Sample records for nonlinear dynamic parameters

  1. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  2. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  3. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    PubMed

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  4. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

    PubMed Central

    Xing, W. W.; Triantafyllidis, V.

    2017-01-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327

  5. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    PubMed

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.

  6. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  7. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  8. An improved method for nonlinear parameter estimation: a case study of the Rössler model

    NASA Astrophysics Data System (ADS)

    He, Wen-Ping; Wang, Liu; Jiang, Yun-Di; Wan, Shi-Quan

    2016-08-01

    Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system—Rössler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.

  9. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    NASA Astrophysics Data System (ADS)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  10. Nonlinear dynamics of planetary gears using analytical and finite element models

    NASA Astrophysics Data System (ADS)

    Ambarisha, Vijaya Kumar; Parker, Robert G.

    2007-05-01

    Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.

  11. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  12. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  13. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    PubMed

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  14. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob

    2007-01-01

    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.

  15. Vowel selection and its effects on perturbation and nonlinear dynamic measures.

    PubMed

    Maccallum, Julia K; Zhang, Yu; Jiang, Jack J

    2011-01-01

    Acoustic analysis of voice is typically conducted on recordings of sustained vowel phonation. This study applied perturbation and nonlinear dynamic analyses to the vowels /a/, /i/, and /u/ in order to determine vowel selection effects on analysis. Forty subjects (20 males and 20 females) with normal voices participated in recording. Traditional parameters of fundamental frequency, signal-to-noise ratio, percent jitter, and percent shimmer were calculated for the signals using CSpeech. Nonlinear dynamic parameters of correlation dimension and second-order entropy were also calculated. Perturbation analysis results were largely incongruous in this study and in previous research. Fundamental frequency results corroborated previous work, indicating higher fundamental frequency for /i/ and /u/ and lower fundamental frequency for /a/. Signal-to-noise ratio results showed that /i/ and /u/ have greater harmonic levels than /a/. Results of nonlinear dynamic analysis suggested that more complex activity may be evident in /a/ than in /i/ or /u/. Percent jitter and percent shimmer may not be useful for description of acoustic differences between vowels. Fundamental frequency, signal-to-noise ratio, and nonlinear dynamic parameters may be applied to characterize /a/ as having lower frequency, higher noise, and greater nonlinear components than /i/ and /u/. Copyright © 2010 S. Karger AG, Basel.

  16. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  17. Quantitative theory of driven nonlinear brain dynamics.

    PubMed

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.

    PubMed

    Xia, Jing; Wang, Michelle Yongmei

    Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.

  19. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  20. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  1. Dynamic Modeling from Flight Data with Unknown Time Skews

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.

  2. Non-linear dynamic analysis of geared systems, part 2

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.

  3. Nonlinear dynamics that appears in the dynamical model of drying process of a polymer solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-01-01

    We have proposed and modified the dynamical model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through some meetings and so on. Though basic equations of the dynamical model have characteristic nonlinearity, character of the nonlinearity has not been studied enough yet. In this paper, at first, we derive nonlinear equations from the dynamical model of drying process of polymer solution. Then we introduce results of numerical simulations of the nonlinear equations and consider roles of various parameters. Some of them are indirectly concerned in strength of non-equilibriumity. Through this study, we approach essential qualities of nonlinearity in non-equilibrium process of drying process.

  4. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  5. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  6. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems.

    PubMed

    Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing

    2018-02-01

    Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.

  7. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  8. The design of nonlinear observers for wind turbine dynamic state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Schild, A.; Feldt, M.; Konigorski, U.

    2016-09-01

    This contribution addresses the dynamic state and parameter estimation problem which arises with more advanced wind turbine controllers. These control devices need precise information about the system's current state to outperform conventional industrial controllers effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind turbine application is highlighted. Secondly, the full estimation problem is introduced and the variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and estimation results of an illustrative application example from a complex simulation set-up are presented.

  9. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  10. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    PubMed

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  11. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    PubMed

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  12. Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E.; Poizner, Howard; Sejnowski, Terrence J.

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A′ under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data. PMID:24379798

  13. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  14. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    PubMed

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  15. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  17. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates

    NASA Astrophysics Data System (ADS)

    Eshmatov, B. Kh.

    2007-03-01

    This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The models are based on the Kirchhoff-Love (K.L.) hypothesis and Reissner-Mindlin (R.M.) generalized theory (with the incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for the choice of the weakly singular Koltunov-Rzhanitsyn type kernel, with three rheological parameters. In addition, the implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of the Bubnov-Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results obtained via these theories is also presented. In all problems, the convergence of the Bubnov-Galerkin method has been investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.

  18. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  19. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  20. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

    PubMed Central

    Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin

    2012-01-01

    Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351

  1. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  2. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-06-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  3. Testing for nonlinear dependence in financial markets.

    PubMed

    Dore, Mohammed; Matilla-Garcia, Mariano; Marin, Manuel Ruiz

    2011-07-01

    This article addresses the question of improving the detection of nonlinear dependence by means of recently developed nonparametric tests. To this end a generalized version of BDS test and a new test based on symbolic dynamics are used on realizations from a well-known artificial market for which the dynamic equation governing the market is known. Comparisons with other tests for detecting nonlinearity are also provided. We show that the test based on symbolic dynamics outperforms other tests with the advantage that it depends only on one free parameter, namely the embedding dimension. This does not hold for other tests for nonlinearity.

  4. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  5. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  6. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    PubMed

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  7. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  8. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.

  9. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    NASA Astrophysics Data System (ADS)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  10. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo

    2016-12-01

    In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.

  11. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    PubMed

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  12. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  13. Study of the effect of static/dynamic Coulomb friction variation at the tape-head interface of a spacecraft tape recorder by non-linear time response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1978-01-01

    A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.

  14. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  15. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  16. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    NASA Astrophysics Data System (ADS)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  17. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  18. On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.

    1992-01-01

    We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.

  19. Nonlinear dynamics applied to the study of cardiovascular effects of stress

    NASA Astrophysics Data System (ADS)

    Anishchenko, T. G.; Igosheva, N. B.

    1998-03-01

    We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.

  20. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  1. Sensitivity of Dynamical Systems to Banach Space Parameters

    DTIC Science & Technology

    2005-02-13

    We consider general nonlinear dynamical systems in a Banach space with dependence on parameters in a second Banach space. An abstract theoretical ... framework for sensitivity equations is developed. An application to measure dependent delay differential systems arising in a class of HIV models is presented.

  2. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    PubMed

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  3. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    PubMed Central

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-01-01

    Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289

  4. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.

    PubMed

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-11-02

    We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.

  5. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  6. Nonlinear Dynamics of a Multistage Gear Transmission System with Multi-Clearance

    NASA Astrophysics Data System (ADS)

    Xiang, Ling; Zhang, Yue; Gao, Nan; Hu, Aijun; Xing, Jingtang

    The nonlinear torsional model of a multistage gear transmission system which consists of a planetary gear and two parallel gear stages is established with time-varying meshing stiffness, comprehensive gear error and multi-clearance. The nonlinear dynamic responses are analyzed by applying the reference of backlash bifurcation parameters. The motions of the system on the change of backlash are identified through global bifurcation diagram, largest Lyapunov exponent (LLE), FFT spectra, Poincaré maps, the phase diagrams and time series. The numerical results demonstrate that the system exhibits rich features of nonlinear dynamics such as the periodic motion, nonperiodic states and chaotic states. It is found that the sun-planet backlash has more complex effect on the system than the ring-planet backlash. The motions of the system with backlash of parallel gear are diverse including some different multi-periodic motions. Furthermore, the state of the system can change from chaos into quasi-periodic behavior, which means that the dynamic behavior of the system is composed of more stable components with the increase of the backlash. Correspondingly, the parameters of the system should be designed properly and controlled timely for better operation and enhancing the life of the system.

  7. Digit replacement: A generic map for nonlinear dynamical systems.

    PubMed

    García-Morales, Vladimir

    2016-09-01

    A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.

  8. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  9. Nonlinear analysis of fetal heart rate dynamics in fetuses compromised by asymptomatic partial placental abruption.

    PubMed

    Choi, Won-Young; Hoh, Jeong-Kyu

    2015-12-01

    We analyzed fetal heart rate (FHR) parameters, dynamics, and outcomes in pregnancies with asymptomatic partial placental abruption (PPA) compared with those in normal pregnancies. We examined nonstress test (NST) data acquired from 2003 to 2012 at our institution. Normal pregnancies (N = 170) and PPA cases (N = 17) were matched for gestational age, fetal sex, and mean FHR. NSTs were performed at 33-42 weeks of gestation. FHR parameters obtained from the NST and perinatal outcomes were analyzed using linear methods. Nonlinear indices, including approximate entropy (ApEn), sample entropy (SampEn), short-term and long-term scaling exponents (α1 and α2), and correlation dimension (CD), were used to interpret FHR dynamics and system complexity. The area under a receiver operating characteristic curve (AUC) was used to evaluate the nonlinear indices. There were no significant differences in general characteristics and FHR parameters between the PPA and control groups. However, gestational age at delivery, birth weight, 5-min Apgar scores, ApEn, SampEn, and CD were significantly lower in the PPA group than in the control group (P < 0.05). The long-term scaling exponent (α2) and crossover index (α2/α1) of the PPA fetuses were significantly higher than those of the controls (P < 0.01). A multiple regression model showed better performance in predicting PPA (AUC, 0.92; sensitivity 82.35%; specificity, 94.12%). Nonlinear dynamic indices of FHR in asymptomatic PPA were qualitatively different from those in normal pregnancies, whereas the conventional FHR parameters were not significantly different. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  11. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  12. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Direct reconstruction of pharmacokinetic parameters in dynamic fluorescence molecular tomography by the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing

    2016-03-01

    Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.

  14. Melting of genomic DNA: Predictive modeling by nonlinear lattice dynamics

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, Nikos

    2010-08-01

    The melting behavior of long, heterogeneous DNA chains is examined within the framework of the nonlinear lattice dynamics based Peyrard-Bishop-Dauxois (PBD) model. Data for the pBR322 plasmid and the complete T7 phage have been used to obtain model fits and determine parameter dependence on salt content. Melting curves predicted for the complete fd phage and the Y1 and Y2 fragments of the ϕX174 phage without any adjustable parameters are in good agreement with experiment. The calculated probabilities for single base-pair opening are consistent with values obtained from imino proton exchange experiments.

  15. Nonlinear Blind Compensation for Array Signal Processing Application

    PubMed Central

    Ma, Hong; Jin, Jiang; Zhang, Hua

    2018-01-01

    Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571

  16. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.

  17. Kalman filter control of a model of spatiotemporal cortical dynamics

    PubMed Central

    Schiff, Steven J; Sauer, Tim

    2007-01-01

    Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems have offered the potential to apply such approaches to spatiotemporal nonlinear systems. We here adapt the nonlinear method of unscented Kalman filtering to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model for cerebral cortex. We demonstrate the ability to track spiral wave dynamics, and to use an observer system to calculate control signals delivered through applied electrical fields. We demonstrate how this strategy can control the frequency of such a system, or quench the wave patterns, while minimizing the energy required for such results. These findings are readily testable in experimental applications, and have the potential to be applied to the treatment of human disease. PMID:18310806

  18. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are introduced in the virtual test systems and the dynamic data obtained in each case is analyzed and recorded. Ideally, actual measurements are to be provided to the algorithm. As the measurements are not readily available the data obtained from simulations is fed into the determination algorithm as inputs. The obtained results are then compared to the original (or assumed) values of the parameters. The results obtained suggest that the algorithm is able to determine the parameters of a synchronous machine when crisp data is available.

  19. Decoupling nonclassical nonlinear behavior of elastic wave types

    DOE PAGES

    Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...

    2016-03-01

    In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less

  20. Using waveform information in nonlinear data assimilation

    NASA Astrophysics Data System (ADS)

    Rey, Daniel; Eldridge, Michael; Morone, Uriel; Abarbanel, Henry D. I.; Parlitz, Ulrich; Schumann-Bischoff, Jan

    2014-12-01

    Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of the observed system to establish its fixed parameters and unobserved state variables. After this learning period is complete, one may predict the model response to new forces and, when successful, these predictions will match additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic because dynamical instability impedes the transfer of information from the data to the model when the number of measurements at each observation time is insufficient. We discuss the use of information in the waveform of the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems and small networks of Colpitts oscillators.

  1. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor

    PubMed Central

    Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878

  2. Poster — Thur Eve — 44: Linearization of Compartmental Models for More Robust Estimates of Regional Hemodynamic, Metabolic and Functional Parameters using DCE-CT/PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blais, AR; Dekaban, M; Lee, T-Y

    2014-08-15

    Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less

  3. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  4. The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.

    PubMed

    Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin

    2016-07-01

    Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.

  5. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  6. Nonlinear dynamics, chaos and complex cardiac arrhythmias

    NASA Technical Reports Server (NTRS)

    Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.

    1987-01-01

    Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.

  7. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  8. Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana

    2017-04-01

    The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.

  9. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  10. ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS

    PubMed Central

    MIAO, HONGYU; XIA, XIAOHUA; PERELSON, ALAN S.; WU, HULIN

    2011-01-01

    Ordinary differential equations (ODE) are a powerful tool for modeling dynamic processes with wide applications in a variety of scientific fields. Over the last 2 decades, ODEs have also emerged as a prevailing tool in various biomedical research fields, especially in infectious disease modeling. In practice, it is important and necessary to determine unknown parameters in ODE models based on experimental data. Identifiability analysis is the first step in determing unknown parameters in ODE models and such analysis techniques for nonlinear ODE models are still under development. In this article, we review identifiability analysis methodologies for nonlinear ODE models developed in the past one to two decades, including structural identifiability analysis, practical identifiability analysis and sensitivity-based identifiability analysis. Some advanced topics and ongoing research are also briefly reviewed. Finally, some examples from modeling viral dynamics of HIV, influenza and hepatitis viruses are given to illustrate how to apply these identifiability analysis methods in practice. PMID:21785515

  11. Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure

    NASA Astrophysics Data System (ADS)

    Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier

    2018-01-01

    This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.

  12. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  13. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    PubMed

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (p<0.01) and adding a cognitive load (p<0.01). The CoM nonlinear metric FD was decreased due to the cognitive loads (p<0.001). The visual interference increased the FD of all joints when the task included the cognitive loads (p<0.01). The slightly positive LLE values showed weakly-chaotic behavior of the whole body. The local joint rotations indicated higher LLEs. Results indicated weakly chaotic response of the whole body. Increase in the task difficulty by adding sensory interference had difference effects on parameters. Linear and nonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  14. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    NASA Astrophysics Data System (ADS)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  15. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    PubMed

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    PubMed

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  17. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  18. Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido

    2018-03-23

    Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.

  19. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  20. Photonic single nonlinear-delay dynamical node for information processing

    NASA Astrophysics Data System (ADS)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  1. Nonlinear susceptibility and dynamic hysteresis loops of magnetic nanoparticles with biaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.

    2013-02-01

    The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.

  2. Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.

  3. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner

    2017-07-01

    A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.

  4. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems

    PubMed Central

    Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  5. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  6. Nonlinearity in the vertical transmissibility of seating: the role of the human body apparent mass and seat dynamic stiffness

    NASA Astrophysics Data System (ADS)

    Tufano, Saverio; Griffin, Michael J.

    2013-01-01

    The efficiency of a seat in reducing vibration depends on the characteristics of the vibration, the dynamic characteristics of the seat, and the dynamic characteristics of the person sitting on the seat. However, it is not known whether seat cushions influence the dynamic response of the human body, whether the human body influences the dynamic response of seat cushions, or the relative importance of human body nonlinearity and seat nonlinearity in causing nonlinearity in measures of seat transmissibility. This study was designed to investigate the nonlinearity of the coupled seat and human body systems and to compare the apparent mass of the human body supported on rigid and foam seats. A frequency domain model was used to identify the dynamic parameters of seat foams and investigate their dependence on the subject-sitting weight and hip breadth. With 15 subjects, the force and acceleration at the seat base and acceleration at the subject interface were measured during random vertical vibration excitation (0.25-25 Hz) at each of five vibration magnitudes, (0.25-1.6 ms-2 r.m.s.) with four seating conditions (rigid flat seat and three foam cushions). The measurements are presented in terms of the subject's apparent mass on the rigid and foam seat surfaces, and the transmissibility and dynamic stiffness of each of the foam cushions. Both the human body and the foams showed nonlinear softening behaviour, which resulted in nonlinear cushion transmissibility. The apparent masses of subjects sitting on the rigid seat and on foam cushions were similar, but with an apparent increase in damping when sitting on the foams. The foam dynamic stiffness showed complex correlations with characteristics of the human body, which differed between foams. The nonlinearities in cushion transmissibilities, expressed in terms of changes in resonance frequencies and moduli, were more dependent on human body nonlinearity than on cushion nonlinearity.

  7. Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Li-Yan; He, Yi; Liu, Jia

    2017-11-01

    We investigate a new spatiotemporal dynamics with fractional order differential logistic map and spatial nonlinear coupling. The spatial nonlinear coupling features such as the higher percentage of lattices in chaotic behaviors for most of parameters and none periodic windows in bifurcation diagrams are held, which are more suitable for encryptions than the former adjacent coupled map lattices. Besides, the proposed model has new features such as the wider parameter range and wider range of state amplitude for ergodicity, which contributes a wider range of key space when applied in encryptions. The simulations and theoretical analyses are developed in this paper.

  8. Complex Dynamics of Wetland Ecosystem with Nonlinear Harvesting: Application to Chilika Lake in Odisha, India

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita

    2015-06-01

    In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.

  9. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    PubMed

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  10. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    PubMed Central

    2011-01-01

    Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852

  11. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, D; Huq, M; Bednarz, G

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same ismore » for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for 4D-based clinical technologies, can be better controlled if nonlinear-based methodology, which reflects respiration characteristic, is applied. Funding provided by Varian Medical Systems via Investigator Initiated Research Project.« less

  12. Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.

  13. A nonlinear dynamics for the scalar field in Randers spacetime

    NASA Astrophysics Data System (ADS)

    Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.

    2017-03-01

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  14. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  15. Evolutionary optimization with data collocation for reverse engineering of biological networks.

    PubMed

    Tsai, Kuan-Yao; Wang, Feng-Sheng

    2005-04-01

    Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.

  16. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  17. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft.

    DTIC Science & Technology

    1986-05-31

    Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,

  18. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  19. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    NASA Astrophysics Data System (ADS)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.

  20. Nonlinear Dynamics of a Diffusing Interface

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2001-01-01

    Excitation of two miscible-viscous liquids inside a bounded enclosure in a microgravity environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters. We examine computationally the nonlinear dynamics of the system as the interface breakup and bifurcates to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism. However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation prior to broadband chaos.

  1. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  2. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  3. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness

    NASA Astrophysics Data System (ADS)

    Wu, R. Q.; Zhang, W.; Yao, M. H.

    2018-02-01

    In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.

  4. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    PubMed

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  6. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    NASA Astrophysics Data System (ADS)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  7. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  8. Comparing Consider-Covariance Analysis with Sigma-Point Consider Filter and Linear-Theory Consider Filter Formulations

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.

    2007-01-01

    Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.

  9. Two Studies of Complex Nonlinear Systems: Engineered Granular Crystals and Coarse-Graining Optimization Problems

    NASA Astrophysics Data System (ADS)

    Pozharskiy, Dmitry

    In recent years a nonlinear, acoustic metamaterial, named granular crystals, has gained prominence due to its high accessibility, both experimentally and computationally. The observation of a wide range of dynamical phenomena in the system, due to its inherent nonlinearities, has suggested its importance in many engineering applications related to wave propagation. In the first part of this dissertation, we explore the nonlinear dynamics of damped-driven granular crystals. In one case, we consider a highly nonlinear setting, also known as a sonic vacuum, and derive a nonlinear analogue of a linear spectrum, corresponding to resonant periodic propagation and antiresonances. Experimental studies confirm the computational findings and the assimilation of experimental data into a numerical model is demonstrated. In the second case, global bifurcations in a precompressed granular crystal are examined, and their involvement in the appearance of chaotic dynamics is demonstrated. Both results highlight the importance of exploring the nonlinear dynamics, to gain insight into how a granular crystal responds to different external excitations. In the second part, we borrow established ideas from coarse-graining of dynamical systems, and extend them to optimization problems. We combine manifold learning algorithms, such as Diffusion Maps, with stochastic optimization methods, such as Simulated Annealing, and show that we can retrieve an ensemble, of few, important parameters that should be explored in detail. This framework can lead to acceleration of convergence when dealing with complex, high-dimensional optimization, and could potentially be applied to design engineered granular crystals.

  10. Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

    NASA Astrophysics Data System (ADS)

    Kishor, Ram; Kushvah, Badam Singh

    2017-09-01

    For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold-Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range 0<μ<μ1=\\bar{μc} due to failure of the Arnold-Moser theorem. However, perturbation parameters affect the values of μ at which D4=0, significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future.

  11. Control of propagation of spatially localized polariton wave packets in a Bragg mirror with embedded quantum wells

    NASA Astrophysics Data System (ADS)

    Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.

    2018-01-01

    We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.

  12. A unified perspective on robot control - The energy Lyapunov function approach

    NASA Technical Reports Server (NTRS)

    Wen, John T.

    1990-01-01

    A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.

  13. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  14. Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.

    2004-05-01

    Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.

  15. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    NASA Astrophysics Data System (ADS)

    Coughlin, Mark F.; Fredberg, Jeffrey J.

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  16. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  17. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  18. Complex dynamics of a nonlinear voter model with contrarian agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Shoma; Masuda, Naoki, E-mail: masuda@mist.i.u-tokyo.ac.jp

    2013-12-15

    We investigate mean-field dynamics of a nonlinear opinion formation model with congregator and contrarian agents. Each agent assumes one of the two possible states. Congregators imitate the state of other agents with a rate that increases with the number of other agents in the opposite state, as in the linear voter model and nonlinear majority voting models. Contrarians flip the state with a rate that increases with the number of other agents in the same state. The nonlinearity controls the strength of the majority voting and is used as a main bifurcation parameter. We show that the model undergoes amore » rich bifurcation scenario comprising the egalitarian equilibrium, two symmetric lopsided equilibria, limit cycle, and coexistence of different types of stable equilibria with intertwining attractive basins.« less

  19. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peryshkin, A. Yu., E-mail: alexb700@yandex.ru; Makarov, P. V., E-mail: bacardi@ispms.ru; Eremin, M. O., E-mail: bacardi@ispms.ru

    An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutionsmore » of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.« less

  1. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    NASA Astrophysics Data System (ADS)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  2. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  3. Electronegative nonlinear oscillating modes in plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin

    2018-02-01

    The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.

  4. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  5. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate.

    PubMed

    Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J

    2018-05-01

    To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    NASA Astrophysics Data System (ADS)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  7. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1997-01-01

    The first two years research work has advanced the inversion-based guidance theory for: (1) systems with non-hyperbolic internal dynamics; (2) systems with parameter jumps; (3) systems where a redesign of the output trajectory is desired; and (4) the generation of recovery guidance maneuvers.

  8. Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System

    NASA Astrophysics Data System (ADS)

    Amjad, Hussain; Syed Tauseef, Mohyud-Din; Ahmet, Yildirim

    2012-03-01

    MacMillan's equations are extended to Poincaré's formalism, and MacMillan's equations for nonlinear nonholonomic systems are obtained in terms of Poincaré parameters. The equivalence of the results obtained here with other forms of equations of motion is demonstrated. An illustrative example of the theory is provided as well.

  9. Transient dynamics of a nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Grewal, Raghwinder Singh; Pustelny, S.; Rybak, A.; Florkowski, M.

    2018-04-01

    We analyze nonlinear magneto-optical rotation (NMOR) in rubidium vapor subjected to a continuously scanned magnetic field. By varying the magnetic-field sweep rate, a transition from traditionally observed dispersivelike NMOR signals (low sweep rate) to oscillating signals (higher sweep rates) is demonstrated. The transient oscillatory behavior is studied versus light and magnetic-field parameters, revealing a strong dependence of the signals on magnetic sweep rate and light intensity. The experimental results are supported with density-matrix calculations, which enable quantitative analysis of the effect. Fitting of the signals simulated versus different parameters with a theoretically motivated curve reveals the presence of oscillatory and static components in the signals. The components depend differently on the system parameters, which suggests their distinct nature. The investigations provide insight into the dynamics of ground-state coherence generation and enable application of NMOR in detection of transient spin couplings.

  10. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  11. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less

  12. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    NASA Astrophysics Data System (ADS)

    Zhu, Z. W.; Zhang, W. D.; Xu, J.

    2014-03-01

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  13. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  14. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  15. Characterizing Feedback Control Mechanisms in Nonlinear Microbial Models of Soil Organic Matter Decomposition by Stability Analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.

    2014-12-01

    Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.

  16. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  17. Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

    PubMed

    Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam

    2014-07-01

    This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses.

    PubMed

    Chen, Yong; Yan, Zhenya; Mihalache, Dumitru; Malomed, Boris A

    2017-04-28

    Since the parity-time-([Formula: see text]-) symmetric quantum mechanics was put forward, fundamental properties of some linear and nonlinear models with [Formula: see text]-symmetric potentials have been investigated. However, previous studies of [Formula: see text]-symmetric waves were limited to constant diffraction coefficients in the ambient medium. Here we address effects of variable diffraction coefficient on the beam dynamics in nonlinear media with generalized [Formula: see text]-symmetric Scarf-II potentials. The broken linear [Formula: see text] symmetry phase may enjoy a restoration with the growing diffraction parameter. Continuous families of one- and two-dimensional solitons are found to be stable. Particularly, some stable solitons are analytically found. The existence range and propagation dynamics of the solitons are identified. Transformation of the solitons by means of adiabatically varying parameters, and collisions between solitons are studied too. We also explore the evolution of constant-intensity waves in a model combining the variable diffraction coefficient and complex potentials with globally balanced gain and loss, which are more general than [Formula: see text]-symmetric ones, but feature similar properties. Our results may suggest new experiments for [Formula: see text]-symmetric nonlinear waves in nonlinear nonuniform optical media.

  19. Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Gregory, Irene

    2007-01-01

    This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law.

  20. The study of micro-inextensible piezoelectric cantilever plate

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Xu, J. W.; Zhang, W.

    2018-06-01

    In this paper, a micro-inextensible piezoelectric cantilever plate is analyzed and its nonlinear dynamic behaviour is studied. The nonlinear oscillation differential equation is established by using Hamilton’s principle with the application of strain gradient theory to consider the size effect, and inextensible theory to consider the large deformation and rotation effect of cantilever plate. Based on MATLAB software, using the Runge-Kuta method, we can obtain the response of the nonlinear oscillation differential equation. The influences of the strain gradient length scale parameter and voltage on the dynamic response of micro piezoelectric cantilever plate are investigated separately. The results confirmed an increase of the stiffness of the system by using the strain gradient theory and the amplitude of the vibration is reduced. The vibration of the system can be controlled by applying an active voltage. The effect of external excitation frequency on nonlinear dynamic behaviour is considered by using Poincare surface of section and diagrams of waveforms, phase and bifurcation.

  1. New Type of the Interface Evolution in the Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Herrmann, M.

    2003-01-01

    We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.

  2. Converting HAZUS capacity curves to seismic hazard-compatible building fragility functions: effect of hysteretic models

    USGS Publications Warehouse

    Ryu, Hyeuk; Luco, Nicolas; Baker, Jack W.; Karaca, Erdem

    2008-01-01

    A methodology was recently proposed for the development of hazard-compatible building fragility models using parameters of capacity curves and damage state thresholds from HAZUS (Karaca and Luco, 2008). In the methodology, HAZUS curvilinear capacity curves were used to define nonlinear dynamic SDOF models that were subjected to the nonlinear time history analysis instead of the capacity spectrum method. In this study, we construct a multilinear capacity curve with negative stiffness after an ultimate (capping) point for the nonlinear time history analysis, as an alternative to the curvilinear model provided in HAZUS. As an illustration, here we propose parameter values of the multilinear capacity curve for a moderate-code low-rise steel moment resisting frame building (labeled S1L in HAZUS). To determine the final parameter values, we perform nonlinear time history analyses of SDOF systems with various parameter values and investigate their effects on resulting fragility functions through sensitivity analysis. The findings improve capacity curves and thereby fragility and/or vulnerability models for generic types of structures.

  3. Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-Area Dynamics under in vivo and ex vivo Conditions

    PubMed Central

    Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.

    2013-01-01

    A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results comparing biomechanical properties show that the Kelvin and sigmoid models were able to predict the zero-pressure vessel radius; that under ex vivo conditions vessels are more rigid, and comparatively, that the carotid artery is stiffer than the thoracic descending aorta; and that the viscoelastic gain and relaxation parameters do not differ significantly between vessels or experimental conditions. In conclusion, our study demonstrates that the proposed models can predict pressure-area dynamics and that model parameters can be extracted for further interpretation of biomechanical properties. PMID:21203846

  4. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  5. The middeck 0-gravity dynamics experiment

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Vanschoor, Marthinus C.; Bokhour, Edward B.

    1993-01-01

    The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids.

  6. On the Chaotic Vibrations of Electrostatically Actuated Arch Micro/Nano Resonators: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat

    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.

  7. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  8. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration.

    PubMed

    Chen, Yunjin; Pock, Thomas

    2017-06-01

    Image restoration is a long-standing problem in low-level computer vision with many interesting applications. We describe a flexible learning framework based on the concept of nonlinear reaction diffusion models for various image restoration problems. By embodying recent improvements in nonlinear diffusion models, we propose a dynamic nonlinear reaction diffusion model with time-dependent parameters (i.e., linear filters and influence functions). In contrast to previous nonlinear diffusion models, all the parameters, including the filters and the influence functions, are simultaneously learned from training data through a loss based approach. We call this approach TNRD-Trainable Nonlinear Reaction Diffusion. The TNRD approach is applicable for a variety of image restoration tasks by incorporating appropriate reaction force. We demonstrate its capabilities with three representative applications, Gaussian image denoising, single image super resolution and JPEG deblocking. Experiments show that our trained nonlinear diffusion models largely benefit from the training of the parameters and finally lead to the best reported performance on common test datasets for the tested applications. Our trained models preserve the structural simplicity of diffusion models and take only a small number of diffusion steps, thus are highly efficient. Moreover, they are also well-suited for parallel computation on GPUs, which makes the inference procedure extremely fast.

  9. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  10. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Nonlinear dynamics induced in a structure by seismic and environmental loading

    DOE PAGES

    Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe

    2016-07-26

    In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less

  12. Nonlinear dynamics induced in a structure by seismic and environmental loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe

    In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less

  13. Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators

    NASA Astrophysics Data System (ADS)

    Naseradinmousavi, Peiman; Nataraj, C.

    2012-11-01

    Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.

  14. General implementation of arbitrary nonlinear quadrature phase gates

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.

  15. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1998-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  16. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1997-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  17. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    NASA Astrophysics Data System (ADS)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference in designing such systems.

  18. On a Model of a Nonlinear Feedback System for River Flow Prediction

    NASA Astrophysics Data System (ADS)

    Ozaki, T.

    1980-02-01

    A nonlinear system with feedback is proposed as a dynamic model for the hydrological system, whose input is the rainfall and whose output is the discharge of river flow. Parameters and orders of the model are estimated using Akaike's information criterion. Its application to the prediction of daily discharges of Kanna River and Bird Creek is discussed.

  19. Solvability of a Nonlinear Integral Equation in Dynamical String Theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. Kh.; Khachatryan, Kh. A.

    2018-04-01

    We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in p-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.

  20. A parallel algorithm for nonlinear convection-diffusion equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1990-01-01

    A parallel algorithm for the efficient solution of nonlinear time-dependent convection-diffusion equations with small parameter on the diffusion term is presented. The method is based on a physically motivated domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. The method is suitable for the solution of problems arising in the simulation of fluid dynamics. Experimental results for a nonlinear equation in two-dimensions are presented.

  1. A string of Peregrine rogue waves in the nonlocal nonlinear Schrödinger equation with parity-time symmetric self-induced potential

    NASA Astrophysics Data System (ADS)

    Gupta, Samit Kumar

    2018-03-01

    Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.

  2. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  3. Dynamical principles in neuroscience

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  4. Dynamical principles in neuroscience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less

  5. Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min.

    PubMed

    Zhang, Da; She, Jin; Yang, Jun; Yu, Mengsun

    2015-06-01

    Acute hypoxia activates several autonomic mechanisms, mainly in cardiovascular system and respiratory system. The influence of acute hypoxia on linear and nonlinear heart rate variability (HRV) has been studied, but the parameters in the process of hypoxia are still unclear. Although the changes of HRV in frequency domain are related to autonomic responses, how nonlinear dynamics change with the decrease of ambient atmospheric pressure is unknown either. Eight healthy male subjects were exposed to simulated altitude from sea level to 3600 m in 10 min. HRV parameters in frequency domain were analyzed by wavelet packet transform (Daubechies 4, 4 level) followed by Hilbert transform to assess the spectral power of modified low frequency (0.0625-0.1875 Hz, LFmod), modified high frequency (0.1875-0.4375 Hz, HFmod), and the LFmod/HFmod ratio in every 1 min. Nonlinear parameters were also quantified by sample entropy (SampEn) and short term fractal correlation exponent (α1) in the process. Hypoxia was associated with the depression of both LFmod and HFmod component. They were significantly lower than that at sea level at 3600 m and 2880 m respectively (both p < 0.05). The LFmod/HFmod ratio was acutely increased at 3600 m (p < 0.05). SampEn was significantly declined at 2880 m (p < 0.05). Although the value of α1 was close to 1, it changed not significantly in the whole process. These results indicated hypoxia gradually attenuated both spectral HRV parameters and SampEn. The balance of sympathovagal shifted towards sympathetic dominance at a certain altitude. Monitoring linear and nonlinear HRV parameters continuously in the process of hypoxia would be an effective way to evaluate the different regulatory mechanisms of autonomic nervous system.

  6. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  7. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    PubMed

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. On the dynamics of some grid adaption schemes

    NASA Technical Reports Server (NTRS)

    Sweby, Peter K.; Yee, Helen C.

    1994-01-01

    The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.

  9. FRF decoupling of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  10. Nonlinear dynamics analysis of the spur gear system for railway locomotive

    NASA Astrophysics Data System (ADS)

    Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan

    2017-02-01

    Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.

  11. Region of attraction analysis for nonlinear vehicle lateral dynamics using sum-of-squares programming

    NASA Astrophysics Data System (ADS)

    Imani Masouleh, Mehdi; Limebeer, David J. N.

    2018-07-01

    In this study we will estimate the region of attraction (RoA) of the lateral dynamics of a nonlinear single-track vehicle model. The tyre forces are approximated using rational functions that are shown to capture the nonlinearities of tyre curves significantly better than polynomial functions. An existing sum-of-squares (SOS) programming algorithm for estimating regions of attraction is extended to accommodate the use of rational vector fields. This algorithm is then used to find an estimate of the RoA of the vehicle lateral dynamics. The influence of vehicle parameters and driving conditions on the stability region are studied. It is shown that SOS programming techniques can be used to approximate the stability region without resorting to numerical integration. The RoA estimate from the SOS algorithm is compared to the existing results in the literature. The proposed method is shown to obtain significantly better RoA estimates.

  12. Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming

    2014-09-01

    Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.

  13. Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting

    NASA Astrophysics Data System (ADS)

    Yuan, Tian-Chen; Yang, Jian; Chen, Li-Qun

    2018-06-01

    Nonlinear behaviors are investigated for a vibration-based energy harvester. The harvester consists of a circular composite plate with the clamped boundary, a proof mass and two steel rings. The lumped parameter model of the harvester is established and the parameters are identified from the experiment. The measured nonlinear behaviors can be approximately described by the lumped model. Both the experimental and the numerical results demonstrate that the circular plate harvester has soft characteristics under low excitation and both hard characteristics and soft characteristics under high excitation. The experimental results show that the output voltage can achieve over 35 V (about 50 mW) and more than 14 Hz of bandwidth with 25 kΩ load resistance.

  14. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  15. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  16. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  17. Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong

    2017-04-01

    We investigate the defocusing coupled nonlinear Schrödinger equations from a 3×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.

  18. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  19. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  20. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less

  1. Perspective: THz-driven nuclear dynamics from solids to molecules

    PubMed Central

    Hamm, Peter; Meuwly, Markus; Johnson, Steve L.; Beaud, Paul; Staub, Urs

    2017-01-01

    Recent years have seen dramatic developments in the technology of intense pulsed light sources in the THz frequency range. Since many dipole-active excitations in solids and molecules also lie in this range, there is now a tremendous potential to use these light sources to study linear and nonlinear dynamics in such systems. While several experimental investigations of THz-driven dynamics in solid-state systems have demonstrated a variety of interesting linear and nonlinear phenomena, comparatively few efforts have been made to drive analogous dynamics in molecular systems. In the present Perspective article, we discuss the similarities and differences between THz-driven dynamics in solid-state and molecular systems on both conceptual and practical levels. We also discuss the experimental parameters needed for these types of experiments and thereby provide design criteria for a further development of this new research branch. Finally, we present a few recent examples to illustrate the rich physics that may be learned from nonlinear THz excitations of phonons in solids as well as inter-molecular vibrations in liquid and gas-phase systems. PMID:29308420

  2. Perspective: THz-driven nuclear dynamics from solids to molecules.

    PubMed

    Hamm, Peter; Meuwly, Markus; Johnson, Steve L; Beaud, Paul; Staub, Urs

    2017-11-01

    Recent years have seen dramatic developments in the technology of intense pulsed light sources in the THz frequency range. Since many dipole-active excitations in solids and molecules also lie in this range, there is now a tremendous potential to use these light sources to study linear and nonlinear dynamics in such systems. While several experimental investigations of THz-driven dynamics in solid-state systems have demonstrated a variety of interesting linear and nonlinear phenomena, comparatively few efforts have been made to drive analogous dynamics in molecular systems. In the present Perspective article, we discuss the similarities and differences between THz-driven dynamics in solid-state and molecular systems on both conceptual and practical levels. We also discuss the experimental parameters needed for these types of experiments and thereby provide design criteria for a further development of this new research branch. Finally, we present a few recent examples to illustrate the rich physics that may be learned from nonlinear THz excitations of phonons in solids as well as inter-molecular vibrations in liquid and gas-phase systems.

  3. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    NASA Astrophysics Data System (ADS)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.

  4. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  5. Parametric Identification of Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Feeny, Brian

    2002-01-01

    In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.

  6. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergey P.

    2015-05-01

    Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

  7. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  8. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  9. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  10. Linear and nonlinear spectroscopy from quantum master equations.

    PubMed

    Fetherolf, Jonathan H; Berkelbach, Timothy C

    2017-12-28

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  11. Linear and nonlinear spectroscopy from quantum master equations

    NASA Astrophysics Data System (ADS)

    Fetherolf, Jonathan H.; Berkelbach, Timothy C.

    2017-12-01

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  12. Investigating parameters participating in the infant respiratory control system attractor.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2008-01-01

    Theoretically, any participating parameter in a non-linear system represents the dynamics of the whole system. Taken's time delay embedding theory provides the fundamental basis for allowing non-linear analysis to be performed on physiological, time-series data. In practice, only one measurable parameter is required to be measured to convey an accurate representation of the system dynamics. In this paper, the infant respiratory control system is represented using three variables-a digitally sampled respiratory inductive plethysmography waveform, and the derived parameters tidal volume and inter-breath interval time series data. For 14 healthy infants, these data streams were analysed using recurrence plot analysis across one night of sleep. The measured attractor size of these variables followed the same qualitative trends across the nights study. Results suggest that the attractor size measures of the derived IBI and tidal volume are representative surrogates for the raw respiratory waveform. The extent to which the relative attractor sizes of IBI and tidal volume remain constant through changing sleep state could potentially be used to quantify pathology, or maturation of breathing control.

  13. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme.

    PubMed

    Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong

    2018-01-01

    This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.

  14. Dynamical analysis of a cubic Liénard system with global parameters (II)

    NASA Astrophysics Data System (ADS)

    Chen, Hebai; Chen, Xingwu

    2016-06-01

    In this paper, we continue to study the global dynamics of a cubic Liénard system for global parameters in the case of three equilibria to follow (2015 Nonlinearity 28 3535-62), which deals with the case of two equilibria. We first analyse qualitative properties of all equilibria and judge the existences of limit cycles and homoclinic loops and their numbers. Then we obtain the bifurcation diagram and all phase portraits as our main results. Based on these results, in the case of three equilibria a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19), which is about the existence of some function whose graph is exactly the surface of double limit cycles, is obtained. Moreover, a parameter region for the nonexistence of figure-eight loops is given theoretically to compensate for previous numerical results and is illustrated numerically. Supported by NSFC 11471228, 11572263, the Fundamental Research Funds for the Central Universities and Cultivation Foundation of Excellent Doctoral Dissertation of Southwest Jiaotong University (2015).

  15. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  16. Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.

    2017-10-01

    A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.

  17. Nonlinear dynamical modes of climate variability: from curves to manifolds

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  18. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  19. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  20. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  1. Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures

    NASA Astrophysics Data System (ADS)

    Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier

    2018-02-01

    This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.

  2. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  3. Linear parameter varying representations for nonlinear control design

    NASA Astrophysics Data System (ADS)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that neglects a subset of possible parameter trajectories. A computational algorithm is constructed for this suboptimal solution applied to a class of linear non-quadratic cost functions.

  4. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  5. Chaos in an imperfectly premixed model combustor.

    PubMed

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  6. The analysis on nonlinear control of the aircraft arresting system

    NASA Astrophysics Data System (ADS)

    Song, Jinchun; Du, Tianrong

    2005-12-01

    The aircraft arresting system is a complicated nonlinear system. This paper analyzes the mechanical-hydraulic structure of aircraft arresting system composed of electro hydraulic valve and establishes the dynamic equation of the aircraft arresting system. Based on the state-feedback linearization of nonlinear system, a PD-based controller is synthesized. Simulation studies indicate, while arresting the different type aircraft, the proposed controller has fast response, good tracking performance and strong robustness. By tuning the parameters of the PD controller, a satisfactory control performance can be guaranteed.

  7. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    PubMed

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  8. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials

    PubMed Central

    Chen, Yong; Yan, Zhenya

    2016-01-01

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543

  9. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less

  10. Swarming behaviors in multi-agent systems with nonlinear dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wenwu, E-mail: wenwuyu@gmail.com; School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001; Chen, Guanrong

    2013-12-15

    The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agentmore » is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.« less

  11. A recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure.

    PubMed

    Liao, Fuyuan; Jan, Yih-Kuen

    2012-06-01

    This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yunliang; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum; Lü, Xiaoxia

    A theoretical and numerical study of the modulational instability of large amplitude quantum magnetosonic waves (QMWs) in a relativistically degenerate plasma is presented. A modified nonlinear Schrödinger equation is derived by using the reductive perturbation method. The modulational instability regions of the QMWs and the corresponding growth rates are significantly affected by the relativistic degeneracy parameter, the Pauli spin magnetization effects, and the equilibrium magnetic field. The dynamics and nonlinear saturation of the modulational instability of QMWs are investigated numerically. It is found that the increase of the relativistic degeneracy parameter can increase the growth rate of the instability, andmore » the system is saturated nonlinearly by the formation of envelope solitary waves. The current investigation may have relevance to astrophysical magnetized compact objects, such as white dwarfs and pulsar magnetospheres.« less

  13. Transient response of an active nonlinear sandwich piezolaminated plate

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2017-04-01

    In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.

  14. Computational analysis of nonlinearities within dynamics of cable-based driving systems

    NASA Astrophysics Data System (ADS)

    Anghelache, G. D.; Nastac, S.

    2017-08-01

    This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.

  15. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  16. Single evolution equation in a light-matter pairing system

    NASA Astrophysics Data System (ADS)

    Bugaychuk, S.; Tobisch, E.

    2018-03-01

    The coupled system including wave mixing and nonlinear dynamics of a nonlocal optical medium is usually studied (1) numerically, with the medium being regarded as a black box, or (2) experimentally, making use of some empirical assumptions. In this paper we deduce for the first time a single evolution equation describing the dynamics of the pairing system as a holistic complex. For a non-degenerate set of parameters, we obtain the nonlinear Schrödinger equation with coefficients being written out explicitly. Analytical solutions of this equation can be experimentally realized in any photorefractive medium, e.g. in photorefractive, liquid or photonic crystals. For instance, a soliton-like solution can be used in dynamical holography for designing an artificial grating with maximal amplification of an image.

  17. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  18. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  19. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  20. Reconstruction of normal forms by learning informed observation geometries from data.

    PubMed

    Yair, Or; Talmon, Ronen; Coifman, Ronald R; Kevrekidis, Ioannis G

    2017-09-19

    The discovery of physical laws consistent with empirical observations is at the heart of (applied) science and engineering. These laws typically take the form of nonlinear differential equations depending on parameters; dynamical systems theory provides, through the appropriate normal forms, an "intrinsic" prototypical characterization of the types of dynamical regimes accessible to a given model. Using an implementation of data-informed geometry learning, we directly reconstruct the relevant "normal forms": a quantitative mapping from empirical observations to prototypical realizations of the underlying dynamics. Interestingly, the state variables and the parameters of these realizations are inferred from the empirical observations; without prior knowledge or understanding, they parametrize the dynamics intrinsically without explicit reference to fundamental physical quantities.

  1. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.

    PubMed

    Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M

    2017-03-01

    This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

    NASA Astrophysics Data System (ADS)

    Fürstenau, Norbert; Mittendorf, Monika

    2016-12-01

    We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

  3. Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Miyaji, Tomoyuki

    2017-02-01

    We study a billiard problem in nonlinear and nonequilibrium systems. This is motivated by the motions of a traveling spot in a reaction-diffusion system (RDS) in a rectangular domain. We consider a four-dimensional dynamical system, defined by ordinary differential equations. This was first derived by S.-I. Ei et al. (2006), based on a reduced system on the center manifold in a neighborhood of a pitchfork bifurcation of a stationary spot for the RDS. In contrast to the classical billiard problem, this defines a dynamical system that is dissipative rather than conservative, and has an attractor. According to previous numerical studies, the attractor of the system changes depending on parameters such as the aspect ratio of the domain. It may be periodic, quasi-periodic, or chaotic. In this paper, we elucidate that it results from parameters crossing Arnold tongues and that the organizing center is a Hopf-Hopf bifurcation of the trivial equilibrium.

  4. Dynamical systems theory for nonlinear evolution equations.

    PubMed

    Choudhuri, Amitava; Talukdar, B; Das, Umapada

    2010-09-01

    We observe that the fully nonlinear evolution equations of Rosenau and Hymann, often abbreviated as K(n,m) equations, can be reduced to Hamiltonian form only on a zero-energy hypersurface belonging to some potential function associated with the equations. We treat the resulting Hamiltonian equations by the dynamical systems theory and present a phase-space analysis of their stable points. The results of our study demonstrate that the equations can, in general, support both compacton and soliton solutions. For the K(2,2) and K(3,3) cases one type of solutions can be obtained from the other by continuously varying a parameter of the equations. This is not true for the K(3,2) equation for which the parameter can take only negative values. The K(2,3) equation does not have any stable point and, in the language of mechanics, represents a particle moving with constant acceleration.

  5. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  6. A new method for parameter estimation in nonlinear dynamical equations

    NASA Astrophysics Data System (ADS)

    Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao

    2015-01-01

    Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.

  7. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  8. Order parameter analysis of synchronization transitions on star networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  9. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  10. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  11. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  12. Application of a nonlinear slug test model

    USGS Publications Warehouse

    McElwee, C.D.

    2001-01-01

    Knowledge of the hydraulic conductivity distribution is of utmost importance in understanding the dynamics of an aquifer and in planning the consequences of any action taken upon that aquifer. Slug tests have been used extensively to measure hydraulic conductivity in the last 50 years since Hvorslev's (1951) work. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been implemented in this work. The nonlinear model has three parameters: ??, which is related primarily to radius changes in the water column; A, which is related to the nonlinear head losses; and K, the hydraulic conductivity. An additional parameter has been added representing the initial velocity of the water column at slug initiation and is incorporated into an analytical solution to generate the first time step before a sequential numerical solution generates the remainder of the time solution. Corrections are made to the model output for acceleration before it is compared to the experimental data. Sensitivity analysis and least squares fitting are used to estimate the aquifer parameters and produce some diagnostic results, which indicate the accuracy of the fit. Finally, an example of field data has been presented to illustrate the application of the model to data sets that exhibit nonlinear behavior. Multiple slug tests should be taken at a given location to test for nonlinear effects and to determine repeatability.

  13. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  14. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    PubMed

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Mario E.

    An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and themore » plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.« less

  16. Foldover effect and energy output from a nonlinear pseudo-maglev harvester

    NASA Astrophysics Data System (ADS)

    Kecik, Krzysztof; Mitura, Andrzej; Warminski, Jerzy; Lenci, Stefano

    2018-01-01

    Dynamics analysis and energy harvesting of a nonlinear magnetic pseudo-levitation (pseudo-maglev) harvester under harmonic excitation is presented in this paper. The system, for selected parameters, has two stable possible solutions with different corresponding energy outputs. The main goal is to analyse the influence of resistance load on the multi-stability zones and energy recovery which can help to tune the system to improve the energy harvesting efficiency.

  17. Continuous Dynamic Simulation of Nonlinear Aerodynamics/Nonlinear Structure Interaction (NANSI) for Morphing Vehicles

    DTIC Science & Technology

    2010-03-31

    presented in the AFRL organized Aeroelastic Workshop in Sedona October 2008, and at the AVT-168 Symposium on Morphing Vehicles, Lisbon, Portugal April 2009...surface geometry. - Conventional deforming grid methods will fail at a point when the geometry change becomes large, no matter how good the method...Numb’ Martian Entry* Knudson number: Kn _ M.a GasKinetic parameter ASU . flttA TKHNOLOGY Overview • Ballute aeroelastic problem requires

  18. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.

  19. The nonlinear chemo-mechanic coupled dynamics of the F 1 -ATPase molecular motor.

    PubMed

    Xu, Lizhong; Liu, Fang

    2012-03-01

    The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor's rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.

  20. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    NASA Astrophysics Data System (ADS)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  1. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  2. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  3. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  4. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    NASA Astrophysics Data System (ADS)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  5. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  6. Periodic Peakons, Pseudo-Peakons and Compactons of Ion-Acoustic Wave Model in Electronegative Plasmas with Electrons Featuring Tsallis Distribution

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear ion-acoustic oscillations is governed by a partial differential equation system. Its traveling system is just a singular traveling wave system of first class depending on four parameters. By using the method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions.

  7. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less

  8. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures.

    PubMed

    Song, Qi; Song, Yong-Duan

    2011-12-01

    This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only--the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations.

  9. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  10. Non-Destructive Evaluation of Material System Using Highly Nonlinear Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Khatri, Devvrath

    A chain of granular particles is one of the most studied examples of highly nonlinear systems deriving its response from the nonlinear Hertzian contact interaction between particles. Interest in these systems derives from their tunable dynamic response, encompassing linear, weakly nonlinear, and strongly nonlinear regimes, controlled by varying the static and dynamic load applied. In chains with a very weak (or zero) static precompression, the system supports the formation and propagation of highly nonlinear solitary waves (HNSWs). The dual-nonlinear interaction between particles (i.e., a power-law type contact potential in compression, and zero strength in tension) combined with discreteness of the system, makes the granular system highly tunable. The propagation properties of these waves, such as traveling pulse width, wave speed, number of separated pulses (single or train of pulses), etc., can be controlled by modifying one or many of the parameters, like the particle's dimension, material properties, static and dynamic force amplitude, the type and duration of the initial excitation applied to the system, and/or the periodicity of the chain. The ability to control the wave properties in such chains has been proposed for several different practical engineering applications. The dynamic properties of these granular chains have been conventionally studied using discrete particle models (DPMs) which consider the particles in the chains as point masses connected by nonlinear Hertzian springs with the neighboring particles. Although, this is a good approximation under proper circumstances, it does not capture many features of the three dimensional elastic particles such as the elastic wave propagation within the particles, the local deformation of the particles in the vicinity of the contact point, the corresponding changes in the contact area, and the collective vibrations of the particles among others. This thesis focuses on the development of a finite element model (FEM) using the commercially available software Abaqus, which takes into account many of these characteristic features. The finite element model discretizes particles by considering them as three-dimensional deformable bodies of revolution and describes the nonlinear dynamic response of one-dimensional granular chains composed of particles with various geometries and orientations. We showed that particles' geometries and orientations provide additional design parameters for controlling the dynamic response of the system, compared to chains composed of spherical particles. We also showed that the tunable and compact nature of these waves can be used to tailor the properties of HNSWs for specific application, such as information carriers for actuation and sensing of mechanical properties and boundary effects of adjoining media in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Using experiments and numerics, we characterized interface dynamics between granular media and adjoining linear elastic media, and found that the coupling produced temporary localization of the incident waves at the boundaries between the two media and their decomposition into reflected waves. We monitored the formation of reflected solitary waves propagating back from the interface and found that their properties are sensitive to the geometric and material properties of the adjoining media. The work done in this research enhances our understanding of the basic physics and tunability of nonlinear granular media, and further establishes a theoretical and numerical foundation in the applications of HNSWs as information carriers.

  11. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  12. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Review of probabilistic analysis of dynamic response of systems with random parameters

    NASA Technical Reports Server (NTRS)

    Kozin, F.; Klosner, J. M.

    1989-01-01

    The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems.

  14. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  15. Controlling the non-linear intracavity dynamics of large He-Ne laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Cuccato, D.; Beghi, A.; Belfi, J.; Beverini, N.; Ortolan, A.; Di Virgilio, A.

    2014-02-01

    A model based on Lamb's theory of gas lasers is applied to a He-Ne ring laser (RL) gyroscope to estimate and remove the laser dynamics contribution from the rotation measurements. The intensities of the counter-propagating laser beams exiting one cavity mirror are continuously observed together with a monitor of the laser population inversion. These observables, once properly calibrated with a dedicated procedure, allow us to estimate cold cavity and active medium parameters driving the main part of the non-linearities of the system. The quantitative estimation of intrinsic non-reciprocal effects due to cavity and active medium non-linear coupling plays a key role in testing fundamental symmetries of space-time with RLs. The parameter identification and noise subtraction procedure has been verified by means of a Monte Carlo study of the system, and experimentally tested on the G-PISA RL oriented with the normal to the ring plane almost parallel to the Earth's rotation axis. In this configuration the Earth's rotation rate provides the maximum Sagnac effect while the contribution of the orientation error is reduced to a minimum. After the subtraction of laser dynamics by a Kalman filter, the relative systematic errors of G-PISA reduce from 50 to 5 parts in 103 and can be attributed to the residual uncertainties on geometrical scale factor and orientation of the ring.

  16. Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system

    NASA Astrophysics Data System (ADS)

    Kurt, Mehmet; Moore, Keegan J.; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-05-01

    We consider the application of a new nonlinear model updating strategy to a computational benchmark system. The approach relies on analyzing system response time series in the frequency-energy domain by constructing both Hamiltonian and forced and damped frequency-energy plots (FEPs). The system parameters are then characterized and updated by matching the backbone branches of the FEPs with the frequency-energy wavelet transforms of experimental and/or computational time series. The main advantage of this method is that no nonlinearity model is assumed a priori, and the system model is updated solely based on simulation and/or experimental measured time series. By matching the frequency-energy plots of the benchmark system and its reduced-order model, we show that we are able to retrieve the global strongly nonlinear dynamics in the frequency and energy ranges of interest, identify bifurcations, characterize local nonlinearities, and accurately reconstruct time series. We apply the proposed methodology to a benchmark problem, which was posed to the system identification community prior to the IMAC XXXII (2014) and XXXIII (2015) Conferences as a "Round Robin Exercise on Nonlinear System Identification". We show that we are able to identify the parameters of the non-linear element in the problem with a priori knowledge about its position.

  17. Economic policy optimization based on both one stochastic model and the parametric control theory

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit

    2016-06-01

    A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)

  18. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  19. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Li, X. M., E-mail: lixinmiaotju@163.com; Xu, J., E-mail: xujia-ld@163.com

    A kind of magnetic shape memory alloy (MSMA) microgripper is proposed in this paper, and its nonlinear dynamic characteristics are studied when the stochastic perturbation is considered. Nonlinear differential items are introduced to explain the hysteretic phenomena of MSMA, and the constructive relationships among strain, stress, and magnetic field intensity are obtained by the partial least-square regression method. The nonlinear dynamic model of a MSMA microgripper subjected to in-plane stochastic excitation is developed. The stationary probability density function of the system’s response is obtained, the transition sets of the system are determined, and the conditions of stochastic bifurcation are obtained.more » The homoclinic and heteroclinic orbits of the system are given, and the boundary of the system’s safe basin is obtained by stochastic Melnikov integral method. The numerical and experimental results show that the system’s motion depends on its parameters, and stochastic Hopf bifurcation appears in the variation of the parameters; the area of the safe basin decreases with the increase of the stochastic excitation, and the boundary of the safe basin becomes fractal. The results of this paper are helpful for the application of MSMA microgripper in engineering fields.« less

  1. An adaptive cubature formula for efficient reliability assessment of nonlinear structural dynamic systems

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Kong, Fan

    2018-05-01

    Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.

  2. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    PubMed

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  4. Inverse problem of HIV cell dynamics using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  5. Nonlinear characterization of a bolted, industrial structure using a modal framework

    NASA Astrophysics Data System (ADS)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  6. Investigation of complexity dynamics in a DC glow discharge magnetized plasma using recurrence quantification analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less

  7. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  8. Relaxation Dynamics of a Granular Pile on a Vertically Vibrating Plate

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Otsuki, Michio; Katsuragi, Hiroaki

    2018-03-01

    Nonlinear relaxation dynamics of a vertically vibrated granular pile is experimentally studied. In the experiment, the flux and slope on the relaxing pile are measured by using a high-speed laser profiler. The relation of these quantities can be modeled by the nonlinear transport law assuming the uniform vibrofluidization of an entire pile. The fitting parameter in this model is only the relaxation efficiency, which characterizes the energy conversion rate from vertical vibration into horizontal transport. We demonstrate that this value is a constant independent of experimental conditions. The actual relaxation is successfully reproduced by the continuity equation with the proposed model. Finally, its specific applicability toward an astrophysical phenomenon is shown.

  9. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    NASA Astrophysics Data System (ADS)

    Awais, M.; Hayat, T.; Muqaddass, N.; Ali, A.; Aqsa; Awan, Saeed Ehsan

    2018-03-01

    The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model) with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed.

  10. Rayleigh-type parametric chemical oscillation.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  11. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors

    NASA Astrophysics Data System (ADS)

    Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.

    2018-05-01

    The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.

  12. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    PubMed

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Observer enhanced control for spin-stabilized tethered formation in earth orbit

    NASA Astrophysics Data System (ADS)

    Guang, Zhai; Yuyang, Li; Liang, Bin

    2018-04-01

    This paper addresses the issues relevant to control of spin-stabilized tethered formation in circular orbit. Due to the dynamic complexities and nonlinear perturbations, it is challenging to promote the control precision for the formation deployment and maintenance. In this work, the formation dynamics are derived with considering the spinning rate of the central body, then major attention is dedicated to develop the nonlinear disturbance observer. To achieve better control performance, the observer-enhanced controller is designed by incorporating the disturbance observer into the control loop, benefits from the disturbance compensation are demonstrated, and also, the dependences of the disturbance observer performance on some important parameters are theoretically and numerically analyzed.

  14. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  15. Nonlinear differential system applied of a mechanical plan model of the automotives used for the nonlinear stability analysis

    NASA Astrophysics Data System (ADS)

    Simniceanu, Loreta; Mihaela, Bogdan; Otat, Victor; Trotea, Mario

    2017-10-01

    This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.

  16. Linear and Nonlinear Dynamics of Heart Rate Variability are Correlated with Purpose in Life and Degree of Optimism in Anxiety Disorder Patients.

    PubMed

    Oh, Jihoon; Chae, Jeong-Ho

    2018-04-01

    Although heart rate variability (HRV) may be a crucial marker of mental health, how it is related to positive psychological factors (i.e. attitude to life and positive thinking) is largely unknown. Here we investigated the correlation of HRV linear and nonlinear dynamics with psychological scales that measured degree of optimism and happiness in patients with anxiety disorders. Results showed that low- to high-frequency HRV ratio (LF/HF) was increased and the HRV HF parameter was decreased in subjects who were more optimistic and who felt happier in daily living. Nonlinear analysis also showed that HRV dispersion and regulation were significantly correlated with the subjects' optimism and purpose in life. Our findings showed that HRV properties might be related to degree of optimistic perspectives on life and suggests that HRV markers of autonomic nervous system function could reflect positive human mind states.

  17. Experimental Nonlinear Dynamics and Snap-Through of Post-Buckled Thin Laminated Composite Plates

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu

    Modern aerospace systems are increasingly being designed with composite panels and plates to achieve light weight and high specific strength and stiffness. For constrained panels, thermally-induced axial loading may cause buckling of the structure, which can lead to nonlinear and potentially chaotic behavior. When post-buckled composite plates experience snap-through, they are subjected to large-amplitude deformations and in-plane compressive loading. These phenomena pose a potential threat to the structural integrity of composite structures. In this work, the nonlinear dynamic behavior of post-buckled composite plates was investigated experimentally and computationally. For the experimental work, an electrodynamic shaker was used to apply harmonic loads and the dynamic response of plate specimens was measured using a single-point displacement-sensing laser, a double-point laser vibrometer (velocity-sensing), and a set of digital image correlation cameras. Both chaotic and periodic steady-state snap-through behaviors were investigated. The experimental data were used to characterize snap-through behaviors of the post-buckled specimens and their boundaries in the harmonic forcing parameter space. The nonlinear behavior of post-buckled plates was modeled using the classical laminated plate theory (CLPT) and the von Karman strain-displacement relations. The static equilibrium paths of the post-buckled plates were analyzed using an arc-length method with a branch-switching technique. For the dynamic analysis, the nonlinear equations of motion were derived based on CLPT and the nonlinear finite element model of the equations was constructed using the Hermite cubic interpolation functions for both conforming and nonconforming elements. The numerical analyses were conducted using the model and were compared with the experimental data.

  18. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant

    NASA Astrophysics Data System (ADS)

    Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying

    2017-03-01

    Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.

  19. Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Montazeri, A.; West, C.; Monk, S. D.; Taylor, C. J.

    2017-04-01

    This paper concerns the problem of dynamic modelling and parameter estimation for a seven degree of freedom hydraulic manipulator. The laboratory example is a dual-manipulator mobile robotic platform used for research into nuclear decommissioning. In contrast to earlier control model-orientated research using the same machine, the paper develops a nonlinear, mechanistic simulation model that can subsequently be used to investigate physically meaningful disturbances. The second contribution is to optimise the parameters of the new model, i.e. to determine reliable estimates of the physical parameters of a complex robotic arm which are not known in advance. To address the nonlinear and non-convex nature of the problem, the research relies on the multi-objectivisation of an output error single-performance index. The developed algorithm utilises a multi-objective genetic algorithm (GA) in order to find a proper solution. The performance of the model and the GA is evaluated using both simulated (i.e. with a known set of 'true' parameters) and experimental data. Both simulation and experimental results show that multi-objectivisation has improved convergence of the estimated parameters compared to the single-objective output error problem formulation. This is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the inherent structure of the multi-objective GA for this specific system identification problem.

  20. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  1. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  2. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    PubMed

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. The pEst version 2.1 user's manual

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Maine, Richard E.

    1987-01-01

    This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.

  4. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  5. Convergent Cross Mapping: Basic concept, influence of estimation parameters and practical application.

    PubMed

    Schiecke, Karin; Pester, Britta; Feucht, Martha; Leistritz, Lutz; Witte, Herbert

    2015-01-01

    In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.

  6. Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    DTIC Science & Technology

    2016-09-15

    Algorithm GPS Global Positioning System HOUF Higher Order Unscented Filter IC initial conditions IMM Interacting Multiple Model IMU Inertial Measurement Unit ...sources ranging from inertial measurement units to star sensors are used to construct observations for attitude estimation algorithms. The sensor...parameters. A single vector measurement will provide two independent parameters, as a unit vector constraint removes a DOF making the problem underdetermined

  7. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    NASA Astrophysics Data System (ADS)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  8. Investigation of chaos and its control in a Duffing-type nano beam model

    NASA Astrophysics Data System (ADS)

    Jha, Abhishek Kumar; Dasgupta, Sovan Sundar

    2018-04-01

    The prediction of chaos of a nano beam with harmonic excitation is investigated. Using the Galerkin method the nonlinear lumped model of a clamped-clamped nano beam with nonlinear cubic stiffness is obtained. This is a Duffing system with hardening type of nonlinearity. Based on the energy function and the phase portrait of the system, the resonator dynamics is categorized into four situations in which Using Malnikov function, an analytical criterion for homoclinic intersection in the form of inequality is written in terms of the system parameters. A numerical study including largest lyapunov exponent, Poincare diagram and phase portrait confirm the analytical prediction of chaos and effect of forcing amplitude. Subsequently, a linear velocity feedback controller is introduced into the system to successfully control the chaotic motion of the system at a faster rate at larger value of gain parameter.

  9. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    PubMed

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  10. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  11. Modified nonlinear amplifying loop mirror for mode-locked fibre oscillators with record-high energy and high-average-power pulsed output

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey

    2018-02-01

    The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.

  12. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexahin, Y.; Gianfelice-Wendt, E.; Lebedev, V.

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift canmore » be created without destroying the dynamic aperture.« less

  13. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  14. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  15. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.

    PubMed

    Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F

    2017-01-01

    A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.

  16. Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations

    NASA Astrophysics Data System (ADS)

    Abdelkefi, Abdessattar

    Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the effects of the linear spring coefficients and electrical load resistance on the flutter speed. Then, the normal form of the Hopf bifurcation ( utter) is derived to characterize the type of instability and determine the effects of the aerodynamic nonlinearities and the nonlinear coefficients of the springs on the system's stability near the bifurcation. This is useful to characterize the effects of different parameters on the system's output and ensure that subcritical or "catastrophic" bifurcation does not take place. Both linear and nonlinear analyses are then used to design and enhance the performance of these harvesters. In the last part, the concept of energy harvesting from vortex-induced vibrations of a circular cylinder is investigated. The power levels that can be generated from these vibrations and the variations of these levels with the freestream velocity are determined. A mathematical model that accounts for the coupled lift force, cylinder motion and generated voltage is presented. Linear analysis of the electromechanical model is performed to determine the effects of the electrical load resistance on the natural frequency of the rigid cylinder and the onset of the synchronization region. The impacts of the nonlinearities on the cylinder's response and energy harvesting are then investigated.

  17. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph

    PubMed Central

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation. PMID:26909045

  18. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph.

    PubMed

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation.

  19. Dynamics of a minimal consumer network with bi-directional influence

    NASA Astrophysics Data System (ADS)

    Ekaterinchuk, Ekaterina; Jungeilges, Jochen; Ryazanova, Tatyana; Sushko, Iryna

    2018-05-01

    We study the dynamics of a model of interdependent consumer behavior defined by a family of two-dimensional noninvertible maps. This family belongs to a class of coupled logistic maps with different nonlinearity parameters and coupling terms that depend on one variable only. In our companion paper we considered the case of independent consumers as well as the case of uni-directionally connected consumers. The present paper aims at describing the dynamics in the case of a bi-directional connection. In particular, we investigate the bifurcation structure of the parameter plane associated with the strength of coupling between the consumers, focusing on the mechanisms of qualitative transformations of coexisting attractors and their basins of attraction.

  20. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  1. Parameter dependence of high-frequency nonlinear oscillations and intrinsic chaos in short GaAs/(Al, Ga)As superlattices

    NASA Astrophysics Data System (ADS)

    Essen, Jonathan; Ruiz-Garcia, Miguel; Jenkins, Ian; Carretero, Manuel; Bonilla, Luis L.; Birnir, Björn

    2018-04-01

    We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space. This result provides an encouraging guide towards the experimental observation of high-frequency intrinsic dynamical chaos in shorter SSLs.

  2. An Algorithm for Efficient Maximum Likelihood Estimation and Confidence Interval Determination in Nonlinear Estimation Problems

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick Charles

    1985-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.

  3. Comments on How Does the Boundary Layer Contribute to Eyewall Replacement Cycles in Axisymmetric Tropical Cyclones?

    DTIC Science & Technology

    2014-12-01

    broaden, the existing vorticity perturbation.’’ The nonlinear effects are, in the above quoted para- graph, simply contributing to a radially inward...quantitative effects , the nonlinear boundary layer dynamics do not seem to be invoked in K13 to fundamentally alter the feedback pro- cess sketched...the Coriolis parameter, r represents radius, and ›/›r denotes the partial derivative with respect to r. To com- pute w‘ in Fig. 2, the height of 3 km

  4. Excitations of breathers and rogue wave in the Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.

  5. Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia

    We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.

  6. Topological approximation of the nonlinear Anderson model

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.

  7. Investigating multiphoton phenomena using nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Shu

    Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or non-linear) stabilities by adding control functions (which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question. In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this approach in molecular physics.

  8. Persistent model order reduction for complex dynamical systems using smooth orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Ilbeigi, Shahab; Chelidze, David

    2017-11-01

    Full-scale complex dynamic models are not effective for parametric studies due to the inherent constraints on available computational power and storage resources. A persistent reduced order model (ROM) that is robust, stable, and provides high-fidelity simulations for a relatively wide range of parameters and operating conditions can provide a solution to this problem. The fidelity of a new framework for persistent model order reduction of large and complex dynamical systems is investigated. The framework is validated using several numerical examples including a large linear system and two complex nonlinear systems with material and geometrical nonlinearities. While the framework is used for identifying the robust subspaces obtained from both proper and smooth orthogonal decompositions (POD and SOD, respectively), the results show that SOD outperforms POD in terms of stability, accuracy, and robustness.

  9. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  10. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  11. Computational Methods for Nonlinear Dynamic Problems in Solid and Structural Mechanics: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces

    DTIC Science & Technology

    1989-03-31

    present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL

  12. Fast novel nonlinear optical NLC system with local response

    NASA Astrophysics Data System (ADS)

    Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto

    2017-06-01

    Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.

  13. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  14. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  15. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  16. Seed islands driven by turbulence and NTM dynamics

    NASA Astrophysics Data System (ADS)

    Muraglia, M.; Agullo, O.; Poye, A.; Benkadda, S.; Horton, W.; Dubuit, N.; Garbet, X.; Sen, A.

    2014-10-01

    Magnetic reconnection is an issue for tokamak plasmas. Growing magnetic islands expel energetic particles from the plasma core leading to high energy fluxes in the SOL and may cause damage to the plasma facing components. The islands grow from seeds from the bootstrap current effects that oppose the negative delta-prime producing nonlinear island growth. Experimentally, the onset of NTM is quantified in terms of the beta parameter and the sawtooth period. Indeed, in experiments, (3;2) NTM magnetic islands are often triggered by sawtooth precursors. However (2;1) magnetic islands can appear without noticeable MHD event and the seed islands origin for the NTM growth is still an open question. Macroscale MHD instabilities (magnetic islands) coexist with micro-scale turbulent fluctuations and zonal flows which impact island dynamics. Nonlinear simulations show that the nonlinear beating of the fastest growing small-scale ballooning interchange modes on a low order rational surface drive a magnetic islands located on the same surface. The island size is found to be controlled by the turbulence level and modifies the NTM threshold and dynamics.

  17. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  18. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    PubMed

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  19. A method for landing gear modeling and simulation with experimental validation

    NASA Technical Reports Server (NTRS)

    Daniels, James N.

    1996-01-01

    This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.

  20. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richert, Ranko

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effectsmore » are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.« less

  1. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  2. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  3. Polynomic nonlinear dynamical systems - A residual sensitivity method for model reduction

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Bugajski, D.; Sain, M.

    1985-01-01

    The motivation for using polynomic combinations of system states and inputs to model nonlinear dynamics systems is founded upon the classical theories of analysis and function representation. A feature of such representations is the need to make available all possible monomials in these variables, up to the degree specified, so as to provide for the description of widely varying functions within a broad class. For a particular application, however, certain monomials may be quite superfluous. This paper examines the possibility of removing monomials from the model in accordance with the level of sensitivity displayed by the residuals to their absence. Critical in these studies is the effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.

  4. ConvAn: a convergence analyzing tool for optimization of biochemical networks.

    PubMed

    Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils

    2012-01-01

    Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  6. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  7. Towards classification of the bifurcation structure of a spherical cavitation bubble.

    PubMed

    Behnia, Sohrab; Sojahrood, Amin Jafari; Soltanpoor, Wiria; Sarkhosh, Leila

    2009-12-01

    We focus on a single cavitation bubble driven by ultrasound, a system which is a specimen of forced nonlinear oscillators and is characterized by its extreme sensitivity to the initial conditions. The driven radial oscillations of the bubble are considered to be implicated by the principles of chaos physics and owing to specific ranges of control parameters, can be periodic or chaotic. Despite the growing number of investigations on its dynamics, there is not yet an inclusive yardstick to sort the dynamical behavior of the bubble into classes; also, the response oscillations are so complex that long term prediction on the behavior becomes difficult to accomplish. In this study, the nonlinear dynamics of a bubble oscillator was treated numerically and the simulations were proceeded with bifurcation diagrams. The calculated bifurcation diagrams were compared in an attempt to classify the bubble dynamic characteristics when varying the control parameters. The comparison reveals distinctive bifurcation patterns as a consequence of driving the systems with unequal ratios of R(0)lambda (where R(0) is the bubble initial radius and lambda is the wavelength of the driving ultrasonic wave). Results indicated that systems having the equal ratio of R(0)lambda, share remarkable similarities in their bifurcating behavior and can be classified under a unit category.

  8. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

    PubMed

    Dai, Shi-Lu; Wang, Cong; Wang, Min

    2014-01-01

    This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.

  9. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.

    1994-01-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.

  10. On Madelung systems in nonlinear optics: A reciprocal invariance

    NASA Astrophysics Data System (ADS)

    Rogers, Colin; Malomed, Boris

    2018-05-01

    The role of the de Broglie-Bohm potential, originally established as central to Bohmian quantum mechanics, is examined for two canonical Madelung systems in nonlinear optics. In a seminal case, a Madelung system derived by Wagner et al. via the paraxial approximation and in which the de Broglie-Bohm potential is present is shown to admit a multi-parameter class of what are here introduced as "q-gaussons." In the limit, as the Tsallis parameter q → 1, the q-gaussons are shown to lead to standard gausson solitons, as admitted by the logarithmic nonlinear Schrödinger equation encapsulating the Madelung system. The q-gaussons are obtained for optical media with dual power-law refractive index. In the second case, a Madelung system originally derived via an eikonal approximation in the context of laser beam propagation and in which the de Broglie Bohm term is neglected is shown to admit invariance under a novel class of two-parameter class of reciprocal transformations. Model optical laws analogous to the celebrated Kármán-Tsien law of classical gas dynamics are introduced.

  11. Identification and compensation of friction for a novel two-axis differential micro-feed system

    NASA Astrophysics Data System (ADS)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  12. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  13. Nonlinear Optical Properties and Subpicosecond Dynamics of Excitons and Electron-Hole Plasmas in Multiple Quantum Well Structures.

    DTIC Science & Technology

    1987-12-01

    estimated from 10 S Ee 0.916 O(Pe) (7)rs Vel / y 7 where ve is the valley degeneracy factor, and $ is an anisotropy factor 10 1/6 sin- [(I Pe)l 124O...nergy, an potential, (2V,), have been deduced from the bro adening parameters of the jt structure The growth parameters with n-i p-i 498 having

  14. Variable structure control of spacecraft reorientation maneuvers

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, H.; Dwyer, T. A. W., III

    1986-01-01

    A Variable Structure Control (VSC) approach is presented for multi-axial spacecraft reorientation maneuvers. A nonlinear sliding surface is proposed which results in an asymptotically stable, ideal linear sliding motion of Cayley-Rodriques attitude parameters. By imposing a desired equivalent dynamics on the attitude parameters, the approach is devoid of optimal control considerations. The single axis case provides a design scheme for the multiple axes design problem. Illustrative examples are presented.

  15. Dynamical analysis of a cubic Liénard system with global parameters

    NASA Astrophysics Data System (ADS)

    Chen, Hebai; Chen, Xingwu

    2015-10-01

    In this paper we investigate the dynamical behaviour of a cubic Liénard system with global parameters. After analysing the qualitative properties of all the equilibria and judging the existences of limit cycles and homoclinic loops for the whole parameter plane, we give the bifurcation diagram and phase portraits. Phase portraits are global if there exist limit cycles and local otherwise. We prove that parameters lie in a connected region, not just on a curve, usually in the parameter plane when the system has one homoclinic loop. Moreover, for global parameters we give a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19) in the case of exactly two equilibria about the existence of some function whose graph is exactly the surface of double limit cycles. Supported by NSFC 11471228, 11172246 and the Fundamental Research Funds for the Central Universities.

  16. Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Wen-Jun; Liu, Ying

    2009-12-01

    Dynamic features describing the collisions of the bound vector solitons and soliton complexes are investigated for the coupled nonlinear Schrödinger (CNLS) equations, which model the propagation of the multimode soliton pulses under some physical situations in nonlinear fiber optics. Equations of such type have also been seen in water waves and plasmas. By the appropriate choices of the arbitrary parameters for the multisoliton solutions derived through the Hirota bilinear method, the periodic structures along the propagation are classified according to the relative relations of the real wave numbers. Furthermore, parameters are shown to control the intensity distributions and interaction patterns for the bound vector solitons and soliton complexes. Transformations of the soliton types (shape changing with intensity redistribution) during the collisions of those stationary structures with the regular one soliton are discussed, in which a class of inelastic properties is involved. Discussions could be expected to be helpful in interpreting such structures in the multimode nonlinear fiber optics and equally applied to other systems governed by the CNLS equations, e.g., the plasma physics and Bose-Einstein condensates.

  17. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive.

    PubMed

    Richardson, Magnus J E

    2007-08-01

    Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.

  18. Efficiency-wage competition and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Guerrazzi, Marco; Sodini, Mauro

    2018-05-01

    In this paper we develop a nonlinear version of the efficiency-wage competition model pioneered by Hahn (1987) [27]. Under the assumption that the strategic relationship among optimal wage bids put forward by competing firms is non-monotonic, we show that market wage offers can actually display persistent fluctuations described by a piece-wise non-invertible map. Thereafter, assuming that employers are never constrained in the labour market, we give evidence that in the parameter region of chaotic dynamics, the model is able to reproduce the business cycle regularity according to which in the short-run average wages fluctuate less than aggregate employment. In addition, we show that the efficiency-wage competition among firms leads to some inefficiencies in the wage setting process.

  19. Structure, dynamics and bifurcations of discrete solitons in trapped ion crystals

    NASA Astrophysics Data System (ADS)

    Landa, H.; Reznik, B.; Brox, J.; Mielenz, M.; Schaetz, T.

    2013-09-01

    We study discrete solitons (kinks) accessible in the state-of-the-art trapped ion experiments, considering zigzag crystals and quasi-three-dimensional configurations, both theoretically and experimentally. We first extend the theoretical understanding of different phenomena predicted and recently experimentally observed in the structure and dynamics of these topological excitations. Employing tools from topological degree theory, we analyze bifurcations of crystal configurations in dependence on the trapping parameters, and investigate the formation of kink configurations and the transformations of kinks between different structures. This allows us to accurately define and calculate the effective potential experienced by solitons within the Wigner crystal, and study how this (so-called Peierls-Nabarro) potential gets modified to a non-periodic globally trapping potential in certain parameter regimes. The kinks' rest mass (energy) and spectrum of modes are computed and the dynamics of linear and nonlinear kink oscillations are analyzed. We also present novel, experimentally observed, configurations of kinks incorporating a large-mass defect realized by an embedded molecular ion, and of pairs of interacting kinks stable for long times, offering the perspective for exploring and exploiting complex collective nonlinear excitations, controllable on the quantum level.

  20. Analytical investigations of seismic responses for reinforced concrete bridge columns subjected to strong near-fault ground motion

    NASA Astrophysics Data System (ADS)

    Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun

    2007-09-01

    Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.

  1. An experimentally validated model for geometrically nonlinear plucking-based frequency up-conversion in energy harvesting

    NASA Astrophysics Data System (ADS)

    Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.

    2018-01-01

    It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.

  2. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.

  3. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics

    PubMed Central

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850

  4. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  5. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  6. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  7. A study on the role of powertrain system dynamics on vehicle driveability

    NASA Astrophysics Data System (ADS)

    Castellazzi, Luca; Tonoli, Andrea; Amati, Nicola; Galliera, Enrico

    2017-07-01

    Vehicle driveability describes the complex interactions between the driver and the vehicle, mainly related to longitudinal vibrations. Today, a relevant part of the driveability process optimisation is realised by means of track tests, which require a considerable effort due to the number of parameters (such as stiffness and damping components) affecting this behaviour. The drawback of this approach is that it is carried on at a stage when a design iteration becomes very expensive in terms of time and cost. The objective of this work is to propose a light and accurate tool to represent the relevant quantities involved in the driveability analysis, and to understand which are the main vehicle parameters that influence the torsional vibrations transmitted to the driver. Particular attention is devoted to the role of the tyre, the engine mount, the dual mass flywheel and their possible interactions. The presented nonlinear dynamic model has been validated in time and frequency domain and, through linearisation of its nonlinear components, allows to exploit modal and energy analysis. Objective indexes regarding the driving comfort are additionally considered in order to evaluate possible driveability improvements related to the sensitivity of powertrain parameters.

  8. The surface-induced spatial-temporal structures in confined binary alloys

    NASA Astrophysics Data System (ADS)

    Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina

    2014-12-01

    This paper examines surface-induced ordering in confined binary alloys. The hyperbolic initial boundary value problem (IBVP) is used to describe a scenario of spatiotemporal ordering in a disordered phase for concentration of one component of binary alloy and order parameter with non-linear dynamic boundary conditions. This hyperbolic model consists of two coupled second order differential equations for order parameter and concentration. It also takes into account effects of the “memory” on the ordering of atoms and their densities in the alloy. The boundary conditions characterize surface velocities of order parameter and concentration changing which is due to surface (super)cooling on walls confining the binary alloy. It is shown that for large times there are three classes of dynamic non-linear boundary conditions which lead to three different types of attractor’s elements for the IBVP. Namely, the elements of attractor are the limit periodic simple shock waves with fronts of “discontinuities” Γ. If Γ is finite, then the attractor contains spatiotemporal functions of relaxation type. If Γ is infinite and countable then we observe the functions of pre-turbulent type. If Γ is infinite and uncountable then we obtain the functions of turbulent type.

  9. Control mechanisms for stochastic biochemical systems via computation of reachable sets.

    PubMed

    Lakatos, Eszter; Stumpf, Michael P H

    2017-08-01

    Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters.

  10. Control mechanisms for stochastic biochemical systems via computation of reachable sets

    PubMed Central

    Lakatos, Eszter

    2017-01-01

    Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters. PMID:28878957

  11. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Emulation of the MBM-MEDUSA model: exploring the sea level and the basin-to-shelf transfer influence on the system dynamics

    NASA Astrophysics Data System (ADS)

    Ermakov, Ilya; Crucifix, Michel; Munhoven, Guy

    2013-04-01

    Complex climate models require high computational burden. However, computational limitations may be avoided by using emulators. In this work we present several approaches for dynamical emulation (also called metamodelling) of the Multi-Box Model (MBM) coupled to the Model of Early Diagenesis in the Upper Sediment A (MEDUSA) that simulates the carbon cycle of the ocean and atmosphere [1]. We consider two experiments performed on the MBM-MEDUSA that explore the Basin-to-Shelf Transfer (BST) dynamics. In both experiments the sea level is varied according to a paleo sea level reconstruction. Such experiments are interesting because the BST is an important cause of the CO2 variation and the dynamics is potentially nonlinear. The output that we are interested in is the variation of the carbon dioxide partial pressure in the atmosphere over the Pleistocene. The first experiment considers that the BST is fixed constant during the simulation. In the second experiment the BST is interactively adjusted according to the sea level, since the sea level is the primary control of the growth and decay of coral reefs and other shelf carbon reservoirs. The main aim of the present contribution is to create a metamodel of the MBM-MEDUSA using the Dynamic Emulation Modelling methodology [2] and compare the results obtained using linear and non-linear methods. The first step in the emulation methodology used in this work is to identify the structure of the metamodel. In order to select an optimal approach for emulation we compare the results of identification obtained by the simple linear and more complex nonlinear models. In order to identify the metamodel in the first experiment the simple linear regression and the least-squares method is sufficient to obtain a 99,9% fit between the temporal outputs of the model and the metamodel. For the second experiment the MBM's output is highly nonlinear. In this case we apply nonlinear models, such as, NARX, Hammerstein model, and an 'ad-hoc' switching model. After the identification we perform the parameter mapping using spline interpolation and validate the emulator on a new set of parameters. References: [1] G. Munhoven, "Glacial-interglacial rain ratio changes: Implications for atmospheric CO2 and ocean-sediment interaction," Deep-Sea Res Pt II, vol. 54, pp. 722-746, 2007. [2] A. Castelletti et al., "A general framework for Dynamic Emulation Modelling in environmental problems," Environ Modell Softw, vol. 34, pp. 5-18, 2012.

  13. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  14. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  15. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  16. Ergodicity breaking and ageing of underdamped Brownian dynamics with quenched disorder

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Yong; Song, Wen-Hua; Du, Lu-Chun

    2018-03-01

    The dynamics of an underdamped Brownian particle moving in one-dimensional quenched disorder under the action of an external force is investigated. Within the tailored parameter regime, the transiently anomalous diffusion and ergodicity breaking, spanning several orders of magnitude in time, have been obtained. The ageing nature of the system weakens as the dissipation of the system increases for other given parameters. Its origin is ascribed to the highly local heterogeneity of the disorder. Two kinds of approximations (in the stationary state), respectively, for large bias and large damping are derived. These results may be helpful in further understanding the nontrivial response of nonlinear dynamics, and also have potential applications to experiments and activities of biological processes.

  17. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  18. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.

    PubMed

    Zou, Yong; Donner, Reik V; Kurths, Jürgen

    2012-03-01

    Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.

  19. Visualization of system dynamics using phasegrams

    PubMed Central

    Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh

    2013-01-01

    A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715

  20. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    PubMed

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  1. Reformulation of time-convolutionless mode-coupling theory near the glass transition

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio

    2017-10-01

    The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.

  2. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  3. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.

  4. Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method

    NASA Astrophysics Data System (ADS)

    Kenderi, Gábor; Fidlin, Alexander

    2014-12-01

    The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.

  5. Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system

    NASA Astrophysics Data System (ADS)

    Kim, Euiyoung; Cho, Maenghyo

    2017-11-01

    In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.

  6. A 1.26 μW Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results.

    PubMed

    Houssein, Alexandros; Papadimitriou, Konstantinos I; Drakakis, Emmanuel M

    2015-08-01

    Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 μm technology and by chip measurements. The fabricated chip occupies an area of 2.27 mm2 and consumes a power of 1.26 μW from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of the Cdk complexes, the transcription factors and the proteins.

  7. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  8. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    PubMed

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  9. Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.

    PubMed

    Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello

    2007-01-01

    A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.

  10. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    PubMed Central

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  11. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  12. Model selection and parameter estimation in structural dynamics using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Ben Abdessalem, Anis; Dervilis, Nikolaos; Wagg, David; Worden, Keith

    2018-01-01

    This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours.

  13. Automatic detection of slight parameter changes associated to complex biomedical signals using multiresolution q-entropy1.

    PubMed

    Torres, M E; Añino, M M; Schlotthauer, G

    2003-12-01

    It is well known that, from a dynamical point of view, sudden variations in physiological parameters which govern certain diseases can cause qualitative changes in the dynamics of the corresponding physiological process. The purpose of this paper is to introduce a technique that allows the automated temporal localization of slight changes in a parameter of the law that governs the nonlinear dynamics of a given signal. This tool takes, from the multiresolution entropies, the ability to show these changes as statistical variations at each scale. These variations are held in the corresponding principal component. Appropriately combining these techniques with a statistical changes detector, a complexity change detection algorithm is obtained. The relevance of the approach, together with its robustness in the presence of moderate noise, is discussed in numerical simulations and the automatic detector is applied to real and simulated biological signals.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duane, Greg; Tsonis, Anastasios; Kocarev, Ljupco

    This collaborative reserach has several components but the main idea is that when imperfect copies of a given nonlinear dynamical system are coupled, they may synchronize for some set of coupling parameters. This idea is to be tested for several IPCC-like models each one with its own formulation and representing an “imperfect” copy of the true climate system. By computing the coupling parameters, which will lead the models to a synchronized state, a consensus on climate change simulations may be achieved.

  15. Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics

    NASA Astrophysics Data System (ADS)

    Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.

    2018-04-01

    In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.

  16. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  17. Dynamic model including piping acoustics of a centrifugal compression system

    NASA Astrophysics Data System (ADS)

    van Helvoirt, Jan; de Jager, Bram

    2007-04-01

    This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.

  18. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  19. The nonlinear wave equation for higher harmonics in free-electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1981-01-01

    The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.

  20. Freak waves in random oceanic sea states.

    PubMed

    Onorato, M; Osborne, A R; Serio, M; Bertone, S

    2001-06-18

    Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.

  1. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, John H., E-mail: john.h.cantrell@nasa.gov; Cantrell, Sean A., E-mail: scantrell@nlsanalytics.com

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force “stiffness,” the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model withmore » frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.« less

  2. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  3. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    NASA Astrophysics Data System (ADS)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  4. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  5. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829

  6. The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic traveling waves in magnetized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan Ghosh, Uday; Kumar Mandal, Pankaj, E-mail: pankajwbmsd@gmail.com; Chatterjee, Prasanta

    Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior ofmore » the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.« less

  7. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  8. Modelling chaotic vibrations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1993-01-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  9. Dispersion dynamics of quantum cascade lasers

    DOE PAGES

    Burghoff, David; Yang, Yang; Reno, John L.; ...

    2016-12-20

    A key parameter underlying the efficacy of any nonlinear optical process is group velocity dispersion. In quantum cascade lasers (QCLs), there have been several recent demonstrations of devices exploiting nonlinearities in both the mid-infrared and the terahertz. Though the gain of QCLs has been well studied, the dispersion has been much less investigated, and several questions remain about its dynamics and precise origin. In this work, we use time-domain spectroscopy to investigate the dispersion of broadband terahertz QCLs, and demonstrate that contributions from both the material and the intersubband transitions are relevant. We show that in contrast to the lasermore » gain—which is clamped to a fixed value above lasing threshold—the dispersion changes with bias even above threshold, which is a consequence of shifting intersubband populations. In conclusion, we also examine the role of higher-order dispersion in QCLs and discuss the ramifications of our result for devices utilizing nonlinear effects, such as frequency combs.« less

  10. An insight on correlations between kinematic rupture parameters from dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin

    2017-04-01

    We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.

  11. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  12. Analytical properties of a three-compartmental dynamical demographic model

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.

    2015-07-01

    The three-compartmental demographic model by Korotaeyv-Malkov-Khaltourina, connecting population size, economic surplus, and education level, is considered from the point of view of dynamical systems theory. It is shown that there exist two integrals of motion, which enables the system to be reduced to one nonlinear ordinary differential equation. The study of its structure provides analytical criteria for the dominance ranges of the dynamics of Malthus and Kremer. Additionally, the particular ranges of parameters enable the derived general ordinary differential equations to be reduced to the models of Gompertz and Thoularis-Wallace.

  13. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model

    NASA Astrophysics Data System (ADS)

    Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2013-09-01

    Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals.

  14. Nonlinear fishbone dynamics in spherical tokamaks

    DOE Data Explorer

    Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  15. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  16. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    NASA Astrophysics Data System (ADS)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  17. MXLKID: a maximum likelihood parameter identifier. [In LRLTRAN for CDC 7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D.T.

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables.

  18. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  19. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  20. State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps

    PubMed Central

    Molenaar, Peter C. M.; Beltz, Adriene M.; Gates, Kathleen M.; Wilson, Stephen J.

    2017-01-01

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. PMID:26546863

  1. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    PubMed

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.

  2. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  3. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less

  4. Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements

    NASA Astrophysics Data System (ADS)

    Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing

    2015-10-01

    Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.

  5. A Program for Solving the Brain Ischemia Problem

    PubMed Central

    DeGracia, Donald J.

    2013-01-01

    Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411

  6. Memcapacitor model and its application in chaotic oscillator with memristor.

    PubMed

    Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching

    2017-01-01

    Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.

  7. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    PubMed

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  8. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  9. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  10. Dynamics of the driven Goodwin business cycle equation

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2015-10-01

    We study dynamics of the Goodwin nonlinear accelerator business cycle model with periodic forced autonomous investment Ia(t) = a(1 - cos ωt), where a and ω are the amplitude and the frequency of investment. We give examples of the parameters a and ω when the chaotic oscillations of income are possible. We find the critical values of amplitude acr (ω): if a > acr (ω) the period of the income equals to the driving period T=2π/ω.

  11. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  12. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    PubMed

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  13. Procedure for estimating stability and control parameters from flight test data by using maximum likelihood methods employing a real-time digital system

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Bowles, R. L.; Mayhew, S. C.

    1972-01-01

    A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.

  14. Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes

    NASA Astrophysics Data System (ADS)

    Kandidayeni, M.; Macias, A.; Amamou, A. A.; Boulon, L.; Kelouwani, S.; Chaoui, H.

    2018-03-01

    Proton exchange membrane fuel cells (PEMFCs) have become the center of attention for energy conversion in many areas such as automotive industry, where they confront a high dynamic behavior resulting in their characteristics variation. In order to ensure appropriate modeling of PEMFCs, accurate parameters estimation is in demand. However, parameter estimation of PEMFC models is highly challenging due to their multivariate, nonlinear, and complex essence. This paper comprehensively reviews PEMFC models parameters estimation methods with a specific view to online identification algorithms, which are considered as the basis of global energy management strategy design, to estimate the linear and nonlinear parameters of a PEMFC model in real time. In this respect, different PEMFC models with different categories and purposes are discussed first. Subsequently, a thorough investigation of PEMFC parameter estimation methods in the literature is conducted in terms of applicability. Three potential algorithms for online applications, Recursive Least Square (RLS), Kalman filter, and extended Kalman filter (EKF), which has escaped the attention in previous works, have been then utilized to identify the parameters of two well-known semi-empirical models in the literature, Squadrito et al. and Amphlett et al. Ultimately, the achieved results and future challenges are discussed.

  15. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  16. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.

    PubMed

    Yu, Fajun

    2017-02-01

    Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.

  17. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  18. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  19. Nonlinear data-driven identification of polymer electrolyte membrane fuel cells for diagnostic purposes: A Volterra series approach

    NASA Astrophysics Data System (ADS)

    Ritzberger, D.; Jakubek, S.

    2017-09-01

    In this work, a data-driven identification method, based on polynomial nonlinear autoregressive models with exogenous inputs (NARX) and the Volterra series, is proposed to describe the dynamic and nonlinear voltage and current characteristics of polymer electrolyte membrane fuel cells (PEMFCs). The structure selection and parameter estimation of the NARX model is performed on broad-band voltage/current data. By transforming the time-domain NARX model into a Volterra series representation using the harmonic probing algorithm, a frequency-domain description of the linear and nonlinear dynamics is obtained. With the Volterra kernels corresponding to different operating conditions, information from existing diagnostic tools in the frequency domain such as electrochemical impedance spectroscopy (EIS) and total harmonic distortion analysis (THDA) are effectively combined. Additionally, the time-domain NARX model can be utilized for fault detection by evaluating the difference between measured and simulated output. To increase the fault detectability, an optimization problem is introduced which maximizes this output residual to obtain proper excitation frequencies. As a possible extension it is shown, that by optimizing the periodic signal shape itself that the fault detectability is further increased.

  20. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  1. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  2. Non-linear dynamic analysis of geared systems. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    Under driving conditions, a typical geared system may be subjected to large dynamic loads. Also, the vibration level of the geared system is directly related to the noise radiated from the gear box. The steady state dynamic behavior of the system is examined in order to design reliable and quiet transmissions. The scope is limited to a system containing a spur gear pair with backlash and periodically time varying mesh stiffness, and rolling element bearings with clearance type nonlinearities. The internal static transmission error at the gear mesh, which is of importance from high frequency noise and vibration control view point, is considered in the formulation in sinusoidal or periodic form. A dynamic finite element model of the linear time invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and forced vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solutions with the finite element model results. Using the reduced order formulations, a three degree of freedom dynamic model is developed which includes nonlinearities associated with radical clearances in the radial rolling element bearings, backlash between a spur gear pair and periodically varying gear mesh stiffness. As a limiting case, a single degree of freedom model of the spur gear pair with backlash is considered and mathematical conditions for tooth separation and back collision are defined. Both digital simulation technique and analytical models such as method of harmonic balance and the method of multiple scales were used to develop the steady state frequency response characteristics for various nonlinear and/or time varying cases.

  3. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  4. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  5. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.

  6. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  7. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  8. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  9. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  10. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model

    NASA Astrophysics Data System (ADS)

    Sinou, J.-J.; Thouverez, F.; Jezequel, L.

    2003-08-01

    This paper presents the research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can cause vehicle control problems and component degradation. Accordingly, complex stability analysis is required. This paper outlines stability analysis and centre manifold approach for studying instability problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle amplitudes. The centre manifold theory allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the centre manifold approach for a complex non-linear model by comparing results obtained by solving the full system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point.

  11. Helicopter mathematical models and control law development for handling qualities research

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Lebacqz, J. Victor; Aiken, Edwin W.; Tischler, Mark B.

    1988-01-01

    Progress made in joint NASA/Army research concerning rotorcraft flight-dynamics modeling, design methodologies for rotorcraft flight-control laws, and rotorcraft parameter identification is reviewed. Research into these interactive disciplines is needed to develop the analytical tools necessary to conduct flying qualities investigations using both the ground-based and in-flight simulators, and to permit an efficient means of performing flight test evaluation of rotorcraft flying qualities for specification compliance. The need for the research is particularly acute for rotorcraft because of their mathematical complexity, high order dynamic characteristics, and demanding mission requirements. The research in rotorcraft flight-dynamics modeling is pursued along two general directions: generic nonlinear models and nonlinear models for specific rotorcraft. In addition, linear models are generated that extend their utilization from 1-g flight to high-g maneuvers and expand their frequency range of validity for the design analysis of high-gain flight control systems. A variety of methods ranging from classical frequency-domain approaches to modern time-domain control methodology that are used in the design of rotorcraft flight control laws is reviewed. Also reviewed is a study conducted to investigate the design details associated with high-gain, digital flight control systems for combat rotorcraft. Parameter identification techniques developed for rotorcraft applications are reviewed.

  12. Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadtke, J.B.; Bulsara, A.

    These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)

  13. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility requirement and the displacement restriction during launch are satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed tested both statically and dynamically.

  14. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  15. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  16. Supercritical nonlinear parametric dynamics of Timoshenko microbeams

    NASA Astrophysics Data System (ADS)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2018-06-01

    The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.

  17. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  18. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint

    PubMed Central

    Guarín, Diego L.; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196

  19. DAISY: a new software tool to test global identifiability of biological and physiological systems

    PubMed Central

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D’Angiò, Leontina

    2009-01-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/. PMID:17707944

  20. Reservoir Computing Beyond Memory-Nonlinearity Trade-off.

    PubMed

    Inubushi, Masanobu; Yoshimura, Kazuyuki

    2017-08-31

    Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.

  1. Fluid dynamics in flexible tubes: An application to the study of the pulmonary circulation

    NASA Technical Reports Server (NTRS)

    Kuchar, N. R.

    1971-01-01

    Based on an analysis of unsteady, viscous flow through distensible tubes, a lumped-parameter model for the dynamics of blood flow through the pulmonary vascular bed was developed. The model is nonlinear, incorporating the variation of flow resistance with transmural pressure. Solved using a hybrid computer, the model yields information concerning the time-dependent behavior of blood pressures, flow rates, and volumes in each important class of vessels in each lobe of each lung in terms of the important physical and environmental parameters. Simulations of twenty abnormal or pathological situations of interest in environmental physiology and clinical medicine were performed. The model predictions agree well with physiological data.

  2. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P <~ a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing; this coupling appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.

  3. Linear Parameter Varying Identification of Dynamic Joint Stiffness during Time-Varying Voluntary Contractions

    PubMed Central

    Golkar, Mahsa A.; Sobhani Tehrani, Ehsan; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level. PMID:28579954

  4. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    NASA Astrophysics Data System (ADS)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  5. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  6. Control of Crazyflie nano quadcopter using Simulink

    NASA Astrophysics Data System (ADS)

    Gopabhat Madhusudhan, Meghana

    This thesis focuses on developing a mathematical model in Simulink to Crazyflie, an open source platform. Attitude, altitude and position controllers of a Crazyflie are designed in the mathematical model. The mathematical model is developed based on the quadcopter system dynamics using a non-linear approach. The parameters of translational and rotational dynamics of the quadcopter system are linearized and tuned individually. The tuned attitude and altitude controllers from the mathematical model are implemented on real time Crazyflie Simulink model to achieve autonomous and controlled flight.

  7. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  8. Propagating confined states in phase dynamics

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1992-01-01

    Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.

  9. Stochasticity Favoring the Effects of the R&D Strategies of the Firms

    NASA Astrophysics Data System (ADS)

    Pinto, Alberto A.; Oliveira, Bruno M. P. M.; Ferreira, Fernanda A.; Ferreira, Flávio

    We present stochastic dynamics on the production costs of Cournot competitions, based on perfect Nash equilibria of nonlinear R&D investment strategies to reduce the production costs of the firms at every period of the game. We analyse the effects that the R&D investment strategies can have in the profits of the firms along the time. We observe that, in certain cases, the uncertainty can improve the effects of the R&D strategies in the profits of the firms due to the non-linearity of the profit functions and also of the R&D parameters.

  10. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1981-01-01

    Research centered on basic topics in the modeling and feedback control of nonlinear dynamical systems is reported. Of special interest were the following topics: (1) the role of series descriptions, especially insofar as they relate to questions of scheduling, in the control of gas turbine engines; (2) the use of algebraic tensor theory as a technique for parameterizing such descriptions; (3) the relationship between tensor methodology and other parts of the nonlinear literature; (4) the improvement of interactive methods for parameter selection within a tensor viewpoint; and (5) study of feedback gain representation as a counterpart to these modeling and parameterization ideas.

  11. Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai

    2006-10-01

    We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P. Zhang, Comm. Math. Sci. 3, 201 (2005); C. Luo, H. Zhang, and P. Zhang, Nonlinearity 18, 379 (2005); I. Fatkullin and V. Slastikov, Nonlinearity 18, 2565 (2005); H. Zhou, H. Wang, Q. Wang, and M. G. Forest, Nonlinearity 18, 2815 (2005)] and extensional flow-induced equilibria [Q. Wang, S. Sircar, and H. Zhou, Comm. Math. Sci. 4, 605 (2005)]. We predict large parameter regions of bi-stable equilibria; the lowest energy state always has principal axis aligned in the flow plane, while another minimum energy state often exists, with primary alignment transverse to the coplanar field.

  12. The use of normal forms for analysing nonlinear mechanical vibrations

    PubMed Central

    Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea

    2015-01-01

    A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917

  13. Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio

    2012-06-01

    In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.

  14. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    NASA Astrophysics Data System (ADS)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  16. Nonlinear Characterization of Half and Full Wavelength Power Ultrasonic Devices

    NASA Astrophysics Data System (ADS)

    Mathieson, Andrew; Cerisola, Niccolò; Cardoni, Andrea

    It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device.

  17. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.

    PubMed

    Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten

    2017-06-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.

  18. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruban, V. P., E-mail: ruban@itp.ac.ru

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less

  19. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  20. Whole-body PET parametric imaging employing direct 4D nested reconstruction and a generalized non-linear Patlak model

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Rahmim, Arman

    2014-03-01

    Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.

  1. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism

    PubMed Central

    Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki

    2016-01-01

    The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522

  2. Do Optomechanical Metasurfaces Run Out of Time?

    PubMed

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2018-05-11

    Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies.

  3. Do Optomechanical Metasurfaces Run Out of Time?

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2018-05-01

    Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies.

  4. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  5. Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability.

    PubMed

    Kwasniok, Frank; Lohmann, Gerrit

    2009-12-01

    A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual model of stochastically driven motion in a potential that allows for two distinctly different states. The parameters of the model-the shape of the potential and the noise level-are estimated from a North Greenland ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to a warm interstadial state.

  6. Nonlinear oscillations in a muscle pacemaker cell model

    NASA Astrophysics Data System (ADS)

    González-Miranda, J. M.

    2017-02-01

    This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.

  7. Theorems and application of local activity of CNN with five state variables and one port.

    PubMed

    Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas

    2012-01-01

    Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.

  8. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  9. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  10. On the Importance of the Dynamics of Discretizations

    NASA Technical Reports Server (NTRS)

    Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)

    1995-01-01

    It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.

  11. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  12. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.

  13. A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The Constrained Harmonic Balance Method, with application to disc brake squeal

    NASA Astrophysics Data System (ADS)

    Coudeyras, N.; Sinou, J.-J.; Nacivet, S.

    2009-01-01

    Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.

  14. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    PubMed

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  15. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID

    PubMed Central

    Elshenawy, Ahmed K.; El Singaby, M.I.

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071

  16. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  17. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  18. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    PubMed

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  19. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  20. Structure and Dynamics of Replication-Mutation Systems

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1987-03-01

    The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.

Top