Sample records for nonlinear evolution equation

  1. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  2. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  3. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  4. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  5. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  6. On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations

    DOE PAGES

    Christov, Ivan C.

    2015-08-20

    We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.

  7. Study of travelling wave solutions for some special-type nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu

    2018-07-01

    The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.

  8. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  9. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  10. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  11. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  12. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  13. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  14. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations.

    PubMed

    Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio

    2014-10-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.

  15. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  16. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  17. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less

  18. New nonlinear evolution equations from surface theory

    NASA Astrophysics Data System (ADS)

    Gürses, Metin; Nutku, Yavuz

    1981-07-01

    We point out that the connection between surfaces in three-dimensional flat space and the inverse scattering problem provides a systematic way for constructing new nonlinear evolution equations. In particular we study the imbedding for Guichard surfaces which gives rise to the Calapso-Guichard equations generalizing the sine-Gordon (SG) equation. Further, we investigate the geometry of surfaces and their imbedding which results in the Korteweg-deVries (KdV) equation. Then by constructing a family of applicable surfaces we obtain a generalization of the KdV equation to a compressible fluid.

  19. NLO evolution of color dipole

    DOE PAGES

    Balitsky, Ian; Chirilli, Giovanni A.

    2008-09-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leading order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities.

  20. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  1. Topics Associated with Nonlinear Evolution Equations and Inverse Scattering in Multidimensions,

    DTIC Science & Technology

    1987-03-01

    significant that these concepts can be generalized to 2 spatial plus one time dimension. Here the prototype equation is the Kadomtsev - Petviashvili (K-P...O-193 32 ? T TOPICS ASSOCIATED WITH NONLINEAR E VOLUTION EQUATIONS / AND INVERSE SCATTER! .(U) CLARKSON UNIV POTSDAM NY INST...8217 - Evolution Equations and L Inverse Scattering in Multi- dimensions by _i A ,’I Mark J. Ablowi ClrsnUiest PosaNwYr/37 LaRMFOMON* .F-5 Anwo~~~d kr /ua

  2. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  3. Nonlinear Ocean Waves

    DTIC Science & Technology

    1994-01-06

    for all of this work is the fact that the Kadomtsev - Petviashvili equation , a1(atu + ui)xU + a.3u) + ay2u = 0, (KP) describes approximately the evolution...the contents of these two papers. (a) Numerically induced chaos The cubic-nonlinear Schrtdinger equation in one dimension, iatA +,2V + 21i,1 =0, (NLS...arises in several physical contexts, including the evolution of nearly monochromatic, one-dimensional waves in deep water. The equation is known to be

  4. Gyrofluid turbulence models with kinetic effects

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Hammett, G. W.

    1993-03-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u∥, T∥, and T⊥ along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived that may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which is equivalent to a multipole approximation to the plasma dispersion function, extended to include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear terms are found that model the perpendicular phase mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing'' terms introduce a hyperviscositylike damping ∝k⊥2‖Φkk×k'‖, which should provide a physics-based damping mechanism at high k⊥ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three-dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.

  5. Two-dimensional evolution equation of finite-amplitude internal gravity waves in a uniformly stratified fluid

    PubMed

    Kataoka; Tsutahara; Akuzawa

    2000-02-14

    We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.

  6. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.

    1994-01-01

    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.

  7. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  8. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  9. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    PubMed

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  10. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  11. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  12. The limitation and applicability of Musher-Sturman equation to two dimensional lower hybrid wave collapse

    NASA Technical Reports Server (NTRS)

    Tam, Sunny W. Y.; Chang, Tom

    1995-01-01

    The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.

  13. Similarity solutions of some two-space-dimensional nonlinear wave evolution equations

    NASA Technical Reports Server (NTRS)

    Redekopp, L. G.

    1980-01-01

    Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.

  14. Lipschitz regularity results for nonlinear strictly elliptic equations and applications

    NASA Astrophysics Data System (ADS)

    Ley, Olivier; Nguyen, Vinh Duc

    2017-10-01

    Most of Lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.

  15. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  16. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  17. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  18. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  19. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    Hamiltonian Formulation of the Kadomtsev - Petviashvili and Benjamin-Ono Equations , A.S. Fokas and P.M. Santini, J. Math. Phys. 29 (3) 604-617 (1988...Prototypes are the so-called Kadomtsev -Petviashvilli and Davey-Stewartson equations . These equations arise in a variety of physical instances such as water...plasma physics. Moreover the study of solutions to some of the underlying nonlinear evolution equations has led naturally to the investigation and new

  20. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.

  1. Pair correlation function and nonlinear kinetic equation for a spatially uniform polarizable nonideal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyi, V.V.; Kukharenko, Y.A.; Wallenborn, J.

    Taking into account the first non-Markovian correction to the Balescu-Lenard equation, we have derived an expression for the pair correlation function and a nonlinear kinetic equation valid for a nonideal polarized classical plasma. This last equation allows for the description of the correlational energy evolution and shows the global conservation of energy with dynamical polarization. {copyright} {ital 1996 The American Physical Society.}

  2. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Akhmediev, Nail; Ankiewicz, Adrian

    2011-04-01

    We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

  3. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  4. Dynamical systems theory for nonlinear evolution equations.

    PubMed

    Choudhuri, Amitava; Talukdar, B; Das, Umapada

    2010-09-01

    We observe that the fully nonlinear evolution equations of Rosenau and Hymann, often abbreviated as K(n,m) equations, can be reduced to Hamiltonian form only on a zero-energy hypersurface belonging to some potential function associated with the equations. We treat the resulting Hamiltonian equations by the dynamical systems theory and present a phase-space analysis of their stable points. The results of our study demonstrate that the equations can, in general, support both compacton and soliton solutions. For the K(2,2) and K(3,3) cases one type of solutions can be obtained from the other by continuously varying a parameter of the equations. This is not true for the K(3,2) equation for which the parameter can take only negative values. The K(2,3) equation does not have any stable point and, in the language of mechanics, represents a particle moving with constant acceleration.

  5. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.

  6. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less

  7. Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.

  8. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities.

    PubMed

    Mártin, Daniel A; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  9. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Jie; Ma, Chang-Feng

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.

  10. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  11. The hair-trigger effect for a class of nonlocal nonlinear equations

    NASA Astrophysics Data System (ADS)

    Finkelshtein, Dmitri; Tkachov, Pasha

    2018-06-01

    We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on which have only two constant stationary solutions, 0 and . The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to ) to θ locally uniformly in . We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.

  12. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  13. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less

  14. Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation.

    PubMed

    Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K

    2017-02-01

    We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.

  15. Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,

    DTIC Science & Technology

    1986-08-01

    KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and

  16. Analysis of Some Properties of the Nonlinear Schrödinger Equation Used for Filamentation Modeling

    NASA Astrophysics Data System (ADS)

    Zemlyanov, A. A.; Bulygin, A. D.

    2018-06-01

    Properties of the integral of motion and evolution of the effective light beam radius are analyzed for the stationary model of the nonlinear Schrödinger equation describing the filamentation. It is demonstrated that within the limits of such model, filamentation is limited only by the dissipation mechanisms.

  17. Single evolution equation in a light-matter pairing system

    NASA Astrophysics Data System (ADS)

    Bugaychuk, S.; Tobisch, E.

    2018-03-01

    The coupled system including wave mixing and nonlinear dynamics of a nonlocal optical medium is usually studied (1) numerically, with the medium being regarded as a black box, or (2) experimentally, making use of some empirical assumptions. In this paper we deduce for the first time a single evolution equation describing the dynamics of the pairing system as a holistic complex. For a non-degenerate set of parameters, we obtain the nonlinear Schrödinger equation with coefficients being written out explicitly. Analytical solutions of this equation can be experimentally realized in any photorefractive medium, e.g. in photorefractive, liquid or photonic crystals. For instance, a soliton-like solution can be used in dynamical holography for designing an artificial grating with maximal amplification of an image.

  18. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  19. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com; Lerche, I., E-mail: lercheian@yahoo.com

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are ofmore » use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].« less

  20. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  1. Helicity evolution at small-x

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2016-01-13

    We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of α s ln 2(1/x) in the polarization-dependent evolution along with the powers of α s ln(1/x) in the unpolarized evolution which includes saturation efects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c & N f limits. As a cross-check,more » in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for g 1 structure function derived previously by Bartels, Ermolaev and Ryskin.« less

  2. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  3. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  4. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  5. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.

    PubMed

    Sicuro, Gabriele; Rapčan, Peter; Tsallis, Constantino

    2016-12-01

    We extend a recently introduced free-energy formalism for homogeneous Fokker-Planck equations to a wide, and physically appealing, class of inhomogeneous nonlinear Fokker-Planck equations. In our approach, the free-energy functional is expressed in terms of an entropic functional and an auxiliary potential, both derived from the coefficients of the equation. With reference to the introduced entropic functional, we discuss the entropy production in a relaxation process towards equilibrium. The properties of the stationary solutions of the considered Fokker-Planck equations are also discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less

  7. New envelope solitons for Gerdjikov-Ivanov model in nonlinear fiber optics

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Alqahtani, Rubayyi T.; Zhou, Qin; Biswas, Anjan

    2017-11-01

    Exact soliton solutions in a class of derivative nonlinear Schrödinger equations including a pure quintic nonlinearity are investigated. By means of the coupled amplitude-phase formulation, we derive a nonlinear differential equation describing the evolution of the wave amplitude in the non-Kerr quintic media. The resulting amplitude equation is then solved to get exact analytical chirped bright, kink, antikink, and singular soliton solutions for the model. It is also shown that the nonlinear chirp associated with these solitons is crucially dependent on the wave intensity and related to self-steepening and group velocity dispersion parameters. Parametric conditions on physical parameters for the existence of chirped solitons are also presented. These localized structures exist due to a balance among quintic nonlinearity, group velocity dispersion, and self-steepening effects.

  8. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the morphological number, as well as the amplitude. The critical amplitude, at which solutions loose periodicity, depends on a single combination of parameters independent of the morphological number that indicate that non-periodic growth is most commonly present for moderate disequilibrium parameters. The spatial distribution of the interface develops deepening roots at late times. Similar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes are close to absolute stability, and the roots deepen with larger departures from the two absolute stability boundaries.

  9. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.

    2018-02-01

    Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.

  10. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    NASA Astrophysics Data System (ADS)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  11. Rosenzweig instability in a thin layer of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  12. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  13. The Kadomtsev{endash}Petviashvili equation as a source of integrable model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1996-12-01

    A new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained, by an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, from the Kadomtsev{endash}Petviashvili equation. The integrability property is explicitly demonstrated, by exhibiting the corresponding Lax pair, that is obtained by applying the reduction technique to the Lax pair of the Kadomtsev{endash}Petviashvili equation. This model equation is likely to be of applicative relevance, because it may be considered a consistent approximation of a large class of nonlinear evolution PDEs. {copyright} {ital 1996 American Institute of Physics.}

  14. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  15. Fast neural solution of a nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.

  16. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  17. Reorientational versus Kerr dark and gray solitary waves using modulation theory.

    PubMed

    Assanto, Gaetano; Marchant, T R; Minzoni, Antonmaria A; Smyth, Noel F

    2011-12-01

    We develop a modulation theory model based on a Lagrangian formulation to investigate the evolution of dark and gray optical spatial solitary waves for both the defocusing nonlinear Schrödinger (NLS) equation and the nematicon equations describing nonlinear beams, nematicons, in self-defocusing nematic liquid crystals. Since it has an exact soliton solution, the defocusing NLS equation is used as a test bed for the modulation theory applied to the nematicon equations, which have no exact solitary wave solution. We find that the evolution of dark and gray NLS solitons, as well as nematicons, is entirely driven by the emission of diffractive radiation, in contrast to the evolution of bright NLS solitons and bright nematicons. Moreover, the steady nematicon profile is nonmonotonic due to the long-range nonlocality associated with the perturbation of the optic axis. Excellent agreement is obtained with numerical solutions of both the defocusing NLS and nematicon equations. The comparisons for the nematicon solutions raise a number of subtle issues relating to the definition and measurement of the width of a dark or gray nematicon.

  18. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  19. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  20. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  1. A nonlinear wave equation in nonadiabatic flame propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-06-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.

  2. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    NASA Astrophysics Data System (ADS)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  3. Finite-amplitude strain waves in laser-excited plates.

    PubMed

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  4. Nonlinearization and waves in bounded media: old wine in a new bottle

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; Seymour, Brian R.

    2017-02-01

    We consider problems such as a standing wave in a closed straight tube, a self-sustained oscillation, damped resonance, evolution of resonance and resonance between concentric spheres. These nonlinear problems, and other similar ones, have been solved by a variety of techniques when it is seen that linear theory fails. The unifying approach given here is to initially set up the appropriate linear difference equation, where the difference is the linear travel time. When the linear travel time is replaced by a corrected nonlinear travel time, the nonlinear difference equation yields the required solution.

  5. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  6. Direct Numerical Simulation of Fingering Instabilities in Coating Flows

    NASA Astrophysics Data System (ADS)

    Eres, Murat H.; Schwartz, Leonard W.

    1998-11-01

    We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.

  7. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  8. Falling films on flexible inclines

    NASA Astrophysics Data System (ADS)

    Matar, O. K.; Craster, R. V.; Kumar, S.

    2007-11-01

    The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.

  9. Controlling the motion of solitons in 1-D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Giridharan, D.; Sabareesan, P.; Daniel, M.

    2018-04-01

    We investigate nonlinear localized magnetic excitations in a simple form of one dimensional magnonic crystal by considering a ferromagnetic medium under periodic applied magnetic field of spatially varying strength. The governing Landau-Lifshitz equation is transformed into nonlinear evolution equation of a complex function through stereographic projection technique. The associated evolution equation numerically solved by using split-step Fourier method (SSFM). From the obtained results it is observed that the excitations appear in the form of solitons and the periodic magnetic field of spatially varying strength perturbs the soliton propagation. Bright and dark soliton solutions are constructed and studied the effect of tuning the strength of spatially periodic applied magnetic field on the nonlinear excitation of magnetization. The results show that the amplitude and velocity of the soliton can be effectively managed by varying the strength of spatially periodic applied magnetic field and it act as periodic potential which provides an additional degree of freedom to control the nature of soliton propagation in a ferromagnetic medium.

  10. Diffeomorphism groups and nonlinear quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goldin, Gerald A.

    2012-02-01

    This talk is dedicated to my friend and collaborator, Prof. Dr. Heinz-Dietrich Doebner, on the occasion of his 80th birthday. I shall review some highlights of the approach we have taken in deriving and interpreting an interesting class of nonlinear time-evolution equations for quantum-mechanical wave functions, with few equations; more detail may be found in the references. Then I shall comment on the corresponding hydrodynamical description.

  11. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations.

    PubMed

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J

    2014-08-07

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  12. New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients

    NASA Astrophysics Data System (ADS)

    Jaradat, H. M.; Syam, Muhammed; Jaradat, M. M. M.; Mustafa, Zead; Moman, S.

    2018-03-01

    In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem, rational exponential function method, tanh method, homotopy perturbation method, exp-function method, and coth method, are made. From these comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth mention that the proposed solution can solve many physical problems.

  13. Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions

    NASA Astrophysics Data System (ADS)

    Jahanipur, Ruhollah

    In this paper, we study a class of semilinear functional evolution equations in which the nonlinearity is demicontinuous and satisfies a semimonotone condition. We prove the existence, uniqueness and exponentially asymptotic stability of the mild solutions. Our approach is to apply a convenient version of Burkholder inequality for convolution integrals and an iteration method based on the existence and measurability results for the functional integral equations in Hilbert spaces. An Itô-type inequality is the main tool to study the uniqueness, p-th moment and almost sure sample path asymptotic stability of the mild solutions. We also give some examples to illustrate the applications of the theorems and meanwhile we compare the results obtained in this paper with some others appeared in the literature.

  14. The breakdown of the weakly-nonlinear regime for kinetic instabilities

    NASA Astrophysics Data System (ADS)

    Sanz-Orozco, David; Berk, Herbert; Wang, Ge

    2017-10-01

    The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.

  15. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming

    2017-10-01

    Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.

  16. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  17. Solving nonlinear evolution equation system using two different methods

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  18. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  19. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  20. On the Solutions of a 2+1-Dimensional Model for Epitaxial Growth with Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xin Yang

    2018-04-01

    In this paper, we study the evolution equation derived by Xu and Xiang (SIAM J Appl Math 69(5):1393-1414, 2009) to describe heteroepitaxial growth in 2+1 dimensions with elastic forces on vicinal surfaces is in the radial case and uniform mobility. This equation is strongly nonlinear and contains two elliptic integrals and defined via Cauchy principal value. We will first derive a formally equivalent parabolic evolution equation (i.e., full equivalence when sufficient regularity is assumed), and the main aim is to prove existence, uniqueness and regularity of strong solutions. We will extensively use techniques from the theory of evolution equations governed by maximal monotone operators in Banach spaces.

  1. Stochastic theory of polarized light in nonlinear birefringent media: An application to optical rotation

    NASA Astrophysics Data System (ADS)

    Tsuchida, Satoshi; Kuratsuji, Hiroshi

    2018-05-01

    A stochastic theory is developed for the light transmitting the optical media exhibiting linear and nonlinear birefringence. The starting point is the two-component nonlinear Schrödinger equation (NLSE). On the basis of the ansatz of “soliton” solution for the NLSE, the evolution equation for the Stokes parameters is derived, which turns out to be the Langevin equation by taking account of randomness and dissipation inherent in the birefringent media. The Langevin equation is converted to the Fokker-Planck (FP) equation for the probability distribution by employing the technique of functional integral on the assumption of the Gaussian white noise for the random fluctuation. The specific application is considered for the optical rotation, which is described by the ellipticity (third component of the Stokes parameters) alone: (i) The asymptotic analysis is given for the functional integral, which leads to the transition rate on the Poincaré sphere. (ii) The FP equation is analyzed in the strong coupling approximation, by which the diffusive behavior is obtained for the linear and nonlinear birefringence. These would provide with a basis of statistical analysis for the polarization phenomena in nonlinear birefringent media.

  2. The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    NASA Technical Reports Server (NTRS)

    Hewitt, R. E.; Hall, P.

    1996-01-01

    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.

  3. Initial-value problem for the Gardner equation applied to nonlinear internal waves

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim

    2017-04-01

    The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of solitons (family with positive polarity, and family with negative polarity bounded below by the amplitude of 2) and two-parametric family of breathers (oscillatory wave packets). In this case varying amplitude and width of bell-shaped initial impulse leads to plenty of different evolutionary scenarios with the generation of solitary waves, breathers, solibores and nonlinear Airy wave in their various combinations. Statistical analysis of the wave field in time shows almost permanent substantial exceedance of the level of the significant wave height in some position in spatial coordinate. Evolution of Fourier spectrum of the wave field is also analyzed, and its behavior after a long time of initial wave evolution demonstrates the power asymptotic for small wave numbers and exponential asymptotic for large wave numbers. The presented results of research are obtained with the support of the grant of the President of the Russian Federation for state support of the young Russian scientists - Candidates of Sciences (MK-5208.2016.5) and Russian Foundation for Basic Research grant 16-05-00049. References: Grimshaw R., Pelinovsky D., Pelinovsky E and Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation // Chaos, 2002. - V.12. - No 4. - 1070-1076. Grimshaw, R., Slunyaev, A., and Pelinovsky, E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity //Chaos, 2010. - vol. 20.-013102. Kurkina O.E., Kurkin A.A., Soomere T., Pelinovsky E.N., Rouvinskaya E.A. Higher-order (2+4) Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid // Physics of Fluids, 2011. - Volume 23. - Issue 11. - p.116602--1--13. Kurkina O., Rouvinskaya E., Talipova T., Kurkin A., Pelinovsky E. Nonlinear disintegration of sine wave in the framework of the Gardner equation // Physica D: Nonlinear Phenomena, 2015. - doi:10.1016/j.physd.2015.12.007. Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book ``Solitary Waves in Fluids''. WIT Press. Southampton, Boston. 2007. P. 85 - 110. Rouvinskaya E., Kurkina O., Kurkin A. Dynamics of nonlinear internal gravity waves in layered fluids // NNSTU n.a. R.E. Alekseev Press - Nizhny Novgorod, 2014 - 160 p. [In Russian] Trillo S., Klein M., Clauss G., Onorato M. Observation of dispersive shock waves developing from initial depressions in shallow water // Physica D, 2016. - http://dx.doi.org/10.1016/j.physd.2016.01.007.

  4. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  5. Nonlinear evolution of magnetic flux ropes. I - Low-beta limit

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.

    1993-01-01

    We study the nonlinear self-similar evolution of a cylindrical magnetic flux tube with two components of the magnetic field, axial and azimuthal. We restrict ourselves to the case of a plasma of low beta. Introducing a special class of configurations we call 'separable fields', we reduce the problem to an ordinary differential equation. Two cases are to be distinguished: (1) when the total field minimizes on the symmetry axis, the magnetic configuration inexorably collapses, and (2) when, on the other hand, the total field maximizes on the symmetry axis, the magnetic configuration behaves analogously to a nonlinear oscillator. Here we focus on the latter case. The effective potential of the motion contains two terms: a strong repulsive term and a weak restoring term associated with the pinch. We solve the nonlinear differential equation of motion numerically and find that the period of oscillations grows exponentially with the energy of the oscillator. Our treatment emphasizes the role of the force-free configuration as the lowest potential energy state about which the system oscillates.

  6. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  7. Evolution and End Point of the Black String Instability: Large D Solution.

    PubMed

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro

    2015-08-28

    We derive a simple set of nonlinear, (1+1)-dimensional partial differential equations that describe the dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the number of dimensions D. These equations are easily solved numerically. Their solution shows that thin enough black strings are unstable to developing inhomogeneities along their length, and at late times they asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by short necks. We also present the equations that describe the nonlinear dynamics of anti-de Sitter black branes at large D.

  8. Optical solitons in nematic liquid crystals: model with saturation effects

    NASA Astrophysics Data System (ADS)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  9. Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach

    NASA Astrophysics Data System (ADS)

    Tovbis, Alexander; El, Gennady A.

    2016-10-01

    The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.

  10. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  11. The method of projected characteristics for the evolution of magnetic arches

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.

    1987-01-01

    A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.

  12. Spatio-temporal instabilities for counterpropagating waves in periodic media.

    PubMed

    Haus, Joseph; Soon, Boon Yi; Scalora, Michael; Bloemer, Mark; Bowden, Charles; Sibilia, Concita; Zheltikov, Alexei

    2002-01-28

    Nonlinear evolution of coupled forward and backward fields in a multi-layered film is numerically investigated. We examine the role of longitudinal and transverse modulation instabilities in media of finite length with a homogeneous nonlinear susceptibility c((3)). The numerical solution of the nonlinear equations by a beam-propagation method that handles backward waves is described.

  13. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.

    PubMed

    Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali

    2015-01-01

    In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.

  14. Curl forces and the nonlinear Fokker-Planck equation.

    PubMed

    Wedemann, R S; Plastino, A R; Tsallis, C

    2016-12-01

    Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the S_{q} entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.

  15. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyuki, Y.

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less

  16. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    NASA Astrophysics Data System (ADS)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  17. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  18. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  19. Multidimensional Solitons in Complex Media with Variable Dispersion: Structure and Evolution

    DTIC Science & Technology

    2003-07-20

    the results of numerical experiments on Kadomtsev - Petviashvili (KP) equation study of structure and evolution of the nonlinear waves Sx described by...the KP equation with 13 = 3 (t,r) are con- at + auaxu + 03’u =K fAjudx, (1) sidered distracting from a concrete type of media. The -o• numerical...0i)(cot 0- mIM). It is well known that cluding the solutions of the mixed "soliton - non-soliton" the ID solutions of the KdV equation with 3 = const

  20. Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide

    NASA Astrophysics Data System (ADS)

    Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan

    2012-06-01

    Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).

  1. Peakompactons: Peaked compact nonlinear waves

    DOE PAGES

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-20

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less

  2. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.

  3. Models of fold-related hysteresis

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir

    2018-05-01

    Hysteresis is a strongly nonlinear physics phenomenon observed in many fluid mechanics flows. This paper composes evolution equations of the minimal nonlinearity and dimension which describe three hysteresis kinds related to a fold catastrophe formed by (i) two fold bifurcations, (ii) fold and transcritical bifurcations, and (iii) fold and subcritical bifurcations.

  4. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  5. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  6. Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khamis, E. G.; Tovbis, A.

    2016-09-01

    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.

  7. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  8. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  9. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruban, V. P., E-mail: ruban@itp.ac.ru

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less

  10. Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.

    PubMed

    Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G

    2016-12-02

    We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.

  11. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000; Ali, S.

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are stronglymore » influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.« less

  12. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang

    2018-07-01

    In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.

  13. Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity

    NASA Astrophysics Data System (ADS)

    Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.

    2015-12-01

    We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.

  14. Time-dependent behavior of passive skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.

    2016-03-01

    An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.

  15. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  16. Theory and modeling of atmospheric turbulence, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.

  17. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    NASA Astrophysics Data System (ADS)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  18. Optical Quasi-Soliton Solutions for the Cubic-Quintic Nonlinear SCHRÖDINGER Equation with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Zhang, Jie-Fang

    Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.

  19. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  20. Nonlinear evolution of coarse-grained quantum systems with generalized purity constraints

    NASA Astrophysics Data System (ADS)

    Burić, Nikola

    2010-12-01

    Constrained quantum dynamics is used to propose a nonlinear dynamical equation for pure states of a generalized coarse-grained system. The relevant constraint is given either by the generalized purity or by the generalized invariant fluctuation, and the coarse-grained pure states correspond to the generalized coherent, i.e. generalized nonentangled states. Open system model of the coarse-graining is discussed. It is shown that in this model and in the weak coupling limit the constrained dynamical equations coincide with an equation for pointer states, based on Hilbert-Schmidt distance, that was previously suggested in the context of the decoherence theory.

  1. Time-Reversal Generation of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  2. The Davey-Stewartson Equation on the Half-Plane

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.

    2009-08-01

    The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

  3. A quadrature based method of moments for nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin L.; Vedula, Prakash

    2011-09-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.

  4. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  5. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-

    2014-01-01

    Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.

  6. On the reduced dynamics of a subset of interacting bosonic particles

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  7. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  8. Gaseous Viscous Peeling of Linearly Elastic Substrates

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2017-11-01

    We study pressure-driven propagation of gas into a micron-scale gap between two linearly elastic substrates. Applying the lubrication approximation, the governing nonlinear evolution equation describes the interaction between elasticity and viscosity, as well as weak rarefaction and low-Mach-number compressibility, characteristic to gaseous microflows. Several physical limits allow simplification of the evolution equation and enable solution by self-similarity. During the peeling process the flow-field transitions between the different limits and the respective approximate solutions. The sequence of limits occurring during the propagation dynamics can be related to the thickness of the prewetting layer of the configuration at rest, yielding an approximate description of the entire peeling dynamics. The results are validated by numerical solutions of the evolution equation. Israel Science Foundation 818/13.

  9. Generation mechanisms of fundamental rogue wave spatial-temporal structure.

    PubMed

    Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling

    2017-08-01

    We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.

  10. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  11. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  12. A family of wave equations with some remarkable properties.

    PubMed

    da Silva, Priscila Leal; Freire, Igor Leite; Sampaio, Júlio Cesar Santos

    2018-02-01

    We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.

  13. Self-Supervised Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and metal aspects of a monad is implemented by feedback from mental to motor dynamics, as represented by the aforementioned fictitious forces. This feedback is what makes the evolution of probability densities nonlinear. The deviation from linear evolution can be characterized, in a sense, as an expression of free will. It has been demonstrated that probability densities can approach prescribed attractors while exhibiting such patterns as shock waves, solitons, and chaos in probability space. The concept of self-supervised dynamical systems has been considered for application to diverse phenomena, including information-based neural networks, cooperation, competition, deception, games, and control of chaos. In addition, a formal similarity between the mathematical structures of self-supervised dynamical systems and of quantum-mechanical systems has been investigated.

  14. Elliptic-type soliton combs in optical ring microresonators

    NASA Astrophysics Data System (ADS)

    Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.

    2018-03-01

    Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the numerical results are in very good agreement with the collective-coordinate approach.

  15. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  16. Quantum simulation from the bottom up: the case of rebits

    NASA Astrophysics Data System (ADS)

    Enshan Koh, Dax; Yuezhen Niu, Murphy; Yoder, Theodore J.

    2018-05-01

    Typically, quantum mechanics is thought of as a linear theory with unitary evolution governed by the Schrödinger equation. While this is technically true and useful for a physicist, with regards to computation it is an unfortunately narrow point of view. Just as a classical computer can simulate highly nonlinear functions of classical states, so too can the more general quantum computer simulate nonlinear evolutions of quantum states. We detail one particular simulation of nonlinearity on a quantum computer, showing how the entire class of -unitary evolutions (on n qubits) can be simulated using a unitary, real-amplitude quantum computer (consisting of n  +  1 qubits in total). These operators can be represented as the sum of a linear and antilinear operator, and add an intriguing new set of nonlinear quantum gates to the toolbox of the quantum algorithm designer. Furthermore, a subgroup of these nonlinear evolutions, called the -Cliffords, can be efficiently classically simulated, by making use of the fact that Clifford operators can simulate non-Clifford (in fact, non-linear) operators. This perspective of using the physical operators that we have to simulate non-physical ones that we do not is what we call bottom-up simulation, and we give some examples of its broader implications.

  17. Salient features of solitary waves in dusty plasma under the influence of Coriolis force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004

    The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less

  18. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  19. Asymptotic expansions and solitons of the Camassa-Holm - nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Mylonas, I. K.; Ward, C. B.; Kevrekidis, P. G.; Rothos, V. M.; Frantzeskakis, D. J.

    2017-12-01

    We study a deformation of the defocusing nonlinear Schrödinger (NLS) equation, the defocusing Camassa-Holm NLS, hereafter referred to as CH-NLS equation. We use asymptotic multiscale expansion methods to reduce this model to a Boussinesq-like equation, which is then subsequently approximated by two Korteweg-de Vries (KdV) equations for left- and right-traveling waves. We use the soliton solution of the KdV equation to construct approximate solutions of the CH-NLS system. It is shown that these solutions may have the form of either dark or antidark solitons, namely dips or humps on top of a stable continuous-wave background. We also use numerical simulations to investigate the validity of the asymptotic solutions, study their evolution, and their head-on collisions. It is shown that small-amplitude dark and antidark solitons undergo quasi-elastic collisions.

  20. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  1. Linear analysis of auto-organization in Hebbian neural networks.

    PubMed

    Carlos Letelier, J; Mpodozis, J

    1995-01-01

    The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.

  2. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  3. Amplification of nonlinear surface waves by wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblanc, Stephane

    2007-10-15

    A weakly nonlinear analysis is conducted to study the evolution of slowly varying wavepackets with small but finite amplitudes, that evolve at the interface between air and water under the effect of wind. In the inviscid assumption, wave envelopes are governed by cubic nonlinear Schroedinger or Davey-Stewartson equations forced by a linear term corresponding to Miles' mechanism of wave generation. Under fair wind, it is shown that Stokes waves grow exponentially and that Benjamin-Feir instability becomes explosive.

  4. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  5. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  6. Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime; Natali, Fábio M. Amorin

    2009-04-01

    In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.

  7. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    PubMed

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  8. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  9. Weakly Nonlinear Model with Exact Coefficients for the Fluttering and Spiraling Motion of Buoyancy-Driven Bodies

    NASA Astrophysics Data System (ADS)

    Tchoufag, Joël; Fabre, David; Magnaudet, Jacques

    2015-09-01

    Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  10. A weakly nonlinear model with exact coefficients for the fluttering and spiraling motions of buoyancy-driven bodies

    NASA Astrophysics Data System (ADS)

    Magnaudet, Jacques; Tchoufag, Joel; Fabre, David

    2015-11-01

    Gravity/buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Using a weakly nonlinear expansion of the full set of governing equations, we derive a new generic reduced-order model of this class of phenomena based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (eg. fluttering or spiraling) and characteristics (eg. frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  11. Nonlinear evolution of Benjamin-Feir wave group based on third order solution of Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Zahnur; Halfiani, Vera; Salmawaty; Tulus; Ramli, Marwan

    2018-01-01

    This study concerns on the evolution of trichromatic wave group. It has been known that the trichromatic wave group undergoes an instability during its propagation, which results wave deformation and amplification on the waves amplitude. The previous results on the KdV wave group showed that the nonlinear effect will deform the wave and lead to large wave whose amplitude is higher than the initial input. In this study we consider the Benjamin-Bona-Mahony equation and the theory of third order side band approximation to investigate the peaking and splitting phenomena of the wave groups which is initially in trichromatic signal. The wave amplitude amplification and the maximum position will be observed through a quantity called Maximal Temporal Amplitude (MTA) which measures the maximum amplitude of the waves over time.

  12. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.

    2014-12-01

    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  13. Group-kinetic theory of turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  14. Data dependence for the amplitude equation of surface waves

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    2016-04-01

    We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891-897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451-474, 2003; Alì et al. in Stud Appl Math 108(3):305-321, 2002) and on the incompressible plasma-vacuum interface (Secchi in Q Appl Math 73(4):711-737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247-267, 2006), Secchi (Q Appl Math 73(4):711-737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.

  15. The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions

    NASA Astrophysics Data System (ADS)

    Djoko, Martin; Kofane, T. C.

    2018-06-01

    We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. We have used the variational method to find a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically by the means of the fourth-order Runge-Kutta (RK4) method, which also allows us to investigate the evolution of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the results with those obtained, using the variational approach. A good agreement between analytical and numerical methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named the total energy Q, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets, 3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial input condition (symmetric or elliptic).

  16. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  17. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE PAGES

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; ...

    2015-11-19

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  18. Comparing an analytical spacetime metric for a merging binary to a fully nonlinear numerical evolution using curvature scalars

    NASA Astrophysics Data System (ADS)

    Sadiq, Jam; Zlochower, Yosef; Nakano, Hiroyuki

    2018-04-01

    We introduce a new geometrically invariant prescription for comparing two different spacetimes based on geodesic deviation. We use this method to compare a family of recently introduced analytical spacetime representing inspiraling black-hole binaries to fully nonlinear numerical solutions to the Einstein equations. Our method can be used to improve analytical spacetime models by providing a local measure of the effects that violations of the Einstein equations will have on timelike geodesics, and indirectly, gas dynamics. We also discuss the advantages and limitations of this method.

  19. Constraining modified theories of gravity with the galaxy bispectrum

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Yokoyama, Shuichiro; Tashiro, Hiroyuki

    2017-12-01

    We explore the use of the galaxy bispectrum induced by the nonlinear gravitational evolution as a possible probe to test general scalar-tensor theories with second-order equations of motion. We find that time dependence of the leading second-order kernel is approximately characterized by one parameter, the second-order index, which is expected to trace the higher-order growth history of the Universe. We show that our new parameter can significantly carry new information about the nonlinear growth of structure. We forecast future constraints on the second-order index as well as the equation-of-state parameter and the growth index.

  20. Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Singh, Manjit; Gupta, R. K.

    2017-11-01

    In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.

  1. Nonlinear Ocean Waves

    DTIC Science & Technology

    1994-09-30

    equation due to Kadomtsev & Petviashvili (1970), Dx(atu + 6 ui)u + a8 3U) + 3 ay2u = 0, (KP) is known to describe approximately the evolution of...to be stable to perturbations, and their amplitudes need not be small. The Kadomtsev - Petviashvili (KP) equation is known to describe approximately the...predicted with reasonable accuracy by a family of exact solutions of an equation due to Kadomtsev and Petviashvili (1970): (ft + 6 ffx + f )x + 3fyy

  2. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.

    PubMed

    Cooper, F; Hyman, J M; Khare, A

    2001-08-01

    Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial differential equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, and the Kadomtsev-Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support. We have derived and investigate a new KdV-like Hamiltonian partial differential equation from a four-parameter Lagrangian where the nonlinear dispersion gives rise to solitons with compact support (compactons). The new equation does not seem to be integrable and only mass, momentum, and energy seem to be conserved; yet, the solitons display almost the same modal decompositions and structural stability observed in integrable partial differential equations. The compactons formed from arbitrary initial data, are nonlinearly self-stabilizing, and maintain their coherence after multiple collisions. The robustness of these compactons and the inapplicability of the inverse scattering tools, that worked so well for the KdV equation, make it clear that there is a fundamental mechanism underlying the processes beyond integrability. We have found explicit formulas for multiple classes of compact traveling wave solutions. When there are more than one compacton solution for a particular set of parameters, the wider compacton is the minimum of a reduced Hamiltonian and is the only one that is stable.

  3. Numerical simulation of stability and stability control of high speed compressible rotating couette flow

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat; Hatay, Ferhat F.

    1993-01-01

    The nonlinear temporal evolution of disturbances in compressible flow between infinitely long, concentric cylinders is investigated through direct numerical simulations of the full, three-dimensional Navier-Stokes and energy equations. Counter-rotating cylinders separated by wide gaps are considered with supersonic velocities of the inner cylinder. Initially, the primary disturbance grows exponentially in accordance with linear stability theory. As the disturbances evolve, higher harmonics and subharmonics are generated in a cascading order eventually reaching a saturation state. Subsequent highly nonlinear stages of the evolution are governed by the interaction of the disturbance modes, particularly the axial subharmonics. Nonlinear evolution of the disturbance field is characterized by the formation of high-shear layers extending from the inner cylinder towards the center of the gap in the form of jets similar to the ejection events in transitional and turbulent wall-bounded shear flows.

  4. Higher-order modulation instability in nonlinear fiber optics.

    PubMed

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  5. Utilizing a Coupled Nonlinear Schrödinger Model to Solve the Linear Modal Problem for Stratified Flows

    NASA Astrophysics Data System (ADS)

    Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing

    2017-11-01

    The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.

  6. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  7. Strong nonlinear rupture theory of thin free liquid films

    NASA Astrophysics Data System (ADS)

    Chi-Chuan, Hwang; Jun-Liang, Chen; Li-Fu, Shen; Cheng-I, Weng

    1996-02-01

    A simplified governing equation with high-order effects is formulated after a procedure of evaluating the order of magnitude. Furthermore, the nonlinear evolution equations are derived by the Kármán-Polhausen integral method with a specified velocity profile. Particularly, the effects of surface tension, van der Waals potential, inertia and high-order viscous dissipation are taken into consideration in these equation. The numerical results reveal that the rupture time of free film is much shorter than that of a film on a flat plate. It is shown that because of a more complete high-order viscous dissipation effect discussed in the present study, the rupture process of present model is slower than is predicted by the high-order long wave theory.

  8. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.; Trifonov, A. Yu.

    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

  9. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

  10. Parametric resonant triad interactions in a free shear layer

    NASA Technical Reports Server (NTRS)

    Mallier, R.; Maslowe, S. A.

    1993-01-01

    We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.

  11. Chaotic evolution of arms races

    NASA Astrophysics Data System (ADS)

    Tomochi, Masaki; Kono, Mitsuo

    1998-12-01

    A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.

  12. The soliton transform and a possible application to nonlinear Alfven waves in space

    NASA Technical Reports Server (NTRS)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  13. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  14. Linear and nonlinear propagation of water wave groups

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.

    1992-01-01

    Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.

  15. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  16. Wave kinetics of random fibre lasers

    PubMed Central

    Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.

    2015-01-01

    Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177

  17. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.

  18. The Hamiltonian structure of the (2+1)-dimensional Ablowitz--Kaup--Newell--Segur hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athorne, C.; Dorfman, I.Y.

    1993-08-01

    By considering Hamiltonian theory over a suitable (noncommutative) ring the nonlinear evolution equations of the Ablowitz--Kaup--Newell--Segur (2+1) hierarchy are incorporated into a Hamiltonian framework and a modified Lenard scheme.

  19. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  20. Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.

    PubMed

    Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Soneson, Joshua E; Myers, Matthew R

    2013-11-01

    A method is introduced for using measurements made in water of the nonlinear acoustic pressure field produced by a high-intensity focused ultrasound transducer to compute the acoustic pressure and temperature rise in a tissue medium. The acoustic pressure harmonics generated by nonlinear propagation are represented as a sum of modes having a Gaussian functional dependence in the radial direction. While the method is derived in the context of Gaussian beams, final results are applicable to general transducer profiles. The focal acoustic pressure is obtained by solving an evolution equation in the axial variable. The nonlinear term in the evolution equation for tissue is modeled using modal amplitudes measured in water and suitably reduced using a combination of "source derating" (experiments in water performed at a lower source acoustic pressure than in tissue) and "endpoint derating" (amplitudes reduced at the target location). Numerical experiments showed that, with proper combinations of source derating and endpoint derating, direct simulations of acoustic pressure and temperature in tissue could be reproduced by derating within 5% error. Advantages of the derating approach presented include applicability over a wide range of gains, ease of computation (a single numerical quadrature is required), and readily obtained temperature estimates from the water measurements.

  1. Strong Langmuir Turbulence and Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Glanz, James

    1991-02-01

    The staircase expansion is a new mathematical technique for deriving reduced, nonlinear-PDE descriptions from the plasma-moment equations. Such descriptions incorporate only the most significant linear and nonlinear terms of more complex systems. The technique is used to derive a set of Dawson-Zakharov or "master" equations, which unify and generalize previous work and show the limitations of models commonly used to describe nonlinear plasma waves. Fundamentally new wave-evolution equations are derived that admit of exact nonlinear solutions (solitary waves). Analytic calculations illustrate the competition between well-known effects of self-focusing, which require coupling to ion motion, and pure-electron nonlinearities, which are shown to be especially important in curved geometries. Also presented is an N -moment hydrodynamic model derived from the Vlasov equation. In this connection, the staircase expansion is shown to remain useful for all values of N >= 3. The relevance of the present work to nonlocally truncated hierarchies, which more accurately model dissipation, is briefly discussed. Finally, the general formalism is applied to the problem of electromagnetic emission from counterpropagating Langmuir pumps. It is found that previous treatments have neglected order-unity effects that increase the emission significantly. Detailed numerical results are presented to support these conclusions. The staircase expansion--so called because of its appearance when written out--should be effective whenever the largest contribution to the nonlinear wave remains "close" to some given frequency. Thus the technique should have application to studies of wake-field acceleration schemes and anomalous damping of plasma waves.

  2. Prolongation structures of nonlinear evolution equations. II

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1976-01-01

    The prolongation structure of a closed ideal of exterior differential forms is further discussed, and its use illustrated by application to an ideal (in six dimensions) representing the cubically nonlinear Schroedinger equation. The prolongation structure in this case is explicitly given, and recurrence relations derived which support the conjecture that the structure is open - i.e., does not terminate as a set of structure relations of a finite-dimensional Lie group. We introduce the use of multiple pseudopotentials to generate multiple Baecklund transformation, and derive the double Baecklund transformation. This symmetric transformation concisely expresses the (usually conjectured) theorem of permutability, which must consequently apply to all solutions irrespective of asymptotic constraints.

  3. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  4. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  5. Koopman decomposition of Burgers' equation: What can we learn?

    NASA Astrophysics Data System (ADS)

    Page, Jacob; Kerswell, Rich

    2017-11-01

    Burgers' equation is a well known 1D model of the Navier-Stokes equations and admits a selection of equilibria and travelling wave solutions. A series of Burgers' trajectories are examined with Dynamic Mode Decomposition (DMD) to probe the capability of the method to extract coherent structures from ``run-down'' simulations. The performance of the method depends critically on the choice of observable. We use the Cole-Hopf transformation to derive an observable which has linear, autonomous dynamics and for which the DMD modes overlap exactly with Koopman modes. This observable can accurately predict the flow evolution beyond the time window of the data used in the DMD, and in that sense outperforms other observables motivated by the nonlinearity in the governing equation. The linearizing observable also allows us to make informed decisions about often ambiguous choices in nonlinear problems, such as rank truncation and snapshot spacing. A number of rules of thumb for connecting DMD with the Koopman operator for nonlinear PDEs are distilled from the results. Related problems in low Reynolds number fluid turbulence are also discussed.

  6. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  7. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  8. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  9. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE PAGES

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  10. Effects of group velocity and multiplasmon resonances on the modulation of Langmuir waves in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert

    2017-11-01

    We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.

  11. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  12. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  13. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.

    PubMed

    Schüler, D; Alonso, S; Torcini, A; Bär, M

    2014-12-01

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  14. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    PubMed

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  15. A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation

    PubMed Central

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605

  16. Helicity Evolution at Small x

    NASA Astrophysics Data System (ADS)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  17. Universality in the nonlinear leveling of capillary films

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Fontelos, Marco A.; Shin, Sangwoo; Stone, Howard A.

    2018-03-01

    Many material science, coating, and manufacturing problems involve liquid films where defects that span the film thickness must be removed. Here, we study the surface-tension-driven leveling dynamics of a thin viscous film following closure of an initial hole. The dynamics of the film shape is described by a nonlinear evolution equation, for which we obtain a self-similar solution. The analytical results are verified using time-dependent numerical and experimental results for the profile shapes and the minimum film thickness at the center. The universal behavior we identify can be useful for characterizing the time evolution of the leveling process and estimating material properties from experiments.

  18. Nonlinear density wave investigation for an extended car-following model considering driver’s memory and jerk

    NASA Astrophysics Data System (ADS)

    Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia

    2018-01-01

    Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.

  19. Dynamical Signatures of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1999-01-01

    One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion equation which represents the mental dynamics. It has been demonstrated that coupled mental-motor dynamics can simulate emerging self-organization, prey-predator games, collaboration and competition, "collective brain," etc.

  20. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  1. Electronic transport in disordered chains with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    dos Santos, J. L. L.; Nguyen, Ba Phi; de Moura, F. A. B. F.

    2015-10-01

    In this work we study numerically the dynamics of an initially localized wave packet in one-dimensional disordered chains with saturable nonlinearity. By using the generalized discrete nonlinear Schrödinger equation, we calculate two different physical quantities as a function of time, which are the participation number and the mean square displacement from the excitation site. From detailed numerical analysis, we find that the saturable nonlinearity can promote a sub-diffusive spreading of the wave packet even in the presence of diagonal disorder for a long time. In addition, we also investigate the effect of the saturated nonlinearity for initial times of the electronic evolution thus showing the possibility of mobile breather-like modes.

  2. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; Drummond, P. D.

    2013-04-01

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.

  3. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    PubMed

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  4. Mirror instability near the threshold: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.

    2007-12-01

    Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.

  5. Evolution of rogue waves in dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com

    2015-04-15

    The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves bymore » ∼25 times.« less

  6. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Kofane, T. C.; Fokou, M.; Mohamadou, A.; Yomba, E.

    2017-11-01

    In this work, the lump solution and the kink solitary wave solution from the (2 + 1) -dimensional third-order evolution equation, using the Hirota bilinear method are obtained through symbolic computation with Maple. We have assumed that the lump solution is centered at the origin, when t = 0 . By considering a mixing positive quadratic function with exponential function, as well as a mixing positive quadratic function with hyperbolic cosine function, interaction solutions like lump-exponential and lump-hyperbolic cosine are presented. A completely non-elastic interaction between a lump and kink soliton is observed, showing that a lump solution can be swallowed by a kink soliton.

  7. Stability properties of solitary waves for fractional KdV and BBM equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  8. Stability of hypersonic compression cones

    NASA Astrophysics Data System (ADS)

    Reed, Helen; Kuehl, Joseph; Perez, Eduardo; Kocian, Travis; Oliviero, Nicholas

    2012-11-01

    Our activities focus on the identification and understanding of the second-mode instability for representative configurations in hypersonic flight. These include the Langley 93-10 flared cone and the Purdue compression cone, both at 0 degrees angle of attack at Mach 6. Through application of nonlinear parabolized stability equations (NPSE) and linear parabolized stability equations (PSE) to both geometries, it is concluded that mean-flow distortion tends to amplify frequencies less than the peak frequency and stabilize those greater by modifying the boundary-layer thickness. As initial disturbance amplitude is increased and/or a broad spectrum disturbance is introduced, direct numerical simulations (DNS) or NPSE appear to be the proper choices to model the evolution, and relative evolution, because these computational tools include these nonlinear effects (mean-flow distortion). Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 is gratefully acknowledged. The authors also thank Pointwise, AeroSoft, and Texas Advanced Computing Center (TACC).

  9. Holographic dark energy in higher derivative gravity with time varying model parameter c2

    NASA Astrophysics Data System (ADS)

    Borah, B.; Ansari, M.

    2015-01-01

    Purpose of this paper is to study holographic dark energy in higher derivative gravity assuming the model parameter c2 as a slowly time varying function. Since dark energy emerges as combined effect of linear as well as non-linear terms of curvature, therefore it is important to see holographic dark energy at higher derivative gravity, where action contains both linear as well as non-linear terms of Ricci curvature R. We consider non-interacting scenario of the holographic dark energy with dark matter in spatially flat universe and obtain evolution of the equation of state parameter. Also, we determine deceleration parameter as well as the evolution of dark energy density to explain expansion of the universe. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of holographic dark energy for low red-shifts containing c2 correction.

  10. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, D.; Alonso, S.; Bär, M.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less

  11. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  12. Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence

    NASA Astrophysics Data System (ADS)

    Galitski, Victor

    2012-02-01

    I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.

  13. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  14. Coarse-grained description of cosmic structure from Szekeres models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx

    2016-03-01

    We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less

  15. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significantmore » effects on the properties of nonlinear waves and collision-induced nonlinear structure.« less

  16. Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debjani; Misra, A. P.

    2018-05-01

    We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.

  17. Kinetic Alfvén solitary and rogue waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Bains, A. S.; Li, Bo; Xia, Li-Dong

    2014-03-01

    We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low β plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter κ, plasma β, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma β increases. The findings of this study may find applications to low β plasmas in astrophysical environments where particles are superthermally distributed.

  18. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  19. Soliton switching in a site-dependent ferromagnet

    NASA Astrophysics Data System (ADS)

    Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.

    2017-02-01

    Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.

  20. High-energy evolution to three loops

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Herranen, Matti

    2018-02-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  1. Solitons and the Inverse Scattering Transform

    DTIC Science & Technology

    1980-01-01

    1979). 2. Small amplitude waves in more dimensions. (a) The equation of Kadomtsev and Petviashvili (1970), (ut + uux + au )x + Uyy = 0 , (1.6) is...337, 1978. Hasimoto, H. and I. Ono, J. Phys. Soc. Japan, vol. 33, p. 805, 1972. Kadomtsev , B. B. and V. I. Petviashvili , Sov. Phys. Doklady, vol. 15...Abstract "Under appropriate conditions, ocean waves may b modeled by certain nonlinear evolution equations that admit s iton solutions and can be solved

  2. Exploring New Physics Frontiers Through Numerical Relativity.

    PubMed

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  3. Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics

    NASA Astrophysics Data System (ADS)

    Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.

    2018-04-01

    In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.

  4. Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex

    2016-03-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.

  5. STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less

  6. Hyperboloidal evolution of test fields in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Zenginoǧlu, Anıl; Kidder, Lawrence E.

    2010-06-01

    We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

  7. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  8. Nonlinear evolution of the first mode supersonic oblique waves in compressible boundary layers. Part 1: Heated/cooled walls

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1993-01-01

    The nonlinear stability of an oblique mode propagating in a two-dimensional compressible boundary layer is considered under the long wave-length approximation. The growth rate of the wave is assumed to be small so that the concept of unsteady nonlinear critical layers can be used. It is shown that the spatial/temporal evolution of the mode is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity and density. Expressions for the linear growth rate show clearly the effects of wall heating and cooling and in particular how heating destabilizes the boundary layer for these long wavelength inviscid modes at O(1) Mach numbers. A generalized expression for the linear growth rate is obtained and is shown to compare very well for a range of frequencies and wave-angles at moderate Mach numbers with full numerical solutions of the linear stability problem. The numerical solution of the nonlinear unsteady critical layer problem using a novel method based on Fourier decomposition and Chebychev collocation is discussed and some results are presented.

  9. Nonlinear Field Equations and Solitons as Particles

    NASA Astrophysics Data System (ADS)

    Maccari, Attilio

    2006-05-01

    Profound advances have recently interested nonlinear field theories and their exact or approximate solutions. We review the last results and point out some important unresolved questions. It is well known that quantum field theories are based upon Fourier series and the identification of plane waves with free particles. On the contrary, nonlinear field theories admit the existence of coherent solutions (dromions, solitons and so on). Moreover, one can construct lower dimensional chaotic patterns, periodic-chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution. We discuss in some detail a nonlinear Dirac field and a spontaneous symmetry breaking model that are reduced by means of the asymptotic perturbation method to a system of nonlinear evolution equations integrable via an appropriate change of variables. Their coherent, chaotic and fractal solutions are examined in some detail. Finally, we consider the possible identification of some types of coherent solutions with extended particles along the de Broglie-Bohm theory. However, the last findings suggest an inadequacy of the particle concept that appears only as a particular case of nonlinear field theories excitations.

  10. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  11. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opanchuk, B.; Drummond, P. D.

    2013-04-15

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such asmore » quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.« less

  12. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  13. On the conditions for the onset of nonlinear chirping structures in NSTX

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  14. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  15. Explicit integration of Friedmann's equation with nonlinear equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong, E-mail: chensx@henu.edu.cn, E-mail: gwg1@damtp.cam.ac.uk, E-mail: yisongyang@nyu.edu

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in generalmore » settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.« less

  16. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  17. Hidden symmetry and nonlinear paraxial atom optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impens, Francois

    2009-12-15

    A hidden symmetry of the nonlinear wave equation is exploited to analyze the propagation of paraxial and uniform atom-laser beams in time-independent and quadratic transverse potentials with cylindrical symmetry. The quality factor and the paraxial ABCD formalism are generalized to account exactly for mean-field interaction effects in such beams. Using an approach based on moments, these theoretical tools provide a simple yet exact picture of the interacting beam profile evolution. Guided atom laser experiments are discussed. This treatment addresses simultaneously optical and atomic beams in a unified manner, exploiting the formal analogy between nonlinear optics, nonlinear paraxial atom optics, andmore » the physics of two-dimensional Bose-Einstein condensates.« less

  18. On the nonlinear development of the most unstable Goertler vortex mode

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1991-01-01

    The nonlinear development of the most unstable Gortler vortex mode in boundary layer flows over curved walls is investigated. The most unstable Gortler mode is confined to a viscous wall layer of thickness O(G -1/5) and has spanwise wavelength O(G 11/5); it is, of course, most relevant to flow situations where the Gortler number G is much greater than 1. The nonlinear equations covering the evolution of this mode over an O(G -3/5) streamwise lengthscale are derived and are found to be of a fully nonparallel nature. The solution of these equations is achieved by making use of the numerical scheme used by Hall (1988) for the numerical solution of the nonlinear Gortler equations valid for O(1) Gortler numbers. Thus, the spanwise dependence of the flow is described by a Fourier expansion, whereas the streamwise and normal variations of the flow are dealt with by employing a suitable finite difference discretization of the governing equations. Our calculations demonstrate that, given a suitable initial disturbance, after a brief interval of decay, the energy in all the higher harmonics grows until a singularity is encountered at some downstream position. The structure of the flowfield as this singularity is approached suggests that the singularity is responsible for the vortices, which are initially confined to the thin viscous wall layer, moving away from the wall and into the core of the boundary layer.

  19. Mathematical problems arising in interfacial electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tseluiko, Dmitri

    In this work we consider the nonlinear stability of thin films in the presence of electric fields. We study a perfectly conducting thin film flow down an inclined plane in the presence of an electric field which is uniform in its undisturbed state, and normal to the plate at infinity. In addition, the effect of normal electric fields on films lying above, or hanging from, horizontal substrates is considered. Systematic asymptotic expansions are used to derive fully nonlinear long wave model equations for the scaled interface motion and corresponding flow fields. For the case of an inclined plane, higher order terms are need to be retained to regularize the problem in the sense that the long wave approximation remains valid for long times. For the case of a horizontal plane the fully nonlinear evolution equation which is derived at the leading order, is asymptotically correct and no regularization procedure is required. In both physical situations, the effect of the electric field is to introduce a non-local term which arises from the potential region above the liquid film, and enters through the electric Maxwell stresses at the interface. This term is always linearly destabilizing and produces growth rates proportional to the cubic power of the wavenumber - surface tension is included and provides a short wavelength cut-off, that is, all sufficiently short waves are linearly stable. For the case of film flow down an inclined plane, the fully nonlinear equation can produce singular solutions (for certain parameter values) after a finite time, even in the absence of an electric field. This difficulty is avoided at smaller amplitudes where the weakly nonlinear evolution is governed by an extension of the Kuramoto-Sivashinsky (KS) equation. Global existence and uniqueness results are proved, and refined estimates of the radius of the absorbing ball in L2 are obtained in terms of the parameters of the equations for a generalized class of modified KS equations. The established estimates are compared with numerical solutions of the equations which in turn suggest an optimal upper bound for the radius of the absorbing ball. A scaling argument is used to explain this, and a general conjecture is made based on extensive computations. We also carry out a complete study of the nonlinear behavior of competing physical mechanisms: long wave instability above a critical Reynolds number, short wave damping due to surface tension and intermediate growth due to the electric field. Through a combination of analysis and extensive numerical experiments, we elucidate parameter regimes that support non-uniform travelling waves, time-periodic travelling waves and complex nonlinear dynamics including chaotic interfacial oscillations. It is established that a sufficiently high electric field will drive the system to chaotic oscillations, even when the Reynolds number is smaller than the critical value below which the non-electrified problem is linearly stable. A particular case of this is Stokes flow, which is known to be stable for this class of problems (an analogous statement holds for horizontally supported films also). Our theoretical results indicate that such highly stable flows can be rendered unstable by using electric fields. This opens the way for possible heat and mass transfer applications which can benefit significantly from interfacial oscillations and interfacial turbulence. For the case of a horizontal plane, a weakly nonlinear theory is not possible due to the absence of the shear flow generated by the gravitational force along the plate when the latter is inclined. We study the fully nonlinear equation, which in this case is asymptotically correct and is obtained at the leading order. The model equation describes both overlying and hanging films - in the former case gravity is stabilizing while in the latter it is destabilizing. The numerical and theoretical analysis of the fully nonlinear evolution is complicated by the fact that the coefficients of the highest order terms (surface tension in this instance) are nonlinear. We implement a fully implicit two level numerical scheme and perform numerical experiments. We also prove global boundedness of positive periodic smooth solutions, using an appropriate energy functional. This global boundedness result is seen in all our numerical results. Through a combination of analysis and extensive numerical experiments we present evidence for global existence of positive smooth solutions. This means, in turn, that the film does not touch the wall in finite time but asymptotically at infinite time. Numerical solutions are presented to support such phenomena.

  20. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  1. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  2. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  3. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  4. On a model of electromagnetic field propagation in ferroelectric media

    NASA Astrophysics Data System (ADS)

    Picard, Rainer

    2007-04-01

    The Maxwell system in an anisotropic, inhomogeneous medium with non-linear memory effect produced by a Maxwell type system for the polarization is investigated under low regularity assumptions on data and domain. The particular form of memory in the system is motivated by a model for electromagnetic wave propagation in ferromagnetic materials suggested by Greenberg, MacCamy and Coffman [J.M. Greenberg, R.C. MacCamy, C.V. Coffman, On the long-time behavior of ferroelectric systems, Phys. D 134 (1999) 362-383]. To avoid unnecessary regularity requirements the problem is approached as a system of space-time operator equation in the framework of extrapolation spaces (Sobolev lattices), a theoretical framework developed in [R. Picard, Evolution equations as space-time operator equations, Math. Anal. Appl. 173 (2) (1993) 436-458; R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces, Glasnik Mat. 35 (2000) 111-136]. A solution theory for a large class of ferromagnetic materials confined to an arbitrary open set (with suitably generalized boundary conditions) is obtained.

  5. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanna, T.; Sakkaravarthi, K.; Kumar, C. Senthil

    In this paper, we have studied the integrability nature of a system of three-coupled Gross-Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein condensates by applying the Painleve singularity structure analysis. We show that only for two sets of parametric choices, corresponding to the known integrable cases, the system passes the Painleve test.

  7. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  8. On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Proment, Davide; El, Gennady; Randoux, Stephane; Suret, Pierre

    2016-09-01

    We study the formation of extreme events in incoherent systems described by the Nonlinear Schrödinger type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order moment of the probability density function of the wave envelope to the rate of change of the width of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical simulations in 1D+1 and 2D+1 are also performed to confirm the results.

  9. Wakes and precursor soliton excitations by a moving charged object in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Tiwari, Sanat, E-mail: sanat-tiwari@uiowa.edu; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242; Sen, Abhijit, E-mail: senabhijit@gmail.com

    2016-02-15

    We study the evolution of nonlinear ion acoustic wave excitations due to a moving charged source in a plasma. Our numerical investigations of the full set of cold fluid equations go beyond the usual weak nonlinearity approximation and show the existence of a rich variety of solutions including wakes, precursor solitons, and “pinned” solitons that travel with the source velocity. These solutions represent a large amplitude generalization of solutions obtained in the past for the forced Korteweg deVries equation and can find useful applications in a variety of situations in the laboratory and in space, wherever there is a largemore » relative velocity between the plasma and a charged object.« less

  10. Axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects

    NASA Astrophysics Data System (ADS)

    Nasir, Nor Ain Azeany Mohd; Ishak, Anuar; Pop, Ioan

    2018-04-01

    In this paper, the heat and mass transfer of an axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects are investigated. An appropriate similarity transformation is used to reduce the highly non-linear partial differential equation into second and third order non-linear ordinary differential equations. Numerical solutions of the reduced governing equations are computed numerically by utilizing the MATLAB's built-in boundary value problem solver, bvp4c. The physical significance of various parameters such as Biot number, fluid parameters and Prandtl number on the velocity and temperature evolution profiles are illustrated graphically. The effects of these governing parameters on the skin friction coefficient and the local Nusselt number are also displayed graphically. It is noticed that the Powell-Eyring fluid parameter gives significant influence on the rates of heat and mass transfer of the fluid.

  11. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  12. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  13. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H., E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. Inmore » the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.« less

  14. Perturbation theory of dispersion-managed fiber solitons

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Sousa, Mayra H.

    2007-05-01

    A variational approach with an arbitrary ansatz is used to derive the governing equations for the characteristic parameters of dispersion-managed solitons. The Gaussian pulses are considered as a particular case. Moreover, the adiabatic evolution equations of the dispersion-managed pulse parameters under perturbations are derived, considering an arbitrary pulse profile. The theory is applied to the case of Gaussian pulses under different types of perturbations, such as the amplifier noise, nonlinear interaction between pulses, and polarization-mode dispersion.

  15. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios

    2016-10-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.

  16. New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan

    2017-10-01

    In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.

  17. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  18. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr

    2015-08-15

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequencymore » matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.« less

  19. Nonlinear evolution of magnetic flux ropes. 2: Finite beta plasma

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.

    1995-01-01

    In this second paper on the evolution of magnetic flux ropes we study the effects of gas pressure. We assume that the energy transport is described by a polytropic relationship and reduce the set of ideal MHD equations to a single, second-order, nonlinear, ordinary differential equation for the evolution function. For this conservative system we obtain a first integral of motion. To analyze the possible motions, we use a mechanical analogue -- a one-dimensional, nonlinear oscillator. We find that the effective potential for such an oscillator depends on two parameters: the polytropic index gamma and a dimensionless quantity kappa the latter being a function of the plasma beta, the strength of the azimuthal magnetic field relative to the axial field of the flux rope, and gamma. Through a study of this effective potential we classify all possible modes of evolution of the system. In the main body of the paper, we focus on magnetic flux ropes whose field and gas pressure increase steadily towards the symmetry axis. In this case, for gamma greater than 1 and all values of kappa, only oscillations are possible. For gamma less than 1, however, both oscillations and expansion are allowed. For gamma less than 1 and kappa below a critical value, the energy of the nonlinear oscillator determines whether the flux rope will oscillate or expand to infinity. For gamma less than 1 and kappa above critical, however, only expansion occurs. Thus by increasing kappa while keeping gamma fixed (less than 1), a phase transition occurs at kappa = kappa(sub critical) and the oscillatory mode disappears. We illustrate the above theoretical considerations by the example of a flux rope of constant field line twist evolving self-similarly. For this example, we present the full numerical MHD solution. In an appendix to the paper we catalogue all possible evolutions when (1) either the magnetic field or (2) the gas pressure decreases monotonically toward the axis. We find that in these cases critical conditions can occur for gamma greater than 1. While in most cases the flux rope collapses, there are notable exceptions when, for certain ranges of kappa and gamma, collapse may be averted.

  20. Acceleration of incremental-pressure-correction incompressible flow computations using a coarse-grid projection method

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne

    2016-11-01

    Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping functions transfer data between the two grids. Here we propose a version of CGP for incompressible flow computations using incremental pressure correction methods, called IFEi-CGP (implicit-time-integration, finite-element, incremental coarse grid projection). Incremental pressure correction schemes solve Poisson's equation for an intermediate variable and not the pressure itself. This fact contributes to IFEi-CGP's efficiency in two ways. First, IFEi-CGP preserves the velocity field accuracy even for a high level of pressure field grid coarsening and thus significant speedup is achieved. Second, because incremental schemes reduce the errors that arise from boundaries with artificial homogenous Neumann conditions, CGP generates undamped flows for simulations with velocity Dirichlet boundary conditions. Comparisons of the data accuracy and CPU times for the incremental-CGP versus non-incremental-CGP computations are presented.

  1. Numerical modeling of the atmosphere with an isentropic vertical coordinate

    NASA Technical Reports Server (NTRS)

    Hsu, Yueh-Jiuan G.; Arakawa, Akio

    1990-01-01

    A theta-coordinate model simulating the nonlinear evolution of a baroclinic wave is presented. In the model, vertical discretization maintains important integral constraints such as conservation of the angular momentum and total energy. A massless-layer approach is used in the treatment of the intersections of coordinate surfaces with the lower boundary. This formally eliminates the intersection problem, but raises other computational problems. Horizontal discretization of the continuity and momentum equations in the model are designed to overcome these problems. Selected results from a 10-day integration with the 25-layer, beta-plane version of the model are presented. It is concluded that the model can simulate the nonlinear evolution of a baroclinic wave and associated dynamical processes without major computational difficulties.

  2. One-dimensional optical wave turbulence: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    2012-05-01

    We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

  3. Integrability of the coupled cubic-quintic complex Ginzburg-Landau equations and multiple-soliton solutions via mathematical methods

    NASA Astrophysics Data System (ADS)

    Selima, Ehab S.; Seadawy, Aly R.; Yao, Xiaohua; Essa, F. A.

    2018-02-01

    This paper is devoted to study the (1+1)-dimensional coupled cubic-quintic complex Ginzburg-Landau equations (cc-qcGLEs) with complex coefficients. This equation can be used to describe the nonlinear evolution of slowly varying envelopes of periodic spatial-temporal patterns in a convective binary fluid. Dispersion relation and properties of cc-qcGLEs are constructed. Painlevé analysis is used to check the integrability of cc-qcGLEs and to establish the Bäcklund transformation form. New traveling wave solutions and a general form of multiple-soliton solutions of cc-qcGLEs are obtained via the Bäcklund transformation and simplest equation method with Bernoulli, Riccati and Burgers’ equations as simplest equations.

  4. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    NASA Astrophysics Data System (ADS)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  5. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  6. Structural Evolutions of STOCK Markets Controlled by Generalized Entropy Principles of Complex Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yi Jiao; Feng, Qing Yi; Chai, Li He

    As one of the most important financial markets and one of the main parts of economic system, the stock market has become the research focus in economics. The stock market is a typical complex open system far from equilibrium. Many available models that make huge contribution to researches on market are strong in describing the market however, ignoring strong nonlinear interactions among active agents and weak in reveal underlying dynamic mechanisms of structural evolutions of market. From econophysical perspectives, this paper analyzes the complex interactions among agents and defines the generalized entropy in stock markets. Nonlinear evolutionary dynamic equation for the stock markets is then derived from Maximum Generalized Entropy Principle. Simulations are accordingly conducted for a typical case with the given data, by which the structural evolution of the stock market system is demonstrated. Some discussions and implications are finally provided.

  7. A robust BAO extractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Eugenio; Pietroni, Massimo; Peloso, Marco, E-mail: eugenio.noda@pr.infn.it, E-mail: peloso@physics.umn.edu, E-mail: massimo.pietroni@unipr.it

    2017-08-01

    We define a procedure to extract the oscillating part of a given nonlinear Power Spectrum, and derive an equation describing its evolution including the leading effects at all scales. The intermediate scales are taken into account by standard perturbation theory, the long range (IR) displacements are included by using consistency relations, and the effect of small (UV) scales is included via effective coefficients computed in simulations. We show that the UV effects are irrelevant in the evolution of the oscillating part, while they play a crucial role in reproducing the smooth component. Our 'extractor' operator can be applied to simulationsmore » and real data in order to extract the Baryonic Acoustic Oscillations (BAO) without any fitting function and nuisance parameter. We conclude that the nonlinear evolution of BAO can be accurately reproduced at all scales down to 0 z = by our fast analytical method, without any need of extra parameters fitted from simulations.« less

  8. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R., E-mail: lukas.hollenstein@cea.fr, E-mail: jain@cp3.dias.sdu.dk, E-mail: furban@ulb.ac.be

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeablemore » conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.« less

  9. About Tidal Evolution of Quasi-Periodic Orbits of Satellites

    NASA Astrophysics Data System (ADS)

    Ershkov, Sergey V.

    2017-06-01

    Tidal interactions between Planet and its satellites are known to be the main phenomena, which are determining the orbital evolution of the satellites. The modern ansatz in the theory of tidal dissipation in Saturn was developed previously by the international team of scientists from various countries in the field of celestial mechanics. Our applying to the theory of tidal dissipation concerns the investigating of the system of ODE-equations (ordinary differential equations) that govern the orbital evolution of the satellites; such an extremely non-linear system of 2 ordinary differential equations describes the mutual internal dynamics for the eccentricity of the orbit along with involving the semi-major axis of the proper satellite into such a monstrous equations. In our derivation, we have presented the elegant analytical solutions to the system above; so, the motivation of our ansatz is to transform the previously presented system of equations to the convenient form, in which the minimum of numerical calculations are required to obtain the final solutions. Preferably, it should be the analytical solutions; we have presented the solution as a set of quasi- periodic cycles via re-inversing of the proper ultra- elliptical integral. It means a quasi-periodic character of the evolution of the eccentricity, of the semi-major axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation in the Planet.

  10. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  11. On the breakup of viscous liquid threads

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1995-01-01

    A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.

  12. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  13. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  14. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

    PubMed Central

    Macklin, Paul

    2011-01-01

    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304

  15. A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced (3+1)-Dimensional Nonlinear Evolution Equation

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Dan; Li, Xian; Wang, Yao; Li, Biao

    2017-06-01

    With symbolic computation, some lump solutions are presented to a (3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters. Supported by National Natural Science Foundation of China under Grant Nos. 11271211, 11275072, and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502 and K.C. Wong Magna Fund in Ningbo University

  16. Gravity-Wave Dynamics in the Atmosphere

    DTIC Science & Technology

    2010-02-01

    boundaries of domain. The viscous boundary layers are used as an artificial radiation condition. 25 The inclusion of viscous terms in an explicit temporal... evolution equations become Volterra equations of the second kind given by Kc11aT +K c 12bT + ˆ x −∞ dx′ (K11xa ′ T +K12xb ′ T )− 1 2 α2a + bxY = 0...nonlinear wavepackets arising from shear-flow instabilities. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  17. Simple waves in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ivanov, S. K.; Kamchatnov, A. M.

    2018-04-01

    We study the dynamics of so-called simple waves in a two-component Bose-Einstein condensate. The evolution of the condensate is described by Gross-Pitaevskii equations which can be reduced for these simple wave solutions to a system of ordinary differential equations which coincide with those derived by Ovsyannikov for the two-layer fluid dynamics. We solve the Ovsyannikov system for two typical situations of large and small difference between interspecies and intraspecies nonlinear interaction constants. Our analytic results are confirmed by numerical simulations.

  18. Evolution of nonlinear waves in a blood-filled artery with an aneurysm

    NASA Astrophysics Data System (ADS)

    Nikolova, E. V.; Jordanov, I. P.; Dimitrova, Z. I.; Vitanov, N. K.

    2017-10-01

    We discuss propagation of traveling waves in a blood-filled hyper-elastic artery with a local dilatation (an aneurysm). The processes in the injured artery are modeled by an equation of the motion of the arterial wall and by equations of the motion of the fluid (the blood). Taking into account the specific arterial geometry and applying the reductive perturbation method in long-wave approximation we reduce the model equations to a version of the perturbed Korteweg-de Vries kind equation with variable coefficients. Exact traveling-wave solutions of this equation are obtained by the modified method of simplest equation where the differential equation of Abel is used as a simplest equation. A particular case of the obtained exact solution is numerically simulated and discussed from the point of view of arterial disease mechanics.

  19. Linear and non-linear perturbations in dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escamilla-Rivera, Celia; Casarini, Luciano; Fabris, Júlio C.

    2016-11-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state w ( z ). In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected w ( z ) parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard ΛCDM model.

  20. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  1. Learning partial differential equations via data discovery and sparse optimization

    NASA Astrophysics Data System (ADS)

    Schaeffer, Hayden

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.

  2. Learning partial differential equations via data discovery and sparse optimization.

    PubMed

    Schaeffer, Hayden

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.

  3. Learning partial differential equations via data discovery and sparse optimization

    PubMed Central

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection. PMID:28265183

  4. 4-wave dynamics in kinetic wave turbulence

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto

    2018-01-01

    A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.

  5. Recursion equations in predicting band width under gradient elution.

    PubMed

    Liang, Heng; Liu, Ying

    2004-06-18

    The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.

  6. Propagation characteristics of two-color laser pulses in homogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less

  7. Stability analysis of shallow wake flows

    NASA Astrophysics Data System (ADS)

    Kolyshkin, A. A.; Ghidaoui, M. S.

    2003-11-01

    Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi[sbreve]ic et al. (1995). Such consistency provides further evidence that experimentally observed structures in shallow wake flows may be described by the nonlinear Ginzburg Landau equation. Previous works have found similar consistency between the Ginzburg Landau model and experimental data for the case of deep (i.e. unbounded) wake flows. However, it must be emphasized that much more information is required to confirm the appropriateness of the Ginzburg Landau equation in describing shallow wake flows.

  8. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Šantić, Neven; Fusaro, Adrien; Salem, Sabeur; Garnier, Josselin; Picozzi, Antonio; Kaiser, Robin

    2018-02-01

    The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to be valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive long interaction lengths.

  9. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    PubMed

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  10. A two-phase micromorphic model for compressible granular materials

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Li, Weiming; Powers, Joseph

    2009-11-01

    We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.

  11. The simulation of electromagnetically driven strong Langmuir turbulence effect on the backscatter radiation from ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    2016-07-01

    Numerical simulations of the dynamics of electromagnetic fields in a smoothly inhomogeneous nonlinear plasma layer in frameworks of the nonlinear Schrödinger equation with boundary conditions responsible for the pumping of the field in the layer by an incident wave and the inverse radiation losses supplemented the volume field dissipation due to the electromagnetic excitation of Langmuir turbulence are carried out. The effects of the threshold of non-linearity and it's evolution, of the threshold and saturation levels of dissipation in the vicinity of the wave reflection point on the features of the dynamics of reflection and absorption indexes are investigated. We consider the hard drive damping depending on the local field amplitude and hysteresis losses with different in several times "on" and "off" absorption thresholds as well. The dependence of the thresholds of the steady-state, periodic and chaotic regimes of plasma-wave interaction on the scenario of turbulence evolution is demonstrated. The results are compared with the experimental observations of Langmuir stage ionospheric modification.

  12. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  13. General existence principles for Stieltjes differential equations with applications to mathematical biology

    NASA Astrophysics Data System (ADS)

    López Pouso, Rodrigo; Márquez Albés, Ignacio

    2018-04-01

    Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.

  14. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  15. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Avinash; Saxena, Avadh

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well asmore » for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.« less

  16. Energetic Consistency and Coupling of the Mean and Covariance Dynamics

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.

    2008-01-01

    The dynamical state of the ocean and atmosphere is taken to be a large dimensional random vector in a range of large-scale computational applications, including data assimilation, ensemble prediction, sensitivity analysis, and predictability studies. In each of these applications, numerical evolution of the covariance matrix of the random state plays a central role, because this matrix is used to quantify uncertainty in the state of the dynamical system. Since atmospheric and ocean dynamics are nonlinear, there is no closed evolution equation for the covariance matrix, nor for the mean state. Therefore approximate evolution equations must be used. This article studies theoretical properties of the evolution equations for the mean state and covariance matrix that arise in the second-moment closure approximation (third- and higher-order moment discard). This approximation was introduced by EPSTEIN [1969] in an early effort to introduce a stochastic element into deterministic weather forecasting, and was studied further by FLEMING [1971a,b], EPSTEIN and PITCHER [1972], and PITCHER [1977], also in the context of atmospheric predictability. It has since fallen into disuse, with a simpler one being used in current large-scale applications. The theoretical results of this article make a case that this approximation should be reconsidered for use in large-scale applications, however, because the second moment closure equations possess a property of energetic consistency that the approximate equations now in common use do not possess. A number of properties of solutions of the second-moment closure equations that result from this energetic consistency will be established.

  17. Structure and Dynamics of Replication-Mutation Systems

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1987-03-01

    The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.

  18. General high-order breathers and rogue waves in the (3 + 1) -dimensional KP-Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Wazwaz, Abdul-Majid

    2018-11-01

    In this work, we investigate the (3 + 1) -dimensional KP-Boussinesq equation, which can be used to describe the nonlinear dynamic behavior in scientific and engineering applications. We derive general high-order soliton solutions by using the Hirota's bilinear method combined with the perturbation expansion technique. We also obtain periodic solutions comprising of high-order breathers, periodic line waves, and mixed solutions consisting of breathers and periodic line waves upon selecting particular parameter constraints of the obtained soliton solutions. Furthermore, smooth rational solutions are generated by taking a long wave limit of the soliton solutions. These smooth rational solutions include high-order rogue waves, high-order lumps, and hybrid solutions consisting of lumps and line rogue waves. To better understand the dynamical behaviors of these solutions, we discuss some illustrative graphical analyses. It is expected that our results can enrich the dynamical behavior of the (3 + 1) -dimensional nonlinear evolution equations of other forms.

  19. Nonlinear Dynamics, Artificial Cognition and Galactic Export

    NASA Astrophysics Data System (ADS)

    Rössler, Otto E.

    2004-08-01

    The field of nonlinear dynamics focuses on function rather than structure. Evolution and brain function are examples. An equation for a brain, described in 1973, is explained. Then, a principle of interactional function change between two coupled equations of this type is described. However, all of this is not done in an abstract manner but in close contact with the meaning of these equations in a biological context. Ethological motivation theory and Batesonian interaction theory are reencountered. So is a fairly unknown finding by van Hooff on the indistinguishability of smile and laughter in a single primate species. Personhood and evil, two human characteristics, are described abstractly. Therapies and the question of whether it is ethically allowed to export benevolence are discussed. The whole dynamic approach is couched in terms of the Cartesian narrative, invented in the 17th century and later called Enlightenment. Whether or not it is true that a "second Enlightenment" is around the corner is the main question raised in the present paper.

  20. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  1. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  2. Nonlinear dynamics of drift structures in a magnetized dissipative plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.

    2011-06-15

    A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. Anmore » analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.« less

  3. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  4. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    PubMed

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  5. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  6. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    NASA Astrophysics Data System (ADS)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  7. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.

    PubMed

    Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  8. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane

    NASA Astrophysics Data System (ADS)

    Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  9. On the nonlinear three dimensional instability of Stokes layers and other shear layers to pairs of oblique waves

    NASA Technical Reports Server (NTRS)

    Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.

    1992-01-01

    The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.

  10. On the nonlinear stability of the unsteady, viscous flow of an incompressible fluid in a curved pipe

    NASA Technical Reports Server (NTRS)

    Shortis, Trudi A.; Hall, Philip

    1995-01-01

    The stability of the flow of an incompressible, viscous fluid through a pipe of circular cross-section curved about a central axis is investigated in a weakly nonlinear regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe. A WKBJ perturbation solution is constructed, taking into account the need for an inner solution in the vicinity of the outer bend, which is obtained by identifying the saddle point of the Taylor number in the complex plane of the cross-sectional angle co-ordinate. The equation governing the nonlinear evolution of the leading order vortex amplitude is thus determined. The stability analysis of this flow to periodic disturbances leads to a partial differential system dependent on three variables, and since the differential operators in this system are periodic in time, Floquet theory may be applied to reduce this system to a coupled infinite system of ordinary differential equations, together with homogeneous uncoupled boundary conditions. The eigenvalues of this system are calculated numerically to predict a critical Taylor number consistent with the analysis of Papageorgiou. A discussion of how nonlinear effects alter the linear stability analysis is also given, and the nature of the instability determined.

  11. Laser pulse self-compression in an active fibre with a finite gain bandwidth under conditions of a nonstationary nonlinear response

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonsta­tionary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.

  12. Nonlinearity without superluminality

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2005-07-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schrödinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality.

  13. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  14. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  15. Thermodynamics of viscoelastic rate-type fluids with stress diffusion

    NASA Astrophysics Data System (ADS)

    Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre

    2018-02-01

    We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.

  16. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    NASA Technical Reports Server (NTRS)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  17. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    NASA Astrophysics Data System (ADS)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  18. Laser beam self-focusing in turbulent dissipative media.

    PubMed

    Hafizi, B; Peñano, J R; Palastro, J P; Fischer, R P; DiComo, G

    2017-01-15

    A high-power laser beam propagating through a dielectric in the presence of fluctuations is subject to diffraction, dissipation, and optical Kerr nonlinearity. A method of moments was applied to a stochastic, nonlinear enveloped wave equation to analyze the evolution of the long-term spot radius. For propagation in atmospheric turbulence described by a Kolmogorov-von Kármán spectral density, the analysis was benchmarked against field experiments in the low-power limit and compared with simulation results in the high-power regime. Dissipation reduced the effect of self-focusing and led to chromatic aberration.

  19. Dark solitons in laser radiation build-up dynamics.

    PubMed

    Woodward, R I; Kelleher, E J R

    2016-03-01

    We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schrödinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems.

  20. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  1. K-P-Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity

    NASA Astrophysics Data System (ADS)

    Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.

    2016-10-01

    The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.

  2. Soliton structure versus singularity analysis: Third-order completely intergrable nonlinear differential equations in 1 + 1-dimensions

    NASA Astrophysics Data System (ADS)

    Fuchssteiner, Benno; Carillo, Sandra

    1989-01-01

    Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform. Simple methods are exhibited which allow to compute out of N-soliton solutions of the KdV (Bargman potentials) explicit solutions of equations like the Harry Dym equation. Certain solutions are plotted.

  3. Modeling elastic anisotropy in strained heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.

  4. Modeling elastic anisotropy in strained heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  5. Stochastic modification of the Schrödinger-Newton equation

    NASA Astrophysics Data System (ADS)

    Bera, Sayantani; Mohan, Ravi; Singh, Tejinder P.

    2015-07-01

    The Schrödinger-Newton (SN) equation describes the effect of self-gravity on the evolution of a quantum system, and it has been proposed that gravitationally induced decoherence drives the system to one of the stationary solutions of the SN equation. However, the equation itself lacks a decoherence mechanism, because it does not possess any stochastic feature. In the present work we derive a stochastic modification of the Schrödinger-Newton equation, starting from the Einstein-Langevin equation in the theory of stochastic semiclassical gravity. We specialize this equation to the case of a single massive point particle, and by using Karolyhazy's phase variance method, we derive the Diósi-Penrose criterion for the decoherence time. We obtain a (nonlinear) master equation corresponding to this stochastic SN equation. This equation is, however, linear at the level of the approximation we use to prove decoherence; hence, the no-signaling requirement is met. Lastly, we use physical arguments to obtain expressions for the decoherence length of extended objects.

  6. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution"

    NASA Astrophysics Data System (ADS)

    Youssoufa, Saliou; Kuetche, Victor K.; Kofane, Timoleon C.

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016), 10.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  7. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution".

    PubMed

    Youssoufa, Saliou; Kuetche, Victor K; Kofane, Timoleon C

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  8. An efficient computational method for the approximate solution of nonlinear Lane-Emden type equations arising in astrophysics

    NASA Astrophysics Data System (ADS)

    Singh, Harendra

    2018-04-01

    The key purpose of this article is to introduce an efficient computational method for the approximate solution of the homogeneous as well as non-homogeneous nonlinear Lane-Emden type equations. Using proposed computational method given nonlinear equation is converted into a set of nonlinear algebraic equations whose solution gives the approximate solution to the Lane-Emden type equation. Various nonlinear cases of Lane-Emden type equations like standard Lane-Emden equation, the isothermal gas spheres equation and white-dwarf equation are discussed. Results are compared with some well-known numerical methods and it is observed that our results are more accurate.

  9. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  10. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    NASA Astrophysics Data System (ADS)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  11. Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Lauret, M.; Wehner, W.; Schuster, E.

    2015-11-01

    For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.

  12. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.

    PubMed

    Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  13. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  14. Nonlinear chiral plasma transport in rotating coordinates

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Kilinçarslan, Eda

    2017-08-01

    The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.

  15. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.

    PubMed

    Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng

    2014-01-01

    We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.

  16. Nonlinear asymmetric tearing mode evolution in cylindrical geometry

    DOE PAGES

    Teng, Qian; Ferraro, N.; Gates, David A.; ...

    2016-10-27

    The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w). For a low beta plasma without external heating, Δ'(w) can be approximately described by two terms, Δ' ql(w), Δ'A(w). In this work, we present a simple method to calculate the quasilinear stability index Δ'ql rigorously, for poloidal mode number m ≥ 2. Δ' ql is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ' 0, w, wlnw, and w2.more » Δ' A is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δ' ql and Δ' A is consistent with the more accurate expression calculated perturbatively. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. Lastly, it is also confirmed by the simulation that the Δ' A has to be considered in calculating island saturation.« less

  17. Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior

    NASA Astrophysics Data System (ADS)

    Barles, Guy; Ley, Olivier; Topp, Erwin

    2017-02-01

    In this paper, we provide suitable adaptations of the ‘weak version of Bernstein method’ introduced by the first author in 1991, in order to obtain Lipschitz regularity results and Lipschitz estimates for nonlinear integro-differential elliptic and parabolic equations set in the whole space. Our interest is to obtain such Lipschitz results to possibly degenerate equations, or to equations which are indeed ‘uniformly elliptic’ (maybe in the nonlocal sense) but which do not satisfy the usual ‘growth condition’ on the gradient term allowing to use (for example) the Ishii-Lions’ method. We treat the case of a model equation with a superlinear coercivity on the gradient term which has a leading role in the equation. This regularity result together with comparison principle provided for the problem allow to obtain the ergodic large time behavior of the evolution problem in the periodic setting.

  18. New integrable model of propagation of the few-cycle pulses in an anisotropic microdispersed medium

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2018-03-01

    We investigate the propagation of the few-cycle electromagnetic pulses in the anisotropic microdispersed medium. The effects of the anisotropy and spatial dispersion of the medium are created by the two sorts of the two-level atoms. The system of the material equations describing an evolution of the states of the atoms and the wave equations for the ordinary and extraordinary components of the pulses is derived. By applying the approximation of the sudden excitation to exclude the material variables, we reduce this system to the single nonlinear wave equation that generalizes the modified sine-Gordon equation and the Rabelo-Fokas equation. It is shown that this equation is integrable by means of the inverse scattering transformation method if an additional restriction on the parameters is imposed. The multisoliton solutions of this integrable generalization are constructed and investigated.

  19. The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks. II. High-Resolution and Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Pickett, Brian K.; Cassen, Patrick; Durisen, Richard H.; Link, Robert

    2000-02-01

    In this paper, the effects of thermal energetics on the evolution of gravitationally unstable protostellar disks are investigated by means of three-dimensional hydrodynamic calculations. The initial states for the simulations correspond to stars with equilibrium, self-gravitating disks that are formed early in the collapse of a uniformly rotating, singular isothermal sphere. In a previous paper (Pickett et al.), it was shown that the nonlinear development of locally isentropic disturbances can be radically different than that of locally isothermal disturbances, even though growth in the linear regime may be similar. When multiple low-order modes grew rapidly in the star and inner disk region and saturated at moderate nonlinear levels in the isentropic evolution, the same modes in the isothermal evolution led to shredding of the disk into dense arclets and ejection of material. In this paper, we (1) examine the fate of the shredded disk with calculations at higher spatial resolution than the previous simulations had and (2) follow the evolution of the same initial state using an internal energy equation rather than the assumption of locally isentropic or locally isothermal conditions. Despite the complex structure of the nonlinear features that developed in the violently unstable isothermal disk referred to above, our previous calculation produced no gravitationally independent, long-lived stellar or planetary companions. The higher resolution calculations presented here confirm this result. When the disk of this model is cooled further, prompting even more violent instabilities, the end result is qualitatively the same--a shredded disk. At least for the disks studied here, it is difficult to produce condensations of material that do not shear away into fragmented spirals. It is argued that the ultimate fate of such fragments depends on how readily local internal energy is lost. On the other hand, if a dynamically unstable disk is to survive for very long times without shredding, then some mechanism must mitigate and control any violent phenomena that do occur. The prior simulations demonstrated a marked difference in final outcome, depending upon the efficiency of disk cooling under two different, idealized thermal conditions. We have here incorporated an internal energy equation that allows for arbitrary heating and cooling. Simulations are presented for adiabatic models with and without artificial viscosity. The artificial viscosity accounts for dissipation and heating due to shocks in the code physics. The expected nonaxisymmetric instabilities occur and grow as before in these energy equation evolutions. When artificial viscosity is not present, the model protostar displays behavior between the locally isentropic and locally isothermal cases of the last paper; a strong two-armed spiral grows to nonlinear amplitudes and saturates at a level higher than in the locally isentropic case. Since the amplitude of the spiral disturbance is large, it is expected that continued transport of material and angular momentum will occur well after the end of the calculation at nearly four outer rotation periods. The spiral is not strong enough, however, to disrupt the disk as in the locally isothermal case. When artificial viscosity is present, the same disturbances reach moderate nonlinear amplitude, then heat the gas, which in turn greatly reduces their strength and effects on the disk. Additional heating in the low-density regions of the disk also leads to a gentle flow of material vertically off the computational grid. The energy equation and high-resolution isothermal calculations are used to discuss the importance and relevance of the different thermal regimes so far examined, with particular attention to applications to star and planet formation.

  20. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  1. The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts

    NASA Astrophysics Data System (ADS)

    Neill, Duff

    2017-01-01

    We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.

  2. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  3. Irreversible Processes in Ionized Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1960-01-01

    The general theory of irreversible processes, developed by Prigogine and Balescu, is applied to the case of long range interactions in ionized gases. A similar diagram technique permits the systematic selection of all the contributions to the evolution of the distribution function, a an order of approximation equivalent to Debye's equilibrium theory. The infinite series which appear in this way can be summed exactly. The resulting evolution equations have a clear physical significance: they describe interactions of "quasi particles," which are electrons or ions "dressed" by their polarization clouds. These clouds are not a permanent feature, as in equilibrium theory,more » but have a nonequilibrium, changing shape, distorted by the motions of the particles. From the mathematical point of view, these equations exhibit a new type of nonlinearity, which is very directly related to the collective nature of the interactions.« less

  4. Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca

    2017-11-01

    We study a model system where the triadic interactions in Navier-Stokes equations are enhanced or suppressed in a controlled manner without affecting neither the total number of degrees of freedom nor the ideal invariants and without breaking any of the symmetries of original equations. Our numerical simulations are based on the helical decomposition of velocity Fourier modes. We introduced a parameter (0 <= λ <= 1) that controls the relative weight among homochiral and heterochiral triads in the nonlinear evolution. We show that by using this weighting protocol the turbulent evolution displays a sharp transition, for a critical value of the control parameter, from forward to backward energy transfer but still keeping the dynamics fully three dimensional, isotropic, and parity invariant. AtMath Collaboration of University of Helsinki and ERC Grant No. 339032 `NewTurb'.

  5. Adiabatic Berry phase in an atom-molecule conversion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu Libin; Center for Applied Physics and Technology, Peking University, Beijing 100084; Liu Jie, E-mail: liu_jie@iapcm.ac.c

    2010-11-15

    We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole.more » We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.« less

  6. On magnetoelectric coupling at equilibrium in continua with microstructure

    NASA Astrophysics Data System (ADS)

    Romeo, Maurizio

    2017-10-01

    A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.

  7. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.

    PubMed

    Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A

    2016-12-01

    An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.

  8. A computational and theoretical analysis of falling frequency VLF emissions

    NASA Astrophysics Data System (ADS)

    Nunn, David; Omura, Yoshiharu

    2012-08-01

    Recently much progress has been made in the simulation and theoretical understanding of rising frequency triggered emissions and rising chorus. Both PIC and Vlasov VHS codes produce risers in the region downstream from the equator toward which the VLF waves are traveling. The VHS code only produces fallers or downward hooks with difficulty due to the coherent nature of wave particle interaction across the equator. With the VHS code we now confine the interaction region to be the region upstream from the equator, where inhomogeneity factor S is positive. This suppresses correlated wave particle interaction effects across the equator and the tendency of the code to trigger risers, and permits the formation of a proper falling tone generation region. The VHS code now easily and reproducibly triggers falling tones. The evolution of resonant particle current JE in space and time shows a generation point at -5224 km and the wavefield undergoes amplification of some 25 dB in traversing the nonlinear generation region. The current component parallel to wave magnetic field (JB) is positive, whereas it is negative for risers. The resonant particle trap shows an enhanced distribution function or `hill', whereas risers have a `hole'. According to recent theory (Omura et al., 2008, 2009) sweeping frequency is due primarily to the advective term. The nonlinear frequency shift term is now negative (˜-12 Hz) and the sweep rate of -800 Hz/s is approximately nonlinear frequency shift divided by TN, the transition time, of the order of a trapping time.

  9. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  10. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    Gravity waves fields at the surface of the oceans evolve under the combined effects of several physical mechanisms, of which nonlinear wave-wave interactions play a dominant role. These interactions transfer energy between components within the energy spectrum and allow in particular to explain the shape of the distribution of wave energy according to the frequencies and directions of propagation. In the oceanic domain (deep water conditions), dominant interactions are third-order resonant interactions, between quadruplets (or quartets) of wave components, and the evolution of the wave spectrum is governed by a kinetic equation, established by Hasselmann (1962) and Zakharov (1968). The kinetic equation has a number of interesting properties, including the existence of self-similar solutions and cascades to small and large wavelengths of waves, which can be studied in the framework of the wave (or weak) turbulence theory (e.g. Badulin et al., 2005). With the aim to obtain more complete and precise modelling of sea states dynamics, we investigate here the possibility and consequences of taking into account the non-resonant interactions -quasi-resonant in practice- among 4 waves. A mathematical formalism has recently been proposed to account for these non-resonant interactions in a statistical framework by Annenkov & Shrira (2006) (Generalized Kinetic Equation, GKE) and Gramstad & Stiassnie (2013) (Phase Averaged Equation, PAE). In order to isolate the non-resonant contributions, we limit ourselves here to monodirectional (i.e. long-crested) wave trains, since in this case the 4-wave resonant interactions vanish. The (stochastic) modelling approaches proposed by Annenkov & Shrira (2006) and Gramstad & Stiassnie (2013) are compared to phase-resolving (deterministic) simulations based on a fully nonlinear potential approach (using a high-order spectral method, HOS). We study and compare the evolution dynamics of the wave spectrum at different time scales (i.e. over durations ranging from a few wave periods to 1000 periods), with the aim of highlighting the capabilities and limitations of the GKE-PAE models. Different situations are considered by varying the relative water depth, the initial steepness of the wave field, and the shape of the initial wave spectrum, including arbitrary forms. References: Annenkov S.Y., Shrira V.I. (2006) Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech., 561, 181-207. Badulin S.I., Pushkarev A.N., Resio D., Zakharov V.E. (2005) Self-similarity of wind-driven seas. Nonlin. Proc. Geophys., 12, 891-946. Gramstad O., Stiassnie M. (2013) Phase-averaged equation for water waves. J. Fluid Mech., 718, 280- 303. Hasselmann K. (1962) On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500. Zakharov V.E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. App. Mech. Tech. Phys., 9(2), 190-194.

  11. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches

    NASA Astrophysics Data System (ADS)

    Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando

    2016-11-01

    This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.

  12. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standardmore » MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.« less

  13. Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer.

    PubMed

    Husakou, A; Herrmann, J

    2006-11-13

    We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.

  14. New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma

    NASA Astrophysics Data System (ADS)

    Das, G. C.; Sarma, Ridip

    2018-04-01

    Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.

  15. Tuning the control system of a nonlinear inverted pendulum by means of the new method of Lyapunov exponents estimation

    NASA Astrophysics Data System (ADS)

    Balcerzak, Marek; Dąbrowski, Artur; Pikunov, Danylo

    2018-01-01

    This paper presents a practical application of a new, simplified method of Lyapunov exponents estimation. The method has been applied to optimization of a real, nonlinear inverted pendulum system. Authors presented how the algorithm of the Largest Lyapunov Exponent (LLE) estimation can be applied to evaluate control systems performance. The new LLE-based control performance index has been proposed. Equations of the inverted pendulum system of the fourth order have been found. The nonlinear friction of the regulation object has been identified by means of the nonlinear least squares method. Three different friction models have been tested: linear, cubic and Coulomb model. The Differential Evolution (DE) algorithm has been used to search for the best set of parameters of the general linear regulator. This work proves that proposed method is efficient and results in faster perturbation rejection, especially when disturbances are significant.

  16. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  17. An almost symmetric Strang splitting scheme for nonlinear evolution equations☆

    PubMed Central

    Einkemmer, Lukas; Ostermann, Alexander

    2014-01-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017

  18. Thin film flow along a periodically-stretched elastic beam

    NASA Astrophysics Data System (ADS)

    Boamah Mensah, Chris; Chini, Greg; Jensen, Oliver

    2017-11-01

    Motivated by an application to pulmonary alveolar micro-mechanics, a system of partial differential equations is derived that governs the motion of a thin liquid film lining both sides of an inertia-less elastic substrate. The evolution of the film mass distribution is described by invoking the usual lubrication approximation while the displacement of the substrate is determined by employing a kinematically nonlinear Euler-Bernoulli beam formulation. In the parameter regime of interest, the axial strain can be readily shown to be a linear function of arc-length specified completely by the motion of ends of the substrate. In contrast, the normal force balance on the beam yields an equation for the substrate curvature that is fully coupled to the time-dependent lubrication equation. Linear analyses of both a stationary and periodically-stretched flat substrate confirm the potential for buckling instabilities and reveal an upper bound on the dimensionless axial stiffness for which the coupled thin-film/inertial-less-beam model is well-posed. Numerical simulations of the coupled system are used to explore the nonlinear development of the buckling instabilities.

  19. Spatial solitons of desired intensity and width and their self-tapering/uptapering in cubic quintic nonlinear medium

    NASA Astrophysics Data System (ADS)

    Krishna Sarkar, Ram; Medhekar, S.

    2007-12-01

    In this paper, we have investigated the propagation behavior of a Gaussian beam in cubic quintic nonlinear medium with and without absorption or gain. A governing differential equation for the evolution of beam width with the distance of propagation has been derived using the standard parabolic equation approach. By solving the governing equation numerically for different sets of parameters, we have shown that spatial solitons of fixed width and desired intensity and of fixed intensity and desired width are possible. Such liberty does not exist in other saturable media. We have also investigated self-tapering and self-uptapering of spatial solitons in the presence of absorption or gain and showed that the rate of self-tapering/uptapering is not only controlled by the magnitude of absorption or gain but also by the values of cubic and quintic terms. It is revealed that by self-tapering, the smallest achievable soliton width decreases/increases by increasing the magnitude of the cubic/quintic term. It is also revealed that the smallest achievable soliton width by self-tapering, is smaller for a larger initial width.

  20. A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi

    2016-09-01

    We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.

  1. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  2. Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficient

    NASA Astrophysics Data System (ADS)

    Musammil, N. M.; Porsezian, K.; Nithyanandan, K.; Subha, P. A.; Tchofo Dinda, P.

    2017-09-01

    We present the study of the dark soliton dynamics in an inhomogeneous fiber by means of a variable coefficient modified nonlinear Schrödinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.

  3. Linear and Nonlinear Coupling of Electrostatic Drift and Acoustic Perturbations in a Nonuniform Bi-Ion Plasma with Non-Maxwellian Electrons

    NASA Astrophysics Data System (ADS)

    Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.

    2017-12-01

    Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.

  4. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  5. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  6. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    NASA Astrophysics Data System (ADS)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  7. High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations

    NASA Astrophysics Data System (ADS)

    Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.

    2018-06-01

    Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.

  8. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  9. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  10. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  11. A non-linear 4-wave resonant model for non-perturbative fast ion interactions with Alfv'enic modes in burning plasmas

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio; Chen, Liu

    2007-11-01

    We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)

  12. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  13. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  14. Time-local equation for exact time-dependent optimized effective potential in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-04-01

    Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.

  15. Kinetic Equations for Describing the Liquid-Glass Transition in Polymers

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Tropin, T. V.; Schmelzer, J. V. P.

    2018-01-01

    We present a theoretical approach based on nonequilibrium thermodynamics and used to describe the kinetics of the transition from the liquid to the glassy state (glass transition). In the framework of this approach, we construct kinetic equations describing the time and temperature evolution of the structural parameter. We discuss modifications of the equations required for taking the nonexponential, nonlinear character of the relaxation in the vitrification region into account. To describe the formation of polymer glasses, we present modified expressions for the system relaxation time. We compare the obtained results with experimental data, measurements of the polystyrene glass transition for different cooling rates using the method of differential scanning calorimetry. We discuss prospects for developing a method for describing the polymer glass transition.

  16. The evolution of hyperboloidal data with the dual foliation formalism: mathematical analysis and wave equation tests

    NASA Astrophysics Data System (ADS)

    Hilditch, David; Harms, Enno; Bugner, Marcus; Rüter, Hannes; Brügmann, Bernd

    2018-03-01

    A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the ‘dual foliation’ formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoğlu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et al, we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically ‘waggled’ to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.

  17. Approximation and Numerical Analysis of Nonlinear Equations of Evolution.

    DTIC Science & Technology

    1980-01-31

    dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example

  18. A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.

    PubMed

    Xu, Zhengfu; Bao, Gang

    2010-11-01

    A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.

  19. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  20. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  1. Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.

    NASA Astrophysics Data System (ADS)

    Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.

    2003-04-01

    Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid Mech.

  2. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  3. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  4. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  5. Adiabatic decay of internal solitons due to Earth's rotation within the framework of the Gardner-Ostrovsky equation

    NASA Astrophysics Data System (ADS)

    Obregon, Maria; Raj, Nawin; Stepanyants, Yury

    2018-03-01

    The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1 u2 ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 < 0 or the asymmetry of solitary waves of opposite polarity when α1 > 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.

  6. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Department of Mathematics and Statistics, University of Tromso

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond,more » Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.« less

  7. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  8. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE PAGES

    Bennett, Kane C.; Borja, Ronaldo I.

    2018-03-13

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  9. Modeling eutrophic lakes: From mass balance laws to ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; Ferrara, Luciano; Romano, Antonio

    Starting from integral balance laws, a model based on nonlinear ordinary differential equations (ODEs) describing the evolution of Phosphorus cycle in a lake is proposed. After showing that the usual homogeneous model is not compatible with the mixture theory, we prove that an ODEs model still holds but for the mean values of the state variables provided that the nonhomogeneous involved fields satisfy suitable conditions. In this model the trophic state of a lake is described by the mean densities of Phosphorus in water and sediments, and phytoplankton biomass. All the quantities appearing in the model can be experimentally evaluated. To propose restoration programs, the evolution of these state variables toward stable steady state conditions is analyzed. Moreover, the local stability analysis is performed with respect to all the model parameters. Some numerical simulations and a real application to lake Varese conclude the paper.

  10. Inhomogeneous cosmology and backreaction: Current status and future prospects

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof; Korzyński, Mikołaj

    Astronomical observations reveal hierarchical structures in the universe, from galaxies, groups of galaxies, clusters and superclusters, to filaments and voids. On the largest scales, it seems that some kind of statistical homogeneity can be observed. As a result, modern cosmological models are based on spatially homogeneous and isotropic solutions of the Einstein equations, and the evolution of the universe is approximated by the Friedmann equations. In parallel to standard homogeneous cosmology, the field of inhomogeneous cosmology and backreaction is being developed. This field investigates whether small scale inhomogeneities via nonlinear effects can backreact and alter the properties of the universe on its largest scales, leading to a non-Friedmannian evolution. This paper presents the current status of inhomogeneous cosmology and backreaction. It also discusses future prospects of the field of inhomogeneous cosmology, which is based on a survey of 50 academics working in the field of inhomogeneous cosmology.

  11. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kane C.; Borja, Ronaldo I.

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  12. Applying the Zel'dovich approximation to general relativity

    NASA Astrophysics Data System (ADS)

    Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.

  13. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

  14. Rigorous derivation of porous-media phase-field equations

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Kalliadasis, Serafim

    2017-11-01

    The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.

  15. The Nonlinear Steepest Descent Method to Long-Time Asymptotics of the Coupled Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Liu, Huan

    2018-04-01

    The Riemann-Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding 3× 3 matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.

  16. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  17. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  18. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This superposition forms an antidiffusion flow of an angular momentum density into a gravitating spheroidal body. References: [1] Krot, A.M. The statistical model of gravitational interaction of particles. Achievement in Modern Radioelectronics (spec.issue"Cosmic Radiophysics", Moscow), 1996, no.8, pp. 66-81 (in Russian). [2] Krot, A.M. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symp. "AeroSense", Orlando, Florida, USA, 2000, vol.4038, pp.1318-1329. [3] Krot, A.M. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc.35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] Krot, A. The statistical approach to exploring formation of Solar system. Proc.EGU General Assembly, Vienna, Austria, 2006, Geophys.Res.Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/. [5] Krot, A.M. A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals, 2008, doi:10.1016/j.chaos.2008.06.014. [6] Glansdorff, P. and Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. London, 1971. [7] Nicolis, G. and Prigogine, I. Self-organization in Nonequilibrium Systems:From Dissipative Structures to Order through Fluctuation. John Willey and Sons, New York etc., 1977.

  19. The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neill, Duff

    Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less

  20. The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts

    DOE PAGES

    Neill, Duff

    2017-01-25

    Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less

  1. Stochastic Mixing Model with Power Law Decay of Variance

    NASA Technical Reports Server (NTRS)

    Fedotov, S.; Ihme, M.; Pitsch, H.

    2003-01-01

    Here we present a simple stochastic mixing model based on the law of large numbers (LLN). The reason why the LLN is involved in our formulation of the mixing problem is that the random conserved scalar c = c(t,x(t)) appears to behave as a sample mean. It converges to the mean value mu, while the variance sigma(sup 2)(sub c) (t) decays approximately as t(exp -1). Since the variance of the scalar decays faster than a sample mean (typically is greater than unity), we will introduce some non-linear modifications into the corresponding pdf-equation. The main idea is to develop a robust model which is independent from restrictive assumptions about the shape of the pdf. The remainder of this paper is organized as follows. In Section 2 we derive the integral equation from a stochastic difference equation describing the evolution of the pdf of a passive scalar in time. The stochastic difference equation introduces an exchange rate gamma(sub n) which we model in a first step as a deterministic function. In a second step, we generalize gamma(sub n) as a stochastic variable taking fluctuations in the inhomogeneous environment into account. In Section 3 we solve the non-linear integral equation numerically and analyze the influence of the different parameters on the decay rate. The paper finishes with a conclusion.

  2. Analytical Characterization on Pulse Propagation in a Semiconductor Optical Amplifier Based on Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofei

    2018-06-01

    Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is compared with numerical simulations with a good agreement. The theoretical results will benefit the future analysis of other problems related to the pulse propagation in the SOA.

  3. A high-order gas-kinetic Navier-Stokes flow solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c

    2010-09-20

    The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less

  4. Evolutionary optimization with data collocation for reverse engineering of biological networks.

    PubMed

    Tsai, Kuan-Yao; Wang, Feng-Sheng

    2005-04-01

    Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.

  5. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    NASA Astrophysics Data System (ADS)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  6. Long-Time Asymptotics of a Box-Type Initial Condition in a Viscous Fluid Conduit

    NASA Astrophysics Data System (ADS)

    Franco, Nevil; Webb, Emily; Maiden, Michelle; Hoefer, Mark; El, Gennady

    2017-11-01

    The initial value problem for a localized hump disturbance is fundamental to dispersive nonlinear waves, beginning with studies of the celebrated, completely integrable Korteweg-de Vries equation. However, understanding responses to similar disturbances in many realistic dispersive wave systems is more complicated because they lack the mathematical property of complete integrability. This project applies Whitham nonlinear wave modulation theory to estimate how a viscous fluid conduit evolves this classic initial value problem. Comparisons between theory, numerical simulations, and experiments are presented. The conduit system consists of a viscous fluid column (glycerol) and a diluted, dyed version of the same fluid introduced to the column through a nozzle at the bottom. Steady injection and the buoyancy of the injected fluid leads to the eventual formation of a stable fluid conduit. Within this structure, a one hump disturbance is introduced and is observed to break up into a quantifiable number of solitons. This structure's experimental evolution is to Whitham theory and numerical simulations of a long-wave interfacial model equation. The method presented is general and can be applied to other dispersive nonlinear wave systems. Please email me, as I am the submitter.

  7. Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Jianping; Han, Dun

    2017-01-01

    In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.

  8. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  9. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  10. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1995-08-01

    The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.

  11. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  12. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  13. On an aggregation in birth-and-death stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena

    2014-06-01

    We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation.

  14. Nonlinear Waves.

    DTIC Science & Technology

    1988-02-01

    in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations

  15. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  16. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  17. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  18. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  19. Green-Naghdi dynamics of surface wind waves in finite depth

    NASA Astrophysics Data System (ADS)

    Manna, M. A.; Latifi, A.; Kraenkel, R. A.

    2018-04-01

    The Miles’ quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles’ theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.

  20. Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation with variable coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Jiefang; Yang, Qin; Dai, Chaoqing

    2005-04-01

    Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation (HNLS) with variable coefficients are considered. Based on the extended tanh-function method, we successfully obtained bright and dark quasi-soliton solutions under certain parametric conditions. We conclude that the parameter k(z) is unnecessary to be zero compared with [R. Yang et al., Opt. Commun. 242 (2004) 285]. Furthermore, we choose appropriate optical fiber parameters D2(z) and D3(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton. For D3(z) = α(z) = f(z) = 0, that is to say, under the absence of the higher order terms, we give same results as early reported in [R.Y. Hao, L. Li, Z.H. Li, W.R. Xue, G.S. Zhou, Opt. Commun. 236 (2004) 79]. As discussed examples, we also analyze three optical systems with real physical significance and obtain results which can be recovered in earlier papers.

  1. Nonlinear Poisson Equation for Heterogeneous Media

    PubMed Central

    Hu, Langhua; Wei, Guo-Wei

    2012-01-01

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937

  2. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  3. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    PubMed

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  4. Transition between inverse and direct energy cascades in multiscale optical turbulence

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  5. A Simple and Accurate Rate-Driven Infiltration Model

    NASA Astrophysics Data System (ADS)

    Cui, G.; Zhu, J.

    2017-12-01

    In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.

  6. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  7. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  8. Formation of curvature singularities on the interface between dielectric liquids in a strong vertical electric field.

    PubMed

    Kochurin, Evgeny A; Zubarev, Nikolay M; Zubareva, Olga V

    2013-08-01

    The nonlinear dynamics of the interface between two deep dielectric fluids in the presence of a vertical electric field is studied. We consider the limit of a strong external electric field where electrostatic forces dominate over gravitational and capillary forces. The nonlinear integrodifferential equations for the interface motion are derived under the assumption of small interfacial slopes. It is shown in the framework of these equations that, in the generic case, the instability development leads to the formation of root singularities at the interface in a finite time. The interfacial curvature becomes infinite at singular points, while the slope angles remain relatively small. The curvature is negative in the vicinity of singularities if the ratio of the permittivities of the fluids exceeds the inverse ratio of their densities, and it is positive in the opposite case (we consider that the lower fluid is heavier than the upper one). In the intermediate case, the interface evolution equations describe the formation and sharpening of dimples at the interface. The results obtained are applicable for the description of the instability of the interface between two magnetic fluids in a vertical magnetic field.

  9. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  10. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  11. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE PAGES

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward; ...

    2016-09-15

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  12. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  13. Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone

    NASA Astrophysics Data System (ADS)

    Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.

  14. Nonlinear QED effects in X-ray emission of pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri, Soroush; Haghighat, Mansour; Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarizationmore » characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.« less

  15. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  16. Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity.

    PubMed

    Biasi, Anxo F; Mas, Javier; Paredes, Angel

    2017-03-01

    We numerically investigate spherically symmetric collapses in the Gross-Pitaevskii equation with attractive nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off from the origin and may eventually become singular after a number of oscillations in the trapping potential. This is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova collapses in cold atom Bose-Einstein condensates. On the other hand, Gross-Pitaevskii provides a toy model to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter instability.

  17. Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2013-10-01

    The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.

  18. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    PubMed

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  19. Excitation of turbulence by density waves

    NASA Technical Reports Server (NTRS)

    Tichen, C. M.

    1985-01-01

    A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.

  20. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  1. Laboratory tests of short intense envelope solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2012-04-01

    Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long-living nonlinear wave groups in dynamics of intense sea waves. [1] V.E. Zakharov, A.I. Dyachenko, A.O. Prokofiev, Eur. J. Mech. B / Fluids 25, 677 (2006). [2] A.I. Dyachenko, V.E. Zakharov, JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, JETP 109, 676 (2009).

  2. Nonlinear Gyro-Landau-Fluid Equations

    NASA Astrophysics Data System (ADS)

    Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.

    1996-11-01

    We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).

  3. The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.

    PubMed

    He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.

  4. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    PubMed Central

    Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814

  5. Nonlinear and dissipative constitutive equations for coupled first-order acoustic field equations that are consistent with the generalized Westervelt equation

    NASA Astrophysics Data System (ADS)

    Verweij, Martin D.; Huijssen, Jacob

    2006-05-01

    In diagnostic medical ultrasound, it has become increasingly important to evaluate the nonlinear field of an acoustic beam that propagates in a weakly nonlinear, dissipative medium and that is steered off-axis up to very wide angles. In this case, computations cannot be based on the widely used KZK equation since it applies only to small angles. To benefit from successful computational schemes from elastodynamics and electromagnetics, we propose to use two first-order acoustic field equations, accompanied by two constitutive equations, as an alternative basis. This formulation quite naturally results in the contrast source formalism, makes a clear distinction between fundamental conservation laws and medium behavior, and allows for a straightforward inclusion of any medium inhomogenities. This paper is concerned with the derivation of relevant constitutive equations. We take a pragmatic approach and aim to find those constitutive equations that represent the same medium as implicitly described by the recognized, full wave, nonlinear equations such as the generalized Westervelt equation. We will show how this is achieved by considering the nonlinear case without attenuation, the linear case with attenuation, and the nonlinear case with attenuation. As a result we will obtain surprisingly simple constitutive equations for the full wave case.

  6. A GLOBAL GALACTIC DYNAMO WITH A CORONA CONSTRAINED BY RELATIVE HELICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Mangalam, A., E-mail: avijeet@iiap.res.in, E-mail: mangalam@iiap.res.in

    We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism. The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state solutions ofmore » the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final structure of the global magnetic field and the saturated value of the turbulence parameter α{sub m}, even before solving the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona. The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of 1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has only a weak impact on the dynamo operation.« less

  7. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  8. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  9. Exact multisoliton solutions of general nonlinear Schrödinger equation with derivative.

    PubMed

    Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing

    2014-01-01

    Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.

  10. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  11. Relativistic numerical cosmology with silent universes

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  12. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  13. Current interactions from the one-form sector of nonlinear higher-spin equations

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  14. Nonlinear Poisson equation for heterogeneous media.

    PubMed

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less

  16. Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow

    Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.

  17. Small vibrations of a linearly elastic body surrounded by heavy, incompressible, non-Newtonian fluids with free surfaces

    NASA Astrophysics Data System (ADS)

    Licht, Christian; Tran Thu Ha

    2005-02-01

    We consider the small transient motions of a coupled system constituted by a linearly elastic body and two heavy, incompressible, non-Newtonian fluids.Through a formulation in terms of non-linear evolution equations in Hilbert spaces of possible states with finite mechanical energy, we obtain existence and uniqueness results and study the influence of gravity. To cite this article: C. Licht, Tran Thu Ha, C. R. Mecanique 333 (2005).

  18. Computation and visualization of geometric partial differential equations

    NASA Astrophysics Data System (ADS)

    Tiee, Christopher L.

    The chief goal of this work is to explore a modern framework for the study and approximation of partial differential equations, recast common partial differential equations into this framework, and prove theorems about such equations and their approximations. A central motivation is to recognize and respect the essential geometric nature of such problems, and take it into consideration when approximating. The hope is that this process will lead to the discovery of more refined algorithms and processes and apply them to new problems. In the first part, we introduce our quantities of interest and reformulate traditional boundary value problems in the modern framework. We see how Hilbert complexes capture and abstract the most important properties of such boundary value problems, leading to generalizations of important classical results such as the Hodge decomposition theorem. They also provide the proper setting for numerical approximations. We also provide an abstract framework for evolution problems in these spaces: Bochner spaces. We next turn to approximation. We build layers of abstraction, progressing from functions, to differential forms, and finally, to Hilbert complexes. We explore finite element exterior calculus (FEEC), which allows us to approximate solutions involving differential forms, and analyze the approximation error. In the second part, we prove our central results. We first prove an extension of current error estimates for the elliptic problem in Hilbert complexes. This extension handles solutions with nonzero harmonic part. Next, we consider evolution problems in Hilbert complexes and prove abstract error estimates. We apply these estimates to the problem for Riemannian hypersurfaces in R. {n+1},generalizing current results for open subsets of R. {n}. Finally, we applysome of the concepts to a nonlinear problem, the Ricci flow on surfaces, and use tools from nonlinear analysis to help develop and analyze the equations. In the appendices, we detail some additional motivation and a source for further examples: canonical geometries that are realized as steady-state solutions to parabolic equations similar to that of Ricci flow. An eventual goal is to compute such solutions using the methods of the previous chapters.

  19. Dynamical systems for modeling the evolution of the magnetic field of stars and Earth

    NASA Astrophysics Data System (ADS)

    Popova, H.

    2016-02-01

    The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.

  20. Dynamics of nonlinear Schrödinger breathers in a potential trap

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Rosanov, N. N.; Fedorov, S. V.

    2018-05-01

    We consider the evolution of the 2-soliton (breather) of the nonlinear Schrödinger equation on a semi-infinite line with the zero boundary condition and a linear potential, which corresponds to the gravity field in the presence of a hard floor. This setting can be implemented in atomic Bose-Einstein condensates, and in a nonlinear planar waveguide in optics. In the absence of the gravity, repulsion of the breather from the floor leads to its splitting into constituent fundamental solitons, if the initial distance from the floor is smaller than a critical value; otherwise, the moving breather persists. In the presence of gravity, the breather always splits into a pair of "co-hopping" fundamental solitons, which may be frequency locked in the form of a quasi-breather, or unlocked, forming an incoherent pseudo-breather. Some essential results are obtained in an analytical form, in addition to the systematic numerical investigation.

  1. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    NASA Astrophysics Data System (ADS)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  2. A stochastic delay model for pricing debt and equity: Numerical techniques and applications

    NASA Astrophysics Data System (ADS)

    Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah

    2015-01-01

    Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.

  3. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  4. Solutions of the cylindrical nonlinear Maxwell equations.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.

  5. Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows

    NASA Astrophysics Data System (ADS)

    Oevel, W.

    1993-05-01

    Generalizations of the classical Darboux theorem are established for pseudo-differential scattering operators of the form L = limit∑i=0N u i∂ i + limitΣi=1m Φ i∂ -1limitΨi†i. Iteration of the Darboux transformations leads to a gauge transformed operator with coefficients given by Wronskian formulas involving a set of eigenfunctions of L. Nonlinear integrable partial differential equations are associated with the scattering operator L which arise as a symmetry reduction of the multicomponent KP hierarchy. With a suitable linear time evolution for the eigenfunctions the Darboux transformation is used to obtain solutions of the integrable equations in terms of Wronskian determinants.

  6. Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2010-10-15

    Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poissonmore » simulations.« less

  7. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  8. Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza

    2018-07-01

    Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.

  9. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  10. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  11. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    PubMed

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  12. Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2010-12-01

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution—although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  13. Fluid equations with nonlinear wave-particle resonances^

    NASA Astrophysics Data System (ADS)

    Mattor, Nathan

    1997-11-01

    We have derived fluid equations that include linear and nonlinear wave-particle resonance effects. This greatly extends previous ``Landau-fluid'' closures, which include linear Landau damping. (G.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990).^, (Z. Chang and J. D. Callen, Phys. Fluids B 4,) 1167 (1992). The new fluid equations are derived with no approximation regarding nonlinear kinetic interaction, and so additionally include numerous nonlinear kinetic effects. The derivation starts with the electrostatic drift kinetic equation for simplicity, with a Maxwellian distribution function. Fluid closure is accomplished through a simple integration trick applied to the drift kinetic equation, using the property that the nth moment of Maxwellian distribution is related to the nth derivative. The result is a compact closure term appearing in the highest moment equation, a term which involves a plasma dispersion function of the electrostatic field and its derivatives. The new term reduces to the linear closures in appropriate limits, so both approaches retain linear Landau damping. But the nonlinearly closed equations have additional desirable properties. Unlike linear closures, the nonlinear closure retains the time-reversibility of the original kinetic equation. We have shown directly that the nonlinear closure retains at least two nonlinear resonance effects: wave-particle trapping and Compton scattering. Other nonlinear kinetic effects are currently under investigation. The new equations correct two previous discrepancies between kinetic and Landau-fluid predictions, including a propagator discrepancy (N. Mattor, Phys. Fluids B 4,) 3952 (1992). and a numerical discrepancy for the 3-mode shearless bounded slab ITG problem. (S. E. Parker et al.), Phys. Plasmas 1, 1461 (1994). ^* In collaboration with S. E. Parker, Department of Physics, University of Colorado, Boulder. ^ Work performed at LLNL under DoE contract No. W7405-ENG-48.

  14. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  15. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  16. Head-on collision between positron acoustic waves in homogeneous and inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain

    2018-05-01

    The head-on collision between positron acoustic solitary waves (PASWs) as well as the production of rogue waves (RWs) in homogeneous and PASWs in inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear evolution equations. The plasmas are composed of immobile positive ions, mobile cold and hot positrons, and hot electrons, where the hot positrons and hot electrons are assumed to follow the Kappa distributions. The evolution equations are derived using the appropriate coordinate transformation and the reductive perturbation technique. The effects of concentrations, kappa parameters of hot electrons and positrons, and temperature ratios on the characteristics of PASWs and RWs are examined. It is found that the kappa parameters and temperature ratios significantly modify phase shifts after head-on collisions and RWs in homogeneous as well as PASWs in inhomogeneous plasmas. The amplitudes of the PASWs in inhomogeneous plasmas are diminished with increasing kappa parameters, concentration and temperature ratios. Further, the amplitudes of RWs are reduced with increasing charged particles concentration, while it enhances with increasing kappa- and temperature parameters. Besides, the compressive and rarefactive solitons are produced at critical densities from KdV equation for hot and cold positrons, while the compressive solitons are only produced from mKdV equation for both in homogeneous and inhomogeneous plasmas.

  17. Electron precipitation in solar flares - Collisionless effects

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  18. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  19. Laser-absorption effect on pulse-compression under Ohmic and weak-relativistic ponderomotive nonlinearity in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2018-01-01

    The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.

  20. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Demina, Maria V.; Kudryashov, Nikolay A.

    2011-03-01

    Meromorphic solutions of autonomous nonlinear ordinary differential equations are studied. An algorithm for constructing meromorphic solutions in explicit form is presented. General expressions for meromorphic solutions (including rational, periodic, elliptic) are found for a wide class of autonomous nonlinear ordinary differential equations.

Top