity in Morrey spaces of the Hessian is derived as well.