Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Nonlinear Self-Similar Beams of Electromagnetic Waves in Vacuum
NASA Astrophysics Data System (ADS)
Vlasov, S. N.
2015-12-01
We study nonlinear beams of electromagnetic waves in vacuum. Within the lowest approximation, their structure is determined by the cubic self-focusing nonlinearity, which manifests itself with the maximum intensity in the presence of counterpropagating waves. It is shown that the fields in the beams have no singularities if their power is less than the critical power of the self-focusing. The dependences of the eigenfrequencies of the modes of the quasioptical resonator on the beam power are found. The structure of the fields of these modes corresponds to self-similar wave beams.
Nonlinear Generation of Electromagnetic Waves Through Scattering by Thermal Electrons
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C. E.; Blackwell, D. D.; Amatucci, B.; Mithaiwala, M.; Rudakov, L.; Ganguli, G.
2014-12-01
Nonlinear interactions involving whistler wave turbulence are important contributors to radiation belt dynamics, including the acceleration and loss of trapped electrons. Given sufficient whistler energy density, nonlinear scattering from thermal electrons can substantially change the wave normal angle, while inducing a small frequency shift [Ganguli et al., 2010]. This nonlinear process is being studied in the NRL Space Physics Simulation Chamber (SPSC) in scaled magnetospheric conditions. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Measurements of the magnetic field vectors for the pump and daughter waves allow for the determination of wave distribution functions, which indicate the power distribution as a function of wave-normal angle and azimuthal angle. The wave distribution functions measured in the experiment demonstrate a dramatic change in propagation direction when the launched wave amplitude exceeds a small threshold (δB / B ~ 4 × 10-7). The experimental results support the theory of electromagnetic whistler wave generation through nonlinear scattering of electrostatic lower hybrid waves by thermal electrons in the Earth's magnetosphere [Crabtree et al, 2012].
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere
Gomberoff, L.; Gratton, F.T.; Gnavi, G.
1995-02-01
The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-20
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
NASA Astrophysics Data System (ADS)
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-12-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-15
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10–20 m/s for the slow wave and of the order of 500–1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
Self-focusing of electromagnetic surface waves on a nonlinear impedance surface
Luo, Zhangjie; Chen, Xing; Long, Jiang; Quarfoth, Ryan; Sievenpiper, Daniel
2015-05-25
The self-focusing effect of optical beams has been a popular topic of study for quite a while, but such a nonlinear phenomenon at microwave frequencies has never been realized, partially due to the underdevelopment of nonlinear material. In this research, self-focused electromagnetic (EM) surface waves are demonstrated on a circuit-based, power-dependent impedance surface. The formation of a self-focused beam is investigated using a series of discrete-time simulations, and the result is further validated in measurement. It is experimentally observed that, in contrast to the normal scattering of low-power surface waves, high-power waves propagate through the surface while maintaining narrow beam width, and even converge extremely tightly to create a hot spot with higher power. The result is essentially a nonlinear effect of the surface that compensates for the natural tendency of surface waves to diffract. This intriguing experiment can be extended to various potential EM applications such as power-dependent beam steering antennas and nonlinear microwave propagation or dissipation.
Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui
2014-05-15
Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.
Javan, N. Sepehri Homami, S. H. H.
2015-02-15
Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.
Numerical analysis of nonlinear electromagnetic waves in nematic liquid crystal cells
NASA Astrophysics Data System (ADS)
Papanicolaou, N. C.; Christou, M. A.; Polycarpou, A. C.
2012-10-01
In the current work, the nonlinear problem of electromagnetic wave propagation in a Nematic Liquid Crystal (NLC) cell is solved numerically. The LC is sandwiched between two glass layers of finite thickness and a linearly polarized beam is obliquely incident to the cell. The dielectric properties of N-LCs depend on the tilt angle of the directors. When the excitation beam enters the cell, and providing the incident intensity is above the Fréedericksz threshold, the directors reorient themselves changing the LC's relative permittivity tensor. In turn, this affects beam propagation throughout the crystal. The electromagnetic field is modeled by the time-harmonic Maxwell equations whereas the director field is governed by a nonlinear ordinary differential equation (ODE). Our solution method is iterative, consistently taking into account this interaction between the excitation beam and the director field. The Maxwell equations are solved employing the Mode-Matching Technique (MMT). The solution of the nonlinear differential equation for the director field is obtained with the aid of a finite difference (FD) scheme.
1989-06-15
following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and
Kalmykov, Serguei; Shvets, Gennady
2006-04-15
The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron plasma frequency, the redshifted spectral components are advanced in time with respect to the blueshifted ones near the center of each laser beat note. The group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-cycle duration thus creating a train of sharp EM spikes with the beat periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and one spatial dimension in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bistability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially subthreshold beat wave pulse.
NASA Astrophysics Data System (ADS)
Kalmykov, Serguei; Shvets, Gennady
2006-04-01
The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron plasma frequency, the redshifted spectral components are advanced in time with respect to the blueshifted ones near the center of each laser beat note. The group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-cycle duration thus creating a train of sharp EM spikes with the beat periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and one spatial dimension in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bistability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially subthreshold beat wave pulse.
Kalmykov, Serguei; Shvets, Gennady
2006-04-01
The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron plasma frequency, the redshifted spectral components are advanced in time with respect to the blueshifted ones near the center of each laser beat note. The group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-cycle duration thus creating a train of sharp EM spikes with the beat periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and one spatial dimension in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bistability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially subthreshold beat wave pulse.
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Istomin, Ya. N.; Leyser, T. B.
2013-05-15
Plasma experiments in which a powerful electromagnetic pump wave is transmitted into the ionosphere from the ground give access to a rich range of phenomena, including gyroharmonic effects when the pump frequency is near an harmonic of the ionospheric electron gyrofrequency. For pump frequencies close to the second gyroharmonic, experiments show a strong enhancement, as observed in radar scatter from pump-induced geomagnetic field-aligned density striations and optical emissions. This is in contrast to the case at the third harmonic and higher at which most of the effects are instead suppressed. We show theoretically that electrostatic oscillations can be localized in density inhomogeneities associated with small scale striations. The localized field is a mixture of the electron Bernstein and upper hybrid modes when the pump frequency is near the second gyroharmonic. The coupling of the modes is enabled by a symmetry feature of the linear electron Bernstein and upper hybrid dispersion properties that occur only near the second gyroharmonic. Electron acceleration inside the density inhomogeneities by localized azimuthal electrostatic oscillations is more efficient near the second gyroharmonic than at higher frequencies, consistent with the observed enhancements.
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Nonlinear electromagnetic interactions in energetic materials
Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven
2016-01-12
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Subsurface sensing with acoustic and electromagnetic waves using a nonlinear inversion algorithm
NASA Astrophysics Data System (ADS)
Abubakar, Aria; van den Berg, Peter M.; Budko, Neil V.; Fokkema, Jacob T.
2001-11-01
In this paper the nonlinear iterative algorithm, the so-called Extended Contrast Source Inversion is applied to subsurface sensing problem where the number of measured data are very limited and the unknown objects/layers are illuminated from only one side. Some numerical results obtained from synthetic and real data are presented to illustrate the strengths and the weakness of the method.
1986-05-27
con- €"" straints:’. *’Permanent address: Dipartimento di Fisica . Universita di Roma 1. 00185 u 11lia. tr(a U(x)) = 0. (7a. 2469 1. Math,. PyS. 26 (10...Tenenblat Universidade de Brasilia Departamento de Matematica Brasilia, Brasil September 1985 , - . Abstract The generalized wave equation and generalized...Permanent addrems: Dipartimento di Fisica . Universita di Roma t3 U, 0. Roma. Italy The linear limit of i3) provides the most general solution ot 2614 J. MatM
Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer
NASA Astrophysics Data System (ADS)
Cai, Zhichao; Liu, Suzhen; Zhang, Chuang
2017-02-01
The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Astrophysics Data System (ADS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2007-12-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Electromagnetic Counterparts to Gravitational Waves
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi M.; GROWTH Collaboration; iPTF/ZTF Collaboration
2017-01-01
The direct detection of gravitational waves from merging black holes marks the dawn of a new era. I will present ongoing efforts and prospectsto identify and characterize the electromagnetic counterpart. Among the various models for electromagnetic emission from binary neutronstar mergers, free neutron decay gives the most luminous and fast-evolving optical counterpart. I will describe a co-ordinated global effort, the GROWTH (Global Relay of Observatories Watching Transients Happen) network working in tandem with the Zwicky Transient Facility.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Laboratory investigation of nonlinear whistler wave processes
NASA Astrophysics Data System (ADS)
Amatucci, B.; Tejero, E. M.; Crabtree, C. E.; Blackwell, D. D.; Mithaiwala, M.; Rudakov, L.; Ganguli, G.
2014-12-01
Nonlinear interactions involving whistler wave turbulence can result from wave-particle interactions and instabilities in sharp boundary layers. Given sufficient whistler energy density, nonlinear scattering off thermal electrons substantially changes the wave vector direction and energy flux, while inducing a small frequency shift (see Crabtree, Phys. Plasmas 19, 032903 (2012)). In the magnetosphere, boundary layers containing highly sheared plasma flows drive lower hybrid waves, leading to the formation of quasi-static structures in the nonlinearly saturated state. Such processes are being investigated in the NRL Space Physics Simulation Chamber (SPSC) in conditions scaled to match the respective environments. The specific nonlinear process being examined is the scattering of a transversely propagating, primarily electrostatic, lower hybrid wave into a more parallel propagating electromagnetic whistler mode. Sufficiently large amplitude lower hybrid waves have been observed to scatter into whistler modes by scattering from thermal electrons. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic antennas. The experiments have demonstrated large changes in wave propagation angle and small frequency downshifts consistent with nonlinear Landau damping when pump wave amplitudes exceed the small threshold value (dB/B0 ~ 4×10-7). *This work supported by the NRL Base Program.
Millimeter Waves: Acoustic and Electromagnetic
Ziskin, Marvin C.
2012-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.
NASA Astrophysics Data System (ADS)
Leble, Sergei B.
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
1987-11-23
generalized wave equation (GWE) when (z) 0 (1-Z2)/2: - X(z). (1.5) The compatibility condition required for the existence of solutions to these B~icklund...Phys. tion of a class of nonlocal nonlinear evolution equations , A 15 (1982) 781. INS *47, Clarkson University (1985), to be published in J. Math... semilinear form. The above approach will fail if there exist linearizable quasilinear equations which can not be mapped to a semilinear from. It is shown in
Genetic Effects of Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Aroutiounian, Rouben; Hovhannisyan, Galina; Gasparian, Gennady
The genetic effects of electromagnetic waves can be detected by different test-systems. The mutagenic effect of ionizing radiation can be developed on the levels of DNA and/or chromosomes. In numerous researches efficiency of micronucleus assay, alkaline single-cell gel electrophoresis, chromosomal aberrations test and FISH-technique and their different combinations for the detection of ionizing radiation-induced genotoxic effects are discussed. Also some molecular-biological approaches developed in the last years are presented.
Nonlinear extraordinary wave in dense plasma
Krasovitskiy, V. B.; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Weakly nonlinear magnetohydrodynamic wave interactions
Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.
1999-06-01
Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}
Collision of strong gravitational and electromagnetic waves in the expanding universe
NASA Astrophysics Data System (ADS)
Alekseev, G. A.
2016-03-01
An exact analytical model of the process of collision and nonlinear interaction of gravitational and/or electromagnetic soliton waves and strong nonsoliton electromagnetic traveling waves of arbitrary profile propagating in the expanding universe (the symmetric Kasner spacetime) is presented. In contrast to intuitive expectations that rather strong traveling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic waves of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a traveling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of the Einstein-Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electromagnetic soliton waves in the collision of a gravitational soliton with traveling electromagnetic waves, (c) scattering of a part of a soliton wave in the direction of propagation of a traveling electromagnetic wave, and (d) quasiperiodic oscillating character of fields in the wave interaction region and multiple mutual transformations of gravitational and electromagnetic waves in this region. The figures illustrate these features of nonlinear wave interactions in general relativity.
Interactive Workshop Discusses Nonlinear Waves and Chaos
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce; Morales, George; Passot, Thierry
2010-07-01
Eighth International Nonlinear Wave Workshop; La Jolla, California, 1-5 March 2010; Nonlinear waves and chaos were the focus of a weeklong series of informal and interactive discussions at the Eighth International Nonlinear Wave Workshop (NWW8), held in California. The workshop gathered nonlinear plasma and water wave experts from the United States, France, Czech Republic, Germany, Greece, Holland, India, and Japan. Attendees were from the fields of space, laboratory, and fusion plasma physics, astrophysics, and applied mathematics. Special focus was placed on nonlinear waves and turbulence in the terrestrial environment as well as in the interstellar medium from observational, laboratory, and theoretical perspectives. Discussions covered temperature anisotropies and related instabilities, the properties and origin of the so-called dissipation range, and various coherent structures of electromagnetic as well as electrostatic nature. Reconnection and shocks were also topics of discussion, as were properties of magnetospheric whistler and chorus waves. Examples and analysis techniques for superdiffusion and subdiffusion were identified. On this last topic, a good exchange of ideas and results occurred between a water wave expert and a plasma expert, with the rest of the audience listening intently.
Electromagnetic transduction of ultrasonic waves
NASA Astrophysics Data System (ADS)
Passarelli, Frank; Alers, George; Alers, Ron
2012-05-01
Excitation and detection of ultrasonic vibrations without physical contact has proven to be of great commercial value. First used to excite the resonant vibration of bar shaped laboratory specimens in the 1930's, it was Bruce Thompson's contributions in 1973-5 that launched their practical application to a wide range of difficult NDE problems. As a fresh PhD, he championed the use of mathematical models for the electromagnetic transduction process in order to guide the design and construction of practical transducers. His early papers presented both theoretical and experimental results that exposed the wide range of wave types that could be generated along with the environmental conditions that could be overcome. Several laboratories around the world established research programs to apply the electromagnetic transducer (EMAT) to specific NDE problems. This paper will summarize those applications made by the authors.
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco
2012-11-15
In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
NASA Astrophysics Data System (ADS)
Erofeev, V. I.
2015-09-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
Erofeev, V. I.
2015-09-15
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
Laboratory investigation of nonlinear whistler wave processes
NASA Astrophysics Data System (ADS)
Amatucci, Bill; Tejero, Erik; Crabtree, Chris; Enloe, Lon; Blackwell, Dave; Ganguli, Guru
2015-11-01
Nonlinear interactions involving whistler wave turbulence result from processes such as wave-particle interactions in the radiation belts and instability generation in sharp magnetospheric boundary layers. Nonlinear scattering of large amplitude waves off thermal electrons substantially changes the wave vector direction and energy flux, while inducing a small frequency shift [Crabtree, Phys. Plasmas 19, 032903 (2012)]. This nonlinear scattering of primarily electrostatic lower hybrid waves into electromagnetic whistler modes is being investigated in the NRL Space Chamber under conditions scaled to match the respective environments. Lower hybrid waves are generated directly by antennas or self-consistently from sheared cross-magnetic field flows with scale length less than an ion gyroradius via the Electron-Ion Hybrid Instability [Ganguli, Phys. Fluids 31, 2753 (1988)), Amatucci, Phys. Plasmas 10, 1963 (2003)]. Sufficiently large amplitude lower hybrid waves have been observed to convert into whistler modes by scattering from thermal electrons. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Details of the observed wave spectra and mode characteristics will be presented. This work supported by the NRL Base Program.
PLASMA EMISSION BY NONLINEAR ELECTROMAGNETIC PROCESSES
Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: laripetruzzellis@yahoo.com.br E-mail: yoonp@umd.edu
2015-06-20
The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.
Nonlinear whistler wave scattering in space plasmas
Yukhimuk, V.; Roussel-Dupre, R.
1997-04-01
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 cases of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Electromagnetic wave in a relativistic magnetized plasma
Krasovitskiy, V. B.
2009-12-15
Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.
Electromagnetic rogue waves in beam-plasma interactions
NASA Astrophysics Data System (ADS)
Veldes, G. P.; Borhanian, J.; McKerr, M.; Saxena, V.; Frantzeskakis, D. J.; Kourakis, I.
2013-06-01
The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K.
2010-06-15
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin-(1/2), and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin-(1/2) contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Electromagnetic nonlinear gyrokinetics with polarization drift
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Electromagnetic nonlinear gyrokinetics with polarization drift
NASA Astrophysics Data System (ADS)
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-01
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.
Nonlinear electromagnetic gyrokinetic simulations of tokamak plasmas
NASA Astrophysics Data System (ADS)
Jenko, F.; Dorland, W.
2001-12-01
One of the central physics issues currently targeted by nonlinear gyrokinetic simulations is the role of finite-β effects. The latter change the MHD equilibrium, introduce new dynamical space and time scales, alter and enlarge the zoo of electrostatic microinstabilities and saturation mechanisms, and lead to turbulent transport along fluctuating magnetic field lines. It is shown that the electromagnetic effects on primarily electrostatic microinstabilities are generally weakly or moderately stabilizing. However, the saturation of these modes and hence the determination of the transport level in the quasi-stationary turbulent state can be dominated by nonlinear electromagnetic effects and yield surprising results. Despite this, the induced transport is generally electrostatic in nature well below the ideal ballooning limit.
NASA Astrophysics Data System (ADS)
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Nonlinear Electromagnetics and Coherent Energy Transfer in Negative-Index metamaterials
2014-08-07
AFRL-OSR-VA-TR-2014-0176 NONLINEAR ELECTROMAGNETICS AND COHERENT ENERGY TRANSFER IN NEGATIVE INDEX METAMATERIALS Alexander Popov UNIVERSITY OF...COHERENT ENERGY TRANSFER IN NEGATIVE-INDEX METAMATERIALS FA9550-12-1-0298 Popov, Alexander K. UNIVERSITY OF WISCONSIN-STEVENS POINT 2100 MAIN ST STEVENS...understanding was advanced of nonlinear propagation properties of electromagnetic (EM) waves in double-domain negative/positive index metamaterials (MMs
Electromagnetic Counterparts of Gravitational Wave Transients
NASA Astrophysics Data System (ADS)
Branchesi, Marica
2015-03-01
In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.
Properties of Nonlinear Dynamo Waves
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Nonlinear waves: Dynamics and evolution
NASA Astrophysics Data System (ADS)
Gaponov-Grekhov, A. V.; Rabinovich, M. I.
Papers on nonlinear waves are presented, covering topics such as the history of studies on nonlinear dynamics since Poincare, attractors, pattern formation and the dynamics of two-dimensional structures in nonequilibirum dissipative media, the onset of spatial chaos in one-dimensional systems, and self-organization phenomena in laser thermochemistry. Additional topics include criteria for the existence of moving structures in two-component reaction-diffusion systems, space-time structures in optoelectronic devices, stimulated scattering and surface structures, and distributed wave collapse in the nonlinear Schroedinger equation. Consideration is also given to dimensions and entropies in multidimensional systems, measurement methods for correlation dimensions, quantum localization and dynamic chaos, self-organization in bacterial cells and populations, nonlinear phenomena in condensed matter, and the origin and evolutionary dynamics of Uranian rings.
2015-05-07
honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 87 (2013) 19591979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons , M. J. Ablowitz...temporal-spatial surface plasmon polaritons . Op- tics Communications, 330:49–55, 2014. 37 [39] M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, , D. Song, Z...honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math., Vol. 87 (2013) 1959-1979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons
Nonlinear thermal surface waves
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.
1984-09-01
It is shown that density profile modifications near a plasma surface can survive at moving localized spots because of the radiation pressure of leaking wave field fluctuations. The properties of these luminous surface cavitons are studied.
Nonlinear Landau damping, and nonlinear envelope equation, for a driven plasma wave
NASA Astrophysics Data System (ADS)
Benisti, Didier; Morice, Olivier; Gremillet, Laurent; Strozzi, David
2009-11-01
A nonlinear envelope equation for a laser-driven electron plasma wave (EPW) is derived in a 3-D geometry, starting from first principles. This equation accounts the nonlinear variations of the EPW Landau damping rate, frequency, and group velocity, as well as for the nonlinear variations of the coupling of the EPW to the electromagnetic waves. All these quantities are moreover shown to be nonlocal because of nonlocal variations of the electron distribution function. Each piece of our model is carefully tested against Vlasov simulations of stimulated Raman scattering (SRS), and very good agreement is found between the numerical and theoretical results. Our envelope equations for both, the electrostatic and electromagnetic waves, are solved numerically, and comparisons with Vlasov simulations regarding the growth of SRS are provided. Finally, from our theory we can straightforwardly deduce a nonlinear gain factor which provides an alternate, simpler and faster method to quantify the SRS reflectivity. First results using this method will be shown.
1991-08-19
experiments," contributed paper, topical meeting on Integrated Photonics , Hilton Head (1990). 20. S. Trillo, S. Wabnitz, B. Diano, and E. M. Wright...34Picosecond pulse switching in semiconductor active nonlinear directional couplers," contributed paper, topical meeting on Integrated Photonics , Hilton...meeting on Integrated Photonics , Hilton Head (1990). 22. E. M. Wright, "Amplifier and laser switches," invited paper, workshop on Semiconductor Laser
2009-02-09
of parameters. Hence one expects that the solutions of the two equations , PES and NLS, are comparable. In Fig. 3 we plot the two solutions for...power saturated term, in the PES equation ) have stable soliton solutions or mode-locking evolution. In general the solitons are found to be unstable...literature. Generally speaking, the above lattice equations omitting nonlinear terms have solutions propagating along z direction, i.e., ψ(r, z) = e−iµzϕ(r
1983-12-30
Equation * Discrete IST and numerical simulations * Long time asymptotic solutions of nonlinear evolution equations * Painlevf equations . Focussing...larger class of solutions io KdV than does the Gel’fand-’Levitan equation . Specifically we have shown by direct calculation that if 0(k;x,t) solves oV...Investigation of the full generality of the solutions of KdV via this new formulation. (b) Developnent of similar types - integral equations for
Amplification of nonlinear surface waves in an inhomogeneous transition layer
NASA Astrophysics Data System (ADS)
Brodin, G.; Gradov, O. M.
1991-12-01
A plasma with a boundary transition layer of variable depth in the presence of a powerful electromagnetic field is considered. It is shown that a displacement of the boundary will grow, and will propagate as a nonlinear surface wave in the direction in which the depth of the transition layer decreases.
Scattering of electromagnetic wave by vortex flow
NASA Astrophysics Data System (ADS)
Wei, Jian-Ye; Liu, Jing-Yu; Mahmood, Waqas; Zhao, Qing
2017-04-01
In this paper, the scattering behaviour of an electromagnetic wave by vortex flow is studied in detail by solving the first-order (in v / c) Maxwell's equation in the cylindrical coordinate system (r, φ, z) and the general solutions are obtained. From these solutions, the differential cross-section of the vortex flow is calculated and the electromagnetic scattering characteristics of the vortex flow are discussed. The dependence of differential cross-section on the velocity profile and the radius of the vortex flow is investigated independently. Besides, by considering the dependence of scattering characteristics on the frequency of an incident wave we conclude that the vortex flow has frequency selectivity.
Experimental characterization of nonlinear processes of whistler branch waves
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Nonlinear Whistler Wave Physics in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Parametric decay of an electromagnetic wave near electron cyclotron harmonics
Istomin, Y.N.; Leyser, T.B.
1995-06-01
A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
Langmuir wave harmonics due to driven nonlinear currents
NASA Astrophysics Data System (ADS)
Malaspina, David M.; Graham, Daniel B.; Ergun, Robert E.; Cairns, Iver H.
2013-11-01
The conversion of Langmuir waves into electromagnetic radiation near the local plasma frequency (fpe) and twice the local plasma frequency (2fpe) occurs in diverse heliospheric environments including along the path of type III radio bursts, at interplanetary shocks, and in planetary foreshocks. This radiation has the potential to act as a probe of remote plasma conditions, provided that the conversion mechanism is well understood. One candidate conversion mechanism is the antenna radiation of localized Langmuir waves. Antenna radiation near 2fpe requires the presence of nonlinear currents at 2fpe. In this work, properties of these currents are predicted from theory and compared with observations of Langmuir wave electric fields made using the WAVES instrument on the STEREO spacecraft. It is found that the observed frequency structure, polarization, and wave number ratio are consistent with nonlinear current predictions, once electric fields near 2fpeconsistent with sheath effects are taken into account.
Nonlinear lattice waves in heterogeneous media
NASA Astrophysics Data System (ADS)
Laptyeva, T. V.; Ivanchenko, M. V.; Flach, S.
2014-12-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry-André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations.
Jenet, F. A.; Melatos, A.; Robinson, P. A.
2007-10-15
Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Measuring Acoustic Nonlinearity by Collinear Mixing Waves
NASA Astrophysics Data System (ADS)
Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.
2011-06-01
It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.
Nonlinear waves in the solar atmosphere.
Ruderman, Michael S
2006-02-15
In this paper, we give a brief review of the contemporary theory of nonlinear waves in the solar atmosphere. The choice of topics reflects personal interests of the author. Historically the theory of nonlinear waves was first applied to the solar atmosphere to explain the chromospheric and coronal heating. It was assumed that the turbulent motion in the solar convective zone excites sound waves that propagate upwards. Due to nonlinearity these waves steepen and form shocks. The wave energy dissipates in these shocks thus heating the corona. We give a brief description of propagation and damping of nonlinear sound waves in the stratified solar atmosphere, and point out that, at present, the acoustic heating remains the most popular theory of heating the lower chromosphere. Then we extend the analysis to nonlinear slow magnetosonic waves in coronal plumes and loops, and discuss its implications for interpretation of observational results. The next topic of interest is the propagation of nonlinear waves in a magnetically structured atmosphere. Here, we restrict our analysis to slow sausage waves in magnetic tubes and discuss properties of solitary waves described by the Leibovich-Roberts equation. We conclude with the discussion of nonlinear theory of slow resonant layers, and its possible application to helioseismology.
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-04-15
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Nonmagnetic metamaterial landscapes for guided electromagnetic waves
NASA Astrophysics Data System (ADS)
Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.
2016-09-01
Transformation optics provides a geometry-based tool to create new components taking advantage of artificial metamaterials with optical properties that are not available in nature. Unfortunately, although guided electromagnetic waves are crucial for optical circuitry, transformation optics is not yet compatible with two-dimensional slab waveguides. Indeed, after determining the propagation of confined waves along the waveguide with a two-dimensional coordinate transformation, the conventional application of transformation optics results in metamaterials whose properties are insensitive to the coordinate perpendicular to the waveguide, leading to bulky, and therefore impractical, designs. In this contribution, we formulate an alternative framework that leads to feasible coordinate-based designs of two-dimensional waveguides. To this end, we characterize a guided transverse-magnetic light mode by relevant electromagnetic equations: a Helmholtz equation to account for wave propagation and a dispersion relation to impose a continuous light profile at the interface. By considering how two-dimensional conformal transformations transform these equations, we are able to materialize the coordinate-designed flows with a nonmagnetic metamaterial core of varying thickness, obtaining a two-dimensional device. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities, a beam bender, a beam splitter and a conformal lens, on a qualitative and quantitative level, by respectively comparing the electromagnetic fields inside and the transmission of our two-dimensional metamaterial devices to that of their three-dimensional counterparts at telecom wavelengths. As a result, we envision that one coordinate-based multifunctional waveguide component may seamlessly split and bend light beams on the landscape of an optical chip.
Detection of electromagnetic radiation using nonlinear materials
Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin
2016-06-14
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Excitation of Rossby waves by HF electromagnetic seismic origin emissions in the earth's mesosphere
NASA Astrophysics Data System (ADS)
Tsintsadze, N. L.; Kaladze, T. D.; Tsamalashvili, L. V.
2009-12-01
Interaction of high-frequency seismo-electromagnetic emissions with the weakly ionized gas of the ionospheric D-layer is considered. It is shown that through the earth's ionosphere weakly damped high-frequency electron cyclotron electromagnetic waves can propagate. These new type of waves easily reach the ionospheric D-layer where they interact with the existing electrons and ions. Acting on electrons ponderomotive force is taken into account and corresponding modified Charney equation is obtained. It is shown that only nonlinear vortical structures with negative vorticity (anticyclone) can be excited. The amplitude modulation of electromagnetic waves can lead to the excitation of Rossby waves in the weakly ionized gas. The corresponding growth rate is defined. Depending on the intensity of the pumping waves generated by seismic activity different stable and unstable branches of oscillations are found. Detection of the new oscillation branches and energetically reinforcing Rossby solitary vortical anticyclone structures may be serve as precursors to earthquake.
Electromagnetic Propagationg of Waves in Helical Stochastic
NASA Astrophysics Data System (ADS)
Adrian, Reyes; Mendez, David
2012-02-01
We develop a model for studying the axial propagation of elliptically polarized electromagnetic waves in a spatially random helical media. We start by writing Maxwell equations for a structurally chiral medium whose helical angle contains both a stochastic contribution and a deterministic one, this latter corresponding to an uniform rotation. We write the electromagnetic equations into Marcuvitz Schwigner representation to transform them afterward by using the Oseen transformation. We exhibit that in the Oseen frame, Marcuvitz Schwigner equations turns out to be a linear vectorial stochastic system of equations with multiplicative noise. From this result and utilizing a well known formalism for treating stochastic differential equations, we find the governing equations for the first and second moments of the field amplitudes for a general correlation model for the slope angles, and calculate their corresponding band structure for a particular spectral noise density. We show that the average resulting electromagnetic fields exhibit dissipation and the appearance of a new reflection band whose chirality is the opposite of the one obtained for a simple cholesteric liquid crystals.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Yushkanov, A. A.
2017-02-01
We consider degenerate plasma that is located in the field of a transverse electromagnetic wave. An electric current generated in the plasma by the electromagnetic field is sought. During classical description of the interaction of the electromagnetic wave with the plasma, the Vlasov kinetic equation is used, while, in quantum description, the quantum kinetic equation with the Wigner integral is applied. A nonlinear analysis has shown that that the electric current in the plasma has two nonzero components. One component of the electric current is directed along the vector potential of the electromagnetic field. The other nonzero component of the current is directed along the wave vector. In the present work, we analyze this component of the electric current. The case of collisionless plasma is examined.
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Tsintsade, N. L.; Maryam, N.; Komal, S.
2016-11-01
In this study, we have analytically investigated the effects of nonlinear Landau damping on the temporal growth rate of modulation and filamentation instabilities. Here, the nonlocal nonlinear Landau damping phenomena is appearing due to the nonlinear interaction between ultrarelativistic electromagnetic (UREM) wave (having wave vector normal to the beam) and electron-positron-ion plasma. We found that the ultrarelativistic ponderomotive force is linear, while usually it is nonlinear in relativistic case. We construct three dimensional kinetic nonlinear Schrödinger equation for a slowly varying spatio and temporal amplitude of UREM waves. The equations are then Fourier analyzed to obtain dispersion relation, which admit both modulation and filamentation instabilities. It is shown that nonlinear Landau damping is the main source of modulation instability, for a particular condition taking into account later one the maximum growth rate of modulation instability obtained as a function of amplitude of UREM waves and is displayed graphically. Further, it is shown that for an oscillating density profile, plane wave of uniform intensity becomes unstable and gets filamented. Growth rate of stationary state filament is found to be a function of amplitude of UREM waves and is emphasized that the maximum value of growth rate of filamentation instability is further increased in the presence of nonlinear Landau damping term. Finally, the growth rate of non stationary state filamentation instability is calculated and is shown that the characteristic growth length increases both with perpendicular wave vector and the amplitude of UREM waves.
Stimulated scattering of a large amplitude electromagnetic wave by the eigenmodes of a plasma slab
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.
1983-08-01
New results are presented from a theoretical investigation of the scattering of an electromagnetic pump wave that is normally incident on a plasma slab. In the case considered here, the leaking surface wave eigenmode represents the scattered radiation. The generation of harmonics in the scattered wave will thus be responsible for the saturation of the wave intensities. It is shown that a large-amplitude electromagnetic pump wave can be scattered in a nonlinear process where both the low-frequency and high-frequency oscillations are eigenmodes of the plasma slab. The second harmonic generation that occurs in this case leads to efficient saturation of the scattering instability. It is pointed out that other mechanisms, for example, the screening of the pump wave by the surface mode current, may also contribute significantly to the establishment of the stationary wave.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Time-reversal of nonlinear waves: Applicability and limitations
NASA Astrophysics Data System (ADS)
Ducrozet, G.; Fink, M.; Chabchoub, A.
2016-09-01
Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M. Manzoor, R.
2012-12-15
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
Electromagnetic wave structures within subauroral polarization streams
NASA Astrophysics Data System (ADS)
Mishin, E. V.; Burke, W. J.; Huang, C. Y.; Rich, F. J.
2003-08-01
We report on oscillations in electric (δEY) and magnetic (δBZ) fields and plasma density (δNi) observed by Defense Meteorological Satellite Program (DMSP) satellites within fast subauroral convection streams in the evening sector during the magnetic storm of 6 November 2001. There are two types of wave phenomena. The first and more common is characterized by electromagnetic and plasma density variations that have the same frequency range of ˜0.15 Hz in the spacecraft frame of reference. The second is characterized by large-amplitude plasma and field oscillations over a broader range of frequencies ˜0.1 to 0.3 Hz. In this case the perturbation densities and fields appear to have different frequency responses. In this and other magnetic storms, strong waves are associated with the precipitation of ˜30 keV ions. Ratios of δEY/δBZ indicate encounters with mixtures of electromagnetic (in part Alfvénic) and electrostatic modes. Poynting vectors associated with the oscillations can be directed either into or out of the ionosphere. The density perturbations appear to be extended east-west corrugations in the plasma flow streams with north-south wavelengths of ˜50 km. The δEY and δNi variations were anticorrelated, as required for current conservation. Our analysis shows that Alfvénic perturbations are consistent with expected effects of irregular potential distribution around ionospheric density irregularities mapped to the magnetosphere. Inertial currents act to generate mesoscale field-aligned currents carried by Alfvén waves, as was previously discussed with regards to auroral arcs formation. We suggest that δNi irregularities observed by DMSP satellites in the evening sector began as striated plasma patches in the polar cap that convected to subauroral latitudes.
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P. K.; Ali, S.; Stenflo, L.; Marklund, M.
2006-11-15
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Control methods for localization of nonlinear waves.
Porubov, Alexey; Andrievsky, Boris
2017-03-06
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions.This article is part of the themed issue 'Horizons of cybernetical physics'.
Control methods for localization of nonlinear waves
NASA Astrophysics Data System (ADS)
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Chargazia, Kh. Z.; Khantadze, A. G.; Lominadze, J. G.
2006-12-01
Results of theoretical investigation of the dynamics of generation and propagation of planetary (with wavelengths 103 km and more) weather-forming Ultra-Low Frequency (ULF) electromagnetic wave structures in the dissipative ionosphere are given in this paper. It is established that the global factor, acting permanently in the ionosphere spatial inhomogeneity and curvature of the geomagnetic field and inhomogeneity of angular velocity of the Earth's rotation generates the fast and slow planetary ULF electromagnetic waves. The waves propagate along the parallels to the east as well as to the west. In the E-region the fast waves have phase velocities of (2-20) km/s-1 and frequencies of (10^-1-10^-4) Hz; the slow waves propagate with local wind velocities and have frequencies (10^-4-10^-6) Hz. In the F-region the fast ULF electromagnetic waves propagate with phase velocities of tens-hundreds km/s-1 and their frequencies are in the range of (10-10^-3) Hz. The large-scale waves are weakly damped. The waves generate the geomagnetic field perturbations from several tens to several hundreds nT and more. It is established that planetary ULF electromagnetic waves, at their interaction with the local shear winds, can self-localize in the form of nonlinear solitary vortices, moving along the latitude circles westward as well as eastward.
Evolution Of Nonlinear Waves in Compressing Plasma
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Identification for a Nonlinear Periodic Wave Equation
Morosanu, C.; Trenchea, C.
2001-07-01
This work is concerned with an approximation process for the identification of nonlinearities in the nonlinear periodic wave equation. It is based on the least-squares approach and on a splitting method. A numerical algorithm of gradient type and the numerical implementation are given.
Strongly nonlinear stress waves in dissipative metamaterials
NASA Astrophysics Data System (ADS)
Xu, Yichao; Nesterenko, Vitali F.
2017-01-01
We present the results of measurements and numerical simulations of stress wave propagation in a one-dimensional strongly nonlinear dissipative metamaterial composed of steel disks and Nitrile O-rings. The incoming bell shape stress wave is generated by the strikers with different masses. Numerical modeling including a viscous dissipative term to describe dynamic behavior of O-rings is developed to predict the wave amplitude, shape and propagation speed of stress waves. The viscous dissipation prevented the incoming pulse from splitting into trains of solitary waves typical for non-dissipative strongly nonlinear discrete systems. The linear momentum and energy from the striker were completely transferred into this strongly nonlinear "soft" metamaterial.
Nonlinear water waves with soluble surfactant
NASA Astrophysics Data System (ADS)
Lapham, Gary; Dowling, David; Schultz, William
1998-11-01
The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
NASA Technical Reports Server (NTRS)
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Neural field theory of nonlinear wave-wave and wave-neuron processes
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Roy, N.
2015-06-01
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Scaling laws for nonlinear electromagnetic responses of Dirac fermion
NASA Astrophysics Data System (ADS)
Morimoto, Takahiro; Nagaosa, Naoto
2016-03-01
We theoretically propose that the Dirac fermion in two dimensions shows the giant nonlinear responses to electromagnetic fields in the terahertz region. A scaling form is obtained for the current and magnetization as functions of the normalized electromagnetic fields E /Eω and B /Bω , where the characteristic electric (magnetic) field Eω(Bω) depends on the frequency ω as ℏ ω2/e vF(ℏ ω2/e vF2) , and is typically of the order of 80 V/cm (8 mT) in the terahertz region. Applications of the present theory to graphene and surface state of a topological insulator are discussed.
Time-Reversal of Nonlinear Water Waves
NASA Astrophysics Data System (ADS)
Chabchoub, Amin; Ducrozet, Guillaume; Fink, Mathias
2016-11-01
Time-reversal (TR) refocusing of hydrodynamic nonlinear waves can be discussed within the framework of the nonlinear Schrödinger equation (NLS). Indeed, exact solutions of the latter weakly nonlinear evolution equation can be used to study the applicability and limitations of wave refocusing using TR mirrors in hydrodynamics. Recent laboratory experiments confirmed the applicability of TR approach to breathers, known to model extreme and doubly-localized wave configurations. In order to study the range of validity of the TR approach to nonlinear waves, a numerical study using a unidirectional numerical water wave tank, implemented by the higher-order spectral method, reveals new insights to the problem. The validity of the TR approach is assessed over a diversity of NLS configurations, ranging from stationary envelope and breathing solutions, pointing out the importance of higher-order dispersive and particularly nonlinear effects in the refocusing of these hydrodynamic localized structures. Due to the interdisciplinary nature of the approach several applications in other nonlinear dispersive physical media may result in addition to evident usage in the field of ocean engineering.
Nonlinear Talbot effect of rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Asymmetric wave propagation in nonlinear systems.
Lepri, Stefano; Casati, Giulio
2011-04-22
A mechanism for asymmetric (nonreciprocal) wave transmission is presented. As a reference system, we consider a layered nonlinear, nonmirror-symmetric model described by the one-dimensional discrete nonlinear Schrödinger equation with spatially varying coefficients embedded in an otherwise linear lattice. We construct a class of exact extended solutions such that waves with the same frequency and incident amplitude impinging from left and right directions have very different transmission coefficients. This effect arises already for the simplest case of two nonlinear layers and is associated with the shift of nonlinear resonances. Increasing the number of layers considerably increases the complexity of the family of solutions. Finally, numerical simulations of asymmetric wave packet transmission are presented which beautifully display the rectifying effect.
Experimental results on indoor electromagnetic wave absorber using magnetic wood
NASA Astrophysics Data System (ADS)
Oka, Hideo; Narita, Koichi; Osada, Hiroshi; Seki, Kyoushirou
2002-05-01
The purpose of this paper is to propose a new type of indoor electromagnetic wave absorber using magnetic wood. This magnetic wood has good electromagnetic wave absorbing characteristics, a low specific gravity, a wood texture and other wood characteristics and can be easily processed. Electromagnetic wave absorbing characteristics were measured for four types of magnetic wood. The sandwich-type magnetic wood demonstrated the best wave absorbing characteristics among the four types of magnetic wood that were studied. The experimental results showed that the proposed indoor electromagnetic wave absorber can be used to suppress the transmission and reception of cellular phone and Personal Handy Phone System (PHS) signals and can be used as a cross protection for indoor wireless Local Area Networks (LAN). This wood can be processed for use in furniture, building materials, and other applications.
Control of coupled localized nonlinear wave solutions
NASA Astrophysics Data System (ADS)
Porubov, A. V.; Antonov, I. D.
2017-01-01
A method of forced localization of non-linear wave by a feedback control is developed for coupled equations accounting for non-linear dynamic processes in complex lattices. It is shown, that the control of the shape and velocity of the wave function of macro-strain allows to achieve localization of the shape of the function describing variations of defects in the lattice. Moreover, change of the sign of the amplitude of the last wave may be achieved by variation of the parameters of the control function but independent of the initial conditions.
Compact waves in microscopic nonlinear diffusion.
Hurtado, P I; Krapivsky, P L
2012-06-01
We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In d spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with a the nonlinearity exponent. We show that fluctuations in the front position grow as ∼t^{μ}η, where μ<1/2+da is an exponent that we measure and η is a random variable whose distribution we characterize. Fluctuating corrections to hydrodynamic profiles give rise to an excess penetration into vacuum, revealing scaling behaviors and robust features. We also examine the discharge of a nonlinear rarefaction wave into vacuum. Our results suggest the existence of universal scaling behaviors at the fluctuating level in nonlinear diffusion.
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Nonlinear noise waves in soft biological tissues
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Gurbatov, S. N.; Demin, I. Yu.
2013-09-01
The study of intense waves in soft biological tissues is necessary both for diagnostics and therapeutic aims. Tissue represents an inherited medium with frequency-dependent dissipative properties, in which waves are described by nonlinear integro-differential equations. The equations for such waves are well known. Their group analysis has been performed, and a number of exact solutions have been found. However, statistical problems for nonlinear waves in tissues have hardly been studied. As well, for medical applications, both intense noise waves and waves with fluctuating parameters can be used. In addition, statistical solutions are simpler in structure than regular solutions; they are useful for understanding the physics of processes. Below a general approach is described for solving nonlinear statistical problems applied to the considered mathematical models of biological tissues. We have calculated the dependences of the intensities of the narrowband noise harmonics on distance. For wideband noise, we have calculated the dependence of the spectral integral intensity on distance. In all cases, wave attenuation is determined both by the specific dissipative properties of the tissue and the nonlinearity of the medium.
Electromagnetic waves: Negative refraction by photonic crystals
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2004-03-01
Recently left-handed materials (LHM) attracted great attention since these materials exhibit negative effective index, which is due to simultaneously negative permeability and permittivity. Pendry proposed that negative effective index in left-handed materials can be used for constructing a perfect lens, which is not limited by diffraction(J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. vol. 85, 3966 (2000)). Negative refraction is also achievable in a dielectric photonic crystal (PC) that has a periodically modulated positive permittivity and a permeability of unity. Luo et al. has studied negative refraction and subwavelength imaging in photonic crystals(C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Subwavelength Imaging in Photonic Crystals Phys. Rev. B 68, 045115 (2003)). In this presentation, we report our experimental and theoretical investigation of negative refraction and subwavelength focusing of electromagnetic waves in a 2D PC. Our structure consists of a square array of dielectric rods in air. Transmission measurements are performed for experimentally verifying the predicted negative refraction behavior in our structure. Negative index of refraction determined from the experiment is -1.94 which is very close to the theoretical value of -2.06. Negative refraction is observed for the incidence angles of > 20°(Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, S. Foteinopolou, and Costas Soukoulis, Negative Refraction by Photonic Crystals, Nature, vol. 423, 604 (2003)). Since we know the optimum frequency for a broad angle negative refraction, we can use our crystal to test the superlensing effect that was predicted for negative refractive materials. Scanning transmission measurement technique is used to measure the spatial power distribution of the focused electromagnetic waves that radiate from a point source. Full width at half maximum of the focused beam is measured to be 0.21λ, which is in good agreement with the finite
Laine, T A; Friberg, A T
2000-06-01
We investigate electromagnetic wave reflection and propagation in layered Kerr structures by introducing a method based on the application of canonical perturbation theory to fields in nonlinear media. Via the Hamilton-Jacobi formalism of classical mechanics, the waves in linear layers are expressed with constant canonical variables. The nonlinearity is treated as a small perturbation that modifies the constant invariants. We explicitly evaluate the nonlinear fields correct to first order by perturbation and compare the results to a rigorous nonlinear thin-layer model. Both polarizations, TE and TM, are considered separately. An exact quadrature solution of the nonlinear field in TM polarization is derived. We show that with weak nonlinearities the perturbative technique yields simple and accurate analytical expressions for the nonlinear fields. The results give physical insight into the use of nonlinear media for controlling the scattered fields in layered structures.
Heating of ions by high frequency electromagnetic waves in magnetized plasmas
Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.
2013-07-15
The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be
Self-organization of planetary electromagnetic waves in the E-region of the ionosphere
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Jandieri, G. V.; Khantadze, A. G.
2003-04-01
A physical mechanism for the generation of slow and fast electromagnetic-type planetary waves due to standing factor-latitude variation of geomagnetic field-in the dissipative E-region of the ionosphere is suggested. It has been shown that slow waves are generated due to the dynamo-field in the ionosphere, and fast waves by the vortical electric field. The slow electromagnetic wave is analog to the Rossby planetary wave; the fast electromagnetic wave is a new mode of natural oscillations of the E-region of the ionosphere. Linear waves propagate along the parallel west and east directions in the dynamo-region of the ionosphere against a background of the mean zonal flow. Phase velocity of the fast waves is a few kms-1, oscillation frequencies are in the frequency band of 10-2-10-4s-1 and the wavelength is of the order of 103km and higher. Phase velocities of the slow waves and local winds are at the same order of magnitude, the frequency band is 10-4-10-5s-1 and wavelength is of 103km and higher order. Fast waves generate intense magnetic fields in order of a few hundred nanotesla (nT); slow waves-a few tens of nT. In this paper the nonlinear theory of both fast and slow planetary electromagnetic waves in the E-region of the ionosphere is investigated for the first time. It was established that these perturbations are self-localized as nonlinear solitary vortical structures in the dynamo-region of the ionosphere move to the west (fast) and to the east (slow) against a background of the mean zonal flow. The nonlinear structure consists of cyclone-anticyclone-type mutual counter-clockwise-rotating vortices, which capture medium particles. Energy and enstrophy of these large-scale vortices are weakly attenuated and are long-lived. Vortical structures generate magnetic fields, which are an order of magnitude larger than those generated by the corresponding linear waves. Features and parameters of electromagnetic wavy structures are theoretically investigated and are in
Nonlinear Fresnel diffraction of weak shock waves.
Coulouvrat, François; Marchiano, Régis
2003-10-01
Fresnel diffraction at a straight edge is revisited for nonlinear acoustics. Considering the penumbra region as a diffraction boundary layer governed by the KZ equation and its associated jump relations for shocks, similarity laws are established for the diffraction of a step shock, an "N" wave, or a periodic sawtooth wave. Compared to the linear case described by the well-known Fresnel functions, it is shown that weak shock waves penetrate more deeply into the shadow zone than linear waves. The thickness of the penumbra increases as a power of the propagation distance, power 1 for a step shock, or 3/4 for an N wave, as opposed to power 1/2 for a periodic sawtooth wave or a linear wave. This is explained considering the frequency spectrum of the waveform and its nonlinear evolution along the propagation, and is confirmed by direct numerical simulations of the KZ equation. New formulas for the Rayleigh/Fresnel distance in the case of nonlinear diffraction of weak shock waves by a large, finite aperture are deduced from the present study.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures
NASA Astrophysics Data System (ADS)
Anderson, Nicholas R.
The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic
Multiple Scattering of Electromagnetic Waves in Discrete Random Media.
1984-12-31
purposes, we have also investigated the electromagnetic wave propagation through randomly distributed and oriented scatterers by introducing the concept...computer to determine whether or not particle overlap has occurred. The implementation of the "physics" of the system and orientations of non-spherical...34Coherent electromagnetic wave propagation through randomly distributed and oriented pair-correlated dielectric scatterers," Radio Sci., 19, 1445-1449
Design of Metamaterials for control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Dynamics of the large-scale ULF electromagnetic wave structures in the ionosphere
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Chargazia, Z. Kh.
2007-12-01
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10 10-6) s-1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.
Magnetoacoustic nonlinear periodic (cnoidal) waves in plasmas
NASA Astrophysics Data System (ADS)
Ur-Rehman, Hafeez; Mahmood, S.; Hussain, S.
2017-01-01
Magnetoacoustic nonlinear periodic (cnoidal) waves and solitons are studied in magnetized electron-ion plasmas with inertial cold ions and warm electrons. Using the two fluid model, the dispersion relation of the magnetoacoustic waves is obtained in the linear limit and the wave dispersive effects appear through the electron inertial length. The well known reductive perturbation method is employed to derive the Korteweg-de Vries equation for magnetoacoustic waves in plasmas. The Sagdeev potential approach is used, and the cnoidal wave solution of magnetoacoustic waves is obtained under periodic boundary conditions. The analytical solution for magnetoacoustic solitons is also presented. The phase plane portraits are also plotted for magnetoacoustic solitons shown as a separatrix, and the cnoidal wave structure always lies within the separatrix. It is found that plasma beta, which depends on the plasma density, electron temperature, and magnetic field intensity, has a significant effect on the amplitude and phase of the cnoidal waves, while it also affects the width and amplitude of the magnetoacoustic soliton in plasmas. The numerical results are plotted within the plasma parameters for laboratory and space plasmas for illustration. It is found that only compressive magnetoacoustic nonlinear periodic wave and soliton structures are formed in magnetized plasmas.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Linear and nonlinear waves with orbital angular momentum in magnetized plasma
NASA Astrophysics Data System (ADS)
Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.
2009-11-01
Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.
Nonlinear excited waves on the interventricular septum
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi
2012-11-01
Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.
Nonlinear internal waves in shallow stratified lakes
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Talipova, Tatiana; Kurkin, Andrey; Ruvinskaya, Ekaterina; Pelinovsky, Efim
2015-04-01
Weakly nonlinear model of internal waves based on the extended Korteweg-de Vries equation - Gardner equation is applied to analyze possible shapes in shallow stratified lake - Sankhar Lake, Russia. Series of temperature variation in space and time are collected and analyzed. The spectra of such variations can be fitted by power function of frequency with exponent minus one, minus two. It is shown that temperature variations influence on kinematic characteristics of internal waves, mainly on the coefficient of quadratic nonlinearity. The solitary wave (soliton) of the first mode is an elevation wave with amplitude less 3 m (total depth of 15 m). The solitons of the second mode can have any polarity. Also the breathers of second mode can be generated in such lake.
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-12-15
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
Nonlinear Generation of Vorticity by Surface Waves.
Filatov, S V; Parfenyev, V M; Vergeles, S S; Brazhnikov, M Yu; Levchenko, A A; Lebedev, V V
2016-02-05
We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect.
Nonlinear Waves and Inverse Scattering
1989-01-01
5) Numerical Simulation of the Modified Korteweg - deVries Equation , Thiab R. Taha and M.J. Ablowitz, 6th International Symposium on Computer Methods in... solved by the IST method. . Numerically Induced Chaos) /i We have been studying a class of non ’linear equations and their discrete approximations...Certain Nonlinear Evolution Equations IV, Numerical, Modified Korteweg -de Vries Equation , T.R. Taha and M.J. Ablowitz, J. Comp. Physics, Vol. 77, No
Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma
Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.
2007-10-15
Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.
Parametric wave phase conjugation of nonlinear ultrasound waves
NASA Astrophysics Data System (ADS)
Brysev, Andrew; Mikhalevich, Vladislav; Streltsov, Vladimir
2003-10-01
Real time acoustic wave phase conjugation (WPC), based on parametric self-consistent physical mechanisms, was realized up to the present time only for the monochromatic waves [A. P. Brysev et al., Phys.-Usp. 41, 793 (1998)]. Here the possibility of WPC of nonmonochromatic ultrasound waves is considered. For simultaneous WPC of the entire series of spectral components generated by nonlinear propagation of the incident wave we propose the use of phonon-plasmon interaction in piezosemiconductors. WPC of nonlinear acoustic waves can be accomplished by modulation of the electron density provided by a sequence of short laser pulses pumping the sample. If the periodicity of the optical pulses is half the period of the fundamental component of the acoustic wave, such wide-band, excitation leads to self-synchronized parametric conjugation of each spectral component in the incident wave. The conjugation efficiency depends sharply on relations between acoustical frequency content, laser pulse duration, and interband relaxation time. It is shown that under certain conditions the time profile of the conjugate wave may be efficiently controlled by varying the duration of the laser pulses. The time profile of the conjugate wave is investigated for some physical conditions of practical interest.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
The Stochastic Nonlinear Damped Wave Equation
Barbu, V. Da Prato, G.
2002-12-19
We prove the existence of an invariant measure for the transition semigroup associated with a nonlinear damped stochastic wave equation in R{sup n} of the Klein-Gordon type. The uniqueness of the invariant measure and the structure of the corresponding Kolmogorov operator are also studied.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Nonlinear Landau damping of Alfven waves.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Polarization ray picture of coherence for vectorial electromagnetic waves
Luis, Alfredo
2007-10-15
We elucidate a ray picture of coherence for vectorial electromagnetic waves by using the Stokes parameters for light rays defined by the optical Wigner function. Paraxial propagation is formulated as a complementary Huygens principle. We show that the degrees of coherence are averages of the phase difference where the weights are the Stokes parameters for light rays. We analyze the van Cittert-Zernike theorem for vectorial waves in terms of ray propagation. We show that simple polarization measurements in a Young interferometer determine the degrees of coherence for vectorial electromagnetic waves.
Interaction of electromagnetic wave with quantum over dense plasma layer
NASA Astrophysics Data System (ADS)
Rajaei, Leila
2016-10-01
The anomalous transmission of electromagnetic wave in the cold over dense plasma is investigated using the quantum hydrodynamic approach. The quantum effect on the dispersion relation of the surface wave excited by the electromagnetic radiation is evaluated and compared with the classical regimes. It is shown that the quantum dispersion curve, in comparison with its classical behavior, has an asymptotic approach at larger wave numbers. Investigating the transmission conditions, the effects of the main different parameters of the model such as the plasma density and Fermi velocity on the rate of transmission are scrutinized.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
NASA Astrophysics Data System (ADS)
Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena
The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
NASA Astrophysics Data System (ADS)
Bao, Jian; Lin, Zhihong; Kuley, Animesh; Wang, Zhixuan
2016-10-01
Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in tokamak have been studied by electromagnetic particle simulation using GTC. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance. In the nonlinear electromagnetic simulation, nonlinear wave trapping of electrons is verified and a plasma current is nonlinearly driven. Preliminary results of the nonlinear parametric decay of LH waves will be presented.
Nonlinear MHD Waves in a Prominence Foot
NASA Astrophysics Data System (ADS)
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Wang, Bingnan
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Effects of Wave Nonlinearity on Wave Attenuation by Vegetation
NASA Astrophysics Data System (ADS)
Wu, W. C.; Cox, D. T.
2014-12-01
The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell
Microstructural diagnosis using electromagnetic wave scattering methodologies
NASA Astrophysics Data System (ADS)
Chou, Kevin Jenn Chien
Scattered electromagnetic waves were used in the present work to characterize the microstructural effects on the performance of metallic materials. A Nisb3Al alloy with a dendritic microstructure has exhibited better creep resistance compared to similar alloys having equiaxed microstructure of grains. X-ray diffraction was applied along the dendritic arms to investigate their orientations. Both the interlocking boundaries and crystallographic texture of the dendritic arms resulted in the superior creep behavior. Non-invasive laser scattering was also used to optically probe smooth fatigue specimens to detect and monitor the development of fatigue damage. Inconel 718 specimens with a cylindrical geometry were tested under low cycle fatigue conditions with constant strain amplitudes ranging from 0.3% to 1%. A detection scheme to minimize computational time and memory was used to achieve in-situ data analysis. Both laser scanning and surface replication procedures were periodically performed throughout the life of the specimens. The scattered light signals were compared with microcrack length and density data from surface replicate SEM images. Three characteristic stages of the scattering signal were observed. The scanning laser light scattering (SLLS) technique was sufficiently robust, and well suited for the non-planar geometry in the leading edge. The SLLS signals correlated well with microstructural features over a large surface area. A physical model of microcrack size distribution within a surface grain was developed. The results of the model suggest that a SLLS signal saturation which coincides with the onset of microcrack density saturation corresponds to a transition from predominately single grain microcracks to microcracks that transverse multiple grains. The saturation of SLLS signal versus mean surface crack length also provided the following findings. Low cycle fatigue cracks were contained and saturated in those surface grains with the highest Schmid
Instability of nonlinear waves with close wavenumbers
NASA Astrophysics Data System (ADS)
Babanin, Alexander; Babanina, Anna; Chalikov, Dmitry
2013-04-01
Evolution of bichromatic waves represents a substantial interest in fluid mechanics, oceanography and maritime engineering, as well as in other fields of physics. In this presentation, evolution of surface water waves will be considered in the context of how close the bichromatic wave modes can be in the frequency/wavenumber space before the dynamics of their interactions changes, if it does. In this regard, the topic may be relevant across various applications for nonlinear waves in dispersive media. The study is conducted by means of the fully nonlinear one-dimensional model for gravity water waves by Chalikov & Sheinin. This approach is based on a non-stationary conformal mapping, which allows the equations of potential flow with the inclusion of a free surface to be written in a surface-following coordinate system. This transformation does not impose any restrictions on the shape of the surface, except that it has to be possible to represent this surface in terms of a Fourier series. The model accuracy and energy conservation within the evolving wave trains is very high, it is determined by the computer precision. We show that interaction of two monochromatic waves at the water surface enters a different dynamic regime if their wavenumbers become very close. Downshifting of the initial wave energy and growth of the first mode occur in the course of evolution of the two waves, depending on wave steepness and dk/k. Behaviour of these features change if dk/k<0.0025: both downshifting and growth rate become independent of dk/k, and the growth rates increases by orders of magnitude.
Electromagnetic radiation due to nonlinear oscillations of a charged drop
NASA Astrophysics Data System (ADS)
Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.
2016-03-01
The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work
Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Alotaibi, Hessa M. M.; Sanders, Barry C.
2016-11-01
We investigate the nonlinear optical susceptibility of an alkali-metal atom with tripod electronic configuration responsible for generating cross-phase modulation and self-phase modulation under the condition of double-double electromagnetically induced transparency. Our investigation demonstrates an enhancement in the nonlinear optical susceptibility of an alkali-metal atom by a factor of 1000 in the region of the second transparency window. This enhancement is in comparison with the atom's susceptibility in the first transparency window for the same parameters under the same conditions. Nonlinear-absorption enhancement arises by canceling Raman-gain generation, which arises when the probe and signal fields have equal intensities. At the center of the second transparency window, we obtain the condition required to attain a nonvanishing nonlinear optical susceptibility. In the bare-state picture, the coupling field must be off resonant from a bare-to-bare-state transition, while working in the semiclassical dressed picture required the signal field to be tuned off resonantly with a bare-to-dressed-state transition. The relation that governs the values of coupling- and signal-field detuning are also obtained. Our scheme exhibits the fact that the second transparency window has advantages over the first transparency window with respect to obtaining an enhanced Kerr effect, and our calculation includes simulation of both low-temperature and Doppler-broadened regimes.
Nonlinear heating of ions by electron cyclotron frequency waves
NASA Astrophysics Data System (ADS)
Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.
2010-11-01
We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).
Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan
2016-09-01
Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Nonlinear wave vacillation in the atmosphere
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1987-01-01
The problem of vacillation in a baroclinically unstable flow field is studied through the time evolution of a single nonlinearly unstable wave. To this end a computer code is being developed to solve numerically for the time evolution of the amplitude of such a wave. The final working code will be the end product resulting from the development of a heirarchy of codes with increasing complexity. The first code in this series was completed and is undergoing several diagnostic analyses to verify its validity. The development of this code is detailed.
Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes
NASA Astrophysics Data System (ADS)
Potylitsyn, A. P.; Kolchuzhkin, A. M.
2017-04-01
The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.
Left-handed interfaces for electromagnetic surface waves.
Kats, A V; Savel'ev, Sergey; Yampol'skii, V A; Nori, Franco
2007-02-16
We show that surface electromagnetic waves (SEMWs) propagating along two-dimensional (2D) interfaces separating different metamaterials can behave analogously to 3D electromagnetic waves in either usual or left-handed media, depending on the permeabilities and/or permittivities of the two materials forming the interface. We derive the conditions when SEMWs carry energy opposite to the phase velocity. In analogy to three-dimensional (3D) left-handed media, we derive both an anomalous Cherenkov emission and a reversed Doppler effect. We also predict a negative refraction at the boundary between two different interfaces, which can be useful for perfect 2D lensing.
Nonlinear Waves in Waveguides with Stratification.
NASA Astrophysics Data System (ADS)
Leble, Sergei B.
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Electromagnetic waves and Stokes parameters in the wake of a gravitational wave
NASA Astrophysics Data System (ADS)
Hacyan, Shahen
2012-11-01
A theoretical description of electromagnetic waves in the background of a (weak) gravitational wave is presented. Explicit expressions are obtained for the Stokes parameters during the passage of a plane-fronted gravitational wave described by the Ehlers-Kundt metric. In particular, it is shown that the axis of the polarization ellipse oscillates, its ellipticity remaining constant.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Understanding and Prediction of Nonlinear Effects in Wave Propagation
2013-02-20
by a JONSWAP wave spectrum with a significant wave height of Hs = 4m, a peak period of Tp =8s and an enhancement parameter =3.0. The time...for public release; distribution is unlimited In ocean wave-field evolution, nonlinear effects affect the propagation velocity of each wave component...exceeding wave height and/or wave crest height probability functions for wide ranges of nonlinear spectrum parameters, which will enable the
Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves
Hurley, David Howard; Telschow, Kenneth Louis
2000-07-01
Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.
Guided wave methods and apparatus for nonlinear frequency generation
Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.
2000-01-01
Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.
Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas
Mamun, A. A.; Shukla, P. K.
2010-12-14
A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.
Recurrence of initial state of nonlinear ion waves
Abe, K.; Satofuka, N.
1981-06-01
By solving the Korteweg--deVries equation in a wide range of the ratio between the nonlinearity and the dispersion, the recurrence of the initial state of the ion wave is examined. The recurrence is assured of taking place only when the dispersion of the initial ion wave predominates over the nonlinearity. If the initial wave has strong nonlinearity compared with the dispersion, the recurrence is indistinct, and the initial monochromatic wave evolves to a turbulent state.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Fuselier, S. A.
1994-10-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
NASA Astrophysics Data System (ADS)
Ogi, Hirotsugu; Hirao, Masahiko; Aoki, Shinji
2001-07-01
A nonlinear acoustic measurement is studied for fatigue damage monitoring. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a rod specimen during rotating bending fatigue of carbon steels. Excitation of the EMAT at half of the resonance frequency caused the standing wave to contain only the second-harmonic component, which was received by the same EMAT to determine the second-harmonic amplitude. Thus measured surface-wave nonlinearity always showed two distinct peaks at 60% and 85% of the total life. We attribute the earlier peak to crack nucleation and growth, and the later peak to an increase of free dislocations associated with crack extension in the final stage. This noncontact resonance-EMAT measurement can monitor the evolution of the surface-shear-wave nonlinearity throughout the metal's fatigue life and detect the pertinent precursors of the eventual failure.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1988-01-01
An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Fractional Cylindrical Functions Implementation for Electromagnetic Waves Scattering Analysis
2002-09-01
IMPLEMENTATION FOR ELECTROMAGNETIC WAVES SCATTERING ANALYSIS D.V. Golovin , D.O. Batrakov. Kharkov National University, Ukraine Dmitry.O.Batrakov...N2 8. P. 1483. [2] Vorontsov A.A., Mirovitskaya S.D/I Radiotechnika i Electronika (in Russian) 1986. V.31. No 12. P. 2330. [3] Golovin D.V., Batrakov
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Electromagnetic wave absorbing properties of amorphous carbon nanotubes.
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-10
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Petrov, E Yu; Kudrin, A V
2012-05-01
Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.
Nonlinear electromagnetic perturbations in a degenerate ultrarelativistic electron-positron plasma.
El-Taibany, W F; Mamun, A A
2012-02-01
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultrarelativistic, ultracold, degenerate (extremely dense) electron positron (EP) plasma (containing ultrarelativistic, ultracold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. The Alfvén wave velocity is modified due to the presence of the enthalpy correction in the fluid equations of motion. The degenerate EP plasma system (under consideration) supports the Korteweg-de Vries (KdV) solitons, which are associated with either fast or slow magnetosonic perturbation modes. It is found that the ultrarelativistic model leads to compressive (rarefactive) electromagnetic solitons corresponding to the fast (slow) wave mode. There are certain critical angles, θ(c), at which no soliton solution is found corresponding to the fast wave mode. For the slow mode, the magnetic-field intensity affects both the soliton amplitude and width. It is also illustrated that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of enthalpy correction, electron and positron degeneracy, magnetic-field strength, and the relativistic effect. The applications of the results in a pair-plasma medium, which occurs in many astrophysical objects (e.g., pulsars, white dwarfs, and neutron stars) are briefly discussed.
Nonlinear gravity waves in the water flow with inhomogeneous vorticity
NASA Astrophysics Data System (ADS)
Abrashkin, Anatoly; Pelinovsky, Efim
2016-04-01
Nonlinear Schrodinger equation is derived for weakly modulated nonlinear wave packets in the infinite-depth water flow with inhomogeneous vorticity. Governing 2-D equations are written in Lagrangian variables. Nonlinear Schrodinger equation is obtained in the third order of perturbation theory taking into account weak non-uniform vortex current. Two limiting cases are analyzed. The first one corresponds to the uniform surface flow and is described by the classic nonlinear Schrodinger equation allowed the modulational instability. The second one is the Gerstner's wave packet. In this limiting case the nonlinear term is absent confirming known fact that nonlinear Gerstner's wave has the linear dispersion relation.
Nonlinear traveling wave solution for the MJO skeleton model
NASA Astrophysics Data System (ADS)
Chen, S.; Stechmann, S. N.
2014-12-01
Recently, a minimal dynamical model is presented for capturing MJO's fundamental features. The model is a nonlinear oscillator model for the MJO skeleton and it involves interactions between convection, moisture and circulation. I will present the exact nonlinear traveling wave solutions for the model based on its energy conservation. The exact nonlinear solution provides for an explicit comparison of features between linear and nonlinear waves such as dispersion relations and traveling wave speeds. Moreover, the nonlinear solutions, compared with the linear ones, produce a narrow region of active convection and a wider region of suppressed convection. These predictions offer nonlinear MJO features that could potentially be targets of observational investigations.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; Gary, S. Peter; Reeves, Geoffrey D.; Winske, Dan
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence
Hahm, T. S.; Wang, Lu; Madsen, J.
2008-08-01
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ_{i}<< ρ_{θ¡} ~ L_{E} ~ L_{p} << R (here ρ_{i} is the thermal ion Larmor radius and ρ_{θ¡} = B/B_{θ}] ρ_{i}), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρ_{i} ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τ_{i} ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro E-mail: saito@stelab.nagoya-u.ac.jp
2014-10-10
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Transition of electromagnetic wave by suddenly created magneto plasma
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2017-02-01
The theory of the interaction of electromagnetic waves with a suddenly created magneto plasma is presented. It is shown that a linearly polarized wave propagating along the magnetic field is converted into a frequency upshifted two forward and two backward propagating waves; in each propagation direction, one is right hand circular polarization and the other one is left hand circular polarization. A static wiggler magnetic field is also produced. The combined forward and backward waves are amplitude modulated with rotating polarizations. The extent of the frequency upshift increases with the increases of the plasma density and the background magnetic field intensity. By increasing the background magnetic field, the required plasma density for the frequency upshift is reduced; consequently, the drop rate of the conversion efficiency with the increase in the frequency upshift of the combined forward wave can be reduced considerably; the conversion efficiency of the combined backward wave also increases.
Critical behavior for scalar nonlinear waves
NASA Astrophysics Data System (ADS)
Masoero, Davide; Raimondo, Andrea; Antunes, Pedro R. S.
2015-02-01
In the long wave regime, nonlinear waves may undergo a phase transition from a smooth behavior to a fast oscillatory behavior. In this study, we consider this phenomenon, which is commonly known as dispersive shock, in the light of Dubrovin's universality conjecture (Dubrovin, 2006; Dubrovin and Elaeva, 2012) and we argue that the transition can be described by a special solution of a model universal partial differential equation. This universal solution is constructed using the string equation. We provide a classification of universality classes and an explicit description of the transition with special functions, thereby extending Dubrovin's universality conjecture to a wider class of equations. In particular, we show that the Benjamin-Ono equation belongs to a novel universality class with respect to those known previously, and we compute its string equation exactly. We describe our results using the language of statistical mechanics, where we show that dispersive shocks share many of the features of the tricritical point in statistical systems, and we also build a dictionary of the relations between nonlinear waves and statistical mechanics.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Electromagnetic Waves Broadcast by a VCR.
ERIC Educational Resources Information Center
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Mechanisms and nonlinear waves from topological modes
NASA Astrophysics Data System (ADS)
Chen, Bryan
Topological protection can arise in mechanical structures such as linkages, frames, or rigid origami. The key ingredients are a balance of degrees of freedom and constraints away from the boundaries. In this setting certain zero energy modes of the system can be made robust against a broad class of perturbations and noise. However, since there are no restoring forces to these modes to linear order, they result in flexes and mechanisms which must be treated as nonlinear waves. I will discuss several simple and concrete examples which illustrate these ideas.
Impact of Fog on Electromagnetic Wave Propagation
NASA Astrophysics Data System (ADS)
Morris, Jonathon; Fleisch, Daniel
2002-04-01
This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
Electromagnetic radiation from linearly and nonlinearly oscillating charge drops
NASA Astrophysics Data System (ADS)
Grigor'ev, A. I.; Shiryaeva, S. O.
2016-12-01
It has been shown that analytic calculations of the intensity of electromagnetic radiation from an oscillating charged drop in the approximation linear in the oscillation amplitude (small parameter is on the order of 0.1) give only the quadrupole component of the total radiation. The dipole component can only be obtained in calculations using higher-order approximations. Nevertheless, the intensity of the dipole radiation turns out to be substantially higher (by 14-15 orders of magnitude). This is because the decomposition of radiation from a system of charges into multipole components (differing even in the rates of decrease in the potential with the distance) is carried out using the expansion in a substantially smaller parameter, viz., the ratio of the size of the emitting system (in our case, a drop of radius 10 μm) to the distance to the point of observation in the wave zone of the emission of radiation (emitted wavelength) of 100-1000 m. As a result, this second small parameter is on the order of 10-7 to 10-8. On the other hand, in accordance with the field theory, the ratio of intensities of quadrupole and dipole radiations is proportional to the squared ratio of the hydrodynamic velocity of the oscillating surface of a charged drop to the velocity of propagation of an electromagnetic signal in vacuum (velocity of light), which yields a ratio of 10-14 to 10-15.
Scattering and Depolarization of Electromagnetic Waves--Full Wave Solutions.
1984-01-01
Analysis," Proceedings of the International Union of Radio Science URSI Conference at Ciudad Universitaria , Madrid, August 1983, in press. . . 13...rough land and seat3 J. The full wave approach was also used to determine the scattering and depolarization of radio waves in irregular spheroidal struc...Full Wave Solutions," Radio Science, Vol. 17, No. 5, September-October 1982, pp. 1055-1066. 4. "Scattering and Depolarization by Rough Surfaces: Full
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Hamiltonian Approach to Nonlinear Travelling Whistler Waves
Webb, G.M.; McKenzie, J.F.; Dubinin, E.; Sauer, K.
2005-08-01
A Hamiltonian formulation of nonlinear, parallel propagating, travelling whistler waves is discussed. The model is based on the equations of two-fluid electron-proton plasmas. In the cold gas limit, the complete system of equations reduces to two coupled differential equations for the transverse electron speed u and a phase variable {phi} = {phi}p - {phi}e representing the difference in the phases of the transverse complex velocities of the protons and the electrons. Two integrals of the equations are obtained. The Hamiltonian integral H, is used to classify the trajectories in the ({phi}, w) phase plane, where {phi} and w = u2 are the canonical coordinates. Periodic, oscillation solitary wave and compacton solutions are obtained, depending on the value of the Hamiltonian integral H and the Alfven Mach number M of the travelling wave. The individual electron and proton phase variables {phi}e and {phi}p are determined in terms of {phi} and w. An alternative Hamiltonian formulation in which {phi}-tilde = {phi}p + {phi}e is the new independent variable replacing x is used to write the travelling wave solutions parametrically in terms of {phi}-tilde.
Nonlinear ship waves and computational fluid dynamics.
Miyata, Hideaki; Orihara, Hideo; Sato, Yohei
2014-01-01
Research works undertaken in the first author's laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship's motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process.
Nonlinear density wave theory for the spiral structure of galaxies.
Kondoh, S; Teramoto, R; Yoshida, Z
2000-05-01
The theory of nonlinear waves for plasmas has been applied to the analysis of the density wave theory of galaxies which are many-body systems of gravity. A nonlinear Schrödinger equation has been derived by applying the reductive perturbation method on the fluid equations that describe the behavior of infinitesimally thin disk galaxies. Their spiral arms are characterized by a soliton and explained as a pattern of a propagating nonlinear density wave.
Nonlinear effects associated with oblique whistler waves in space plasmas
NASA Astrophysics Data System (ADS)
Sharma, R. P.; Nandal, P.; Yadav, N.; Uma, R.
2016-10-01
In the present work, we have examined the nonlinear interaction of pump whistler wave and low frequency kinetic Alfvén wave (KAW) in three regions viz., solar wind, earth's radiation belt, and magnetopause. The modification in the background density leads to the introduction of nonlinearity. The nonlinear ponderomotive force is responsible for this change in density. Low frequency kinetic Alfvén wave is excited by the nonlinear ponderomotive force of pump whistler wave. A set of dimensionless equations characterizing the dynamics of whistler wave and low frequency KAW perturbed by whistler wave were developed. The coupled equations were then simulated numerically. The nonlinear effects related with the whistler wave were studied. The resulting localized structures and the magnetic turbulent spectra in various regions have been investigated.
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
NASA Astrophysics Data System (ADS)
Pruell, Christoph; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, L. J.
2009-03-01
An experimental technique to characterize fatigue damage in metallic plates using nonlinear guided waves is presented. It is demonstrated that both phase and group velocity matching is essentially required for the practical generation of nonlinear guided elastic waves. The normalized acoustic nonlinearity of low cycle fatigue damaged aluminum specimens is measured with Lamb waves. A pair of wedge transducers is used to generate and detect the fundamental and second harmonic Lamb waves. The results show that the normalized acoustic nonlinearity measured with Lamb waves is directly related to fatigue damage in a fashion that is similar to the behavior of longitudinal and Rayleigh waves. This normalized acoustic nonlinearity is then compared with the measured cumulative plastic strain to confirm the direct relationship between these two parameters, and to reinforce the notion that Lamb waves can be used to quantitatively assess plasticity driven fatigue damage using established higher harmonic generation techniques.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
NASA Astrophysics Data System (ADS)
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang
2015-11-01
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400-800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<-5 dB and -10 dB. For RN samples, the maximum bandwidth for -5 dB and -10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400-800 for EM absorption is 1.5-2.0 mm, with maximum RL of between -28.9 and -68.4 dB, bandwidth of 6.7-13 GHz for RL<-5 dB and 3.2-6.2 GHz for RL<-10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400-800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers.
The momentum of an electromagnetic wave inside a dielectric
Testa, Massimo
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.
A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
Bou Matar, Olivier; Guerder, Pierre-Yves; Li, YiFeng; Vandewoestyne, Bart; Van Den Abeele, Koen
2012-05-01
A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.
Predicting Electromagnetic Signatures of Gravitational Wave Sources
NASA Astrophysics Data System (ADS)
D'Orazio, Daniel John
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.
Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis
NASA Astrophysics Data System (ADS)
Bahar, Ezekiel; Huang, Guorong; Lee, Bom Son
1995-05-01
Full wave solutions are derived for vertically and horizontally polarized waves diffusely scattered across an interface that is two-dimensionally rough separating two different propagating media. Since the normal to the rough surface is not restricted to the reference plane of incidence, the waves are depolarized upon scattering; and the single scattered radiation fields are expressed as integrals of a surface element transmission scattering matrix that also accounts for coupling between the vertically and horizontally polarized waves. The integrations are over the rough surface area as well as the complete two-dimensional wave spectra of the radiation fields. The full wave solutions satisfy the duality and reciprocity relationships in electromagnetic theory, and the surface element scattering matrix is invariant to coordinate transformations. It is shown that in the high-frequency limit the full wave solutions reduce to the physical optics solutions, while in the low-frequency limit (for small mean square heights and slopes) the full wave solutions reduce to Rice's (1951) small perturbation solutions. Thus, the full wave solution accounts for specular point scattering as well as diffuse, Bragg-type scattering in a unified, self-consistent manner. It is therefore not necessary to use hybrid, perturbation and physical optics approaches (based on two-scale models of composite surfaces with large and small roughness scales) to determine the like- and cross-polarized fields scattered across the rough surface.
Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping
Chen, Qiwen; Liu, Ting; Chen, Gang
2011-01-01
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes
Rousseau, O.; Yamada, M.; Miura, K.; Ogawa, S.; Otani, Y.
2014-02-07
We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Detection of Underground Tunnels with a Synchronized Electromagnetic Wave Gradiometer
2005-05-01
Active Auroral Research Program ( HAARP ). A synchronization receiver channel was added to the design so that the gradiometer receiver could be...testing electromagnetic systems with local or remote transmission sources. The HAARP transmitter has demonstrated the ability to modulate the...The HAARP program has studied several techniques for the detection of underground structures using ELF/VLF radio waves generated in the ionosphere. An
Gradient instabilities of electromagnetic waves in Hall thruster plasma
Tomilin, Dmitry
2013-04-15
This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.
Minimizing the Reflection of Electromagnetic Waves by Surface Impedance.
1986-07-01
Chen2’ and G. Crosta3 ,** Technical Summary Report #2942 July 1986 ABSTRACT In an empty halfspace a point source emits electromagnetic waves of fixed...are determined by means of the geometrical optics approximation. An optimization method is used to compute the surface impedance, which minimizes a...given function of the e.m. fields (e.g. the average energy density) at a given observation point . The properties of the functions to be minimized are
Electromagnetic waves in a model with Chern-Simons potential
NASA Astrophysics Data System (ADS)
Pis'mak, D. Yu.; Pis'mak, Yu. M.; Wegner, F. J.
2015-07-01
We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
2016-08-03
attenuated over time (again, we briefly discuss the relevant features in Supple- mental Material [41]). We now explore this nanopteronic waveform more...formation of genuinely traveling waves composed of a strongly-localized solitary wave on top of a small amplitude oscillatory tail. This type of wave...manipulat- ing highly nonlinear stress waves at will, including high wave attenuation and spontaneous formation of novel traveling waves after an impact
Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.
2015-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334
ERIC Educational Resources Information Center
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
A 3D printed electromagnetic nonlinear vibration energy harvester
NASA Astrophysics Data System (ADS)
Constantinou, P.; Roy, S.
2016-09-01
A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.
Johnson, Paul; Sutin, A.
2004-01-01
The nonlinear elastic response of materials (e.g., wave mixing, harmonic generation) is much more sensitive to the presence of damage than the linear response (e.g., wavespeed, dissipation). An overview of the four primary Nonlinear Elastic Wave Spectroscopy (NEWS) methods used in nonlinear damage detection are presented in this and the following paper. Those presented in this paper are Nonlinear Resonant Ultrasound Spectroscopy (NRUS), based on measurement of the nonlinear response of one or more resonant modes in a test sample, and Slow Dynamics Diagnostics (SDD), manifest by an alteration in the material dissipation and elastic modulus after application of relatively high-amplitude wave that slowly recovers in time.
NASA Astrophysics Data System (ADS)
Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui
2017-02-01
Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq<75°, nearly independent of wave normal angle ψ. In contrast, the upper pitch angle cutoff of nonlinear losses tends to increase with the wave normal angle increasing, which is about αeq=82° at ψ = 0° and αeq>87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.
Numerical solutions of nonlinear wave equations
Kouri, D.J.; Zhang, D.S.; Wei, G.W.; Konshak, T.; Hoffman, D.K.
1999-01-01
Accurate, stable numerical solutions of the (nonlinear) sine-Gordon equation are obtained with particular consideration of initial conditions that are exponentially close to the phase space homoclinic manifolds. Earlier local, grid-based numerical studies have encountered difficulties, including numerically induced chaos for such initial conditions. The present results are obtained using the recently reported distributed approximating functional method for calculating spatial derivatives to high accuracy and a simple, explicit method for the time evolution. The numerical solutions are chaos-free for the same conditions employed in previous work that encountered chaos. Moreover, stable results that are free of homoclinic-orbit crossing are obtained even when initial conditions are within 10{sup {minus}7} of the phase space separatrix value {pi}. It also is found that the present approach yields extremely accurate solutions for the Korteweg{endash}de Vries and nonlinear Schr{umlt o}dinger equations. Our results support Ablowitz and co-workers{close_quote} conjecture that ensuring high accuracy of spatial derivatives is more important than the use of symplectic time integration schemes for solving solitary wave equations. {copyright} {ital 1999} {ital The American Physical Society}
Planetary electromagnetic waves in the ionospheric E-layer
NASA Astrophysics Data System (ADS)
Kaladze, T. D.; Pokhotelov, O. A.; Sagdeev, R. Z.; Stenflo, L.; Shukla, P. K.
2003-04-01
The linear theory for the large-scale (λ>103km) electromagnetic (EM) waves in the middle-latitude ionospheric E-layer is developed. The general dispersion relation for these waves is derived. It is shown that the latitudinal inhomogeneity of the geomagnetic field and the angular velocity of the Earth's rotation can lead to the appearance of wave modes in the form of slow and fast EM planetary waves. The slow mode is produced by the dynamo electric field and it represents a generalization of the ordinary Rossby type waves in a rotating atmosphere when the Hall effect in the E-layer is included. The fast mode is a new mode, which is associated with the oscillations of the ionospheric electrons frozen in the geomagnetic field. It represents the variation of the vortical electric field and it arises solely due to the latitudinal gradient of the external magnetic field. The basic characteristics of the wave modes, such as the wavelength, the frequency and the Rayleigh friction, are estimated. Other types of waves, termed slow magnetohydrodynamic (MHD) waves, which are insensitive to the spatial inhomogeneity of the Coriolis and Ampére forces are also reviewed. It is shown that they appear as an admixture of slow Alfvén (SA) and whistler type waves. Such waves can generate variations in the magnetic field from a few tenth to a few hundreds nT. It is stressed that the basic features of the considered waves agree with the general properties of the magnetic perturbations observed at the world network of magnetic and ionospheric stations.
Evaluation of fatigue damage using nonlinear guided waves
NASA Astrophysics Data System (ADS)
Pruell, Christoph; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.
2009-03-01
This research develops an experimental procedure for characterizing fatigue damage in metallic plates using nonlinear guided waves. The work first considers the propagation of nonlinear waves in a dispersive medium and determines the theoretical and practical considerations for the generation of higher order harmonics in guided waves. By using results from the nonlinear optics literature, it is possible to demonstrate that both phase and group velocity matching are essential for the practical generation of nonlinear guided elastic waves. Next, the normalized acoustic nonlinearity of low cycle fatigue damaged aluminum specimens is measured with Lamb waves. A pair of wedge transducers is used to generate and detect the fundamental and second harmonic Lamb waves. The results show that the normalized acoustic nonlinearity measured with Lamb waves is directly related to fatigue damage in a fashion that is similar to the behavior of longitudinal and Rayleigh waves. This normalized acoustic nonlinearity is then compared with the measured cumulative plastic strain to confirm that these two parameters are related, and to reinforce the notion that Lamb waves can be used to quantitatively assess plasticity driven fatigue damage using established higher harmonic generation techniques.
Application of nonlinear wave modulation spectroscopy to discern material damage
Johnson, P.A.; Sutin, A.; Abeele, K.E.A. van den
1999-04-01
Materials containing structural damage have a far greater nonlinear elastic response than materials with no structural damage. This is the basis for nonlinear wave diagnostics of damage, methods which are remarkably sensitive to the detection and progression of damage in materials. Here the authors describe one nonlinear method, the application of harmonics and sum and difference frequency to discern damage in materials. The method is termed Nonlinear Wave Modulation Spectroscopy (NWMS). It consists of exciting a sample with continuous waves of two separate frequencies simultaneously, and inspecting the harmonics of the two waves, and their sum and difference frequencies (sidebands). Undamaged materials are essentially linear in their response to the two waves, while the same material, when damaged, becomes highly nonlinear, manifested by harmonics and sideband generation. The authors illustrate the method by experiments on uncracked and cracked plexiglass and sandstone samples, and by applying it to intact and damaged engine components.
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Matsumoto, H.; Omura, Y.
1993-12-01
Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.
Scenarios of nonlinear wave transformation in the coastal zone
NASA Astrophysics Data System (ADS)
Saprykina, Ya. V.; Kuznetsov, S. Yu.; Andreeva, N. K.; Shtremel, M. N.
2013-07-01
On the basis of field experiments and numerical modeling, we show that coastal zones are classifiable according to manifestations of wind wave nonlinearity, which herein is recognized as periodic energy exchange between the first and second nonlinear wave harmonics depending on the average bottom slope and the Iribarren and Ursell numbers. The results offer a basis for developing vulnerability criteria for the coastal zone taking into account its nonlinear dynamics.
On propagation of electromagnetic and gravitational waves in the expanding Universe
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.
2016-07-01
The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.
Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas
Ali, S.; Shukla, P.K.
2006-05-15
A new dispersion relation for low-frequency compressional electromagnetic waves is derived by employing quantum magnetohydrodynamic model and Maxwell equations in cold quantum dusty magnetoplasmas. The latter is composed of inertialess electrons, mobile ions, and immobile charged dust particulates. The dispersion relation for the low-frequency compressional electromagnetic modes is further analyzed for the waves propagating parallel, perpendicular, and oblique to the external magnetic field direction. It is found theoretically and numerically that the quantum parameter {alpha}{sub q}=(n{sub i0}/n{sub e0})({Dirac_h}/2{pi}){sup 2}/(4m{sub e}m{sub i}) affects the real angular frequencies and the phase speeds of the compressional electromagnetic modes. Here, n{sub i0} (n{sub e0}) is the equilibrium number density of the ions (electrons), m{sub e} (m{sub i}) is the electron (ion) mass, and ({Dirac_h}/2{pi}) is the Plank constant divided by 2{pi}.
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-06-23
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter {beta} when the nonlinearity distribution in the layer is a stochastic process.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Berchem, J.; Gendrin, R.
1985-01-01
The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.
ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS
Development of a Nonlinear Internal Wave Tactical Decision Aid
2016-06-07
Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...internal waves that can be used as the basis for a future Tactical Decision Aid . OBJECTIVES The principal objective is to establish a procedure and...of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
Acoustic field distribution of sawtooth wave with nonlinear SBE model
Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen
2015-10-28
For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Role of surface electromagnetic waves in metamaterial absorbers.
Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J
2016-03-21
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.
Massively Sub-wavelength Guiding of Electromagnetic Waves
Hooper, I. R.; Tremain, B.; Dockrey, J. A.; Hibbins, A. P.
2014-01-01
Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600th of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb) were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling super-sub-wavelength guiding and localisation of electromagnetic energy. PMID:25510662
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
The effect of nonlinear traveling waves on rotating machinery
NASA Astrophysics Data System (ADS)
Jauregui-Correa, Juan Carlos
2013-08-01
The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.
Book review: Nonlinear ocean waves and the inverse scattering transform
Geist, Eric L.
2011-01-01
Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts. Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.
Amplitude-dependent Lamb wave dispersion in nonlinear plates.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J
2016-08-01
The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching.
Superposed nonlinear waves in coherently coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Babu Mareeswaran, R.; Kanna, T.
2016-09-01
We study the dynamics of superposed nonlinear waves in coherently coupled Gross-Pitaevskii (CCGP) equations with constant (autonomous system) and time varying (non-autonomous system) nonlinearity coefficients. By employing a linear transformation, the autonomous CCGP system is converted into two separate scalar nonlinear Schrödinger equations and we show that linear superposition of different nonlinear wave solutions of these scalar equations results into several kinds of nonlinear coherent structures namely, coexisting rogue wave-Ma breather, Akhmediev-Ma breathers, collision and bound states of Ma breathers and solitons. Next, the non-autonomous CCGP system is converted into an autonomous CCGP system with a similarity transformation. We show an interesting possibility of soliton compression and appearance of creeping solitons for kink-like and periodically modulated nonlinearity coefficient.
Lagrangian averaging, nonlinear waves, and shock regularization
NASA Astrophysics Data System (ADS)
Bhat, Harish S.
In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity
NASA Astrophysics Data System (ADS)
Tchinang Tchameu, J. D.; Togueu Motcheyo, A. B.; Tchawoua, C.
2016-09-01
The discrete multi-rogue waves (DMRW) as solution of the discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearities is studied numerically. These biological rogue waves represent the complex probability amplitude of finding an amide-I vibrational quantum at a site. We observe that the growth in the higher order saturable nonlinearity implies the formation of DMRW including an increase in the short-living DMRW and a decrease in amplitude of the long-living DMRW.
Electromagnetic wave method for mapping subterranean earth formations
Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.
1977-01-01
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
NASA Astrophysics Data System (ADS)
Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.
Dispersion relations for electromagnetic wave propagation in chiral plasmas
Gao, M. X.; Guo, B. Peng, L.; Cai, X.
2014-11-15
The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
Zang, XiaoFei; Zhu, YiMing; Ji, XueBin; Chen, Lin; Hu, Qing; Zhuang, SongLin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas. PMID:28106115
Robust imaging with electromagnetic waves in noisy environments
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Garnier, Josselin
2016-10-01
We study imaging with an array of sensors that probes a medium with single frequency electromagnetic waves and records the scattered electric field. The medium is known and homogenous except for some small and penetrable inclusions. The goal of inversion is to locate and characterize these inclusions from the data collected by the array, which are corrupted by additive noise. We use results from random matrix theory to obtain a robust inversion method. We assess its performance with numerical simulations and quantify the benefit of measuring more than one component of the scattered electric field.
Nonlinear evolution of oblique waves on compressible shear layers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Spherical Wave Propagation in a Nonlinear Elastic Medium
Korneev, Valeri A.
2009-07-01
Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.
Nearly non-scattering electromagnetic wave set and its application
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Wang, Yuliang; Zhong, Shuhui
2017-04-01
For any inhomogeneous compactly supported electromagnetic (EM) medium, it is shown that there exists an infinite set of linearly independent EM waves which generate nearly vanishing scattered wave fields. If the inhomogeneous medium is coated with a layer of properly chosen conducting medium, then the wave set is generated from the Maxwell-Herglotz approximation to the interior perfectly electric conducting or perfectly magnetic conducting eigenfunctions and depends only on the shape of the inhomogeneous medium. If no such a conducting coating is used, then the wave set is generated from the Maxwell-Herglotz approximation to the generalised interior transmission eigenfunctions and depends on both the content and shape of the inhomogeneous medium. We characterise the nearly non-scattering wave sets in both cases with sharp estimates. The results can be used to give a conceptual design of a novel shadowless lamp. The crucial ingredient is to properly choose the source of the lamp so that nearly no shadow will be produced by surgeons operating under the lamp.
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
NASA Astrophysics Data System (ADS)
Wang, Dong; Chen, Yinhua; Wang, Ge
2008-02-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia ll 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia ll 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
NASA Astrophysics Data System (ADS)
Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian
2016-12-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).
Guided electromagnetic waves observed on a conducting ionospheric tether
NASA Astrophysics Data System (ADS)
James, H. G.; Balmain, K. G.
2001-01-01
On the up leg of its flight through the auroral nightside ionosphere to an apogee of 824 km, the tethered double payload Observations of Electric Field Distributions in the Ionospheric Plasma: A Unique Strategy (OEDIPUS) C was the site of experiments on wire-guided electromagnetic (EM) waves. Waves were transmitted from the upper subpayload to a receiver on the lower subpayload along a conducting wire aligned within a few degrees of the Earth's magnetic field. Such EM waves were observed at almost all frequencies in the range 0.1-8.0 MHz. There was a deep stop band between the cyclotron and upper hybrid resonance frequencies where the cold plasma theory predicts a propagation cutoff, and there were shallower attenuation bands at frequencies where hot-plasma electrostatic waves may affect the guided EM modes. Resonances of the wire-guided waves with the tether length were observed throughout the entire tethered portion of the flight. The resonances appear as a set of fringes when all the data are presented in a frequency-versus-time summary. The fringe shapes in this summary have been compared with the predictions of an early theory, which give generally good agreement. The exceptions are frequencies close to the stop band, where cold-plasma dispersion effects are expected to be greatest. Another theory based on a different derivation of the dispersion relation includes a vacuum sheath gap outside the conductor. The absolute fringe intensities and positions predicted agree moderately well with the observations.
Signatures of Nonlinear Waves in Coronal Plumes and Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
1999-01-01
In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons
NASA Astrophysics Data System (ADS)
Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia
2016-10-01
The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.
NASA Astrophysics Data System (ADS)
Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae
The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.
Nonlinear hyperbolic theory of thermal waves in metals
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Choi, S. H.
1975-01-01
A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.
Nonlinear Internal Wave Interaction in the China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.
1998-01-01
This project researched the nonlinear wave interactions in the East China Sea, and the South China Sea, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave interactions in the East China Sea, the area of the China Sea northeast of Taiwan, and the Yellow Sea is included.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan
2015-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue.
Lv, Hualiang; Guo, Yuhang; Wu, Guanglei; Ji, Guangbin; Zhao, Yue; Xu, Zhichuan J
2017-02-15
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.
On the cubic zero-order solution of electromagnetic waves. I. Periodic slabs with lossy plasmas
Lee, Hyoung-In; Mok, Jinsik
2010-07-15
Electromagnetic waves are considered for periodic structures consisting of lossy plasmonic components and dielectric host media. For the plasmonic components, not only low-loss metals but also high-loss gas plasmas are taken into consideration. For small filling fractions of the plasmonic components, the intercell interactions are kept to a minimum. In this way, the zero-order solution to the dispersion relation is solved by focusing on its cubic nonlinearity in frequency. Analysis shows that there are two types of solutions: propagating waves and stationary states, depending on the magnitudes of the temporal attenuation rates. Depending on the relative strengths of the material loss of the plasmonic component and its filling fraction, several key critical parameters for the transitions between these two solution types are thus identified. In the following companion paper of Paper II, the cubic nonlinearities in frequency of the dispersion relations stem from different origins. Notwithstanding, they lead to strikingly similar features such as the transitions in wave types and Hopf bifurcations.
Electromagnetic ion cyclotron waves in the inner magnetosphere with a losscone proton distribution
NASA Astrophysics Data System (ADS)
Singh, Satyavir; Omura, Yoshiharu
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves are studied in the inner magnetospheric plasma. The plasma is assumed to have five components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot protons are assumed to have an anisotropic losscone distribution particle distribution. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The hot plasma dispersion relation and polarizations of EMIC waves in oblique propagation are very complex. Although we find that nonlinear wave growth process is dominant near the equatorial region generating EMIC rising tone emissions, the propagation characteristics of the emissions such as linear growth/damping rates, variation of polarizations, and Poynting vectors in the presence of energetic protons have not been studied quantitatively.The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.
Measuring acoustic nonlinearity parameter using collinear wave mixing
NASA Astrophysics Data System (ADS)
Liu, Minghe; Tang, Guangxin; Jacobs, Laurence J.; Qu, Jianmin
2012-07-01
This study introduces a new acoustic nonlinearity parameter βT. It is shown that βT is associated with the interaction between a longitudinal wave and a shear wave in isotropic elastic solids with quadratic nonlinearity. Experimental measurements are conducted to demonstrate that the collinear wave mixing technique is capable of measuring βT nondestructively. Further, it is shown that βT is well-correlated with the plastic deformation in Al-6061 alloys. These results indicate that collinear wave mixing is a promising method for nondestructive assessment of plastic deformation, and possibly, fatigue damage in metallic materials.
Late-time attractor for the cubic nonlinear wave equation
Szpak, Nikodem
2010-08-15
We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.
NASA Astrophysics Data System (ADS)
Luo, Ma
, is simulated by the spectral element method. The vector Helmholtz equations of multiple frequencies are solved in parallel and the consistence solution with nonlinear effect is obtained by iterative solver. The sensitivity of the second harmonic generation to the thickness of each layer can be calculated by taking the analytical differential of the equation to the thickness of each element. The quantum dot dynamics in semiconductor are described by the Maxwell-Bloch equations. The frequency domain Maxwell-Bloch equations are deduced. The spectral element method is used to solve these equations to inspect the steady state quantum dot dynamic behaviors under the continuous wave electromagnetic excitation. For time domain simulation, the first order curl equations in Maxwell equations are the basic equations. A spectral element method based on brick element is implemented to simulate a nano-structure consisting of woodpile photonic crystal. The resonance of a micro-cavity consisting of a point defect in the woodpile photonic crystal block is simulated. In addition, the time domain Maxwell-Bloch equations are implemented in the solver. The spontaneous emission process of quantum dot in the micro-cavity is inspected. Another effort is to implement the Maxwell-Bloch equations in a previously implemented domain decomposition spectral element/finite element time domain solver. The solver can handle unstructured mesh, which can simulate complicated structure. The time dependent dynamics of a quantum dot in the middle of a nano-sphere are investigated by this implementation. The population inversion under continuous and pulse excitation is investigated. (Abstract shortened by UMI.)
Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.
1983-06-01
AD-A129 282 NONLINEAR SCATTERING OF ACOUSTIC WAVES BY VIBRATING OBSTACLES (U) NAVAL RESEARCH LAR WASHINOTON DC d C PIQUETTE 01 JUN 83 NRL-MR-5077...MICROCOPY RESOLUTION TEST CHART NAIOAL IBtJ[IAU Of S1ANDARD~If A3 NRL Memorandum Report 5077 Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles ... Obstacles continuing problem. S. PERFORMING ORG. REPORT NUMMER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIISER( ) Jean C. Piquette* S. PERFORMING
Some problems of nonlinear waves in solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Culick, F. E. C.
1979-01-01
An approximate technique for analyzing nonlinear waves in solid propellant rocket motors is presented which inexpensively provides accurate results up to amplitudes of ten percent. The connection with linear stability analysis is shown. The method is extended to third order in the amplitude of wave motion in order to study nonlinear stability, or triggering. Application of the approximate method to the behavior of pulses is described.
Zero-group-velocity propagation of electromagnetic wave through nanomaterial
NASA Astrophysics Data System (ADS)
Fan, Taian
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10-6 m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3x108 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
Simulation of the nonlinear evolution of electron plasma waves
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Cairns, I. H.
1991-01-01
Electrostatic waves driven by an electron beam in an ambient magnetized plasma were studied using a quasi-1D PIC simulation of electron plasma waves (i.e., Langmuir waves). The results disclose the presence of a process for moving wave energy from frequencies and wavenumbers predicted by linear theory to the Langmuir-like frequencies during saturation of the instability. A decay process for producing backward propagating Langmuir-like waves, along with low-frequency waves, is observed. The simulation results, however, indicate that the backscattering process is not the conventional Langmuir wave decay. Electrostatic waves near multiples of the electron plasma frequency are generated by wave-wave coupling during the nonlinear stage of the simulations, confirming the suggestion of Klimas (1983).
Instabilities in nonlinear internal waves on the Washington continental shelf
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Alford, Matthew H.
2015-07-01
Previous studies have identified two primary mechanisms (shear instability and convective instability) by which nonlinear internal waves (NLIWs) induce mixing on continental shelves. To determine the relative importance of these and their dependence on background flow conditions, we examine a much longer (6 month) data set from a moored ADCP/thermistor chain with 2 m vertical spacing in which over 600 NLIWs are detected. Turbulent properties of the 318 waves with detectable overturning instabilities are documented using Thorpe scales. The 130 waves detected while an ADCP was functioning are classified based on a Froude number criterion (Fr =
Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves
Johnston, T. W.; Tyshetskiy, Y.; Ghizzo, A.; Bertrand, P.
2009-04-15
Driving a one-dimensional collisionless Maxwellian (Vlasov) plasma with a sufficiently strong longitudinal ponderomotive driver for a sufficiently long time results in a self-sustaining nonsinusoidal wave train with well-trapped electrons even for frequencies well below the plasma frequency, i.e., in the plasma wave spectral gap. Typical phase velocities of these waves are somewhat above the electron thermal velocity. This new nonlinear wave is being termed a kinetic electrostatic electron nonlinear (KEEN) wave. The drive duration must exceed the bounce period {tau}{sub B} of the trapped electrons subject to the drive, as calculated from the drive force and the linear plasma response to the drive. For a given wavenumber a wide range of KEEN wave frequencies can be readily excited. The basic KEEN structure is essentially kinetic, with the trapped electron density variation being almost completely shielded by the free electrons, leaving just enough net charge to support the wave.
Resonant-test-field model of fluctuating nonlinear waves
NASA Astrophysics Data System (ADS)
West, Bruce J.
1982-03-01
A Hamiltonian system of nonlinear dispersive waves is used as a basis for generalizing the test-wave model to a set of resonantly interacting waves. The resonant test field (RTF) is shown to obey a nonlinear generalized Langevin equation in general. In the Markov limit a Fokker-Planck equation is obtained and the exact steady-state solution is determined. An algebraic expression for the power spectral density is obtained in terms of the number of resonantly interacting waves (n) in the RTF, the interaction strength (Vk), and the dimensionality of the wave field (d). For gravity waves on the ocean surface a k-4 spectrum is obtained, and for capillary waves a k-8 spectrum, both of which are in essential agreement with data.
Nonlinear upper hybrid waves and the induced density irregularities
Kuo, Spencer P.
2015-08-15
Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.
Nonlinear electron acoustic waves in presence of shear magnetic field
Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks
Wright, J.C.; Bonoli, P. T.; Brambilla, M.; D'Azevedo, E.; Berry, L.A.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Phillips, C.K.; Okuda, H.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Smithe, D.N.
2005-09-26
The most common method for treating wave propagation in tokamaks in the lower hybrid range of frequencies (LHRF) has been toroidal ray tracing, owing to the short wavelengths (relative to the system size) found in this regime. Although this technique provides an accurate description of 2D and 3D plasma inhomogeneity effects on wave propagation, the approach neglects important effects related to focusing, diffraction, and finite extent of the RF launcher. Also, the method breaks down at plasma cutoffs and caustics. Recent adaptation of full-wave electromagnetic field solvers to massively parallel computers has made it possible to accurately resolve wave phenomena in the LHRF. One such solver, the TORIC code, has been modified to simulate LH waves by implementing boundary conditions appropriate for coupling the fast electromagnetic and the slow electrostatic waves in the LHRF. In this frequency regime the plasma conductivity operator can be formulated in the limits of unmagnetized ions and strongly magnetized electrons, resulting in a relatively simple and explicit form. Simulations have been done for parameters typical of the planned LHRF experiments on Alcator C-Mod, demonstrating fully resolved fast and slow LH wave fields using a Maxwellian non-relativistic plasma dielectric. Significant spectral broadening of the injected wave spectrum and focusing of the wave fields have been found, especially at caustic surfaces. Comparisons with toroidal ray tracing have also been done and differences between the approaches have been found, especially for cases where wave caustics form. The possible role of this diffraction-induced spectral broadening in filling the spectral gap in LH heating and current drive will be discussed.
Frequency dependent power and energy flux density equations of the electromagnetic wave
NASA Astrophysics Data System (ADS)
Muhibbullah, M.; Haleem, Ashraf M. Abdel; Ikuma, Yasuro
The calculation of the power and energy of the electromagnetic wave is important for numerous applications. There are some equations to compute the power and energy density of the electromagnetic wave radiation. For instance, the Poynting vector is frequently used to calculate the power density. However those including the Poynting vector are not perfect to represent the actual values because the equations are frequency independent. In the present study we have derived the frequency-dependent equations to calculate the power and energy flux density of the electromagnetic wave by help of the classical electromagnetic theories. It is seems that the Poynting vector with a certain electric and magnetic fields is correct only for a specific frequency. However our equations are perfect to calculate the values of the power and energy flux density for all frequencies of the electromagnetic radiation. The equations may help to develop the applications of the electromagnetic wave radiation.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
NASA Astrophysics Data System (ADS)
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
Yu, X.; Hsu, T.-J.; Hanes, D.M.
2010-01-01
Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Kojima, H.; Matsumoto, H.; Omura, Y.; Tsurutani, B. T.
1989-01-01
An ion beam resonates with R-mode waves at a high-frequency RH mode and a low-frequency RL mode. The nonlinear evolution of ion beam-generated RH waves is studied here by one-dimensional hybrid computer experiments. Both wave-particle and subsequent wave-wave interactions are examined. The competing process among coexisting RH and RL mode beam instabilities and repeated decay instabilities triggered by the beam-excited RH mode waves is clarified. It is found that the quenching of the RH instability is not caused by a thermal spreading of the ion beam, but by the nonlinear wave-wave coupling process. The growing RH waves become unstable against the decay instability. This instability involves a backward-traveling RH electromagnetic wave and a forward-traveling longitudinal sound wave. The inverse cascading process is found to occur faster than the growth of the RL mode. Wave spectra decaying from the RH waves weaken as time elapses and the RL mode waves become dominant at the end of the computer experiment.
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
NASA Astrophysics Data System (ADS)
Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man
2016-10-01
We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.
Nonlinear standing waves on a periodic array of circular cylinders.
Yuan, Lijun; Lu, Ya Yan
2015-08-10
A periodic array of parallel and infinitely long dielectric circular cylinders surrounded by air can be regarded as a simple two-dimensional periodic waveguide. For linear cylinders, guided modes exist continuously below the lightline in various frequency intervals, but standing waves, which are special guided modes with a zero Bloch wavenumber, could exist above the lightline at a discrete set of frequencies. In this paper, we consider a periodic array of nonlinear circular cylinders with a Kerr nonlinearity, and show numerically that nonlinear standing waves exist continuously with the frequency and their amplitudes depend on the frequency. The amplitude-frequency relations are further investigated in a perturbation analysis.
Hamiltonian theory of nonlinear waves in planetary rings
NASA Technical Reports Server (NTRS)
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
A numerical formulation for nonlinear ultrasonic waves propagation in fluids.
Vanhille, C; Campos-Pozuelo, C
2004-08-01
A finite-difference algorithm is developed for analysing the nonlinear propagation of pulsed and harmonic ultrasonic waves in fluid media. The time domain model allows simulations from linear to strongly nonlinear plane waves including weak shock. Effects of absorption are included. All the harmonic components are obtained from only one solving process. The evolution of any original signal can be analysed. The nonlinear solution is obtained by the implicit scheme via a fast linear solver. The numerical model is validated by comparison to analytical data. Numerical experiments are presented and commented. The effect of the initial pulse shape on the evolution of the pressure waveform is especially analysed.
Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves
NASA Astrophysics Data System (ADS)
Denton, R. E.
2015-12-01
We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-06-08
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
A note on random excitation of nonlinear Faraday waves
NASA Astrophysics Data System (ADS)
Miles, John
2004-06-01
The evolution equations for weakly nonlinear Faraday waves in a cylinder that is subjected to a narrow-band, random acceleration are constructed and shown to be isomorphic to Repetto and Galletta's ["Finite amplitude Faraday waves induced by random forcing," Phys. Fluids 14, 4284 (2002)] results for the two-dimensional problem, which, therefore, are applicable to laboratory experiments in circular cylinders.
Exact Nonlinear Internal Equatorial Waves in the f-plane
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping.
Linear and nonlinear propagation of water wave groups
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery
Loznikov, V. M. Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A.
2013-10-15
The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained
Nonlinear spin-wave excitations at low magnetic bias fields
Bauer, Hans G.; Majchrak, Peter; Kachel, Torsten; Back, Christian H.; Woltersdorf, Georg
2015-01-01
Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. Here we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behaviour in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. PMID:26374256
Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N
2013-07-01
The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves
Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin
2008-09-07
The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.
Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.
2009-01-21
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Frequency spectra of nonlinear elastic pulse-mode waves
Kadish, A.; TenCate, J.A.; Johnson, P.A.
1996-09-01
The frequency spectrum of simple waves is used to derive a closed form analytical representation for the frequency spectrum of damped nonlinear pulses in elastic materials. The damping modification of simple wave theory provides an efficient numerical method for calculating propagating wave forms. The spectral representation, which is neither pulse length nor amplitude limited, is used to obtain estimates for parameters of the nonlinear state relation for a sandstone sample from published experimental data, and the results are compared with those of other theories. The method should have broad application to many solids.
Nonlinear ring waves in a two-layer fluid
NASA Astrophysics Data System (ADS)
Khusnutdinova, Karima R.; Zhang, Xizheng
2016-10-01
Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are modelled numerically, within the framework of the recently derived 2 + 1-dimensional cKdV-type equation. In a case study, we consider concentric waves from a localised initial condition and waves in a 2D version of the dam-break problem, as well as discussing the effect of a piecewise-constant shear flow. The modelling shows, in particular, the formation of 2D dispersive shock waves and oscillatory wave trains.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Nonlinear waves described by the generalized Swift-Hohenberg equation
NASA Astrophysics Data System (ADS)
Ryabov, P. N.; Kudryashov, N. A.
2017-01-01
We study the wave processes described by the generalized Swift-Hohenberg equation. We show that the traveling wave reduction of this equation does not pass the Kovalevskaya test. Some solitary wave solutions and kink solutions of the generalized Swift-Hohenberg equation are found. We use the pseudo-spectral algorithm to perform the numerical simulation of the wave processes described by the mixed boundary value problem for the generalized Swift-Hohenberg equation. This algorithm was tested on the obtained solutions. Some features of the nonlinear waves evolution described by the generalized Swift-Hohenberg equation are studied.
Electromagnetic plasma wave emissions from the auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1977-01-01
The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.
Identifying Electromagnetic Counterparts to Gravitational Wave Triggers With DECam
NASA Astrophysics Data System (ADS)
Cowperthwaite, Philip
2016-03-01
Identifying the electromagnetic counterpart to a gravitational wave (GW) event is one of the great observational challenges in modern astronomy. We report on our work to overcome this challenge by investigating the theoretical and practical issues associated with optical follow-up of a GW event. This includes a systematic study of the potential contaminant population and their impact on counterpart detectability in simulated observations. Additionally, we utilize data taken with the Dark Energy Camera (DECam) on the Blanco 4-m telescope at CTIO. These data serve as a mock follow-up to a GW event and assist in the characterization of contamination not captured in simulations. P.S.C. is grateful for support provided by the NSF through the Graduate Research Fellowship Program, Grant DGE1144152.
Heating of the plasma sheet by broadband electromagnetic waves
NASA Astrophysics Data System (ADS)
Chaston, C. C.; Bonnell, J. W.; Salem, C.
2014-12-01
We demonstrate that broadband low-frequency electromagnetic field fluctuations embedded within fast flows throughout the Earth's plasma sheet may drive significant ion heating. This heating is nearly entirely in the direction perpendicular to the background magnetic field and is estimated to occur at an average rate of ~1 eV/s with rates in excess of 10 eV/s within one standard deviation of the average value over all observed events. For an Earthward flow the total change in temperature along a flow path may exceed one keV and for "wave-rich" flows can be comparable to that expected due to conservation of the first adiabatic invariant. The consequent increase in plasma pressure and flux tube entropy may lead to braking of inward motion and the suppression of plasma interchange.
Searches for electromagnetic signatures of gravitational wave sources
NASA Astrophysics Data System (ADS)
Soares-Santos, Marcelle
2017-01-01
Motivated by the exciting prospect of new wealth of information that will arise from observations of gravitational and electromagnetic radiation from the same astrophysical phenomena, our community has performed a broad range of follow-up programs for LIGO/Virgo events. In this talk, I present an overview of this effort, including results of searches for signatures of the first two LIGO-triggered binary black hole mergers in the 2015-2016 observing campaign, when multiple facilities reported searches in gamma/X-rays, optical, infra-red, and radio wavelengths. I will also discuss plans for upcoming observing campaigns and long term prospects for this exciting emerging field: multi-messenger astrophysics with gravitational waves.
Goos-Hänchen shift in a standing-wave-coupled electromagnetically-induced-transparency medium
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Jun; Wang, Hai-Hua; Liang, Zhi-Peng; Xu, Yan; Fan, Cun-Bo; Liu, Cheng-Zhi; Gao, Jin-Yue
2015-03-01
The Goos-Hänchen shift of the system composed by two cavity walls and an intracavity atomic sample is presented. The atomic sample is treated as a four-level double-Λ system, driven by the two counterpropagating coupling fields. The probe field experiences the discontinuous refractive index variation and is reflected. Moreover, under the phase-matching condition, the four-wave mixing effect based on electromagnetically induced transparency can cause effective reflection. The Goos-Hänchen shifts appear in both situations and are carefully investigated in this article. We refer to the first one with the incident and reflected light having identical wavelength as the linear Goos-Hänchen shift, and the second one with the reflection wavelength determined by the phase-matching condition as the nonlinear Goos-Hänchen shift. The differences between the two kinds of shifts, such as the incident angle range, conditions for the shift peaks, and controllability, are discussed.
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Nonlinear mixing of laser generated narrowband Rayleigh surface waves
NASA Astrophysics Data System (ADS)
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Sideband growth in nonlinear Landau wave-particle interaction.
NASA Technical Reports Server (NTRS)
Brinca, A. L.
1972-01-01
The distortion of the electron velocity distribution caused by a large amplitude Landau wave is determined analytically for the initial-value problem. The resulting stability of electrostatic perturbations impressed on the evolving plasma is studied. Narrow sidebands of the applied frequency experience consecutive growths of large magnitude during the early stages of the nonlinear wave-particle interaction. The significance of the derived results to both wave propagation experiments and triggered VLF emissions in the magnetosphere is discussed.
Singular Perturbation Methods for Nonlinear Dynamical Systems and Waves
1992-07-01
Korteweg -de Vries equation [10] 2. Structure of two-dimensional diffusive shock waves [1] In addition, preliminary work began on two problems: 1...oscillatory waves. 3. Korteweg -de Vries equation . In [41 these ideas were applied to oscillatory single-phase solutions of the Korteweg -de Vries (KdV...nonlinear oscillatory waves of the Korteweg - deVries type, Stud. Appl. Math., 78 (1988), pp. 73-90. [5] F. J. Bourland and R. Haberman, The slowly varying
Nonlinear wave interaction problems in the three-dimensional case
NASA Astrophysics Data System (ADS)
Curró, C.; Manganaro, N.; Pavlov, M. V.
2017-01-01
Three-dimensional nonlinear wave interactions have been analytically described. The procedure under interest can be applied to three-dimensional quasilinear systems of first order, whose hydrodynamic reductions are homogeneous semi-Hamiltonian hydrodynamic type systems (i.e. possess diagonal form and infinitely many conservation laws). The interaction of N waves was studied. In particular we prove that they behave like simple waves and they distort after the collision region. The amount of the distortion can be analytically computed.
Nonlinear evolution of oblique whistler waves in radiation belts
NASA Astrophysics Data System (ADS)
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
Nonlinear waves in PT -symmetric systems
NASA Astrophysics Data System (ADS)
Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.
2016-07-01
Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
Nonlinear electron magnetohydrodynamics physics. II. Wave propagation and wave-wave interactions
Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.
2008-04-15
The propagation of low-frequency whistler modes with wave magnetic field exceeding the ambient field is investigated experimentally. Such nonlinear waves are excited with magnetic loop antennas whose axial field is aligned with the background magnetic field and greatly exceeds its strength. The oscillatory antenna field excites propagating wave packets with field topologies alternating between whistler spheromaks and mirrors. The propagation speed of spheromaks is observed to decrease with amplitude while that of mirrors increases with amplitude. The field distribution varies with amplitude: Spheromaks contract axially while mirrors spread out compared to linear whistlers. Consequently, the peak magnetic field and current densities in spheromaks exceed that of mirrors. Wave-wave interactions of nonlinear whistler modes is also studied. Counterpropagating spheromaks collide inelastically and form a stationary field-reversed configuration. The radius of the toroidal current ring depends on current and can be larger than that of the loop antenna. A tilted field-reversed configuration precesses in the direction of the electron drift. The free magnetic energy is dissipated in the plasma volume and converted into electron heat.
Localized Nonlinear Waves in Systems with Time- and Space-Modulated Nonlinearities
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Konotop, Vladimir V.
2008-04-25
Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schroedinger equations with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general theory and use it to calculate explicitly nontrivial solutions such as periodic (breathers), resonant, or quasiperiodically oscillating solitons. Some implications to the field of matter waves are also discussed.
Xie, Xi-Yang; Tian, Bo Wang, Yu-Feng; Sun, Ya; Jiang, Yan
2015-11-15
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.
Application of electromagnetic waves in damage detection of concrete structures
NASA Astrophysics Data System (ADS)
Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.
2000-04-01
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.
Serov, A.V.
1995-12-31
The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.
Nonlinear Dispersive ALFVÉN Waves in Magnetoplasmas
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Eliasson, B.; Stenflo, L.; Bingham, R.
2008-03-01
Large amplitude Alfvén waves are frequently found in magnetized space and laboratory plasmas. Our objective here is to discuss the linear and nonlinear properties of dispersive Alfvén waves (DAWs) in a uniform magnetoplasma. We first consider the effects of finite frequency (ω/ωci) and ion gyroradius on inertial and kinetic Alfvén waves, where ωci is the ion gyrofrequency. Next, we focus on nonlinear effects caused by the dispersive Alfvén waves. Such effects include the plasma density enhancement and depression by the Alfvén wave ponderomotive force, nonlinear interactions among the DAWs, the generation of zonal flows by the DAWs, as well as the electron and ion heating due to wave-particle interactions. The relevance of our investigation to the appearance of nonlinear dispersive Alfvén waves in the Earth's auroral acceleration region, in the solar corona, and in the Large Plasma Device (LAPD) at UCLA is discussed.
Nonlinear dynamics of trapped waves on jet currents and rogue waves.
Shrira, V I; Slunyaev, A V
2014-04-01
Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and numerically. For wave fields narrow band in frequency but not necessarily with narrow angular distributions the developed asymptotic weakly nonlinear theory based on the modal approach of Shrira and Slunyaev [J. Fluid. Mech. 738, 65 (2014)] leads to the one-dimensional modified nonlinear Schrödinger equation of self-focusing type for a single mode. Its solutions such as envelope solitons and breathers are considered to be prototypes of rogue waves; these solutions, in contrast to waves in the absence of currents, are robust with respect to transverse perturbations, which suggests a potentially higher probability of rogue waves. Robustness of the long-lived analytical solutions describing modulated trapped waves and solitary wave groups is verified by direct numerical simulations of potential Euler equations.
An Efficient Vector Finite Element Method for Nonlinear Electromagnetic Modeling
Fisher, A C; White, D A; Rodrigue, G H
2006-06-27
We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with a nonlinear polarization term. The method allows for discretization of complicated geometries with arbitrary order representations of the B and E fields. In this paper we will describe the method and a series of optimizations that significantly reduce the computational cost. Additionally, a series of test simulations will be presented to validate the method. Finally, a nonlinear waveguide mode mixing example is presented and discussed.
Erokhin, N. S. Zakharov, V. E.; Zol’nikova, N. N.; Mikhailovskaya, L. A.
2015-02-15
Different variants of resonance tunneling of a transverse electromagnetic wave through a plasma layer containing short-scale (subwavelength) inhomogeneities, including evanescence regions to which approximate methods are inapplicable, are analyzed in the framework of an exactly solvable one-dimensional model. Complex plasma density profiles described by a number of free parameters determining the permittivity modulation depth, the characteristic scale lengths of plasma structures, their number, and the thickness of the inhomogeneous plasma layer are considered. It is demonstrated that reflection-free propagation of the wave incident on the layer from vacuum (the effect of wave-barrier transillumination) can be achieved for various sets of such structures, including plasma density profiles containing a stochastic component. Taking into account cubic nonlinearity, it is also possible to obtain an exact solution to the one-dimensional problem on the nonlinear transillumination of nonuniform plasma. In this case, the thicknesses of the evanescence regions decrease appreciably. The problem of resonance tunneling of electromagnetic waves through such barriers is of interest for a number of practical applications.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
NASA Astrophysics Data System (ADS)
Li, Ke; Liu, Wenxin; Wang, Yong; Cao, Miaomiao
2015-04-01
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
Li, Ke Cao, Miaomiao; Liu, Wenxin Wang, Yong
2015-04-15
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.
Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K
2007-01-01
The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.
Prospect of Nonlinear Freak Tsunami Waves from Stochastic Earthquake Sources
NASA Astrophysics Data System (ADS)
Geist, E. L.
2014-12-01
The prospect of freak (or rogue) tsunami edge waves from continental subduction zone earthquakes is examined. Although the hydrodynamics that govern tsunamis are formulated from the shallow-water wave equations, the dispersion relation for edge waves is similar to that for deep-water waves. As a result, freak waves can result from many of the same mechanisms as for deep-water waves: spatial focusing, dispersive (temporal) focusing, modulation instability, and mode coupling from resonant interaction. The focus of this study is on determining the likelihood of freak edge waves from the two nonlinear mechanisms: modulation instability and mode coupling. The initial conditions are provided by coseismic vertical displacement from a subduction thrust earthquake. A two-dimensional stochastic slip model is used to generate a range of coseismic displacement realizations. The slip model is defined by a power-law wavenumber spectrum and Lévy-law distributed random variables. Tsunami edge waves produced by this source model have a broader spectrum with energy distributed across many more modes compared to edge waves derived from the simplified earthquake sources used in the past. To characterize modulation instability, methods developed for a random sea are modified for seismogenic edge waves. The Benjamin-Feir parameter constrains how many unstable wave packets are possible in a time series of finite length. In addition, because seismogenic tsunami edge wave energy is distributed across a number of modes, nonlinear mode coupling can result both in the collinear case and in the counter-propagating case where edge waves are reflected by coastline irregularities. Mode coupling results in the appearance of a third edge wave mode that can greatly increase the variability in wave heights. Determination of possible freak tsunami edge waves is important for assessing the tsunami hazard at longshore locations distant from the rupture zone of continental subduction zone earthquakes.
Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves
Chan, A.A.; Chen, Liu; White, R.B.
1989-09-01
In order to study nonlinear wave-particle interactions in the earth's magnetosphere we have derived Hamiltonian equations for the gyrophase-averaged nonrealistic motion of charged particles in a perturbed dipole magnetic field. We assume low frequency (less than the proton gyrofrequency) fully electromagnetic perturbations, and we retain finite Larmor radius effects. Analytic and numerical results for the stochastic threshold of energetic protons ({approx gt} 100 keV) in compressional geomagnetic pulsations in the Pc 5 range of frequencies (150--600 seconds) are presented. These protons undergo a drift-bounce resonance with the Pc 5 waves which breaks the second (longitudinal) and third (flux) adiabatic invariants, while the first invariant (the magnetic moment) and the proton energy are approximately conserved. The proton motion in the observed spectrum of waves is found to be strongly diffusive, due to the overlap of neighboring primary resonances. 17 refs., 2 figs.
Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia
NASA Astrophysics Data System (ADS)
Jung, P.; Cornell-Bell, A. H.
Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.
Shoaling of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.
2008-01-01
The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
On the Cauchy problem for strongly nonlinear intense wave groups
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey
2015-04-01
Stable long-living nonlinear groups of gravity water waves (very steep and very short envelope solitons) were first observed in numerical simulations [1, 2] and then - in laboratory conditions [3]. In [2] their interaction was shown to be almost elastic in some (but not all) situations. Therefore the Cauchy problem for localized wave groups beyond the weakly nonlinear assumption is of interest. In general, the formation of a few solitary wave groups from the initial condition may take place [4]. We have focused on the unidentified reason, why some experimental tests of solitary wave groups in [3] were not successful (while other runs with slightly different experimental parameters were successful). In this paper we consider the initial problem, when the initial condition is taken in the form of a scaled intense envelope soliton of the nonlinear Schrodinger equation, and is simulated by means of the fully nonlinear code of potential Euler equations. The result of the long-term evolution (which is generally represented by a solitary wave group and smaller scale waves) is compared with the prediction of the weakly nonlinear theory. We show reasonable agreement between the weakly nonlinear theory and the strongly nonlinear simulations. In particular, a 10% decrease of the initial perturbation results in 20% smaller amplitude of the eventual envelope soliton. This fact explains the failure of reproduction of envelope solitons in some experimental tests in the finite-depth flume [3]. The solution of the nonlinear Schrodinger equation for finite-depth water may be transformed to the infinite-depth solution with reduced amplitude. [1] A.I. Dyachenko, V.E. Zakharov, On the formation of freak waves on the surface of deep water. J. Exp. Theor. Phys. Lett. 88, 307-311 (2008). [2] A.V. Slunyaev, Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676-686 (2009). [3] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and
Emergent geometries and nonlinear-wave dynamics in photon fluids
Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.
2016-01-01
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level. PMID:27001128
Numerical simulation of nonlinear development of instability waves
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1989-01-01
The nonlinear interactions of high amplitude instability waves in turbulent jets are described. In plane shear layers Riley and Metcalf (1980) and Monkewitz (1987) have shown that these interactions are dependent, among other parameters, on the phase-difference between the two instability waves. Therefore, here researchers consider the nonlinear development of both the amplitudes and the phase of the instability waves. The development of these waves are also coupled with the development of the mean flow and the background turbulence. In formulating this model it is assumed that each of the flow components can be characterized by conservation equations supplemented by closure models. Results for the interactions between the two instability waves under high-amplitude forcing at fundamental and subharmonic frequencies are presented here. Qualitative agreements are found between the present predictions and available experimental data.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Nonlinear run-ups of regular waves on sloping structures
NASA Astrophysics Data System (ADS)
Hsu, T.-W.; Liang, S.-J.; Young, B.-D.; Ou, S.-H.
2012-12-01
For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.
Self-similar rogue waves and nonlinear tunneling effects in inhomogeneous nonlinear fiber optics
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhu, Yu-Jie; Jiang, Dong-Yang
2016-04-01
Analytical first- and second-order rogue wave solutions of the inhomogeneous modified nonlinear Schrödinger equation are presented by using similarity transformation. Then, by the proper choices of the inhomogeneous coefficients and free parameters, the controllable behaviors of the optical rogue waves are graphically discussed in the nonlinear fiber optics context. It is found that the width of the rogue wave can be tuned by adjusting the parameter ? and the locations of the rogue waves are linearly controlled by the parameter ?. The intensities of the rogue waves are influenced by the inhomogeneous linear gain/loss coefficient ? and parameter ?. The dispersion management function ? has effects on the periods and trajectories of the rogue waves and can induce maintenance (or annihilation) along ? direction. Interestingly, the composite rogue waves are revealed, the location of which is manipulated through changing the dispersion management function ?. Additionally, the nonlinear tunneling of those rogue waves is investigated as they propagate through a dispersion barrier (or well) and nonlinear barrier (or well).
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
Sorokin, Leonid V.
2009-04-27
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
Mass, momentum, and energy flux conservation for nonlinear wave-wave interaction
NASA Astrophysics Data System (ADS)
Liu, Zhen; Lin, Zhiliang; Tao, Longbin
2016-12-01
A fully nonlinear solution for bi-chromatic progressive waves in water of finite depth in the framework of the homotopy analysis method (HAM) is derived. The bi-chromatic wave field is assumed to be obtained by the nonlinear interaction of two monochromatic wave trains that propagate independently in the same direction before encountering. The equations for the mass, momentum, and energy fluxes based on the accurate high-order homotopy series solutions are obtained using a discrete integration and a Fourier series-based fitting. The conservation equations for the mean rates of the mass, momentum, and energy fluxes before and after the interaction of the two nonlinear monochromatic wave trains are proposed to establish the relationship between the steady-state bi-chromatic wave field and the two nonlinear monochromatic wave trains. The parametric analysis on ɛ1 and ɛ2, representing the nonlinearity of the bi-chromatic wave field, is performed to obtain a sufficiently small standard deviation Sd, which is applied to describe the deviation from the conservation state (Sd = 0) in terms of the mean rates of the mass, momentum, and energy fluxes before and after the interaction. It is demonstrated that very small standard deviation from the conservation state can be achieved. After the interaction, the amplitude of the primary wave with a lower circular frequency is found to decrease; while the one with a higher circular frequency is found to increase. Moreover, the highest horizontal velocity of the water particles underneath the largest wave crest, which is obtained by the nonlinear interaction between the two monochromatic waves, is found to be significantly higher than the linear superposition value of the corresponding velocity of the two monochromatic waves. The present study is helpful to enrich and deepen the understanding with insight to steady-state wave-wave interactions.
NASA Astrophysics Data System (ADS)
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Nonlinear Alfvén wave dynamics in plasmas
NASA Astrophysics Data System (ADS)
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
On the cubic zero-order solution of electromagnetic waves. II. Isolated particles with lossy plasmas
Lee, Hyoung-In; Mok, Jinsik
2010-07-15
Electromagnetic waves are examined for a single isolated nanoparticle, which is composed of lossy plasmonic components and immersed in an unbounded homogeneous dielectric host medium. Wave characteristics thus obtained on resonance play crucial roles as the zero-order solution for periodic structures such as linear particle chains. The dispersion relation with cubic nonlinearity in frequency accounts for radiation damping in addition to dynamic depolarization. It is theoretically analyzed on the parameter plane spanned by the material loss and the plasma frequency. As in the preceding companion paper of Paper I, analysis shows two types of solutions: propagating waves and stationary states. In addition, the temporal attenuation rate exhibits a maximum feature at a certain material loss in confirmation of experimental results. However, physical behaviors of a nanoparticle turn out quite distinct from those illustrated in Paper I. The reasons are that the different mathematical structures are involved, and different geometries require different underlying assumptions. In special, the issue of series convergence in choosing proper solutions will be addressed. In addition, solutions to nanoparticles made of polarizable dielectric materials are found not to exist.
Analytical and numerical investigation on nonlinear internal gravity waves
NASA Astrophysics Data System (ADS)
Kshevetskii, S. P.
The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration), we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory coincidence of
Quantum Electromagnetic Nonlinearity Affecting Charges and Dipole Moments
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.; Shishmarev, A. A.
2017-03-01
Due to the nonlinearity of QED, a static charge becomes a magnetic dipole if placed in a magnetic field, and a magnetic monopole on the background is a combination of constant electric and magnetic fields. Already without external field, the cubic Maxwell equation for the field of a point charge has a soliton solution with a finite field energy and finite potential, the energy-momentum vector of a moving soliton being the same as that of a point massive particle. Equations are given for self-coupling dipole moments. Any theoretically found value for a multipole moment of a baryon or a meson should be subjected to nonlinear renormalization.
NASA Astrophysics Data System (ADS)
Torello, David; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.
2015-03-01
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β11 is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β117075/β112024 measure of 1.363 agrees well with previous literature and earlier work.
Torello, David; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones.
NASA Technical Reports Server (NTRS)
Eichler, D.
1985-01-01
The nonlinear theory of shock acceleration developed in earlier papers, which treated the waves as being completely frozen into the fluid, is generalized to include wave dynamics. In the limit where damping keeps the wave amplitude small, it is found that a finite phase velocity (V sub ph) of the scattering waves through the background fluid, tempers the acceleration generated by high Mach number shocks. Asymptotic spectra proportional to 1/E sq are possible only when the ratio of wave velocity to shock velocity is less than 0.13. For a given asymptotic spectrum, the efficiency of relativistic particle production is found to be practically independent of the value of V sub ph, so that earlier results concerning its value remain valid for finite V sub ph. In the limit where there is no wave damping, it is shown that for modest Alfven Mach numbers, approximately greater than 4 and less than 6, the magnetic field is amplified by the energetic particles to the point of being in rough equipartition with them, as models of synchrotron emission frequently take the field to be. In this case, the disordering and amplification of field energy may play a major role in the shock transition.
Nonlinear acoustic wave equations with fractional loss operators.
Prieur, Fabrice; Holm, Sverre
2011-09-01
Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Nonlinear scattering of radio waves by metal objects
NASA Astrophysics Data System (ADS)
Shteynshleyger, V. B.
1984-07-01
Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.
Nonlinear Landau damping of wave envelopes in a quantum plasma
NASA Astrophysics Data System (ADS)
Chatterjee, Debjani; Misra, A. P.
2016-10-01
The nonlinear theory of Landau damping of electrostatic wave envelopes (WEs) is revisited in a quantum electron-positron pair plasma. Starting from a Wigner-Moyal equation coupled to the Poisson equation and applying the multiple scale technique, we derive a nonlinear Schrödinger (NLS) equation which governs the evolution of electrostatic WEs. It is shown that the coefficients of the NLS equation, including the nonlocal nonlinear term, which appears due to the resonant particles having a group velocity of the WEs, are significantly modified by the particle dispersion. The effects of the quantum parameter H (the ratio of the plasmon energy to the thermal energy densities), associated with the particle dispersion, are examined on the Landau damping rate of carrier waves, as well as on the modulational instability of WEs. It is found that the Landau damping rate and the decay rate of the solitary wave amplitude are greatly reduced compared to their classical values (H = 0).
Kinetic equation for nonlinear resonant wave-particle interaction
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
What is the impact of electromagnetic waves on epileptic seizures?
Cinar, Nilgun; Sahin, Sevki; Erdinc, Oguz O.
2013-01-01
Background The effects of electromagnetic waves (EMWs) on humans and their relationship with various disorders have been investigated. We aimed to investigate the effects of exposure to different frequencies of EMWs in various durations in a mouse epilepsy model induced by pentylenetetrazole (PTZ). Material/Methods A total of 180 4-week-old male mice weighing 25–30 g were used in this study. Each experimental group consisted of 10 mice. They were exposed to 900, 700, 500, 300, and 100 MHz EMWs for 20 hours, 12 hours and 2 hours. Following electromagnetic radiation exposure, 60 mg/kg of PTZ was injected intraperitoneally to all mice. Each control was also injected with PTZ without any exposure to EMW. The latency of initial seizure and most severe seizure onset were compared with controls. Results The shortest initial seizure latency was noted in the 12-hour group, followed by the 700 MHz. The mean initial seizure latencies in the 2-hour EMW exposed group was significantly shorter compared to that in the 12- and 20-hour groups. There was no significant difference between 12- and 20-hour EMW exposed groups. There was a significant difference between control and 2- and 10-hour EMW exposed groups. No statistically significant differences were noted in mean latencies of the most severe seizure latency, following 20-, 12-, and 2- hour EMW exposed groups and control groups. Conclusions Our findings suggest that acute exposure to EMW may facilitate epileptic seizures, which may be independent of EMW exposure time. This information might be important for patients with epilepsy. Further studies are needed. PMID:23676765
Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma
NASA Astrophysics Data System (ADS)
Vladimirov, S. V.; Ishihara, O.
2016-07-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.
Radiation of electromagnetic waves by a dipole in an external uniform electrostatic field
NASA Astrophysics Data System (ADS)
Manaenkov, S. I.
2017-01-01
Exact solution for the electromagnetic field densities E and H of a dipole of uniformly accelerated point-charges with identical masses is discussed. It is shown that, for any fixed time t and a large distance R between the center of the dipole and the fieldpoint, | E| R -4, | H| R -5, while for large c| t| R, | E| | H| 1/ R as in spherical electromagnetic waves. Nevertheless, any irreversible radiation of electromagnetic waves is absent since the wave zone does not exist.
A review of nondestructive testing approaches using mechanical and electromagnetic waves
NASA Astrophysics Data System (ADS)
Lau, Denvid; Qiu, Qiwen
2016-04-01
Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.
Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams.
Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu
2008-08-10
Based on the metamaterial cloaking technique, we propose the use of a new photon funnel to compress a plane electromagnetic (EM) wave. The theoretical analysis and numerical simulations indicate that the compression ratio can be designed optionally and the compressed wave beam remains the original wave shape without any distortions. Here we apply the method to EM waves but it can be applied to acoustic waves and other fields as well.
On the wave group asymmetry caused by nonlinear evolution
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey
2015-04-01
Many recent numerical and laboratory researches are dedicated to intense groups of surface gravity waves in deep water. It is well known, and has been observed in laboratory facilities many times, that intense wave groups become skewed with time and attain 'triangular' shapes. In-situ measurements confirm this general picture of oceanic wavegroups. The ability to describe skewed wave groups is one of the advantages of the famous Dysthe equations. At the same time, a number of studies within the frameworks of simplified and even fully nonlinear models report on purely symmetric wave groups. We review the existing observations of skewed wave groups and reproduce the situations in numerical simulations (restricting the attention to non-breaking cases) - to single out the crucial conditions which result in formation of skewed groups of nonlinear waves. We conclude that the triangular wave groups occur during the transitional stage of disintegration of intense wave trains, which finally give rise to more than one soliton-like wave groups.
NASA Astrophysics Data System (ADS)
Main, D. S.; Caplinger, J.; Kim, T. C.; Sotnikov, V. I.
2014-12-01
The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that Flute-type density irregularities can develop during the nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. To generate Flute-type density irregularities, we will use previously obtained numerical solution of nonlinear fluid equations involving the electrostatic potential and density. The solutions to these fluid equations govern the development of an interchange instability and results in the spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density structure from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra. Because the linear and non-linear stages are well separated in time, we will compare the effect of scattering from density irregularities which form in both the linear and non-linear stages.
The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator
Spence, W.L.
1985-04-01
A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces
Jin, Boyuan; Argyropoulos, Christos
2016-01-01
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs. PMID:27345755
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.
Jin, Boyuan; Argyropoulos, Christos
2016-06-27
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.
Selection rules for the nonlinear interaction of internal gravity waves.
Jiang, Chung-Hsiang; Marcus, Philip S
2009-03-27
Two intersecting beams of internal gravity waves will generically create two wave packets by nonlinear interaction. The frequency of one packet will be the sum and that of the other packet will be the difference of the frequencies of the intersecting beams. In principle, each packet should form an "X" pattern, or "St. Andrew's cross" consisting of four beams outgoing from the point of intersection. Here we derive selection rules and show that most of the expected nonlinear beams are forbidden. These rules can also be applied to the reflection of a beam from a boundary.
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
NASA Astrophysics Data System (ADS)
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation.
1980-06-01
Equation (1) may also be considered as an ordinary differential equation on a Banach space. This is the setting I prefer, as it usually seems much more... NONLINEAR WAVE EQUATION ~0 by gc~ Paul Massatt Lefschetz Center for Dynamical Systems Division of Applied Mathematics Brown University Providence, Rhode...Interim -) DAMPED NONLINEAR WAVE EQUATION . 6. PERFORMING 0G. RMRT UMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(O) PAUL!MASSATT 47 -Xo AFdSR-76-3,992 / 9
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Miyoshi, Yoshizumi
2016-10-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Nonlinear Internal Waves in the South China Sea During ASIAEX
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Tang, David T.; Ramp, Steve R.
2002-01-01
Internal wave distribution maps have been compiled from more than one hundred ERS-1/2, RADARSAT and Space Shuttle SAR images in the South China Sea (SCS) from 1993 to 2000. Based on these distribution maps, most of internal waves in the northeast part of SCS were propagating westward. The wave crest can be as long as 200 km with amplitude of 100 m, due to strong current from the Kuroshio branching out into the SCS. In recent Asian Seas International Acoustics Experiment (ASIAEX), moorings have been deployed in April 2000 and May 2001. Simultaneous RADARSAT ScanSAR images have been collected during the field test to integrate with the model and the in-situ measurements in the SCS. During ASIAEX in May 2001, many large internal waves were observed at the test area and were the major features for acoustic volume interaction. The environmental parameters have been calculated based on extensive CTD castings and mooring data. Nonlinear internal wave models have been applied to simulate the wave evolution on the continental shelf and the results compare reasonably with mooring measurements. The evolution and dissipation of huge internal waves on the shelf break, mode-two waves, elevation waves, and wave-wave interaction are very important issues for acoustic propagation. The implication of internal wave effects on acoustic propagation will also be discussed.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
A wave guide model of lightning currents and their electromagnetic field
NASA Technical Reports Server (NTRS)
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Nonlinear steady-state coupling of LH waves
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Effect of nonlinear instability on gravity-wave momentum transport
NASA Technical Reports Server (NTRS)
Dunkerton, Timothy J.
1987-01-01
This paper investigates the nonlinear instability of internal gravity waves and the effects of their nonlinear interaction on momentum flux, using simple theoretical and numerical models. From the result of an analysis of parametric instability of a two-dimensional internal gravity wave as discussed by Yeh and Liu (1981) and Klostermeyer (1982), a group trajectory length scale for a gravity wave packet was determined, expressed in terms of the dominant vertical wavelenght and the degree of convective saturation. It is shown that this analysis justifies the Eikonal saturation method for relatively transient packets, that are well below the saturation amplitude, propagating in a slowly varying mean flow. Conversely, linear theory fails for persistent disturbances and trasient wave packets near convective saturation.
Nonlinear particle simulation of ion cyclotron waves in toroidal geometry
Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.
2015-12-10
Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.
Reverberation clutter induced by nonlinear internal waves in shallow water.
Henyey, Frank S; Tang, Dajun
2013-10-01
Clutter is related to false alarms for active sonar. It is demonstrated that, in shallow water, target-like clutter in reverberation signals can be caused by nonlinear internal waves. A nonlinear internal wave is modeled using measured stratification on the New Jersey shelf. Reverberation in the presence of the internal wave is modeled numerically. Calculations show that acoustic energy propagating near a sound speed minimum is deflected as a high intensity, higher angle beam into the bottom, where it is backscattered along the reciprocal path. The interaction of sound with the internal wave is isolated in space, hence resulting in a target-like clutter, which is found to be greater than 10 dB above the mean reverberation level.
Nonlinear particle simulation of ion cyclotron waves in toroidal geometry
NASA Astrophysics Data System (ADS)
Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.
2015-12-01
Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.
Nonlinear reflection of internal gravity wave onto a slope
NASA Astrophysics Data System (ADS)
Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis
2016-04-01
The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Parameterizing the High Frequency Evolution of Nearshore Waves in a Nonlinear Wave Model
2005-10-07
shallow water. Ocean Engineering, 20, 359-388. Mase, H., & Kirby, J. T. (1992). Hybrid frequency-domain KdV equation for random wave transformation. In B...version of a nonlinear mild slope equation gives a very good representation of the propagation of waves through the shoaling and surf zones. However...such models are computationally expensive. In order to reduce the computational cost of the nonlinear mild slope equation model, it is combined with the
Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.
Thiele, Sebastian; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J
2014-08-01
This research presents a new technique for nonlinear Rayleigh surface wave measurements that uses a non-contact, air-coupled ultrasonic transducer; this receiver is less dependent on surface conditions than laser-based detection, and is much more accurate and efficient than detection with a contact wedge transducer. A viable experimental setup is presented that enables the robust, non-contact measurement of nonlinear Rayleigh surface waves over a range of propagation distances. The relative nonlinearity parameter is obtained as the slope of the normalized second harmonic amplitudes plotted versus propagation distance. This experimental setup is then used to assess the relative nonlinearity parameters of two aluminum alloy specimens (Al 2024-T351 and Al 7075-T651). These results demonstrate the effectiveness of the proposed technique - the average standard deviation of the normalized second harmonic amplitudes, measured at locations along the propagation path, is below 2%. Experimental validation is provided by a comparison of the ratio of the measured nonlinearity parameters of these specimens with ratios from the absolute nonlinearity parameters for the same materials measured by capacitive detection of nonlinear longitudinal waves.
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas
Veeresha, B. M.; Sen, A.; Kaw, P. K.
2008-09-07
A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.
The Development of Nonlinear Surface and Internal Wave Groups.
1982-11-01
propagating in groups in near-shore regions. In these regions strong coastal currents, enhanced density gradients from river outflow and from greater influence ...D-A122 103 THE DEVELOPMENT OF NONLINERR SURFACE AND INTERNAL WAVE 1/4 GROUPS (U) WOODS H4OLE OCEANOGRAPHIC INSTITUTION MA T K~ CHERESKIN NOV 82 WHOI...TECHNOLOGY * PROGRAM IN op GOCEANOGRAPHY II!AND OCEAN ENGINEERING -0 DOCTORAL DISSERTATION THE DEVELOPMENT OF NONLINEAR SURFACE AND INTERNAL WAVE GROUPS BY
Coda wave interferometry for estimating nonlinear behavior in seismic velocity.
Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John
2002-03-22
In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified.
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Komar, A.; Pokol, G. I.; Fueloep, T.
2013-01-15
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
NASA Astrophysics Data System (ADS)
Aziz, Tahir; Masood, W.; Qureshi, M. N. S.; Shah, H. A.; Yoon, P. H.
2016-06-01
In the present paper, we have investigated the ramifications of adiabatic trapping of electrons using a bi product ( r , q ) distribution function on obliquely propagating Alfven waves in a low β plasma. In this regard, we have analyzed the linear and nonlinear dispersion characteristics of finite amplitude coupled kinetic Alfven-acoustic solitary waves using the two-potential theory and employing Sagdeev potential approach. We have deliberated upon the results of the present inquest and highlighted its importance by citing works that have reported the simultaneous presence of electromagnetic pulses and flat-topped distribution of electrons.
Rogue waves of a (3 + 1) -dimensional nonlinear evolution equation
NASA Astrophysics Data System (ADS)
Shi, Yu-bin; Zhang, Yi
2017-03-01
General high-order rogue waves of a (3 + 1) -dimensional Nonlinear Evolution Equation ((3+1)-d NEE) are obtained by the Hirota bilinear method, which are given in terms of determinants, whose matrix elements possess plain algebraic expressions. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. Two subclass of nonfundamental rogue waves are analyzed in details. By proper means of the regulations of free parameters, the dynamics of multi-rogue waves and high-order rogue waves have been illustrated in (x,t) plane and (y,z) plane by three dimensional figures.
Wave Modes Trapped in Rotating Nonlinear Potentials
NASA Astrophysics Data System (ADS)
Li, Yongyao; Pang, Wei; Malomed, Boris A.
We study modes trapped in a rotating ring with the local strength of the nonlinearity modulated as \\cos (2θ ) , where θ is the azimuthal angle. This modulation pattern may be of three different types: self-focusing (SF), self-defocusing (SDF), and alternating SF-SDF. The model, based on the nonlinear Schrödinger (NLS) equation with periodic boundary conditions, applies to the light propagation in a twisted pipe waveguide, and to a Bose-Einstein condensate (BEC) loaded into a toroidal trap, under the action of the rotating nonlinear pseudopotential induced by means of the Feshbach resonance in an inhomogeneous external field. This is the difference from the recently considered similar setting with the rotating linear potential. In the SF, SDF, and alternating regimes, four, three, and five different types of stable trapped modes are identified, respectively: even, odd, second-harmonic (2H), symmetry-breaking, and 2H-breaking ones. The shapes and stability of these modes, together with transitions between them, are investigated in the first rotational Brillouin zone. Ground-state modes are identified in each regime. Boundaries between symmetric and asymmetric modes are also found in an analytical form, by means of a two-mode approximation.
Nonlinear terahertz spectroscopy of Higgs mode in s-wave superconductors
NASA Astrophysics Data System (ADS)
Matsunaga, Ryusuke; Shimano, Ryo
2017-02-01
We review our recent experiments of ultrafast dynamics in s-wave superconductors Nb1-x Ti x N by using nonlinear terahertz (THz) spectroscopy. The free oscillation of the Higgs mode, i.e. the amplitude mode of the superconducting order parameter, is observed after instantaneous injection of quasiparticles at the superconducting gap edge by an intense monocycle THz pulse. The ultrafast nonequilibrium dynamics of the order parameter under the strong AC driving field with the photon energy tuned below the superconducting gap is also investigated. A resonant nonlinear interaction between the Higgs mode and the electromagnetic field is revealed, as manifested by an efficient THz third-harmonic generation from the superconductor.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Locating voids beneath pavement using pulsed electromagnetic waves
NASA Astrophysics Data System (ADS)
Steinway, W. J.; Echard, J. D.; Luke, C. M.
1981-11-01
The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.
Propagation of Electromagnetic Waves in Two Dimensionally Periodic Media
NASA Astrophysics Data System (ADS)
Dong, Tian-Lin
1985-12-01
The propagation of electromagnetic waves in two dimensionally periodic structure is systematically investigated, to provide the basic theory for two dimensionally modulated dielectric waveguide. A canonical two dimensionally periodic medium of infinite extent, whose dielectic constant varies sinusoidally in two orthogonal directions, is first examined. The charact solutions are represented exactly by a double Fourier series which is known as the Floquet solution. The harmonic amplitudes of the Floquet solution are determined by a five-term recurrence relation in the vector form, properly taking into account the hybrid-mode nature of the propagation problem. The five-term recurrence relation is then treated by different approaches so that clear physical pictures and practical numerical methods can be obtained. The characteristic solutions for two dimensionally periodic medium are then applied to the boundary-value problem of multi-layer dielectric waveguides containing a finite layer of periodic medium. As an example, the guidance problems are analysed and the numerical analysis of the dispersion characteristics are then carried out. Besides the canonical medium as a model, more general two dimensionally periodic medium are also discussed.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
Measurements of Nonlinear Harmonic Waves at Cracked Interfaces
NASA Astrophysics Data System (ADS)
Jeong, Hyunjo; Barnard, Dan
2011-06-01
Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.
2004-10-01
The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.
Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, M.; Brodin, G.; Papadopoulos, D.
2010-07-15
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.
Non-linear Langmuir waves in a warm quantum plasma
Dubinov, Alexander E. Kitaev, Ilya N.
2014-10-15
A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation
Christov, Ivan; Christov, C. I.; Jordan, P. M.
2014-12-18
This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.
Characterization of porous construction materials using electromagnetic radar wave
NASA Astrophysics Data System (ADS)
Lai, Wallace Wai Lok
This thesis reports the effort of characterizing three porous construction materials (i.e. concrete, asphalt and soils) and the establishment and formulation of novel unified constitutive models by utilizing electromagnetic (EM) radar wave. An important outcome of this research is that the studied materials were assigned successfully into their rightful positions corresponding to the different regimes governed by three EM wave properties and two engineering/geological properties of the materials. The former refers to the real part of complex dielectric permittivity (epsilon'), energy attenuation and peak-frequency drift. The latter refers to porosity and permeability determined with forward models or conventional testing techniques. In soil and asphalt, the material characterization was achieved by a novel inhouse developed method called Cyclic Moisture Variation Technique (CMVT). The technique is termed cyclic because the porous materials were subjected to change from partially saturated states to fully saturated state (i.e. permeation), and vice versa (i.e. de-watering). With CMVT, water was used as an enhancer or a tracer to differentiate the studied materials which are otherwise difficult when they are dry. Soils and asphalt with different textures were characterized by different curve families exhibited in the relationship between epsilon' and degrees of water saturation (SW). In particular, these curve families were divided into three regions: slow-climbing region in very low SW, fast-climbing region in intermediate SW and another slow-climbing region at high S W. When data obtained from the permeation and de-watering cycles was compared, dielectric hysteresis was observed, but rarely reported in the field of ground penetrating radar (GPR). Different curing histories affect both porosity and pore size distribution within mature concrete. By injecting pressurized water into concrete specimens, different concrete curing histories was back-tracked through the
Simulations of nonlinear continuous wave pressure fields in FOCUS
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Propagation of Nonlinear Waves Passing Over Submerged Step
NASA Astrophysics Data System (ADS)
Monsalve, E.; Maurel, A.; Pagneux, V.; Petitjeans, P.
Nonlinear water waves have been studied for decades. However, numeric models have always been validated with punctual measurements. In this study we measure the surface deformation of water waves with the Fourier Transform Profilometry (FTP) technique, obtaining a complete space-time resolved field. This permits to separate free and bound waves in the shallow water region, revealing the near resonant interaction between those components. When we change the absorbing beach by a reflecting wall at the end of the channel, we observe an interesting resonance for fixed frequencies. At the resonant frequencies, the system shows a chaotic behavior.
Nonlinear waves in dense dusty plasmas with high fugacity
NASA Astrophysics Data System (ADS)
Rao, N. N.; Shukla, P. K.
2001-01-01
Nonlinear propagation of small, but finite, amplitude electrostatic dust waves has been investigated in the low as well as high fugacity regimes by deriving the corresponding Boussinesq equation which, for unidirectional propagation, reduces to the Korteweg-de Vries equation. The dust-acoustic wave (DAW) solitons are shown to correspond to the tenuous (low fugacity) dusty plasmas, while in the dense (high fugacity) regime the solitons are associated with the dust-Coulomb waves (DCWs). Unlike the DAW solitons which are (dust) density compressional and supersonic, the DCW solitons are (dust) density rarefactive and propagate with super-Coulombic speeds.
Nonlinear acoustic/seismic waves in earthquake processes
Johnson, Paul A.
2012-09-04
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.
Nonlinear self-adapting wave patterns
NASA Astrophysics Data System (ADS)
Kessler, David A.; Levine, Herbert
2016-12-01
We propose a new type of traveling wave pattern, one that can adapt to the size of physical system in which it is embedded. Such a system arises when the initial state has an instability for a range of wavevectors, k, that extends down to k = 0, connecting at that point to two symmetry modes of the underlying dynamical system. The Min system of proteins in E. coli is such a system with the symmetry emerging from the global conservation of two proteins, MinD and MinE. For this and related systems, traveling waves can adiabatically deform as the system is increased in size without the increase in node number that would be expected for an oscillatory version of a Turing instability containing an allowed wavenumber band with a finite minimum.
Nonlinear elastic wave tomography for the imaging of corrosion damage.
Ciampa, Francesco; Scarselli, Gennaro; Pickering, Simon; Meo, M
2015-09-01
This paper presents a nonlinear elastic wave tomography method, based on ultrasonic guided waves, for the image of nonlinear signatures in the dynamic response of a damaged isotropic structure. The proposed technique relies on a combination of high order statistics and a radial basis function approach. The bicoherence of ultrasonic waveforms originated by a harmonic excitation was used to characterise the second order nonlinear signature contained in the measured signals due to the presence of surface corrosion. Then, a radial basis function interpolation was employed to achieve an effective visualisation of the damage over the panel using only a limited number of receiver sensors. The robustness of the proposed nonlinear imaging method was experimentally demonstrated on a damaged 2024 aluminium panel, and the nonlinear source location was detected with a high level of accuracy, even with few receiving elements. Compared to five standard ultrasonic imaging methods, this nonlinear tomography technique does not require any baseline with the undamaged structure for the evaluation of the corrosion damage, nor a priori knowledge of the mechanical properties of the specimen.
Weakly nonlinear dynamics and fully nonlinear simulations of trapped waves on jet currents
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey; Shrira, Victor
2014-05-01
The asymptotic modal approach developed in Shrira & Slunyaev (2014) for waves trapped by an opposing jet current is extended by examining the weakly nonlinear dynamics of trapped waves due to four-wave resonances. Evolution equations governing dynamics of an arbitrary number of wave packets have been derived. In particular, for a single mode the asymptotic procedure yields the integrable one-dimensional nonlinear Schrodinger equation (NLS). The NLS describes the evolution of modes along the current, while the modal structure is specified by the corresponding boundary value problem (BVP). When the current is weak in comparison with the wave celerity, the BVP reduces to the classic stationary Schrodinger equation with conditions of decay outside the jet, which allows exact solutions for a number of model current profiles. This enables us to find analytically the interaction coefficients in the dynamic equations. Thus, to the leading order a variety of analytic solutions to the evolution equation and the BVP specifying the trapped modes is readily available. A few such asymptotic solutions are tested in numerical simulations of the Euler equations. The equations are solved by means of the adapted High Order Spectral Method (West et al, 1987). Single trapped mode solutions are simulated: the uniform waves train, modulated wave train, and solitary wave packets. The weakly nonlinear theory is shown to be a reasonable first approximation to the solution even in the case of rather steep waves. Solitary patterns of trapped waves were found to be robust, though an insignificant radiation is observed in the course of their propagation, which suggests that the solitary wave patterns represent important elements of nonlinear dynamics of gravity waves on jet currents. Their presence in the stochastic wave field may result in significant deviation from the Gaussianity, and increase the extreme wave probability. Shrira, V.I., Slunyaev, A.V. Trapped waves on jet currents
Evolution of Nonlinear Internal Waves in China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Typology of nonlinear activity waves in a layered neural continuum.
Koch, Paul; Leisman, Gerry
2006-04-01
Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).
Weak localization with nonlinear bosonic matter waves
Hartmann, Timo; Michl, Josef; Petitjean, Cyril; Wellens, Thomas; Urbina, Juan-Diego; Richter, Klaus; Schlagheck, Peter
2012-08-15
We investigate the coherent propagation of dilute atomic Bose-Einstein condensates through irregularly shaped billiard geometries that are attached to uniform incoming and outgoing waveguides. Using the mean-field description based on the nonlinear Gross-Pitaevskii equation, we develop a diagrammatic theory for the self-consistent stationary scattering state of the interacting condensate, which is combined with the semiclassical representation of the single-particle Green function in terms of chaotic classical trajectories within the billiard. This analytical approach predicts a universal dephasing of weak localization in the presence of a small interaction strength between the atoms, which is found to be in good agreement with the numerically computed reflection and transmission probabilities of the propagating condensate. The numerical simulation of this quasi-stationary scattering process indicates that this interaction-induced dephasing mechanism may give rise to a signature of weak antilocalization, which we attribute to the influence of non-universal short-path contributions. - Highlights: Black-Right-Pointing-Pointer Numerical simulation of scattering of Bose-Einstein condensate through billiards. Black-Right-Pointing-Pointer Novel analytical semiclassical theory for nonlinear coherent scattering. Black-Right-Pointing-Pointer Inversion of weak localization due to mean-field interaction within the condensate. Black-Right-Pointing-Pointer Relevance of non-universal short-path contributions.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
Nonlinear onset of calcium wave propagation in cardiac cells
NASA Astrophysics Data System (ADS)
Shiferaw, Yohannes
2016-09-01
Spontaneous calcium (Ca) waves in cardiac myocytes are known to underlie a wide range of cardiac arrhythmias. However, it is not understood which physiological parameters determine the onset of waves. In this study, we explore the relationship between Ca signaling between ion channels and the nucleation of Ca waves. In particular, we apply a master equation approach to analyze the stochastic interaction between neighboring clusters of ryanodine receptor (RyR) channels. Using this analysis, we show that signaling between clusters can be described as a barrier hopping process with exponential sensitivity to system parameters. A consequence of this feature is that the probability that Ca release at a cluster induces release at a neighboring cluster exhibits a sigmoid dependence on the Ca content in the cell. This nonlinearity originates from the regulation of RyR opening due to more than one Ca ion binding site, in conjunction with Ca mediated cooperativity between RyR channels in clusters. We apply a spatially distributed stochastic model of Ca cycling to analyze the physiological consequences of this nonlinearity, and show that it explains the sharp onset of Ca wave nucleation in cardiac cells. Furthermore, we show that this sharp onset can serve as a mechanism for Ca alternans under physiologically relevant conditions. Thus our findings identify the nonlinear features of Ca signaling which potentially underlie the onset of Ca waves and Ca alternans in cardiac cells.
Spatiotemporal mode structure of nonlinearly coupled drift wave modes
Brandt, Christian; Grulke, Olaf; Klinger, Thomas; Negrete, Jose Jr.; Bousselin, Guillaume; Brochard, Frederic; Bonhomme, Gerard; Oldenbuerger, Stella
2011-11-15
This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section with a temporal resolution of 10 {mu}s corresponding approximately to 10% of the typical drift wave period. Mode coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames. The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described by the Kuramoto model.
Nonlinear propagation of stress waves during high speed cutting
NASA Astrophysics Data System (ADS)
Jiang, Yifei; Zhang, Jun; He, Yong; Liu, Hongguang; Zhao, Wanhua
2016-11-01
Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece, and the obtained photoelastic images were evaluated semi-quantitatively. The experimental results were quantitatively reproduced via the lattice model, which helped explain our observations by analyzing the superposition of stress waves. According to the further simulation, we find that as the cutting speed increases, the stress intensity of the workpiece near the cutting tool is not in a linear enhancement process, with strong distortion of stress field under the superposition of different stress wave components. These help us have a deep understanding about the HSC mechanism under stress waves' effects.
Features of fluid flows in strongly nonlinear internal solitary waves
NASA Astrophysics Data System (ADS)
Semin, S.; Kurkina, O.; Kurkin, A.; Talipova, T.; Pelinovsky, E.; Churaev, E.
2014-12-01
The characteristics of highly nonlinear solitary internal waves (solitons) are calculated within the fully nonlinear numerical model of the Massachusetts Institute of Technology. The verification and adaptation of the model is based on the data from laboratory experiments. The present paper also compares the results of our calculations with the calculations performed in the framework of the fully nonlinear Bergen Ocean Model. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in the numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the pycnocline and near the bottom are computed.
NASA Astrophysics Data System (ADS)
Naseri, Tayebeh; Moradi, Ronak
2017-01-01
Some optical properties including the linear and nonlinear susceptibility and electromagnetically induced phase grating (EIG) in graphene under Raman excitation is studied. A single-layer graphene nanostructure driven by coherent and incoherent fields is investigated theoretically. It is revealed that by adjusting the amplitude of control and incoherent fields, the linear and nonlinear absorption as well as Kerr nonlinearity of the medium can be optimized. It is realized that the enhanced Kerr nonlinearity can occur with zero linear absorption and nonlinear amplification. Furthermore, it should be noted that EIG in graphene is studied for the first time. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced by controlling the amplitude of coherent and incoherent fields, and an efficient electromagnetically induced phase grating can be obtained. A novel result shows a considerable improvement of the intensity of higher-order diffractions and switching between different orders of grating via incoherent pumping field. Therefore, this model can be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.
NASA Astrophysics Data System (ADS)
Li, Hui-jun; Dou, Jian-peng; Huang, Guoxiang
2014-03-01
We propose a scheme to construct a two-dimensional Aubry-André (AA) model and realize two-dimensional AA localization of light waves via electromagnetically induced transparency (EIT). The system we suggest is a cold, resonant atomic gas with an N-type level configuration and interacting with probe, control, assisted, and far-detuned laser fields. We show that under EIT conditions the probe-field envelope obeys a modified nonlinear Schrödinger equation with a quasiperiodic potential, which becomes a two-dimensional nonlinear AA model when the system parameters are suitably chosen. The quasiperiodic potential is obtained by the cross-phase modulation of the assisted field and the Stark shift of the far-detuned laser field. In addition, the cubic nonlinearity term appearing in the model is contributed by the self-phase modulation of the probe field. We demonstrate that the system can be used to not only realize various two-dimensional AA localizations of light waves, but also to display nonlinearity and dimensionality effects on the AA localizations.
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
NASA Astrophysics Data System (ADS)
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
Boundary integral equation method for electromagnetic and elastic waves
NASA Astrophysics Data System (ADS)
Chen, Kun
In this thesis, the boundary integral equation method (BIEM) is studied and applied to electromagnetic and elastic wave problems. First of all, a spectral domain BIEM called the spectral domain approach is employed for full wave analysis of metal strip grating on grounded dielectric slab (MSG-GDS) and microstrips shielded with either perfect electric conductor (PEC) or perfect magnetic conductor (PMC) walls. The modal relations between these structures are revealed by exploring their symmetries. It is derived analytically and validated numerically that all the even and odd modes of the latter two (when they are mirror symmetric) find their correspondence in the modes of metal strip grating on grounded dielectric slab when the phase shift between adjacent two unit cells is 0 or pi. Extension to non-symmetric case is also made. Several factors, including frequency, grating period, slab thickness and strip width, are further investigated for their impacts on the effective permittivity of the dominant mode of PEC/PMC shielded microstrips. It is found that the PMC shielded microstrip generally has a larger wave number than the PEC shielded microstrip. Secondly, computational aspects of the layered medim doubly periodic Green's function (LMDPGF) in matrix-friendly formulation (MFF) are investigated. The MFF for doubly periodic structures in layered medium is derived, and the singularity of the periodic Green's function when the transverse wave number equals zero in this formulation is analytically extracted. A novel approach is proposed to calculate the LMDPGF, which makes delicate use of several techniques including factorization of the Green's function, generalized pencil of function (GPOF) method and high order Taylor expansion to derive the high order asymptotic expressions, which are then evaluated by newly derived fast convergent series. This approach exhibits robustness, high accuracy and fast and high order convergence; it also allows fast frequency sweep for
TE and TM beam decomposition of time-harmonic electromagnetic waves.
Melamed, Timor
2011-03-01
The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well.
NASA Astrophysics Data System (ADS)
Itoh, Masahiro; Terada, Masao; Sasada, Masaaki; Machida, Ken-ichi
2012-01-01
Improvement of the electromagnetic wave absorption ability was examined from the electromagnetic point of view. The oscillation behavior in relation to incident impedance derived from a hyperbolic tangent function can be reduced by increasing the imaginary part, i.e., loss value, of permeability and/or permittivity owing to its mathematical characteristics. It was demonstrated that the electromagnetic wave absorption ability was obviously enhanced by inserting the lossy magnetic layer between the electromagnetic wave absorber and a reflector. The absorption ability was improved further by pilling the polyurethane foam plate having lower permittivity to provide -9.6 dB (ca. 89% absorption) for the frequency range above 0.75 GHz with a total absorber thickness of 15.15 mm.
Amplitude-dependent contraction/elongation of nonlinear Lamb waves
NASA Astrophysics Data System (ADS)
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2016-04-01
Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.
Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.
2015-01-15
Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.
Nonlinear waves and shocks in a rigid acoustical guide.
Fernando, Rasika; Druon, Yann; Coulouvrat, François; Marchiano, Régis
2011-02-01
A model is developed for the propagation of finite amplitude acoustical waves and weak shocks in a straight duct of arbitrary cross section. It generalizes the linear modal solution, assuming mode amplitudes slowly vary along the guide axis under the influence of nonlinearities. Using orthogonality properties, the model finally reduces to a set of ordinary differential equations for each mode at each of the harmonics of the input frequency. The theory is then applied to a two-dimensional waveguide. Dispersion relations indicate that there can be two types of nonlinear interactions either called "resonant" or "non-resonant." Resonant interactions occur dominantly for modes propagating at a rather large angle with respect to the axis and involve mostly modes propagating with the same phase velocity. In this case, guided propagation is similar to nonlinear plane wave propagation, with the progressive steepening up to shock formation of the two waves that constitute the mode and reflect onto the guide walls. Non-resonant interactions can be observed as the input modes propagate at a small angle, in which case, nonlinear interactions involve many adjacent modes having close phase velocities. Grazing propagation can also lead to more complex phenomena such as wavefront curvature and irregular reflection.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-06-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
NASA Astrophysics Data System (ADS)
Steinhoff, John; Chitta, Subhashini
2012-08-01
The linear wave equation represents the basis of many linear electromagnetic and acoustic propagation problems. Features that a computational model must have, to capture large scale realistic effects (for over the horizon or "OTH" radar communication, for example), include propagation of short waves with scattering and partial absorption by complex topography. For these reasons, it is not feasible to use Green's Function or any simple integral method, which neglects these intermediate effects and requires a known propagation function between source and observer. In this paper, we describe a new method for propagating such short waves over long distances, including intersecting scattered waves. The new method appears to be much simpler than conventional high frequency schemes: Lagrangian "particle" based approaches, such as "ray tracing" become very complex in 3-D, especially for waves that may be expanding, or even intersecting. The other high frequency scheme in common use, the Eikonal, also has difficulty with intersecting waves. Our approach, based on nonlinear solitary waves concentrated about centroid surfaces of physical wave features, is related to that of Whitham [1], which involves solving wave fronts propagating on characteristics. Then, the evolving electromagnetic (or acoustic) field can be approximated as a collection of propagating co-dimension one surfaces (for example, 2-D surfaces in three dimensions). This approach involves solving propagation equations discretely on an Eulerian grid to approximate the linear wave equation. However, to propagate short waves over long distances, conventional Eulerian numerical methods, which attempt to resolve the structure of each wave, require far too many grid cells and are not feasible on current or foreseeable computers. Instead, we employ an "extended" wave equation that captures the important features of the propagating waves. This method is first formulated at the partial differential equation (PDE) level
Minimizing influence of multi-modes and dispersion of electromagnetic ultrasonic lamb waves.
Zhai, Guofu; Jiang, Tao; Kang, Lei; Wang, Shujuan
2010-12-01
Electromagnetic ultrasonic (EMU) Lamb waves excited by electromagnetic acoustic transducers (EMATs) possess many advantages in NDT. However, their characteristic multi-modes and dispersion are disadvantageous for inspection and restrict further improvements in their real applications. By deducing the excitation equation of EMU Lamb waves, the primary design parameters of EMATs and the characteristic equation of Lamb waves are combined, and excitation curves based on the excitation equation are plotted to aid the design of EMATs. The excitation characteristic of EMU Lamb waves on different thickness of plates is analyzed according to the excitation curves. The influence of multi-modes of EMU Lamb waves is minimized by choosing reasonable operating points and operating zones to excite a single-mode Lamb wave or multi-mode Lamb waves with identical or approximate propagation velocities. The influence of dispersion is minimized by searching corresponding points whose slope of group velocity tends to zero. The validity of the proposed method is verified by experiments.
On a nonlinear gravitational wave. Geodesics
NASA Astrophysics Data System (ADS)
Culetu, Hristu
2016-12-01
An exact, plane-wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density ρ and all pressures are finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface t-z=0, the z-axis being the direction of propagation. However, ρ and p become positive when a cross-polarization term is introduced in the line element. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.
Nonlinear aspects of the motion behavior of directional wave buoys
Wang, H.T.; Teng, C.C.
1994-12-31
The possibility of nonlinear behavior in the motions of two classes of widely used directional wave buoys is investigated. One is a spherical buoy with a large underwater drag sting. The other is the National Data Buoy Center (NDBC) 3-meter (10-ft) discuss buoy. The motions of the buoys are calculated by using a time domain model and a frequency domain model which uses an equivalent linearization technique to approximate the nonlinear hydrodynamic drag. The existence of nonlinear behavior is determined by directly examining the output of the equivalent linearization code, and by using Hilbert and spectral analysis techniques on the output of the time domain code. It is found that the motions of the discuss buoy are only weakly nonlinear. In particular, the motion transfer functions show only moderately small variations in different sea states. The spherical buoy pitch motion shows strongly nonlinear behavior in the presence of high sea states. In these cases, the buoy pitch transfer function shows a strong dependence on the wave height which is used.
Nonlinear behavior of acoustic waves in combustion chambers
NASA Technical Reports Server (NTRS)
Culick, F. E. C.
1975-01-01
The nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber are considered. A formal framework is provided within which practical problems can be treated with a minimum of effort and expense. The general conservation equations were expanded in two small parameters, one characterizing the mean flow field and one measuring the amplitude of oscillations, and then combined to yield a nonlinear inhomogeneous wave equation. The unsteady pressure and velocity fields were expressed as syntheses of the normal modes of the chamber, but with unknown time-varying amplitudes. This procedure yielded a representation of a general unsteady field as a system of coupled nonlinear oscillators. The system of nonlinear equations was treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. The analysis is applicable to any combustion chamber. The most interesting applications are probably to solid rockets, liquid rockets, or thrust augmentors on jet engines.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2015-01-01
A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2
Feasibility of using nonlinear guided waves to measure acoustic nonlinearity of aluminum
NASA Astrophysics Data System (ADS)
Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Qu, Jianmin
2011-04-01
This research investigates the feasibility of measuring acoustic nonlinearity in aluminum with different ultrasonic guided wave modes. Acoustic nonlinearity is manifested by generation of a second harmonic component in an originally monochromatic ultrasonic wave signal, and previous research has shown this correlates to an intrinsic material property. This parameter has been shown to increase with accumulated material damage - specifically in low- and high-cycle fatigue - prior to crack initiation, whereas other ultrasonic nondestructive evaluation (NDE) techniques measuring linear parameters are unable to detect damage prior to crack initiation. In structural components such as jet engines and aircraft structures subjected to fatigue damage, crack initiation does not occur until ~80% of a component's life. Thus, there is a need for structural health monitoring (SHM) techniques that can characterize material damage state prior to crack initiation, and therefore nonlinear ultrasonic techniques have the potential to be powerful NDE and SHM tools. Experimental results using Rayleigh and Lamb guided wave modes to measure acoustic nonlinearity in undamaged aluminum 6061 samples are presented, and a comparison of the efficiency of these modes to measure acoustic nonlinearity is given.
Spectrograms of ship wakes: identifying linear and nonlinear wave signals
NASA Astrophysics Data System (ADS)
Pethiyagoda, Ravindra; McCue, Scott W.; Moroney, Timothy J.
2017-01-01
A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. We use a simple weakly nonlinear theory to identify higher order effects in a spectrogram and, while the high speed ferry data is very noisy, we propose that certain additional features in the experimental data are caused by nonlinearity. Finally, we provide a possible explanation for a further discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceleration.
Microcrack modeling and simulation for nonlinear wave modulation
NASA Astrophysics Data System (ADS)
Lee, Sang Eon; Jin, Suyeong; Hong, Jung-Wuk
2016-04-01
We present a technique for microcrack modeling in the finite element framework, and numerically investigate the occurrence of nonlinear wave modulation. Typically, fatigue cracks are initiated and developed when structures are exposed to repeated loading; the crack widths of the fatigue cracks are extremely small in the early development stage. As the fatigue cracks grow by combining and coalescing, the overall size increases. Enlarged cracks undermine the safety of the structure. Therefore, fatigue crack detection is very important to ensure the integrity of structures. Although the nonlinear ultrasonic wave modulation technique has been widely used due to its high detecting sensitivity, the basic principle is not fully understood. To reveal the mechanism of nonlinear wave modulation, the movements of the crack surfaces are calculated through numerical simulation. The shape of the crack surface can determine the intensity of the wave modulation. In this study, we investigate the variation of the crack widths due to fatigue failure using microscopic imaging of real fatigue cracks, and use these images to create realistic models of the fatigue cracks.
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.
Jing, Yun; Tao, Molei; Clement, Greg T
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green's function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed.
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Low frequency nonlinear waves in electron depleted magnetized nonthermal plasmas
NASA Astrophysics Data System (ADS)
Mobarak Hossen, Md.; Sahadat Alam, Md.; Sultana, Sharmin; Mamun, A. A.
2016-11-01
A theoretical study on the ultra-low frequency small but finite amplitude solitary waves has been carried out in an electron depleted magnetized nonthermal dusty plasma consisting of both polarity (positively charged as well as negatively charged) inertial massive dust particles and nonextensive q distributed ions. The reductive perturbation technique is employed to derive the ZakharovKuznetsov (ZK) equation. The basic features of low frequency solitary wave are analyzed via the solution of ZK equation. It is observed that the intrinsic properties (e.g., polarity, amplitude, width, etc.) of dust-acoustic (DA) solitary waves (SWs) are significantly influenced by the effects external magnetic field, obliqueness, nonextensivity of ions, and the ratio of ion number density to the product of electron and negative dust number density. The findings of our results may be useful to explain the low frequency nonlinear wave propagation in some plasma environments like cometary tails, the earth polar mesosphere, Jupiter's magnetosphere, etc.
Liu, J T; Wu, X; Liu, N H; Li, J; Su, F H
2013-07-01
Group delay of electromagnetic pulses through multilayer dielectric mirrors (MDM) combined with gravitational wave (GW) is investigated. Unlike in traditional quantum tunneling, the group delay of a transmitted wave packet irradiated by a GW increases linearly with MDM length. This peculiar tunneling effect can be attributed to electromagnetic wave leakage in a time-dependent photonic bandgap caused by the GW. In particular, we find that the group delay of the tunneling photons is sensitive to GW. Our study provides insight into the nature of the quantum tunnelling as well as a novel process by which to detect the GW.
Controlling wave propagation through nonlinear engineered granular systems
NASA Astrophysics Data System (ADS)
Leonard, Andrea
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave
Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures
Nikitin, Andrey A.; Ustinov, Alexey B.; Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G.; Belyavskiy, Pavel Yu.; Kalinikos, Boris A.; Stashkevich, Andrey A.; Lähderanta, E.
2015-11-14
A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.
New Analytical Solution for Nonlinear Shallow Water-Wave Equations
NASA Astrophysics Data System (ADS)
Aydin, Baran; Kânoğlu, Utku
2017-03-01
We solve the nonlinear shallow water-wave equations over a linearly sloping beach as an initial-boundary value problem under general initial conditions, i.e., an initial wave profile with and without initial velocity. The methodology presented here is extremely simple and allows a solution in terms of eigenfunction expansion, avoiding integral transform techniques, which sometimes result in singular integrals. We estimate parameters, such as the temporal variations of the shoreline position and the depth-averaged velocity, compare with existing solutions, and observe perfect agreement with substantially less computational effort.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
NASA Technical Reports Server (NTRS)
Matsuda, Y.
1974-01-01
A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.
Koltsov, A.V.; Serov, A.V.
1995-12-31
The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.
Nonlinear waves in coherently coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Congy, T.; Kamchatnov, A. M.; Pavloff, N.
2016-04-01
We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies the dynamics of the elementary excitations. The spectrum has two branches, which are affected in different ways. The upper branch experiences a modulational instability, which is stabilized by a long-wave-short-wave resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small dispersion it is described by a Korteweg-de Vries equation or by the Gardner equation, depending on the value of the parameters of the system.
Modulational development of nonlinear gravity-wave groups
NASA Technical Reports Server (NTRS)
Chereskin, T. K.; Mollo-Christensen, E.
1985-01-01
Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
Khan, Farid; Stoeber, Boris; Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency.
Modeling Nonlinear Acoustical Blast Waves Outdoors: A Research Summary
1991-09-01
Porous Surfaces. 5 David Gottlieb and Eli Turkel, "Dissipative Two-Four Methods for Time Dependent Problems," Mathematical Comnputation, No. 30 (1976...or structure factor, which Attenborough relates to the tortuosity. The local reaction assumption is inhereptly built into this model of the porous...k Waves in the Atmosphere," Journal of the Acoustical Socidy of America, No. 74 (1983). pp 1514-1517. David T. Blackstone., "Nonlinear Acoustics
Fast neural solution of a nonlinear wave equation
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.
NASA Astrophysics Data System (ADS)
Colpitts, C. A.; Cattell, C. A.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.
2016-11-01
We present observations of higher-frequency ( 50-2500 Hz, 0.1-0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5-2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Nonlinear interaction and wave breaking with a submerged porous structure
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.
2016-12-01
Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.
Nonreciprocity of a six-wave mixing light droplet by a moving electromagnetically induced grating
NASA Astrophysics Data System (ADS)
Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Wang, Zhiguo; Zhang, Yunzhe; Tian, Hao; Zhang, Yanpeng
2014-04-01
For the first time, we investigate the nonreciprocal generation of six-wave mixing (SWM) in an inverted-Y type four-level system with spatially uniform distribution of atoms. The nonreciprocity results from a moving electromagnetically induced grating (EIG) which is formed by two coupling beams with different frequencies. We demonstrate that the nonreciprocity can be controlled by the frequencies of the coupling fields and the powers of the dressing beams. As the distribution of atoms is uniform, the atomic density cannot affect the nonreciprocity, but it will affect the formation of the photonic band gap structure of the moving EIG. This research can be used to make optical diodes or optical isolators, because the moving EIG, the speed of which is related to the frequency difference of the two coupling beams, can break time-reversal symmetry. We also demonstrate that the nonreciprocal SWM can form a nonreciprocal light droplet when it propagates in atomic vapors with third- and fifth-order nonlinear susceptibilities.
Identification and determination of solitary wave structures in nonlinear wave propagation
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Castro, G.; Mascali, D.; Agnello, R.; Celona, L.; Leonardi, O.; Neri, L.; Nicolosi, D.; Torrisi, G.; Gammino, S.
2016-02-01
A characterization of wave-to-plasma interaction in a quasi-flat magnetostatic field at 3.75 GHz has been carried out by using a small-wire movable RF antenna, connected to a spectrum analyzer. The coupling between electromagnetic and electrostatic waves leads to a characteristic spectral emission in low frequency range and around the pumping wave frequency. The most relevant results consist in the broadening of the pumping wave spectrum above critical RF power thresholds and in the generation of sidebands of the pumping frequency, with corresponding components in low frequency domain. The non-linearities are accompanied by the generation of overdense plasmas and intense fluxes of X-rays.
Shen, Y.R.; Chen, C.K.; de Castro, A.R.B.
1980-01-01
Surface electromagnetic waves are waves propagating along the interface of two media. Their existence was predicted by Sommerfield in 1909. In recent years, interesting applications have been found in the study of overlayers and molecular adsorption on surfaces, in probing of phase transitions, and in measurements of refractive indices. In the laboratory, the nonlinear interaction of surface electromagnetic waves were studied. The preliminary results of this recent venture in this area are presented.
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
Total absorption of an electromagnetic wave in an inhomogeneous magnetized plasma
NASA Astrophysics Data System (ADS)
Aliev, Iu. M.; Vukovich, S.; Gradov, O. M.; Kirii, A. Iu.; Frolov, A. A.
1980-05-01
The paper presents a theoretical analysis of the total absorption of electromagnetic waves by an inhomogeneous magnetoplasma; the analysis has reference to the development of an efficient method of fusion plasma heating by electromagnetic radiation. It is shown that the total absorption is determined by the resonant excitation of damped bulk oscillations of the plasma column. As an example, consideration is given to total resonant absorption during HF plasma heating in a magnetic containment device.
Coupling of electromagnetic waves and space charge waves in type O traveling wave tubes
NASA Technical Reports Server (NTRS)
Ricci, P.
1978-01-01
H. Derfler observed that a parameter defined by Pierce's perturbation method does not have the same physical significance as an analogous parameter described by a differently derived equation of W. Kleen. A modification of Pierce's method is proposed, which yields an equation of Derfler's type, and also allows quicker and easier calculation of a given traveling wave tube's parameters.
NASA Astrophysics Data System (ADS)
Li, C. Y.; Lesselier, D.; Zhong, Y.
2015-07-01
The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.