Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Nonlinear finite element modeling of THUNDER piezoelectric actuators
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-06-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2016-02-01
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Finite element methods for nonlinear elastostatic problems in rubber elasticity
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.
1983-01-01
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.
An Efficient Vector Finite Element Method for Nonlinear Electromagnetic Modeling
Fisher, A C; White, D A; Rodrigue, G H
2006-06-27
We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with a nonlinear polarization term. The method allows for discretization of complicated geometries with arbitrary order representations of the B and E fields. In this paper we will describe the method and a series of optimizations that significantly reduce the computational cost. Additionally, a series of test simulations will be presented to validate the method. Finally, a nonlinear waveguide mode mixing example is presented and discussed.
Nonlinear vibration of axially moving membrane by finite element method
NASA Astrophysics Data System (ADS)
Koivurova, H.; Pramila, A.
A theoretical and numerical formulation for nonlinear axially moving membrane is presented. The model is based on a Lagrangian description of the continuum problem in the context of dynamics of initially stressed solids. Membrane elasticity is included via a finite strain model and the membrane transport speed is included by using conservation of the membrane mass. Hamilton's principle provides nonlinear equations, which describe the three-dimensional motion of the membrane. The incremental equations of Hamilton's principle are discretized by the finite element method. The formulation includes geometrically nonlinear effects: large displacements, variation of membrane tension and variations in axial velocity due to deformation. Implementation of this novel numerical model was done by adding an axially moving membrane element into a FEM program, which contains acoustic fluid elements and contact algorithms. Hence, analysis of problems containing interaction with the surrounding air field and contact between supporting structures was possible. The model was tested by comparing previous linear and present nonlinear dynamic behaviour of an axially moving web. The effects of contact between finite rolls and the membrane and interaction between the surrounding air and the membrane were included in the model. The results show, that nonlinearities and coupling phenomena have a considerable effect on the dynamic behaviour of the system.
Surface subsidence prediction by nonlinear finite-element analysis
Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)
1993-11-01
An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.
Nonlinear analysis of structures. [within framework of finite element method
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H.; Pifko, A.; Levy, A.
1974-01-01
The development of nonlinear analysis techniques within the framework of the finite-element method is reported. Although the emphasis is concerned with those nonlinearities associated with material behavior, a general treatment of geometric nonlinearity, alone or in combination with plasticity is included, and applications presented for a class of problems categorized as axisymmetric shells of revolution. The scope of the nonlinear analysis capabilities includes: (1) a membrane stress analysis, (2) bending and membrane stress analysis, (3) analysis of thick and thin axisymmetric bodies of revolution, (4) a general three dimensional analysis, and (5) analysis of laminated composites. Applications of the methods are made to a number of sample structures. Correlation with available analytic or experimental data range from good to excellent.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Vector algorithms for geometrically nonlinear 3D finite element analysis
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1989-01-01
Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J. ); Ramirez, M.R.; Gupta, S. . Dept. of Civil Engineering)
1993-01-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J.; Ramirez, M.R.; Gupta, S.
1993-03-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Geometric Nonlinear Finite Element Analysis of Active Fibre Composite Bimorphs
NASA Astrophysics Data System (ADS)
Kernaghan, Robert
Active fibre composite-actuated bimorphic actuators were studied in order to measure deflection performance. The deflection of the actuators was a function of the actuating electric potential applied to the active material as well as the magnitude of the axial preload applied to the bimorphic structure. This problem required the use of geometric nonlinear modeling techniques. Geometric nonlinear finite element analysis was undertaken to determine the deflection performance of Macro Fibre Composite (MFC)- and Hollow Active Fibre (HAFC)-actuated bimorphic structures. A physical prototype MFC-actuated bimorphic structure was manufactured in order to verify the results obtained by the finite element analysis. Theses analyses determined that the bimorphic actuators were capable of significant deflection. The analyses determined that the axial preload of the bimorphic actuators significantly amplified the deflection performance of the bimorphic actuators. The deflection performance of the bimorphic actuators suggest that they could be candidates to act as actuators for the morphing wing of a micro unmanned air vehicle.
BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis
NASA Astrophysics Data System (ADS)
Bialek, James M.
1998-05-01
Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy
Nonlinear finite-element analysis of nanoindentation of viral capsids
NASA Astrophysics Data System (ADS)
Gibbons, Melissa M.; Klug, William S.
2007-03-01
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .
Bayesian sensitivity analysis of a nonlinear finite element model
NASA Astrophysics Data System (ADS)
Becker, W.; Oakley, J. E.; Surace, C.; Gili, P.; Rowson, J.; Worden, K.
2012-10-01
A major problem in uncertainty and sensitivity analysis is that the computational cost of propagating probabilistic uncertainty through large nonlinear models can be prohibitive when using conventional methods (such as Monte Carlo methods). A powerful solution to this problem is to use an emulator, which is a mathematical representation of the model built from a small set of model runs at specified points in input space. Such emulators are massively cheaper to run and can be used to mimic the "true" model, with the result that uncertainty analysis and sensitivity analysis can be performed for a greatly reduced computational cost. The work here investigates the use of an emulator known as a Gaussian process (GP), which is an advanced probabilistic form of regression. The GP is particularly suited to uncertainty analysis since it is able to emulate a wide class of models, and accounts for its own emulation uncertainty. Additionally, uncertainty and sensitivity measures can be estimated analytically, given certain assumptions. The GP approach is explained in detail here, and a case study of a finite element model of an airship is used to demonstrate the method. It is concluded that the GP is a very attractive way of performing uncertainty and sensitivity analysis on large models, provided that the dimensionality is not too high.
Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems
NASA Astrophysics Data System (ADS)
Oden, J. T.
1992-08-01
This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
Nonlinear finite element modeling of dental composite polymerization behavior
NASA Astrophysics Data System (ADS)
Laughlin, Gayle A.
2003-07-01
Polymerization shrinkage has been one of the primary shortcomings preventing the use of resin composites as a universal dental restorative material. This shrinkage of the bonded restoration causes residual stresses in the composite which in turn are transferred to the adhesive interface. The deleterious effects of this stress environment include compromise of the interface itself and the decrease in the mechanical properties of the cured composite. Novel materials which claim to produce less shrinkage have been presented as a new class of restorative materials that could reduce the effects of this problem. One difficulty in assessing the actual in vivo benefits of these new materials is the fact that there is currently no direct way to measure the stress environment at the composite/tooth clinical interface. Computer modeling using finite element analysis (FEA) could provide helpful information regarding the clinical stress performance of dental composites. The purpose of this study was to develop a model that accurately simulates the nonlinear polymerization behavior of light-cured dental composites using a commercial FEA program, which could be accessible for future research. Two phases were needed to accomplish this purpose. First, a data collection phase included volumetric shrinkage, shrinkage stress, tooth analog strain, and dynamic mechanical analysis experiments. Three composites, a standard methacrylate(Z250) and two experimental low stress epoxy-based composites (oxirane and silorane), were tested. The experimental results revealed an intriguing range of polymerization behavior exhibited by the three composites, indicating that the development of a low stress composite is possible. The information gathered from this phase supplied the necessary material input for the computer modeling, and provided empirical validation data for the model solutions. In the second modeling phase, an FEA approach based on a elastic/viscoplastic material model was used to
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Cai, X.C.
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Nonlinear Schwarz-Fas Methods for Unstructured Finite Element Elliptic Problems
Jones, J E; Vassilevski, P S; Woodward, C S
2002-09-30
This paper provides extensions of an element agglomeration AMG method to nonlinear elliptic problems discretized by the finite element method on general unstructured meshes. The method constructs coarse discretization spaces and corresponding coarse nonlinear operators as well as their Jacobians. We introduce both standard (fairly quasi-uniformly coarsened) and non-standard (coarsened away) coarse meshes and respective finite element spaces. We use both kind of spaces in FAS type coarse subspace correction (or Schwarz) algorithms. Their performance is illustrated on a number of model problems. The coarsened away spaces seem to perform better than the standard spaces for problems with nonlinearities in the principal part of the elliptic operator.
Lewis, M.W.; Kashiwa, B.A.; Meier, R.W.; Bishop, S.
1994-08-01
Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.
NASA Astrophysics Data System (ADS)
Lewis, M. W.; Kashiwa, B. A.; Meier, R. W.; Bishop, S.
1994-07-01
Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
Nonlinear geometrically adaptive finite element model of the coilbox
Troyani, N.
1996-12-01
Hot bar heat loss in the transfer table, the rolling stage between rougher stands and finishing stands in a hot mill, is of major concern for reasons for energy consumption, metallurgical uniformity, and rollability. A mathematical model, as well as the corresponding numerical solution, is presented for the evolution of temperature in a coiling and uncoiling bar in hot mills in the form of a parabolic partial differential equation for a shape-changing domain. The space discretization is achieved via a computationally efficient geometrically adaptive finite element scheme that accommodates the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Finally, some numerical results are presented.
Implementation of a strain energy-based nonlinear finite element in the object-oriented environment
NASA Astrophysics Data System (ADS)
Wegner, Tadeusz; Pęczak, Andrzej
2010-03-01
The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.
Taylor, Z A; Cheng, M; Ourselin, S
2008-05-01
The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18450538
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
Nonlinear stress analysis of titanium implants by finite element method.
Nagasawa, Sakae; Hayano, Keigo; Niino, Tooru; Yamakura, Kazunori; Yoshida, Takamitsu; Mizoguchi, Toshihide; Terashima, Nobuyosi; Tamura, Kaoru; Ito, Michio; Yagasaki, Hiroshi; Kubota, Osamu; Yoshimura, Masayuki
2008-07-01
With use of dental implants on the rise, there is also a tandem increase in the number of implant fracture reports. To the end of investigating the stress occurring in implants, elasticity and plasticity analyses were performed using the finite element method. The following results were obtained: (1) With one-piece type of implants of 3.3 mm diameter, elasticity analysis showed that after applying 500 N in a 45-degree direction, stress exceeding 500 MPa which is the proof stress of grade 4 pure titanium - occurred. This suggested the possibility of fatigue destruction due to abnormal occlusal force, such as during bruxism. (2) With two-piece type of implants that can tolerate vertical loading of 5,000 N, plasticity analysis suggested the possibility of screw area fracture after applying 500 N in a 45-degree direction. (3) On the combined use of an abutment and a fixture from different manufacturers, fracture destruction of even Ti-6Al-4V, which has a high degree of strength, was predicted. PMID:18833779
CUERVO: A finite element computer program for nonlinear scalar transport problems
Sirman, M.B.; Gartling, D.K.
1995-11-01
CUERVO is a finite element code that is designed for the solution of multi-dimensional field problems described by a general nonlinear, advection-diffusion equation. The code is also applicable to field problems described by diffusion, Poisson or Laplace equations. The finite element formulation and the associated numerical methods used in CUERVO are outlined here; detailed instructions for use of the code are also presented. Example problems are provided to illustrate the use of the code.
NASA Astrophysics Data System (ADS)
Koleva, M. N.
2007-10-01
We consider stationary linear and nonlinear problems on non-connected layers with distinct material properties. A version of the finite element method (FEM) is used for discretization of the continuous problems. We formulate sufficient conditions under which we prove the discrete maximum principle and convergence of the numerical higher-order finite elements solution. Efficient algorithm for solution of the FEM algebraic equations is proposed. Numerical experiments are also discussed.
Cost Considerations in Nonlinear Finite-Element Computing
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R. J.; Islam, M.; Salama, M.
1985-01-01
Conference paper discusses computational requirements for finiteelement analysis using quasi-linear approach to nonlinear problems. Paper evaluates computational efficiency of different computer architecturtural types in terms of relative cost and computing time.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Zhang, Y. X.
2010-08-01
A simple and shear-flexible rectangular composite layered plate element and nonlinear finite element analysis procedures are developed in this paper for nonlinear analysis of fiber reinforced plastic (FRP)-reinforced concrete slabs. The composite layered plate element is constructed based on Mindlin-Reissner plate theory and Timoshenko’s composite beam functions, and transverse shear effects and membrane-bending coupling effects are accounted for. Both geometric nonlinearity and material nonlinearity of the materials, which incorporates tension, compression, tension stiffening and cracking of the concrete, are included in the new model. The developed element and the nonlinear finite element analysis procedures are validated by comparing the computed numerical results of numerical examples with those obtained from experimental investigations and from the commercial finite element analysis package ABAQUS. The element is then employed to investigate the nonlinear structural behavior and the cracking progress of a clamped two-way FRP-reinforced concrete slab. The influences of reinforcement with different materials, ratio and layout in tension or compressive regions on structural behavior of the clamped slabs are investigated by parametric studies.
A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis
NASA Technical Reports Server (NTRS)
Thornton, Earl A.; Dechaumphai, Pramote
1985-01-01
A Taylor-Galerkin finite element solution algorithm for transient nonlinear thermal-structural analysis of large, complex structural problems subjected to rapidly applied thermal-structural loads is described. The two-step Taylor-Galerkin algorithm is an application of an algorithm recently developed for problems in compressible fluid dynamics. The element integrals that appear in the algorithm can be evaluated in closed form for two and three dimensional elements.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2002-01-01
Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
NASA Astrophysics Data System (ADS)
Teodoro, M. F.
2012-09-01
We are particularly interested in the numerical solution of the functional differential equations with symmetric delay and advance. In this work, we consider a nonlinear forward-backward equation, the Fitz Hugh-Nagumo equation. It is presented a scheme which extends the algorithm introduced in [1]. A computational method using Newton's method, finite element method and method of steps is developped.
A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.
1986-01-01
A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Adaptation of a program for nonlinear finite element analysis to the CDC STAR 100 computer
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Ogilvie, P. L.
1978-01-01
The conversion of a nonlinear finite element program to the CDC STAR 100 pipeline computer is discussed. The program called DYCAST was developed for the crash simulation of structures. Initial results with the STAR 100 computer indicated that significant gains in computation time are possible for operations on gloval arrays. However, for element level computations that do not lend themselves easily to long vector processing, the STAR 100 was slower than comparable scalar computers. On this basis it is concluded that in order for pipeline computers to impact the economic feasibility of large nonlinear analyses it is absolutely essential that algorithms be devised to improve the efficiency of element level computations.
Finite-Element Analysis of a Mach-8 Flight Test Article Using Nonlinear Contact Elements
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1997-01-01
A flight test article, called a glove, is required for a Mach-8 boundary-layer experiment to be conducted on a flight mission of the air-launched Pegasus(reg) space booster. The glove is required to provide a smooth, three-dimensional, structurally stable, aerodynamic surface and includes instrumentation to determine when and where boundary-layer transition occurs during the hypersonic flight trajectory. A restraint mechanism has been invented to attach the glove to the wing of the space booster. The restraint mechanism securely attaches the glove to the wing in directions normal to the wing/glove interface surface, but allows the glove to thermally expand and contract to alleviate stresses in directions parallel to the interface surface. A finite-element analysis has been performed using nonlinear contact elements to model the complex behavior of the sliding restraint mechanism. This paper provides an overview of the glove design and presents details of the analysis that were essential to demonstrate the flight worthiness of the wing-glove test article. Results show that all glove components are well within the allowable stress and deformation requirements to satisfy the objectives of the flight research experiment.
Research of carbon composite material for nonlinear finite element method
NASA Astrophysics Data System (ADS)
Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon
2012-04-01
Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.
NASA Astrophysics Data System (ADS)
Wang, Qing; Yao, Jing-Zheng
2010-12-01
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
Gartling, D.K.; Hogan, R.E.
1994-10-01
The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.
Multiple-mode nonlinear free and forced vibrations of beams using finite element method
NASA Technical Reports Server (NTRS)
Mei, Chuh; Decha-Umphai, Kamolphan
1987-01-01
Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.
Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation
Joldes, Grand Roman; Wittek, Adam; Miller, Karol
2010-01-01
Application of biomechanical modeling techniques in the area of medical image analysis and surgical simulation implies two conflicting requirements: accurate results and high solution speeds. Accurate results can be obtained only by using appropriate models and solution algorithms. In our previous papers we have presented algorithms and solution methods for performing accurate nonlinear finite element analysis of brain shift (which includes mixed mesh, different non-linear material models, finite deformations and brain-skull contacts) in less than a minute on a personal computer for models having up to 50.000 degrees of freedom. In this paper we present an implementation of our algorithms on a Graphics Processing Unit (GPU) using the new NVIDIA Compute Unified Device Architecture (CUDA) which leads to more than 20 times increase in the computation speed. This makes possible the use of meshes with more elements, which better represent the geometry, are easier to generate, and provide more accurate results. PMID:21179562
A survey of the core-congruential formulation for geometrically nonlinear TL finite elements
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Crivelli, Luis A.; Haugen, Bjorn
1994-01-01
This article presents a survey of the core-congruential formulation (CCF) for geometrically nonlinear mechanical finite elements based on the total Lagrangian (TL) kinematic description. Although the key ideas behind the CCF can be traced back to Rajasekaran and Murray in 1973, it has not subsequently received serious attention. The CCF is distinguished by a two-phase development of the finite element stiffness equations. The initial phase developed equations for individual particles. These equations are expressed in terms of displacement gradients as degrees of freedom. The second phase involves congruential-type transformations that eventually binds the element particles of an individual element in terms of its node-displacement degrees of freedom. Two versions of the CCF, labeled direct and generalized, are distinguished. The direct CCF (DCCF) is first described in general form and then applied to the derivation of geometrically nonlinear bar, and plane stress elements using the Green-Lagrange strain measure. The more complex generalized CCF (GCCF) is described and applied to the derivation of 2D and 3D Timoshenko beam elements. Several advantages of the CCF, notably the physically clean separation of material and geometric stiffnesses, and its independence with respect to the ultimate choice of shape functions and element degrees of freedom, are noted. Application examples involving very large motions solved with the 3D beam element display the range of applicability of this formulation, which transcends the kinematic limitations commonly attributed to the TL description.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-01-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205
Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature
Rudd, R E; Broughton, J Q
2005-05-30
Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.
Dynamic Analysis of Flexible Slider-Crank Mechanisms with Non-Linear Finite Element Method
NASA Astrophysics Data System (ADS)
CHEN, J.-S.; HUANG, C.-L.
2001-09-01
Previous research in finite element formulation of flexible mechanisms usually neglected high order terms in the strain-energy function. In particular, the quartic term of the displacement gradient is always neglected due to the common belief that it is not important in the dynamic analysis. In this paper, we show that this physical intuition is not always valid. By retaining all the high order terms in the strain-energy function the equations of motion naturally become non-linear, which can then be solved by the Newmark method. In the low-speed range it is found that the dynamic responses predicted by non-linear and linear approaches indeed make no significant difference. However, when the rotation speed increases up to about one-fifth of the fundamental bending natural frequency of the connecting rod, simplified approaches begin to incur noticeable error. Specifically, for a connecting rod with a slenderness ratio of 0·01 the conventional simplified approaches overestimate the vibration amplitude almost 10-fold when the rotation speed is comparable to the fundamental natural frequency of the connecting rod. Therefore, non-linear finite element formulation taking into account the complete non-linear strain is needed in analyzing high-speed flexible mechnisms with slender links.
NASA Astrophysics Data System (ADS)
Wang, Dongwei
Recent research and development of adaptive materials, smart structures and structronic systems have opened a new era to aerospace and structural engineering. Effective control of these intelligent structures and systems using piezoelectric materials can enhance operation precision, accuracy and reliability. This research is to investigate the dynamics, vibration sensing and control of the geometrically nonlinear distributed piezothermoelastic structures subjected to the combined mechanical, electrical, and thermal excitations by the finite element method. Based on the layerwise constant shear angle theory, the curved hexahedral and triangular piezothermoelastic shell elements are proposed. The generic finite element formulations for vibration sensing and control analysis of nonlinear piezothermoelastic shell structures are derived based on the total Lagrangian virtual work principle. Dynamic system equations, equations of electric potential outputs, and feedback control forces are derived and discussed. The modified Newton-Raphson method is used for efficient dynamic analysis of the nonlinear piezothermoelastic structural systems. Different control algorithms are implemented. The feedback control forces generated from the distributed actuator can effectively enhance system damping and suppress system vibration via proper feedback control techniques. Comprehensive case studies are performed to evaluate the accuracy of the newly developed piezothermoelastic shell elements and to validate the finite element code. Dynamics and vibration sensing/control of nonlinear piezothermoelastic beam and plate systems are analyzed. Distributed piezoelectric films placed on the beam and plate structures respectively serving as sensor and actuators are discussed. The effect of geometric nonlinearity is to stiffen the beam and plate structures and the control effect becomes worse when geometric nonlinearity becomes significant. It shows that negative velocity control scheme is
Development of a moderately sized finite element program for nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1977-01-01
AGGIE 1 is a computer program for predicting the linear and nonlinear, static and dynamic structural response of two- and three-dimensional continuum solids. The program is based on isoparametric finite elements and allows for 2-D plane stress, plane strain, and axisymmetric analyses and general 3-D analyses. Large strain kinematics is based on the total Lagrangian formulation. Materially nonlinear models include several elastic-plastic work-hardening models as well as an incompressible Mooney-Rivlin model. Included in this report is a brief description of the theoretical bases of the program, the material models used, the element library and the overall program organization. Instructions for data input preparation are given in detail. Several sample problems are given along with the required program input and program generated solutions.
NASA Astrophysics Data System (ADS)
Kapuria, S.; Yaqoob Yasin, M.
2013-05-01
In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined.
Geometrically non-linear vibration of spinning structures by finite element method
NASA Astrophysics Data System (ADS)
Leung, A. Y. T.; Fung, T. C.
1990-05-01
The geometrically non-linear steady state vibration of spinning structures is studied. Full flap-lag-torsional gyroscopic coupling effects are considered. The non-linearity arises mainly from the non-linear axial strain-displacement relation. The equations of motion are derived from Lagrangian equations. Spatial discretization is achieved by the finite element method and steady state nodal displacements are expanded into Fourier series. The harmonic balance method gives a set of non-linear algebraic equations with the Fourier coefficients of the nodal displacements as unknowns. The non-linear algebraic equations are solved by a Newtonian algorithm iteratively. The importance of the conditions of completeness and balanceability in choosing the number of harmonic terms to be used is discussed. General frame structures with arbitrary orientation in a rotating frame can be investigated by the present method. Rotating blades and shafts are treated as special cases. Examples of a rotating ring with different orientations are given. The non-linear amplitude-frequency relation can be constructed parametrically.
Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.
2000-01-01
Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
On nonlinear finite element analysis in single-, multi- and parallel-processors
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R.; Islam, M.; Salama, M.
1982-01-01
Numerical solution of nonlinear equilibrium problems of structures by means of Newton-Raphson type iterations is reviewed. Each step of the iteration is shown to correspond to the solution of a linear problem, therefore the feasibility of the finite element method for nonlinear analysis is established. Organization and flow of data for various types of digital computers, such as single-processor/single-level memory, single-processor/two-level-memory, vector-processor/two-level-memory, and parallel-processors, with and without sub-structuring (i.e. partitioning) are given. The effect of the relative costs of computation, memory and data transfer on substructuring is shown. The idea of assigning comparable size substructures to parallel processors is exploited. Under Cholesky type factorization schemes, the efficiency of parallel processing is shown to decrease due to the occasional shared data, just as that due to the shared facilities.
A non-linear finite-element model of the newborn ear canal
Qi, Li; Liu, Hengjin; Lutfy, Justyn; Funnell, W. Robert J.; Daniel, Sam J.
2010-01-01
We present a three-dimensional non-linear finite-element model of a 22-day-old newborn ear canal. The geometry is based on a clinical X-ray CT scan. A non-linear hyperelastic constitutive law is applied to model large deformations. The Young’s modulus of the soft tissue is found to have a significant effect on the ear-canal volume change, which ranges from approximately 27% to 75% over the static-pressure range of ±3 kPa. The effects of Poisson’s ratio and of the ratio C10:C01 in the hyperelastic model are found to be small. The volume changes do not reach a plateau at high pressures, which implies that the newborn ear-canal wall would not be rigid in tympanometric measurements. The displacements and volume changes calculated from the model are compared with available experimental data. PMID:17225406
NASA Technical Reports Server (NTRS)
Watson, Brian C.; Kamat, Manohar P.
1992-01-01
Concurrent computing environments provide the means to achieve very high performance for finite element analysis of systems, provided the algorithms take advantage of multiple processors. The authors have examined several algorithms for both linear and nonlinear finite element analysis. The performance of these algorithms on an Alliant FX/80 parallel supercomputer has been studied. For single load case linear analysis, the optimal solution algorithm is strongly problem dependent. For multiple load cases or nonlinear analysis through a modified Newton-Raphson method, decomposition algorithms are shown to have a decided advantage over element-by-element preconditioned conjugate gradient algorithms.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1976-01-01
Some results of studies of convergence and accuracy of finite element approximations of certain nonlinear problems encountered in finite elasticity are presented. A general technique for obtaining error bounds is also described together with an existence theorem. Numerical results obtained by solving a representative problem are also included.
Nonlinear finite element analysis of three implant–abutment interface designs
Tang, Chun-Bo; Liu, Si-Yu; Zhou, Guo-Xing; Yu, Jin-Hua; Zhang, Guang-Dong; Bao, Yi-Dong; Wang, Qiu-Ju
2012-01-01
The objective of this study was to investigate the mechanical characteristics of implant–abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite element simulation study was applied on three commonly used commercial dental implant systems: model I, the reduced-diameter 3i implant system (West Palm Beach, FL, USA) with a hex and a 12-point double internal hexagonal connection; model II, the Semados implant system (Bego, Bremen, Germany) with combination of a conical (45° taper) and internal hexagonal connection; and model III, the Brånemark implant system (Nobel Biocare, Gothenburg, Sweden) with external hexagonal connection. In simulation, a force of 170 N with 45° oblique to the longitudinal axis of the implant was loaded to the top surface of the abutment. It has been found from the strength and stiffness analysis that the 3i implant system has the lowest maximum von Mises stress, principal stress and displacement while the Brånemark implant system has the highest. It was concluded from our preliminary study using nonlinear FEA that the reduced-diameter 3i implant system with a hex and a 12-point double internal hexagonal connection had a better stress distribution, and produced a smaller displacement than the other two implant systems. PMID:22699263
Orozco, Gustavo A; Smith, Joshua H; García, José J
2014-10-01
A previously proposed finite element model that considers geometric and material nonlinearities and the free boundary problems that occur at the catheter tip and in the annular zone around the lateral surface of the catheter was revised and was used to fit a power-law formula to predict backflow length during infusions into brain tissue. Compared to a closed-form solution based on linear elasticity, the power-law formula for compliant materials predicted a substantial lower influence of the shear modulus and catheter radius on the backflow length, whereas the corresponding influence for stiffer materials was more consistent with the closed-form solution. The finite element model predicted decreases of the backflow length for reduction of the shear modulus for highly compliant materials (shear modulus less than 500 Pa) due to the increased area of infusion and the high fluid fraction near the infusion cavity that greatly increased the surface area available for fluid transfer and reduced the hydraulic resistance toward the tissue. These results show the importance of taking into account the material and geometrical nonlinearities that arise near the infusion surface as well as the change of hydraulic conductivity with strain for a proper characterization of backflow length during flow-controlled infusions into the brain. PMID:25154980
Orozco, Gustavo A; Smith, Joshua H; García, José J
2014-10-01
A previously proposed finite element model that considers geometric and material nonlinearities and the free boundary problems that occur at the catheter tip and in the annular zone around the lateral surface of the catheter was revised and was used to fit a power-law formula to predict backflow length during infusions into brain tissue. Compared to a closed-form solution based on linear elasticity, the power-law formula for compliant materials predicted a substantial lower influence of the shear modulus and catheter radius on the backflow length, whereas the corresponding influence for stiffer materials was more consistent with the closed-form solution. The finite element model predicted decreases of the backflow length for reduction of the shear modulus for highly compliant materials (shear modulus less than 500 Pa) due to the increased area of infusion and the high fluid fraction near the infusion cavity that greatly increased the surface area available for fluid transfer and reduced the hydraulic resistance toward the tissue. These results show the importance of taking into account the material and geometrical nonlinearities that arise near the infusion surface as well as the change of hydraulic conductivity with strain for a proper characterization of backflow length during flow-controlled infusions into the brain.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter
2014-01-01
The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously
Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
Lee, Huai-Ping; Audette, Michel; Joldes, Grand Roman; Enquobahrie, Andinet
2012-02-23
Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
NASA Technical Reports Server (NTRS)
Padovan, Joe
1986-01-01
In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1989-01-01
A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.
Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.
Taylor, Zeike A; Cheng, Mario; Ourselin, Sébastien
2007-01-01
Clinical employment of biomechanical modelling techniques in areas of medical image analysis and surgical simulation is often hindered by conflicting requirements for high fidelity in the modelling approach and high solution speeds. We report the development of techniques for high-speed nonlinear finite element (FE) analysis for surgical simulation. We employ a previously developed nonlinear total Lagrangian explicit FE formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the FE equations. To the best of our knowledge this represents the first GPU implementation of a nonlinear FE solver. We show that the present explicit FE scheme is well-suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.4x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18051120
Nonlinear random response of large-scale sparse finite element plate bending problems
NASA Astrophysics Data System (ADS)
Chokshi, Swati
Acoustic fatigue is one of the major design considerations for skin panels exposed to high levels of random pressure at subsonic/supersonic/hypersonic speeds. The nonlinear large deflection random response of the single-bay panels aerospace structures subjected to random excitations at various sound pressure levels (SPLs) is investigated. The nonlinear responses of plate analyses are limited to determine the root-mean-square displacement under uniformly distributed pressure random loads. Efficient computational technologies like sparse storage schemes and parallel computation are proposed and incorporated to solve large-scale, nonlinear large deflection random vibration problems for both types of loading cases: (1) synchronized in time and (2) unsynchronized and statistically uncorrelated in time. For the first time, large scale plate bending problems subjected to unsynchronized load are solved using parallel computing capabilities to account for computational burden due to the simulation of the unsynchronized random pressure fluctuations. The main focus of the research work is placed upon computational issues involved in the nonlinear modal methodologies. A nonlinear FEM method in time domain is incorporated with the Monte Carlo simulation and sparse computational technologies, including the efficient sparse Subspace Eigen-solutions are presented and applied to accurately determine the random response with a refined, large finite element mesh for the first time. Sparse equation solver and sparse matrix operations embedded inside the subspace Eigen-solution algorithms are also exploited. The approach uses the von-Karman nonlinear strain-displacement relations and the classical plate theory. In the proposed methodologies, the solution for a small number (say less than 100) of lowest linear, sparse Eigen-pairs need to be solved for only once, in order to transform nonlinear large displacements from the conventional structural degree-of-freedom (dof) into the modal
PLANS: A finite element program for nonlinear analysis of structures. Volume 1: Theoretical manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Levine, H. S.; Armen, H., Jr.
1975-01-01
The PLANS system is described which is a finite element program for nonlinear analysis. The system represents a collection of special purpose computer programs each associated with a distinct physical problem class. Modules of PLANS specifically referenced and described in detail include: (1) REVBY, for the plastic analysis of bodies of revolution; (2) OUT-OF-PLANE, for the plastic analysis of 3-D built-up structures where membrane effects are predominant; (3) BEND, for the plastic analysis of built-up structures where bending and membrane effects are significant; (4) HEX, for the 3-D elastic-plastic analysis of general solids; and (5) OUT-OF-PLANE-MG, for material and geometrically nonlinear analysis of built-up structures. The SATELLITE program for data debugging and plotting of input geometries is also described. The theoretical foundations upon which the analysis is based are presented. Discussed are the form of the governing equations, the methods of solution, plasticity theories available, a general system description and flow of the programs, and the elements available for use.
Nonlinear finite element analysis of high-strength concrete columns and experimental verification
NASA Astrophysics Data System (ADS)
Lu, Xilin; Chen, Shaolin
2008-03-01
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings ( GB 50011-2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
Adaptive superposition of finite element meshes in linear and nonlinear dynamic analysis
NASA Astrophysics Data System (ADS)
Yue, Zhihua
2005-11-01
The numerical analysis of transient phenomena in solids, for instance, wave propagation and structural dynamics, is a very important and active area of study in engineering. Despite the current evolutionary state of modern computer hardware, practical analysis of large scale, nonlinear transient problems requires the use of adaptive methods where computational resources are locally allocated according to the interpolation requirements of the solution form. Adaptive analysis of transient problems involves obtaining solutions at many different time steps, each of which requires a sequence of adaptive meshes. Therefore, the execution speed of the adaptive algorithm is of paramount importance. In addition, transient problems require that the solution must be passed from one adaptive mesh to the next adaptive mesh with a bare minimum of solution-transfer error since this form of error compromises the initial conditions used for the next time step. A new adaptive finite element procedure (s-adaptive) is developed in this study for modeling transient phenomena in both linear elastic solids and nonlinear elastic solids caused by progressive damage. The adaptive procedure automatically updates the time step size and the spatial mesh discretization in transient analysis, achieving the accuracy and the efficiency requirements simultaneously. The novel feature of the s-adaptive procedure is the original use of finite element mesh superposition to produce spatial refinement in transient problems. The use of mesh superposition enables the s-adaptive procedure to completely avoid the need for cumbersome multipoint constraint algorithms and mesh generators, which makes the s-adaptive procedure extremely fast. Moreover, the use of mesh superposition enables the s-adaptive procedure to minimize the solution-transfer error. In a series of different solid mechanics problem types including 2-D and 3-D linear elastic quasi-static problems, 2-D material nonlinear quasi-static problems
Slave finite elements for nonlinear analysis of engine structures, volume 1
NASA Technical Reports Server (NTRS)
Gellin, S.
1991-01-01
A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.
Contact stress analysis of spiral bevel gears using nonlinear finite element static analysis
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Kumar, A.; Reddy, S.; Handschuh, Robert F.
1993-01-01
A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.
Structural design optimization of racing motor boat based on nonlinear finite element analysis
NASA Astrophysics Data System (ADS)
Song, Ha Cheol; Kim, Tae-Jun; Jang, Chang Doo
2010-12-01
Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.
Halloran, Jason P.; Erdemir, Ahmet
2011-01-01
Simulation-based prediction of specimen-specific biomechanical behavior commonly requires inverse analysis using geometrically consistent finite element (FE) models. Optimization drives such analyses but previous studies have highlighted a large computational cost dictated by iterative use of nonlinear FE models. The goal of this study was to evaluate the performance of a local regression-based adaptive surrogate modeling approach to decrease computational cost for both global and local optimization approaches using an inverse FE application. Nonlinear elastic material parameters for patient-specific heel-pad tissue were found, both with and without the surrogate model. Surrogate prediction replaced a FE simulation using local regression of previous simulations when the corresponding error estimate was less than a given tolerance. Performance depended on optimization type and tolerance value. The surrogate reduced local optimization expense up to 68%, but achieved accurate results for only 1 of 20 initial conditions. Conversely, up to a tolerance value of 20 N2, global optimization with the surrogate yielded consistent parameter predictions with a concurrent decrease in computational cost (up to 77%). However, the local optimization method without the surrogate, although sensitive to the initial conditions, was still on average seven times faster than the global approach. Our results help establish guide-lines for setting acceptable tolerance values while using an adaptive surrogate model for inverse FE analysis. Most important, the study demonstrates the benefits of a surrogate modeling approach for intensive FE-based iterative analysis. PMID:21544674
Potential of minicomputer/array-processor system for nonlinear finite-element analysis
NASA Technical Reports Server (NTRS)
Strohkorb, G. A.; Noor, A. K.
1983-01-01
The potential of using a minicomputer/array-processor system for the efficient solution of large-scale, nonlinear, finite-element problems is studied. A Prime 750 is used as the host computer, and a software simulator residing on the Prime is employed to assess the performance of the Floating Point Systems AP-120B array processor. Major hardware characteristics of the system such as virtual memory and parallel and pipeline processing are reviewed, and the interplay between various hardware components is examined. Effective use of the minicomputer/array-processor system for nonlinear analysis requires the following: (1) proper selection of the computational procedure and the capability to vectorize the numerical algorithms; (2) reduction of input-output operations; and (3) overlapping host and array-processor operations. A detailed discussion is given of techniques to accomplish each of these tasks. Two benchmark problems with 1715 and 3230 degrees of freedom, respectively, are selected to measure the anticipated gain in speed obtained by using the proposed algorithms on the array processor.
ESTIMATION OF UNCERTAINTY BOUNDS ON UNMEASURED VARIABLES VIA NONLINEAR FINITE ELEMENT MODEL UPDATING
S. W. DOEBLING; J. F. SCHULTZE; F. M. HEMEZ
2001-04-01
Finite element model validation is a topic of current interest to many researchers in the field of linear and nonlinear structural dynamics. Model validation refers to ''substantiation that a model, within its domain of applicability, possesses a satisfactory range of accuracy consistent with the intended application of the model. [1]. Validation is accomplished primarily by comparison of simulation results to experimental results to confirm the accuracy of the mechanics models in the simulation and the values of the parameters employed in the simulation, and to explore how the simulation might be improved. The assessment of uncertainties in the simulation mechanics models and their associated parameters plays a critical role in the credible validation of nonlinear structural dynamics models. The study of the effects that these uncertainties produce is termed uncertainty quantification (UQ). A major issue in UQ is the determination of how the distributions of the model parameters (which essentially form a set of inputs to the simulation) should be represented in order to accurately reflect the real-world response of the structure. In the case of repeated experiments, it is sometimes adequate to monitor the values of the input variables (e.g. forces, temperatures, velocities, etc.) and estimate a distribution from these observations. However, in many structural dynamics experiments, there can be significant input variables that are either unmeasurable (such as the actual orientation of parts during an impact event) or unmeasured (such as the level of torque applied to an interface during assembly). In these cases, it is necessary to estimate the distributions of the key input variables by indirect means. In this paper, a previously developed model updating technique for nonlinear structural dynamics models is applied to data from repeated experimental trials to estimate the distributions of four key input parameters for a transient impact event. The model updating
Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.
2010-03-01
The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Richard Sanchez; Cristian Rabiti; Yaqi Wang
2013-11-01
Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self-adjoint angular flux (SAAF) form of the transport equation and use a postprocessing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a novel formal derivation of the boundary conditions for the SAAF.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Finite Element Modeling of Non-linear Coupled Interacting Fault System
NASA Astrophysics Data System (ADS)
Xing, H. L.; Zhang, J.; Wyborn, D.
2009-04-01
PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool is developed for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials. PANDAS includes the following key components: Pandas/Pre, ESyS_Crustal, Pandas/Thermo, Pandas/Fluid and Pandas/Post as detailed in the following: • Pandas/Pre is developed to visualise the microseismicity events recorded during the hydraulic stimulation process to further evaluate the fracture location and evolution and geological setting of a certain reservoir, and then generate the mesh by it and/or other commercial graphics software (such as Patran) for the further finite element analysis of various cases; The Delaunay algorithm is applied as a suitable method for mesh generation using such a point set; • ESyS_Crustal is a finite element code developed for the interacting fault system simulation, which employs the adaptive static/dynamic algorithm to simulate the dynamics and evolution of interacting fault systems and processes that are relevant on short to mediate time scales in which several dynamic phenomena related with stick-slip instability along the faults need to be taken into account, i.e. (a). slow quasi-static stress accumulation, (b) rapid dynamic rupture, (c) wave propagation and (d) corresponding stress redistribution due to the energy release along the multiple fault boundaries; those are needed to better describe ruputure/microseimicity/earthquake related phenomena with applications in earthquake forecasting, hazard quantification, exploration, and environmental problems. It has been verified with various available experimental results[1-3]; • Pandas/Thermo is a finite element method based module for the thermal analysis of the fractured porous media; the temperature distribution is calculated from the heat transfer induced by the thermal boundary conditions without/with the
NASA Astrophysics Data System (ADS)
Segura, Christopher L.
Numerical simulation tools capable of modeling nonlinear material and geometric behavior are important to structural engineers concerned with approximating the strength and deformation capacity of a structure. While structures are typically designed to behave linear elastic when subjected to building code design loads, exceedance of the linear elastic range is often an important consideration, especially with regards to structural response during hazard level events (i.e. earthquakes, hurricanes, floods), where collapse prevention is the primary goal. This thesis addresses developments made to Mercury, a nonlinear finite element program developed in MATLAB for numerical simulation and in C++ for real time hybrid simulation. Developments include the addition of three new constitutive models to extend Mercury's lumped plasticity modeling capabilities, a constitutive driver tool for testing and implementing Mercury constitutive models, and Mercury pre and post-processing tools. Mercury has been developed as a tool for transient analysis of distributed plasticity models, offering accurate nonlinear results on the material level, element level, and structural level. When only structural level response is desired (collapse prevention), obtaining material level results leads to unnecessarily lengthy computational time. To address this issue in Mercury, lumped plasticity capabilities are developed by implementing two lumped plasticity flexural response constitutive models and a column shear failure constitutive model. The models are chosen for implementation to address two critical issues evident in structural testing: column shear failure and strength and stiffness degradation under reverse cyclic loading. These tools make it possible to model post-peak behavior, capture strength and stiffness degradation, and predict global collapse. During the implementation process, a need was identified to create a simple program, separate from Mercury, to simplify the process of
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.
1982-01-01
Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.
Non-linear three-dimensional finite element analysis of a cementless hip endoprosthesis.
Tensi, H M; Gese, H; Ascherl, R
1989-01-01
In this finite element study the stresses between a stem component of a cementless hip endoprosthesis (Young modulus of Co-Cr-Mo) and the human femur were calculated for two different loading types. Linear and non-linear models were used to simulate the interface implant bone. Two models, a stem with a porous coated surface over the entire length and a stem with a porous coated surface in the proximal region were compared regarding the load transmission to the femur. An additional calculation of an 'isoelastic' stem (Young modulus of cortical bone) was done to show the influence of the stem stiffness. A porous coated surface over the entire length causes principal shear stresses up to 2.75 MPa in the distal-medial region during level walking. The highest compressive stresses were calculated in the proximal-lateral region as 1.5 MPa in cancellous bone. A more physiological load transmission is obtained by limiting the coated area to the proximal region. All stresses in the two models are lower than experimentally evaluated strengths in the interface between implant and bone. A strong influence of the Young modulus of the stem material on the interface stresses was found. An 'isoelastic' stem causes compressive stresses in the proximal-lateral region whose values exceed the experimental strength of cancellous bone.
2014-01-01
Background Minimal available information concerning hip morphology is the motivation for several researchers to study the difference between Asian and Western populations. Current use of a universal hip stem of variable size is not the best option for all femur types. This present study proposed a new design process of the cementless femoral stem using a three dimensional model which provided more information and accurate analysis compared to conventional methods. Methods This complete design cycle began with morphological analysis, followed by femoral stem design, fit and fill analysis, and nonlinear finite element analysis (FEA). Various femur parameters for periosteal and endosteal canal diameters are measured from the osteotomy level to 150 mm below to determine the isthmus position. Results The results showed better total fit (53.7%) and fill (76.7%) canal, with more load distributed proximally to prevent stress shielding at calcar region. The stem demonstrated lower displacement and micromotion (less than 40 μm) promoting osseointegration between the stem–bone and providing primary fixation stability. Conclusion This new design process could be used as a preclinical assessment tool and will shorten the design cycle by identifying the major steps which must be taken while designing the femoral stem. PMID:24484753
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209
Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.
Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
A metamodel-based approach to model validation for nonlinear finite element simulations
Doebling, S. W.; Hemez, F. M.; Schultze, J. F.; Cundy, A. L.
2001-01-01
Metamodeling, also known as response surface analysis, is the de facto standard for mathematical representation of complex phenomena in many fields, especially when first principles physical relationships are not well-defined, e.g. economics, climatology, and government policy. Metamodels provide a computationally efficient, low-dimension relationship for studying the behavior of a physical system. They can be used for understanding the physical system, predicting its response, optimizing its design or the parameters in a physical model, and performing verification and validation. Metamodels can be derived from simulation results or fit directly to observed test data. In structural dynamics, typical practice is to develop a first-principles-based model such as a finite element model to study the behavior of the system. However, it is common that the features of interest in a structural dynamics simulation are relatively low order (e.g. first few modal frequencies, peak acceleration at certain locations) and sensitive to relatively few model and simulation parameters. In these cases, metamodeling provides a convenient format to facilitate activities of model validation, including parameter screening, sensitivity analysis [3], uncertainty analysis, and test/analysis correlation. This paper describes the creation of metamodels, and presents some examples of how metamodels can be employed to facilitate model validation for nonlinear structural dynamic response simulation
Valero, C; Javierre, E; García-Aznar, J M; Gómez-Benito, M J
2014-06-01
Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds.
NASA Technical Reports Server (NTRS)
Rismantab-Sany, J.; Chang, B.; Shabana, A. A.
1989-01-01
A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.
Gartling, D.K.
1996-05-01
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
Maker, B.N.
1995-04-14
This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.
NASA Astrophysics Data System (ADS)
Haverkort, J. W.; de Blank, H. J.; Huysmans, G. T. A.; Pratt, J.; Koren, B.
2016-07-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.
Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc.
Little, J P; Adam, C J; Evans, J H; Pettet, G J; Pearcy, M J
2007-01-01
Degenerate intervertebral discs exhibit both material and structural changes. Structural defects (lesions) develop in the anulus fibrosus with age. While degeneration has been simulated in numerous previous studies, the effects of structural lesions on disc mechanics are not well known. In this study, a finite element model (FEM) of the L4/5 intervertebral disc was developed in order to study the effects of anular lesions and loss of hydrostatic pressure in the nucleus pulposus on the disc mechanics. Models were developed to simulate both healthy and degenerate discs. Degeneration was simulated with either rim, radial or circumferential anular lesions and by equating nucleus pressure to zero. The anulus fibrosus ground substance was represented as a nonlinear incompressible material using a second-order polynomial, hyperelastic strain energy equation. Hyperelastic material parameters were derived from experimentation on sheep discs. Endplates were assumed to be rigid, and annulus lamellae were assumed to be vertical in the unloaded state. Loading conditions corresponding to physiological ranges of rotational motion were applied to the models and peak rotation moments compared between models. Loss of nucleus pulposus pressure had a much greater effect on the disc mechanics than the presence of anular lesions. This indicated that the development of anular lesions alone (prior to degeneration of the nucleus) has minimal effect on disc mechanics, but that disc stiffness is significantly reduced by the loss of hydrostatic pressure in the nucleus. With the degeneration of the nucleus, the outer innervated anulus or surrounding osteo-ligamentous anatomy may therefore experience increased strains. PMID:17383659
Matsuura, Y.; Giambini, H.; Ogawa, Y.; Fang, Z.; Thoreson, A.R.; Yaszemski, M.J.; Lu, L.; An, K.N.
2014-01-01
Study Design Vertebral fracture load and stiffness from a metastatic vertebral defect model were predicted using nonlinear finite element models (FEM) and validated experimentally. Objective The study objective was to develop and validate an FEM-based tool for predicting polymer-augmented lytic vertebral fracture load and stiffness and the influence of metastatic filling materials. Summary of Background Data Percutaneous vertebroplasty has the potential to reduce vertebral fracture risk affected with lytic metastases by providing mechanical stabilization. However, it has been shown that the mismatch in mechanical properties between poly(methyl-methacrylate) (PMMA) and bone induces secondary fractures and intervertebral disc degeneration. A biodegradable co-polymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been shown to possess the appropriate mechanical properties for bone defect repair. Methods Simulated metastatic lytic defects were created in 40 cadaveric vertebral bodies, which were randomized into four groups: intact vertebral body (Intact), simulated defect without treatment (Negative), defect treated with P(PF-co-CL) (Co-polymer), and defect treated with PMMA (PMMA). Spines were imaged with quantitative computerized tomography (QCT), and QCT/FEM-subject-specific, non-linear models were created. Predicted fracture loads and stiffness were identified and compared to experimentally measured values using Pearson’s correlation analysis and paired t-test. Results There was no significant difference between the measured and predicted fracture loads and stiffness for each group. Predicted fracture loads were larger for PMMA-augmentation (3960 N (1371 N)) compared to that of the co-polymer, negative and intact groups (3484 N (1497 N), 3237 N (1744 N) and 1747 N (702 N)). A similar trend was observed in the predicted stiffness. Moreover, predicted and experimental fracture loads were strongly correlated (R2 = 0.78), while stiffness showed moderate
Gartling, D.K.; Hogan, R.E.
1994-10-01
User instructions are given for the finite element computer program, COYOTE II. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems including the effects of enclosure radiation and chemical reaction. The theoretical background and numerical methods used in the program are documented in SAND94-1173. Examples of the use of the code are presented in SAND94-1180.
NASA Astrophysics Data System (ADS)
Payette, G. S.; Reddy, J. N.
2011-05-01
In this paper we examine the roles of minimization and linearization in the least-squares finite element formulations of nonlinear boundary-values problems. The least-squares principle is based upon the minimization of the least-squares functional constructed via the sum of the squares of appropriate norms of the residuals of the partial differential equations (in the present case we consider L2 norms). Since the least-squares method is independent of the discretization procedure and the solution scheme, the least-squares principle suggests that minimization should be performed prior to linearization, where linearization is employed in the context of either the Picard or Newton iterative solution procedures. However, in the least-squares finite element analysis of nonlinear boundary-value problems, it has become common practice in the literature to exchange the sequence of application of the minimization and linearization operations. The main purpose of this study is to provide a detailed assessment on how the finite element solution is affected when the order of application of these operators is interchanged. The assessment is performed mathematically, through an examination of the variational setting for the least-squares formulation of an abstract nonlinear boundary-value problem, and also computationally, through the numerical simulation of the least-squares finite element solutions of both a nonlinear form of the Poisson equation and also the incompressible Navier-Stokes equations. The assessment suggests that although the least-squares principle indicates that minimization should be performed prior to linearization, such an approach is often impractical and not necessary.
Nasedkina, A.A.; Nasedkin, A.V.; Iovane, G.
2009-07-15
The paper discusses modeling of a multi-layer coal seam under hydrodynamic action based on the coupled equations of poroelasticity and filtration with the nonlinear relationship of permeability and porous pressure. The calculations by the finite element method use correspondence between the poroelasticity and thermoelasticity equations. The influence of input data on the size of a degassing hole area is analyzed for the couple problem and pure filtration problem.
NASA Astrophysics Data System (ADS)
Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.
2016-02-01
This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.
NASA Astrophysics Data System (ADS)
Kala, Zdeněk; Kala, Jiří
2012-09-01
The paper deals with the influence of correlation length, of Gauss random field, and of yield strength of a hotrolled I-beam under bending on the ultimate load carrying capacity limit state. Load carrying capacity is an output random quantity depending on input random imperfections. Latin Hypercube Sampling Method is used for sampling simulation. Load carrying capacity is computed by the programme ANSYS using shell finite elements and nonlinear computation methods. The nonlinear FEM computation model takes into consideration the effect of lateral-torsional buckling on the ultimate limit state.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
Asgarieh, Eliyar; Moaveni, Babak; Stavridis, Andreas
2014-11-01
A model updating methodology is proposed for calibration of nonlinear finite element (FE) models simulating the behavior of real-world complex civil structures subjected to seismic excitations. In the proposed methodology, parameters of hysteretic material models assigned to elements (or substructures) of a nonlinear FE model are updated by minimizing an objective function. The objective function used in this study is the misfit between the experimentally identified time-varying modal parameters of the structure and those of the FE model at selected time instances along the response time history. The time-varying modal parameters are estimated using the deterministic-stochastic subspace identification method which is an input-output system identification approach. The performance of the proposed updating method is evaluated through numerical and experimental applications on a large-scale three-story reinforced concrete frame with masonry infills. The test structure was subjected to seismic base excitations of increasing amplitude at a large outdoor shake-table. A nonlinear FE model of the test structure has been calibrated to match the time-varying modal parameters of the test structure identified from measured data during a seismic base excitation. The accuracy of the proposed nonlinear FE model updating procedure is quantified in numerical and experimental applications using different error metrics. The calibrated models predict the exact simulated response very accurately in the numerical application, while the updated models match the measured response reasonably well in the experimental application.
Ma, J; Wittek, A; Singh, S; Joldes, G; Washio, T; Chinzei, K; Miller, K
2010-12-01
In this paper, the accuracy of non-linear finite element computations in application to surgical simulation was evaluated by comparing the experiment and modelling of indentation of the human brain phantom. The evaluation was realised by comparing forces acting on the indenter and the deformation of the brain phantom. The deformation of the brain phantom was measured by tracking 3D motions of X-ray opaque markers, placed within the brain phantom using a custom-built bi-plane X-ray image intensifier system. The model was implemented using the ABAQUS(TM) finite element solver. Realistic geometry obtained from magnetic resonance images and specific constitutive properties determined through compression tests were used in the model. The model accurately predicted the indentation force-displacement relations and marker displacements. Good agreement between modelling and experimental results verifies the reliability of the finite element modelling techniques used in this study and confirms the predictive power of these techniques in surgical simulation. PMID:21153973
Griffith, Daniel Todd; Segalman, Daniel Joseph
2006-10-01
A technique published in SAND Report 2006-1789 ''Model Reduction of Systems with Localized Nonlinearities'' is illustrated in two problems of finite element structural dynamics. That technique, called here the Method of Locally Discontinuous Basis Vectors (LDBV), was devised to address the peculiar difficulties of model reduction of systems having spatially localized nonlinearities. It's illustration here is on two problems of different geometric and dynamic complexity, but each containing localized interface nonlinearities represented by constitutive models for bolted joint behavior. As illustrated on simple problems in the earlier SAND report, the LDBV Method not only affords reduction in size of the nonlinear systems of equations that must be solved, but it also facilitates the use of much larger time steps on problems of joint macro-slip than would be possible otherwise. These benefits are more dramatic for the larger problems illustrated here. The work of both the original SAND report and this one were funded by the LDRD program at Sandia National Laboratories.
Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration.
Sorrentino, Roberto; Apicella, Davide; Riccio, Carlo; Gherlone, Enrico; Zarone, Fernando; Aversa, Raffaella; Garcia-Godoy, Franklin; Ferrari, Marco; Apicella, Antonio
2009-11-01
This study is aimed at evaluating the biomechanical behavior of feldspathic versus alumina porcelain veneers. A 3D numerical model of a maxillary central incisor, with the periodontal ligament (PDL) and the alveolar bone was generated. Such model was made up of four main volumes: dentin, enamel, cement layer and veneer. Incisors restored with alumina and feldspathic porcelain veneers were compared with a natural sound tooth (control). Enamel, cementum, cancellous and cortical bone were considered as isotropic elastic materials; on the contrary, the tubular structure of dentin was designed as elastic orthotropic. The nonlinear visco-elatic behavior of the PDL was considered. The veneer volumes were coupled with alumina and feldspathic porcelain mechanical properties. The adhesive layers were modeled in the FE environment using spring elements. A 50N load applied at 60 degrees angle with tooth longitudinal axis was applied and validated. Compressive stresses were concentrated on the external surface of the buccal side of the veneer close to the incisal margin; such phenomenon was more evident in the presence of alumina. Tensile stresses were negligible when compared to compressive ones. Alumina and feldspathic ceramic were characterized by a different biomechanical behavior in terms of elastic deformations and stress distributions. The ultimate strength of both materials was not overcome in the performed analysis.
Mohanty, Subhasish; Majumdar, Saurindranath
2015-01-01
Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.
NASA Astrophysics Data System (ADS)
Pérez-Aparicio, José L.; Sosa, Horacio
2004-06-01
Magnetostriction is a phenomenon observed in all ferromagnetic materials. It couples elastic, electric, magnetic and in some situations also thermal fields and is of great industrial interest for use in sensors, actuators, adaptive or functional structures, robotics, transducers and MEMS. In this work, the governing equations of the three-field problem (i.e., the interactions of elastic, electric and magnetic effects) are formulated in three dimensions, accounting for non-linear (through magnetic body forces represented by the Maxwell tensor) and dynamic effects, and with constitutive equations resembling those of piezoelectricity. Through manipulation of Maxwell equations it is possible to find suitable expressions for developing the numerical weak, Galerkin and matrix forms in a natural way, including seven residuals (one for each nodal degree of freedom) and non-symmetric tangent, 'capacity' and mass consistent matrices. Simple backward Euler and central difference schemes can be used for the time domain integration. The only assumption made in this work for simplification is that the time variation of electric induction is negligible. This is justified by the relatively low frequencies ({\\ll }1 GHz) under which magnetostrictive materials usually work. The principal feature of the equations is the use of a magnetic potential (without much physical meaning) that allows a complete 'displacement' finite element formulation: all elastic, electric and magnetic nodal unknowns are zero derivatives. This allows the algorithm to be treated in a standard way, and important effects such as eddy currents can be obtained naturally. The formulation is implemented in the research finite element code FEAP. Although seven degrees of freedom per node is computer expensive to solve (especially for 3D problems), the current trend in the performance of computers, even personal ones, makes it worthwhile to build complete finite elements following the well-established (in mechanics
Townsend, Molly T; Sarigul-Klijn, Nesrin
2016-01-01
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.
Townsend, Molly T; Sarigul-Klijn, Nesrin
2016-01-01
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112
Oda, Nobusuke; Wakabayashi, Noriyuki; Yoneyama, Takayuki; Suzuki, Tetsuya
2009-01-01
The purpose of this study was to assess the effect of bending of dental gold alloy wires on the mechanical characteristics of wrought-wire clasps. We conducted a simulation of large deformation in straight wires by means of non-linear finite element (FE) analysis. A bending force increased the principal tensile stress on the outer surface of the bending corner and the compressive stress on the inner surface of the bending corner to their maximum values. After unloading with springback, a residual tensile stress was produced on the inner surface. A gold alloy wire clasp exhibited a relatively greater flexibility with small permanent deformation after the clasp tip deflection as compared to previously reported data for Co-Cr wires; this suggests that it is suitable for periodontally compromised teeth. Wire clasps are more susceptible to failure as compared to straight wrought wires because of the residual stress produced during the bending process. PMID:19280977
Development of a non-linear finite element modelling of the below-knee prosthetic socket interface.
Zhang, M; Lord, M; Turner-Smith, A R; Roberts, V C
1995-12-01
A non-linear finite element model has been established to predict the pressure and shear stress distribution at the limb-socket interface in below-knee amputees with consideration of the skin-liner interface friction and slip. In this model, the limb tissue and socket liner were respectively meshed into 954 and 450 three-dimensional eight-node isoparametric brick elements, based on measurements of an individual's amputated limb surface; the bone was meshed into three-dimensional six-node triangular prism elements, based on radiographic measurements of the individual's residual limb. The socket shell was assumed to be a rigid boundary. An important feature of this model is the use of 450 interface elements (ABAQUS INTER4) which mimic the interface friction condition. The results indicate that a maximum pressure of 226 kPa, shear stress of 53 kPa and less than 4 mm slip exist at the skin-liner interface when the full body weight of 800 N is applied to the limb. The results also show that the coefficient of friction is a very sensitive parameter in determining the interface pressures, shear stresses and slip. With the growth of coefficient of friction, the shear stresses will increase, while the pressure and slip will decrease.
Shestakov, A I; Milovich, J L; Noy, A
2002-03-01
The nonlinear Poisson-Boltzmann (PB) equation is solved using Newton-Krylov iterations coupled with pseudo-transient continuation. The PB potential is used to compute the electrostatic energy and evaluate the force on a user-specified contour. The PB solver is embedded in a existing, 3D, massively parallel, unstructured-grid, finite element code. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions "regulating" the surface charge. Stability and robustness are proved using results for backward Euler differencing of diffusion equations. Potentials and energies of charged spheres and plates are computed and results compared to analysis. An approximation to the potential of the nonlinear, spherical charge is derived by combining two analytic formulae. The potential and force due to a conical probe interacting with a flat plate are computed for two types of boundary conditions: constant potential and constant charge. The second case is compared with direct force measurements by chemical force microscopy. The problem is highly nonlinear-surface potentials of the linear and nonlinear PB equations differ by over an order of magnitude. Comparison of the simulated and experimentally measured forces shows that approximately half of the surface carboxylic acid groups, of density 1/(0.2 nm2), ionize in the electrolyte implying surface charges of 0.4 C/m2, surface potentials of 0.27 V, and a force of 0.6 nN when the probe and plate are 8.7 nm apart. PMID:16290441
NASA Astrophysics Data System (ADS)
Joglekar, D. M.; Mitra, M.
2015-11-01
A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the
Output-only identification of civil structures using nonlinear finite element model updating
NASA Astrophysics Data System (ADS)
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.
2015-03-01
This paper presents a novel approach for output-only nonlinear system identification of structures using data recorded during earthquake events. In this approach, state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with Bayesian Inference method to estimate (i) time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure, and (ii) the time history of the earthquake ground motion. To validate the performance of the proposed framework, the simulated responses of a bridge pier to an earthquake ground motion is polluted with artificial output measurement noise and used to jointly estimate the unknown material parameters and the time history of the earthquake ground motion. This proof-of-concept example illustrates the successful performance of the proposed approach even in the presence of high measurement noise.
NASA Astrophysics Data System (ADS)
Abd El Baky, Hussien
This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond
Shih, Kao-Shang; Hsu, Ching-Chi; Hsu, Tzu-Pin; Hou, Sheng-Mou; Liaw, Chen-Kun
2014-02-01
Femoral shaft fractures can be treated using retrograde interlocking nailing systems; however, fracture nonunion still occurs. Dynamic fixation techniques, which remove either the proximal or distal locking screws, have been used to solve the problem of nonunion. In addition, a surgical rule for dynamic fixation techniques has been defined based on past clinical reports. However, the biomechanical performance of the retrograde interlocking nailing systems with either the traditional static fixation technique or the dynamic fixation techniques has not been investigated by using nonlinear numerical modeling. Three-dimensional nonlinear finite element models were developed, and the implant strength, fixation stability, and contact area of the fracture surfaces were evaluated. Three types of femoral shaft fractures (a proximal femoral shaft fracture, a middle femoral shaft fracture, and a distal femoral shaft fracture) fixed by three fixation techniques (insertion of all the locking screws, removal of the proximal locking screws, or removal of the distal locking screws) were analyzed. The results showed that the static fixation technique resulted in sufficient fixation stability and that the dynamic fixation techniques decreased the failure risk of the implant and produced a larger contact area of the fracture surfaces. The outcomes of the current study could assist orthopedic surgeons in comprehending the biomechanical performances of both static and dynamic fixation techniques. In addition, the surgeons could also select a fixation technique based on the specific patient situation using the numerical outcomes of this study.
NASA Astrophysics Data System (ADS)
Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan
2016-09-01
In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.
NASA Astrophysics Data System (ADS)
Çelebi, E.; Göktepe, F.; Karahan, N.
2012-11-01
The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D) finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI) system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
Non-linear Creep Analysis of Ceramic Specimen Using Finite Element Method
NASA Astrophysics Data System (ADS)
Saini, Jaswinder Singh; Khera, Saurabh
2016-07-01
In the present work the stress analysis of a ceramic tensile specimen is obtained. The effects of specimen geometry along with the pin loading are considered in the stress distribution calculations. Thereafter, the optimization based on a set of constraints is performed on the specimen with pinhole location, pinhole diameter, head width, neck radius and gauge length as its design variables. The work is then extended for the non-linear analysis for creep. A mathematical model is developed which is implemented using C++ code.
NASA Astrophysics Data System (ADS)
Mikhaylova, Alena
This study presents a comprehensive investigation of performance and behavior of steel-fiber reinforced concrete pipes (SFRCP). The main goal of this study is to develop the material constitutive model for steel fiber reinforced concrete used in dry-cast application. To accomplish this goal a range of pipe sizes varying from 15 in. (400 mm) to 48 in. (1200 mm) in diameter and fiber content of 0.17%, 0.25%, 0.33%, 0.5%, 0.67% and 83% by volume were produced. The pipes were tested in three-edge bearing condition to obtain the load-deformation response and overall performance of the pipe. The pipes were also subjected to hydrostatic joint and joint shear tests to evaluate the performance of the fiber-pipe joints for water tightness and under differential displacements, respectively. In addition, testing on hardened concrete was performed to obtain the basic mechanical material properties. High variation in the test results for material testing was identified as a part of experimental investigation. A three-dimensional non-linear finite element model of the pipe under the three edge bearing condition was developed to identify the constitutive material relations of fiber-concrete composite. A constitutive model of concrete implementing the concrete plasticity and continuum fracture mechanics was considered for defining the complex non-linear behavior of fiber-concrete. Three main concrete damage algorithms were examined: concrete brittle cracking, concrete damaged plasticity with adaptive meshing technique and concrete damaged plasticity with visco-plastic regularization. The latter was identified as the most robust and efficient to model the post-cracking behavior of fiber reinforced concrete and was used in the subsequent studies. The tension stiffening material constitutive law for composite concrete was determined by converging the FEM solution of load-deformation response with the results of experimental testing. This was achieved by iteratively modifying the non-linear
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
Finite elements for a beam system with nonlinear contact under periodic excitation
NASA Astrophysics Data System (ADS)
Hazim, H.; Rousselet, B.
Solar arrays are structures which are connected to satellites; during launch, they are in a folded position and submitted to high vibrations. In order to save mass, the flexibility of the panels is not negligible and they may strike each other; this may damage the structure. To prevent this, rubber snubbers are mounted at well chosen points of the structure; a prestress is applied to the snubber; but it is quite difficult to check the amount of prestress and the snubber may act only on one side; they will be modeled as one sided springs (see figure 2). In this article, some analysis for responses (displacements) in both time and frequency domains for a clamped-clamped Euler-Bernoulli beam model with a spring are presented. This spring can be unilateral or bilateral fixed at a point. The mounting (beam +spring) is fixed on a rigid support which has a sinusoidal motion of constant frequency. The system is also studied in the frequency domain by sweeping frequencies between two fixed values, in order to save the maximum of displacements corresponding to each frequency. Numerical results are compared with exact solutions in particular cases which already exist in the literature. On the other hand, a numerical and theoretical investigation of nonlinear normal mode (NNM) can be a new method to describe nonlinear behaviors, this work is in progress.
NASA Astrophysics Data System (ADS)
Liu, Yu; Dick, Andrew J.
2016-04-01
In this paper, a novel method named the alternating wavelet-time finite element method (AWT-FEM) is proposed for studying elastic wave propagation in nonlinear structures. An alternating iterative procedure between the time-domain and a wavelet-domain combined with the spectral finite element method (SFEM) is employed to solve wave equations with general nonlinearities. The advantages of the proposed method are (1) the potential to provide high fidelity results for impacts with high frequency content through the use of the spectral finite element method; (2) nonlinear structures with physically realistic boundary conditions can easily be studied by circumventing wrap-around issues associated with Fourier-based methods; (3) the parallel computing compatible framework and the semi-analytical nature of SFEM make it more computationally efficient for nonlinear systems modeled with structural components. Simulations using the proposed method are conducted to demonstrate its applicability to study nonlinear wave propagation in one-dimensional and two-dimensional systems.
NASA Astrophysics Data System (ADS)
Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom
2015-04-01
Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.
NASA Astrophysics Data System (ADS)
Peng, Han Min; Ding, Qing Jun; Hui, Yao; Li, Hua Feng; Zhao, Chun Sheng
2010-03-01
Ionic polymer-metal composites (IPMC) are a class of electroactive polymers (EAP), and they currently attract numerous researchers to study their performance characteristics and applications. However, research on its start-up characteristics still requires more attention. In the IPMC start-up state (the moment of applying an actuation voltage at the very beginning), its mechanical performance is different in the stable working state (working for at least 10 min). Therefore, this paper focuses on three performance relationships of an IPMC strip between its maximal tip deformation and voltage, its maximal stress and voltage, as well as its maximal strain and voltage, both in the two states. Different from other reports, we found that they present nonlinear tendencies in the start-up state rather than linear ones. Therefore, based on the equivalent bimorph beam model, a finite element electromechanical coupling calculation module in the ANSYS software was utilized to simulate these characteristics. Furthermore, a test system is introduced to validate the phenomena. As a whole, these three relationships and the FEA method may be beneficial for providing control strategies effectively to IPMC actuators, especially in their start-up states.
Stitzel, Joel D; Duma, Stefan M; Cormier, Joseph M; Herring, Ian P
2002-11-01
Over 2.4 million eye injuries occur each year in the US, with over 30,000 patients left blind as a result of the trauma. The majority of these injuries occur in automobile crashes, military operations and sporting activities. This paper presents a nonlinear finite element model of the eye and the results of 22 experiments using human eyes to validate for globe rupture injury prediction. The model of the human eye consists of the cornea, sclera, lens, ciliary body, zonules, aqueous humor and vitreous body. Lagrangian membrane elements are used for the cornea and sclera, Lagrangian bricks for the lens, ciliary, and zonules, and Eulerian brick elements comprise the aqueous and vitreous. Nonlinear, isotropic material properties of the sclera and cornea were gathered from uniaxial tensile strip tests performed up to rupture. Dynamic modeling was performed using LS-Dyna. Experimental validation tests consisted of 22 tests using three scenarios: impacts from foam particles, BB's, and baseballs onto fresh eyes used within 24 hours postmortem. The energies of the projectiles were chosen so as to provide both globe rupture and no rupture tests. Displacements of the eye were recorded using high speed color video at 7100 frames per second. The matched simulations predicted rupture of the eye when rupture was seen in the BB and baseball tests, and closely predicted displacements of the eye for the foam tests. Globe rupture has previously been shown to occur at peak stresses of 9.4 MPa using the material properties included in the model. Because of dynamic effects and improvements in boundary conditions resulting from a more realistic modeling of the fluid in the anterior and posterior chambers, the stresses can be much higher than those previously predicted, with the globe remaining intact. The model is empirically verified to predict globe rupture for stresses in the corneoscleral shell exceeding 23 MPa, and local dynamic pressures exceeding 2.1 MPa. The model can be used as a
Stitzel, Joel D; Duma, Stefan M; Cormier, Joseph M; Herring, Ian P
2002-11-01
Over 2.4 million eye injuries occur each year in the US, with over 30,000 patients left blind as a result of the trauma. The majority of these injuries occur in automobile crashes, military operations and sporting activities. This paper presents a nonlinear finite element model of the eye and the results of 22 experiments using human eyes to validate for globe rupture injury prediction. The model of the human eye consists of the cornea, sclera, lens, ciliary body, zonules, aqueous humor and vitreous body. Lagrangian membrane elements are used for the cornea and sclera, Lagrangian bricks for the lens, ciliary, and zonules, and Eulerian brick elements comprise the aqueous and vitreous. Nonlinear, isotropic material properties of the sclera and cornea were gathered from uniaxial tensile strip tests performed up to rupture. Dynamic modeling was performed using LS-Dyna. Experimental validation tests consisted of 22 tests using three scenarios: impacts from foam particles, BB's, and baseballs onto fresh eyes used within 24 hours postmortem. The energies of the projectiles were chosen so as to provide both globe rupture and no rupture tests. Displacements of the eye were recorded using high speed color video at 7100 frames per second. The matched simulations predicted rupture of the eye when rupture was seen in the BB and baseball tests, and closely predicted displacements of the eye for the foam tests. Globe rupture has previously been shown to occur at peak stresses of 9.4 MPa using the material properties included in the model. Because of dynamic effects and improvements in boundary conditions resulting from a more realistic modeling of the fluid in the anterior and posterior chambers, the stresses can be much higher than those previously predicted, with the globe remaining intact. The model is empirically verified to predict globe rupture for stresses in the corneoscleral shell exceeding 23 MPa, and local dynamic pressures exceeding 2.1 MPa. The model can be used as a
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less
Sjaardema, G.; Wellman, G.; Gartling, D.
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.
Forsythe, C.; Smith, M.; Sjaardema, G.
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or to another format.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. PMID:20868706
Li, Mao; Wittek, Adam; Miller, Karol
2014-01-01
Biomechanical modeling methods can be used to predict deformations for medical image registration and particularly, they are very effective for whole-body computed tomography (CT) image registration because differences between the source and target images caused by complex articulated motions and soft tissues deformations are very large. The biomechanics-based image registration method needs to deform the source images using the deformation field predicted by finite element models (FEMs). In practice, the global and local coordinate systems are used in finite element analysis. This involves the transformation of coordinates from the global coordinate system to the local coordinate system when calculating the global coordinates of image voxels for warping images. In this paper, we present an efficient numerical inverse isoparametric mapping algorithm to calculate the local coordinates of arbitrary points within the eight-noded hexahedral finite element. Verification of the algorithm for a nonparallelepiped hexahedral element confirms its accuracy, fast convergence, and efficiency. The algorithm's application in warping of the whole-body CT using the deformation field predicted by means of a biomechanical FEM confirms its reliability in the context of whole-body CT registration. PMID:24828796
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less
Sjaardema, G.; Forsythe, C.
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases into a single database which makes it easier to postprocess the results data.
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
NASA Astrophysics Data System (ADS)
Masterlark, T.; Feigl, K.; Haney, M. M.; Stone, J.; Thurber, C. H.; Ronchin, E.
2011-12-01
The internal structure, loading processes, and effective boundary conditions of a volcano control the deformation observed at the Earth's surface. Using finite element models, we simulate the response due to a pressurized magma chamber embedded in a domain having an arbitrary geometry and distribution of elastic material properties. The ability to impose perturbations of the source position and automatically generate an acceptable mesh has been an obstacle to implementing nonlinear inverse analyses of geodetic data to estimate the position of a magma chamber within the mesh of a finite element model. We use the Pinned Mesh Perturbation method (PMP) to automatically generate the mesh following perturbations to geometric parameters such as the depth of the source. For example, we analyze the 1997 eruption of Okmok volcano, Alaska. To describe the co-eruptive deformation field observed by synthetic aperture radar interferometry (InSAR), we solve a nonlinear inverse problem by combining PMP with nested Monte Carlo methods. The solution yields estimates and uncertainties for parameters that characterize the depressurization and location of the magma chamber beneath Okmok's caldera. The three-dimensional finite element models used in the PMP method simulate the heterogeneous distribution of material properties derived from seismic tomography and account for the irregular geometry of the topography and bathymetry. The fit of this heterogeneous configuration to the InSAR data is a significant improvement, at the 95% confidence level, compared to the fit of a corresponding finite element model having homogeneous material properties. The estimated depth of an assumed spherical magma chamber, embedded in a domain having a heterogeneous distribution of material properties, is 3530 +/- 30 m with respect to mean sea level. This estimated depth is consistent with constraints from rock mechanics and very-long-period tremor. The methods presented here allow us to construct
NASA Astrophysics Data System (ADS)
Zeevaert, A. E.
1980-03-01
A mathematical formulation to model the behavior under load of a reinforced soil system, where a fabric is placed over a soft soil and covered with stone for use as a temporary haul road is discussed. This approach is used to improve the behavior of temporary roadways, particularly where very soft soils are encountered. The stress distribution and the load-deformation characteristics of the soil-fabric system for varying geometries and material properties are defined. Included in the mathematical formulation are such features as: nonlinear behavior of the soil and fabric materials, friction parameters of the interface, tension characteristics of the fabric materials, large displacements in finite deformation, "no tension" conditions of the cohesionless materials, and yielding of plastic materials. The mathematical model is a more complete approximation of the actual fabric-soil system than is presently available.
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1995-01-01
Underintegrated methods are investigated with respect to their stability and convergence properties. The focus was on identifying regions where they work and regions where techniques such as hourglass viscosity and hourglass control can be used. Results obtained show that underintegrated methods typically lead to finite element stiffness with spurious modes in the solution. However, problems exist (scalar elliptic boundary value problems) where underintegrated with hourglass control yield convergent solutions. Also, stress averaging in underintegrated stiffness calculations does not necessarily lead to stable or convergent stress states.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
NASA Astrophysics Data System (ADS)
Metzger, Mario; Seifert, Thomas
2013-09-01
In this paper, an unconditionally stable algorithm for the numerical integration and finite-element implementation of a class of pressure dependent plasticity models with nonlinear isotropic and kinematic hardening is presented. Existing algorithms are improved in the sense that the number of equations to be solved iteratively is significantly reduced. This is achieved by exploitation of the structure of Armstrong-Frederik-type kinematic hardening laws. The consistent material tangent is derived analytically and compared to the numerically computed tangent in order to validate the implementation. The performance of the new algorithm is compared to an existing one that does not consider the possibility of reducing the number of unknowns to be iterated. The algorithm is used to implement a time and temperature dependent cast iron plasticity model, which is based on the pressure dependent Gurson model, in the finite-element program ABAQUS. The implementation is applied to compute stresses and strains in a large-scale finite-element model of a three cylinder engine block. This computation proofs the applicability of the algorithm in industrial practice that is of interest in applied sciences.
Element-by-element Solution Procedures for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Levit, I.
1984-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in nonlinear structural mechanics. Architectural and data base advantages of the present algorithms over traditional direct elimination schemes are noted. Results of calculations suggest considerable potential for the methods described.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Krueger, Ronald
2006-01-01
One particular concern of polymer matrix composite laminates is the relatively low resistance to delamination cracking, in particular when the dominant type of failure is mode I opening. One method proposed for alleviating this problem involves the insertion pultruded carbon pins through the laminate thickness. The pins, known as z-pins, are inserted into the prepreg laminate using an ultrasonic hammer prior to the curing process, resulting in a field of pins embedded normal to the laminate plane as illustrated in Figure. 1. Pin diameters range between 0.28-mm to 0.5-mm and standard areal densities range from 0.5% to 4%. The z-pins are provided by the manufacturer, Aztex(Registered TradeMark) , in a low-density foam preform, which acts to stabilize orientation of the pins during the insertion process [1-3]. Typical pin materials include boron and carbon fibers embedded in a polymer matrix. A number of methods have been developed for predicting delamination growth in laminates reinforced with z-pins. During a study on the effect of z-pin reinforcement on mode I delamination resistance, finite element analyses of z-pin reinforced double cantilever beam (DCB) specimens were performed by Cartie and Partridge [4]. The z-pin bridging stresses were modeled by applying equivalent forces at the pin locations. Single z-pin pull-out tests were performed to characterize the traction law of the pins under mode I loading conditions. Analytical solutions for delamination growth in z-pin reinforced DCB specimens were independently derived by Robinson and Das [5] and Ratcliffe and O'Brien [6]. In the former case, pin bridging stresses were modeled using a distributed load and in the latter example the bridging stresses were discretely modeled by way of grounded springs. Additionally, Robinson and Das developed a data reduction strategy for calculating mode I fracture toughness, G(sub Ic), from a z-pin reinforced DCB specimen test [5]. In both cases a traction law similar to that
NASA Astrophysics Data System (ADS)
Ranjbaran, A.; Phipps, M. E.
1994-04-01
A finite element program for the nonlinear stress analysis of two-dimensional problems is introduced. Both metallic and reinforced concrete structures are considered. In the case of metals plasticity is taken into account. For reinforced concrete structures cracking of concrete in tension, plasticity and crushing of concrete in compression, and plasticity of reinforcement is accounted for. A new and unified model for embedding reinforcement in concrete elements is proposed. The proposed model is quite general in the sense that it can be used both for two- and three-dimensional problems. The theoretical basis of the program is presented. The accuracy, efficiency and robustness of the program and its implementation is verified through the analysis of two-dimensional problems.
Adaptive finite element strategies for shell structures
NASA Technical Reports Server (NTRS)
Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.
1992-01-01
The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.
Akça, Kivanç; Cehreli, Murat Cavit; Iplikçioğlu, Haldun
2003-08-01
The purpose of this study was to evaluate the mechanical characteristics of the implant-abutment connection of a reduced-diameter ITI dental implant. A finite element model of a slashed circle 3.3 mm x 10 mm ITI solid-screw implant and a 6 degrees solid abutment 4 mm in height was constructed, and the implant-abutment complex was embedded vertically in the center of a slashed circle 1.5 cm x 1.5 cm acrylic cylinder. Static vertical and oblique loads of 300 N were applied in separate load cases. The contact area was defined between the implant-abutment connection and nonlinear finite element stress analysis was performed. The magnitude and distribution of Von Mises stresses and displacement characteristics were evaluated. In vertical loading, Von Mises stresses concentrated around the implant-abutment connection at the stem of the screw and around the implant collar. Oblique loading resulted in a 2-fold increase in stresses at the implant collar, which was close to the yield strength of titanium. Displacement values under both loading conditions were negligible. We conclude that, in a reduced-diameter ITI dental implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. The neck of this implant is a potential zone for fracture when subjected to high bending forces. The reduced-diameter ITI dental implant might benefit from reinforcement of this region.
Singular finite element methods
NASA Technical Reports Server (NTRS)
Fix, George J.
1987-01-01
Singularities which arise in the solution to elliptic systems are often of great technological importance. This is certainly the case in models of fracture of structures. A survey of the ways singularities are modeled is presented with special emphasis on the effects due to nonlinearities.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
Finite element methods in fracture mechanics
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Moyer, E. T., Jr.
1989-01-01
Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Lundström, T; Jonas, T; Volkwein, A
2008-01-01
Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.
Jacobs, Nathan T; Cortes, Daniel H; Peloquin, John M; Vresilovic, Edward J; Elliott, Dawn M
2014-08-22
Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios.
Jacobs, Nathan T; Cortes, Daniel H; Peloquin, John M; Vresilovic, Edward J; Elliott, Dawn M
2014-08-22
Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios. PMID:24998992
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
NASA Technical Reports Server (NTRS)
Witkop, D. L.; Dale, B. J.; Gellin, S.
1991-01-01
The programming aspects of SFENES are described in the User's Manual. The information presented is provided for the installation programmer. It is sufficient to fully describe the general program logic and required peripheral storage. All element generated data is stored externally to reduce required memory allocation. A separate section is devoted to the description of these files thereby permitting the optimization of Input/Output (I/O) time through efficient buffer descriptions. Individual subroutine descriptions are presented along with the complete Fortran source listings. A short description of the major control, computation, and I/O phases is included to aid in obtaining an overall familiarity with the program's components. Finally, a discussion of the suggested overlay structure which allows the program to execute with a reasonable amount of memory allocation is presented.
Generic element processor (application to nonlinear analysis)
NASA Technical Reports Server (NTRS)
Stanley, Gary
1989-01-01
The focus here is on one aspect of the Computational Structural Mechanics (CSM) Testbed: finite element technology. The approach involves a Generic Element Processor: a command-driven, database-oriented software shell that facilitates introduction of new elements into the testbed. This shell features an element-independent corotational capability that upgrades linear elements to geometrically nonlinear analysis, and corrects the rigid-body errors that plague many contemporary plate and shell elements. Specific elements that have been implemented in the Testbed via this mechanism include the Assumed Natural-Coordinate Strain (ANS) shell elements, developed with Professor K. C. Park (University of Colorado, Boulder), a new class of curved hybrid shell elements, developed by Dr. David Kang of LPARL (formerly a student of Professor T. Pian), other shell and solid hybrid elements developed by NASA personnel, and recently a repackaged version of the workhorse shell element used in the traditional STAGS nonlinear shell analysis code. The presentation covers: (1) user and developer interfaces to the generic element processor, (2) an explanation of the built-in corotational option, (3) a description of some of the shell-elements currently implemented, and (4) application to sample nonlinear shell postbuckling problems.
A hybrid transfinite element approach for nonlinear transient thermal analysis
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new computational approach for transient nonlinear thermal analysis of structures is proposed. It is a hybrid approach which combines the modeling versatility of contemporary finite elements in conjunction with transform methods and classical Bubnov-Galerkin schemes. The present study is limited to nonlinearities due to temperature-dependent thermophysical properties. Numerical test cases attest to the basic capabilities and therein validate the transfinite element approach by means of comparisons with conventional finite element schemes and/or available solutions.
Modelling the arterial wall by finite elements.
Mosora, F; Harmant, A; Bernard, C; Fossion, A; Pochet, T; Juchmes, J; Cescotto, S
1993-01-01
The mechanical behaviour of the arterial wall was determined theoretically utilizing some parameters of blood flow measured in vivo. Continuous experimental measurements of pressure and diameter were recorded in anesthetized dogs on the thoracic ascending and midabdominal aorta. The pressure was measured by using a catheter, and the diameter firstly, at the same site, by a plethysmograph with mercury gauge and secondly, by a sonomicrometer with ferroelectric ceramic transducers. The unstressed radius and thickness were measured at the end of each experiment in situ. Considering that the viscous component is not important relatively to the nonlinear component of the elasticity and utilizing several equations for Young modulus calculation (thick and thin wall circular cylindrical tube formulas and Bergel's equation) the following values were obtained for this parameter: 0.6 MPa-2 MPa in midabdominal aorta and 2 MPa-6.5 MPa in thoracic ascending aorta. The behaviour of the aorta wall was modelled considering an elastic law and using the finite element program "Lagamine" working in large deformations. The discretized equilibrium equations are non-linear and a unique axi-symmetric, iso-parametric element of 1 cm in length with 8 knots was used for this bi-dimensional problem. The theoretical estimation of radius vessel, utilizing a constant 5 MPa Young modulus and also a variable one, are in good agreement with the experimental results, showing that this finite element model can be applied to study mechanical properties of the arteries in physiological and pathological conditions.
An efficient finite element solution for gear dynamics
NASA Astrophysics Data System (ADS)
Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.
2010-06-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Bowen; Sharif
1997-03-15
A Galerkin finite-element approach combined with an error estimator and automatic mesh refinement has been used to provide a flexible numerical solution of the Poisson-Boltzmann equation. A Newton sequence technique was used to solve the nonlinear equations arising from the finite-element discretization procedure. Errors arising from the finite-element solution due to mesh refinement were calculated using the Zienkiewicz-Zhu error estimator, and an automatic remeshing strategy was adopted to achieve a solution satisfying a preset quality. Examples of the performance of the error estimator in adaptive mesh refinement are presented. The adaptive finite-element scheme presented in this study has proved to be an effective technique in minimizing errors in finite-element solutions for a given problem, in particular those of complex geometries. As an example, numerical solutions are presented for the case of a charged spherical particle at various distances from a charged cylindrical pore in a charged planar surface. Such a scheme provides a quantification of the significance of electrostatic interactions for an important industrial technology-membrane separation processes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Finite Element Analysis for Pseudo Hyperbolic Integral-Differential Equations
NASA Astrophysics Data System (ADS)
Cui, Xia
The finite element method and its analysis for pseudo-hyperbolic integral-differential equations with nonlinear boundary conditions is considered. A new projection is introduced to obtain optimal L2 convergence estimates. The present techniques can be applied to treat elastic wave problems with absorbing boundary conditions in porous media. Keywords: pseudo-hyperbolic integral-differential equation, finite element, Sobolev-Volterra projection, convergence analysis
NASA Technical Reports Server (NTRS)
Aguirre-Ramirez, G.; Oden, J. T.
1969-01-01
Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Overcoming element erosion limitations within Lagrangian finite element codes
NASA Astrophysics Data System (ADS)
Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.
2001-10-01
Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
Probabilistic finite element analysis of a craniofacial finite element model.
Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R
2012-05-01
We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
A finite element model with nonviscous damping
NASA Technical Reports Server (NTRS)
Roussos, L. A.; Hyer, M. W.; Thornton, E. A.
1981-01-01
A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.
Finite element simulation of pipe dynamic response
Slagis, G.C.; Litton, R.W.
1996-12-01
Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.
NASA Technical Reports Server (NTRS)
Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.
1980-01-01
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Asymmetric quadrilateral shell elements for finite strains
NASA Astrophysics Data System (ADS)
Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.
2013-07-01
Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
HEAT2. Two-Dimensional Heat Transfer Finite Element Code
Charman, C.
1993-08-01
HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.
Wang, Xiang; Zauel, Roger R.; Rao, D. Sudhaker; Fyhrie, David P.
2009-01-01
Biomechanical stereology is proposed as a two-dimensional (2D) finite element (FE) method to estimate the ability of bone tissue to sustain damage and to separate patients with osteoporotic fracture from normal controls. Briefly, 2D nonlinear compact tension FE models were created from quantitative back scattered electron images taken of iliac crest bone specimens collected from the individuals with or without osteoporotic fracture history. The effects of bone mineral microstructure on predicted bone fracture toughness and microcrack propagation were examined. The 2D FE models were used as surrogates for the real bone tissues. The calculated microcrack propagation results and bone mechanical properties were examined as surrogates for measurements from mechanical testing of actual specimens. The results for the 2D FE simulation separated patients with osteoporotic fracture from normal controls even though only the variability in tissue mineral microstructure was used to build the models. The models were deliberately created to ignore all differences in mean mineralization. Hence, the current results support the following hypotheses: (1) that material heterogeneity is important to the separation of patients with osteoporotic fracture from normal controls and; and (2) that 2D nonlinear finite element modeling can produce surrogate mechanical parameters that separate patients with fracture from normal controls. PMID:18378204
Will Finite Elements Replace Structural Mechanics?
NASA Astrophysics Data System (ADS)
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Finite Element Vibration Analysis of Rectangular Membrane
NASA Astrophysics Data System (ADS)
Chen, S. H.; Lin, W. J.; Leung, A. Y. T.
2010-05-01
Some pre-tensioned 4-node rectangular elements and 8-node triangular elements are constructed for the free vibration analysis of membranes by finite element. The shape functions are given to derive the element stiffness and mass matrices in accordance with the minimum potential energy principle. Two typical examples show that the calculation by the 4-node rectangular element is very close to the theoretical solution, and 8-node rectangular element has higher accuracy than the 4-node rectangular element. For dense grid, the result is almost consistent with the theoretical solution.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
An iterative algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
A finite element analysis of fatigue crack closure
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1974-01-01
Experiments have shown that fatigue cracks close at positive loads during constant-amplitude load cycling. The crack-closure phenomenon is caused by residual plastic deformations remaining in the wake of an advancing crack tip. The present paper is concerned with the application of a two-dimensional, nonlinear, finite-element analysis for predicting crack-closure and crack-opening stresses during cyclic loading. A two-dimensional finite-element computer program, which accounts for both elastic-plastic material behavior and changing boundary conditions associated with crack extension and intermittent contact of the crack surfaces under cyclic loading, has been developed. An efficient technique to account for changing boundary conditions was also incorporated into the nonlinear analysis program. This program was subsequently used to study crack extension and crack closure under constant-amplitude and two-level block loading. The calculated crack-closure and crack-opening stresses were qualitatively consistent with experimental observations.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Finite element methods for non-Newtonian flows
Gartling, D.K.
1986-01-01
The application of the finite element method to problems in non-Newtonian fluid mechanics is described. The formulation of the basic equations is presented for both inelastic and viscoelastic constitutive models. Solution algorithms for treating the material nonlinearities associated with inealstic fluids are described; typical solution procedures for the implicit stress-rate equations of viscoelastic fluids are also presented. Simple example analyses are included for both types of fluid models. 65 refs., 21 figs.
Finite element formulations for compressible flows
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1989-01-01
Researchers started their studies on the development and application of computational methods for compressible flows. Particular attention was given to proper numerical treatment of sharp layers occurring in such problems and to general mesh generation capabilities for intricate computational geometries. Mainly finite element methods enhanced with several state-of-the art techniques (such as the streamline-upwind/Petrov-Galerkin, discontinuity capturing, adaptive implicit-explicit, and trouped element-by-element approximate factorization schemes) were employed.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Sonoda, Norio; Chosa, Etsuo; Totoribe, Koji; Tajima, Naoya
2003-01-01
We evaluated stresses in the anterior middle third of the tibia that have been reported to predict a poor prognosis for tibial stress fractures compared to other predominant sites (posteromedial regions of the distal third and proximal third). The effect of two different loads (bending-compression load and torsional load) on three sites was investigated using a three-dimensional finite element method. The model was constructed using the tibia, fibula, proximal tibiofibular joint, interosseous membrane, and tibiofibular ligament based on computed tomography scans obtained at 4-mm intervals of the lower leg of a 20-year-old woman who exhibited no abnormal findings on roentgenograms. First, a normal model was constructed using normal material properties, and then the model was modified to produce fracture models by varying the mechanical properties of each predominant site and expanding the area in three gradual phases on the assumption that the fracture advanced in three phases. Each model was tested against the same two loads, and stresses at the nodal points on the border of the fracture area and normal area were compared in each cross section to determine the effect of the load on fracture advancement. In response to torsional load, both the normal model and fracture models tended to show higher values for the posteromedial distal third than the anterior middle third. By examining the bending-compression load it could be seen that the mean peak value significantly decreased between the first and second phases in fracture models of the anterior middle third. This finding was inconsistent with our previous belief that the bending-compression load would have more serious consequences than the torsional load. In contrast, when the area of fracture was expanded into the third phase, maximum values were significantly higher than during the second phase. No similar finding was observed for the posteromedial distal third, suggesting that the anterior middle third may have
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
Solving finite element equations on concurrent computers
NASA Technical Reports Server (NTRS)
Nour-Omid, B.; Raefsky, A.; Lyzenga, G.
1987-01-01
This paper discusses the development of a concurrent algorithm for the solution of systems of equations arising in finite element applications. The approach is based on a hybrid of direct elimination method and preconditioned conjugate iteration. Two different preconditioners are used; diagonal scaling and a concurrent implementation of incomplete LU factorization. First, an automatic procedure is used to partition the finite element mesh into sub-structures. The particular mesh partition is chosen to minimize an estimate of the cost for evaluating the solution using this algorithm on a concurrent computer. These procedures are implemented in a finite element program on the JPL/CalTech MARK III hypercube computer. An overview of the structure of this program is presented. The performance of the solution method is demonstrated with the aid of a number of numerical test runs, and its advantages for concurrent implementations are discussed. Efficiency and speed-up factors over sequential machines for the numerical examples are highlighted.
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
Finite element radiation transport in one dimension
Painter, J.F.
1997-05-09
A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1984-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
ATESHIAN, GERARD A.; ALBRO, MICHAEL B.; MAAS, STEVE; WEISS, JEFFREY A.
2012-01-01
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechano-chemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechano-chemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898
EXODUS: A finite element file format for pre- and postprocessing
Mills-Curran, W.C.; Gilkey, A.P.; Flanagan, D.P.
1988-09-01
The EXODUS format defines a binary file which is used for finite element analysis pre- and postprocessing. It includes data to define the finite element mesh and label both boundary condition and load application points. EXODUS accommodates multiple element types and is sufficiently general format for analysis results. A benefit of combining the mesh definition data and the results data in the same file is that the user is assured that the results data are consistent with the model. EXODUS is currently in use by the entire range of Department 1520 codes (including preprocessors, translators, linear and nonlinear analyses, and postprocessors) and is finding applications in codes outside Department 1520. 2 refs., 2 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Interactive Finite Elements for General Engine Dynamics Analysis
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1984-01-01
General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Animation of finite element models and results
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1992-01-01
This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Finite element analysis of a meniscus mirror
NASA Astrophysics Data System (ADS)
Yamashita, Y.
1989-10-01
Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.
Direct finite element equation solving algorithms
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.
1985-01-01
This paper presents and examines direct solution algorithms for the linear simultaneous equations that arise when finite element models represent an engineering system. It identifies the mathematical processing of four solution methods and assesses their data processing implications using concurrent processing.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Nonlinear/linear unified thermal stress formulations - Transfinite element approach
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new unified computational approach for applicability to nonlinear/linear thermal-structural problems is presented. Basic concepts of the approach including applicability to nonlinear and linear thermal structural mechanics are first described via general formulations. Therein, the approach is demonstrated for thermal stress and thermal-structural dynamic applications. The proposed transfinite element approach focuses on providing a viable hybrid computational methodology by combining the modeling versatility of contemporary finite element schemes in conjunction with transform techniques and the classical Bubnov-Galerkin schemes. Comparative samples of numerical test cases highlight the capabilities of the proposed concepts.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite element computation with parallel VLSI
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Salama, M.
1983-01-01
This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite Element Interface to Linear Solvers
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less
Finite Element Heat & Mass Transfer Code
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less
Finite element thermo-viscoplastic analysis of aerospace structures
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.
1990-01-01
The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
Finite element modeling of an electrically variable inductor
Bi, Y.; Jiles, D.C.
1999-09-01
A new type of electrically variable inductor has been investigated. This uses an ac excitation field with an orthogonal dc bias field to control the properties of the device. Measurements showed that the effective inductance can be decreased by increasing the orthogonal dc bias field. With an appropriate current in the orthogonal bias coils, an inductance plateau can be reached in which the inductance remains stable over a range of excitation currents. The inductance value can be adjusted by controlling the orthogonal current. Based on an existing anhysteretic magnetization model, nonlinear 3D finite element modeling was successfully used to model the distribution of flux density and to identify the region of saturation which is believed to result in the decrease in effective inductance of the inductor. The effective inductance of the device was also modeled using numerical finite element calculations. The modeled inductance showed broad agreement with experimental results and predicted the observed trend in inductance.
Finite-element thermo-viscoplastic analysis of aerospace structures
NASA Technical Reports Server (NTRS)
Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.
1990-01-01
The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Larson, Mats G.
2000-01-01
We consider a posteriori error estimates for finite volume and finite element methods on arbitrary meshes subject to prescribed error functionals. Error estimates of this type are useful in a number of computational settings: (1) quantitative prediction of the numerical solution error, (2) adaptive meshing, and (3) load balancing of work on parallel computing architectures. Our analysis recasts the class of Godunov finite volumes schemes as a particular form of discontinuous Galerkin method utilizing broken space approximation obtained via reconstruction of cell-averaged data. In this general framework, weighted residual error bounds are readily obtained using duality arguments and Galerkin orthogonality. Additional consideration is given to issues such as nonlinearity, efficiency, and the relationship to other existing methods. Numerical examples are given throughout the talk to demonstrate the sharpness of the estimates and efficiency of the techniques. Additional information is contained in the original.
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1983-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Finite Element Analysis of Honeycomb Impact Attenuator
NASA Astrophysics Data System (ADS)
Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu
To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.
Synthesis of higher order nonlinear circuit elements
NASA Astrophysics Data System (ADS)
Chua, L. O.; Szeto, E. W.
1984-02-01
Higher and mixed-order n-port circuit elements were introduced recently to provide a logically complete formulation for nonlinear circuit theory. In this paper, higher order mutators are defined and used to synthesize these elements. The class of all higher order mutators is shown to form a group under cascade interconnections. Each mutator is realized using only linear capacitors, linear inductors and linear controlled sources. An upper bound on each type of element needed to realize a mutator is also given. Each higher or mixed-order n-port element is realized by cascading approprimate mutators across each port of a nonlinear n-port resistor. The main theorem shows that any higher or mixed-order nonlinear n-port element with a constitutive relation defined on a compact set can be realized using linear capacitors, inductors, and controlled sources, and 2-terminal nonlinear resistors.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite element based electric motor design optimization
NASA Astrophysics Data System (ADS)
Campbell, C. Warren
1993-11-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
ExodusII Finite Element Data Model
2005-05-14
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)
EXODUS II: A finite element data model
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Transient finite element method using edge elements for moving conductor
Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)
1999-05-01
For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.
Finite-element simulation of myocardial electrical excitation
NASA Astrophysics Data System (ADS)
Vasserman, I. N.; Matveenko, V. P.; Shardakov, I. N.; Shestakov, A. P.
2014-01-01
Based on a single-domain model of myocardial conduction, isotropic and anisotropic finite element models of the myocardium are developed allowing excitation wave propagation to be studied. The Aliev-Panfilov phenomenological equations were used as the relations between the transmembrane current and the transmembrane potential. Interaction of an additional source of initial excitation with an excitation wave that passed and the spread of the excitation wave are studied using heart tomograms. A numerical solution is obtained using a splitting algorithm that allows the nonlinear boundary-value problem to be reduced to a sequence of simpler problems: ordinary differential equations and linear boundary-value problems in partial derivatives.
Finite element methods for non-Newtonian flows
Gartling, D.K.
1992-10-01
The application of the finite element method to problems in non-Newtonian fluid mechanics is described. The formulation of the basic equations is presented for both inelastic and viscoelastic constitutive models. Solution algorithms for treating the material nonlinearities associated with inelastic fluids are described; typical solution procedures for the implicit stress-rate equations of viscoelastic fluids are also presented. Methods for the simulation of various types of free-surface flows are also outlined. Simple example analyses are included for both types of fluid models.
Automated Finite Element Modeling of Wing Structures for Shape Optimization
NASA Technical Reports Server (NTRS)
Harvey, Michael Stephen
1993-01-01
The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.
Adaptive mesh generation for edge-element finite element method
NASA Astrophysics Data System (ADS)
Tsuboi, Hajime; Gyimothy, Szabolcs
2001-06-01
An adaptive mesh generation method for two- and three-dimensional finite element methods using edge elements is proposed. Since the tangential component continuity is preserved when using edge elements, the strategy of creating new nodes is based on evaluation of the normal component of the magnetic vector potential across element interfaces. The evaluation is performed at the middle point of edge of a triangular element for two-dimensional problems or at the gravity center of triangular surface of a tetrahedral element for three-dimensional problems. At the boundary of two elements, the error estimator is the ratio of the normal component discontinuity to the maximum value of the potential in the same material. One or more nodes are set at the middle points of the edges according to the value of the estimator as well as the subdivision of elements where new nodes have been created. A final mesh will be obtained after several iterations. Some computation results of two- and three-dimensional problems using the proposed method are shown.
2-D Finite Element Heat Conduction
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
A finite element model of ultrasonic extrusion
NASA Astrophysics Data System (ADS)
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
NASA Technical Reports Server (NTRS)
Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.
1983-01-01
The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.
NASA Technical Reports Server (NTRS)
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Parallel finite element simulation of large ram-air parachutes
NASA Astrophysics Data System (ADS)
Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.
1997-06-01
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
Finite element analysis of bolted flange connections
NASA Astrophysics Data System (ADS)
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Mixed-finite element and finite volume discretization for heavy brine simulations in groundwater
NASA Astrophysics Data System (ADS)
Mazzia, A.; Putti, M.
2002-10-01
Recently, a new theory of high-concentration brine transport in groundwater has been developed. This approach is based on two nonlinear mass conservation equations, one for the fluid (flow equation) and one for the salt (transport equation), both having nonlinear diffusion terms. In this paper, we present and analyze a numerical technique for the solution of such a model. The approach is based on the mixed hybrid finite element method for the discretization of the diffusion terms in both the flow and transport equations, and a high-resolution TVD finite volume scheme for the convective term. This latter technique is coupled to the discretized diffusive flux by means of a time-splitting approach. A commonly used benchmark test (Elder problem) is used to verify the robustness and nonoscillatory behavior of the proposed scheme and to test the validity of two different formulations, one based on using pressure head [psi] and concentration c as dependent variables, and one using pressure p and mass fraction [omega] as dependent variables. It is found that the latter formulation gives more accurate and reliable results, in particular, at large times. The numerical model is then compared against a semi-analytical solution and the results of a laboratory test. These tests are used to verify numerically the performance and robustness of the proposed numerical scheme when high-concentration gradients (i.e., the double nonlinearity) are present.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains
NASA Astrophysics Data System (ADS)
Fisher, Travis C.; Carpenter, Mark H.
2013-11-01
Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1993-01-01
An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.
NASA Astrophysics Data System (ADS)
Beilina, Larisa
2016-08-01
We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.
1981-01-01
An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.
Finite element analysis of heat transport in a hydrothermal zone
Bixler, N.E.; Carrigan, C.R.
1987-01-01
Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).
Development of a Specific Finite Element for Timber Joint Modeling
NASA Astrophysics Data System (ADS)
Descamps, Thierry; Van Parys, Laurent; Datoussaïd, Sélim
2011-01-01
Widely used for light frame structures or for heavy laminated wood structures, dowel-type fasteners are the most commonly used kind of connectors in timber construction. The purpose of this work is to develop a tool for the semi-rigid analysis and design of such joints. Firstly, interests and approaches described in literature for the semi-rigid modeling of timber plane frames are summarized. Secondly, for a better understanding of the problem, the main characteristics of wood used as a structural material are presented. Finally, a method for an efficient study of joints built with dowel-type fasteners is proposed and developed. This method consists of the introduction of a specific finite element called "Finite Semi-Rigid Element (FSRE)" between the ends of the jointed members. This joint element consists of two nodes, each with three degrees of freedom. These nodes will be tied with common beamelements during the FE analysis. The stiffness of the FSRE is computed from the geometry of the joints and embedding stiffness of all fasteners, along and perpendicular to the grain. The embedding characteristics of fasteners are defined with help of their experimental load-slip curves (fitted with Foschi's models) leading finally to the resolution of a FE non-linear problem.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Finite-element modeling of nanoindentation
Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.
1999-02-01
Procedures have been developed based on finite-element modeling of nanoindentation data to obtain the mechanical properties of thin films and ion-beam-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, Young{close_quote}s elastic modulus, and layer hardness from indentations as deep as 50{percent} of the layer thickness or more. We have used these procedures to evaluate materials ranging from ion implanted metals to deposited, diamond-like carbon layers. The technique increases the applicability of indentation testing to very thin layers, composite layers, and modulated compositions. This article presents an overview of the procedures involved and illustrates them with selected examples. {copyright} {ital 1999 American Institute of Physics.}
3-D Finite Element Heat Transfer
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Immersed molecular electrokinetic finite element method
NASA Astrophysics Data System (ADS)
Kopacz, Adrian M.; Liu, Wing K.
2013-07-01
A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.
Finite element analyses of CCAT preliminary design
NASA Astrophysics Data System (ADS)
Sarawit, Andrew T.; Kan, Frank W.
2014-07-01
This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Nonlinear susceptibilities of finite conjugated organic polymers
NASA Technical Reports Server (NTRS)
Beratan, David N.; Onuchic, Jose Nelson; Perry, Joseph W.
1987-01-01
Tight-binding calculations of the length dependence of the third-order molecular hyperpolarizability for polyenes and polyynes are reported. The pi-electron wave functions were determined by exploiting the limited translational symmetry of the molecules. Perturbation theory was used to calculate the longitudinal component of the electronic nonresonant hyperpolarizability. This is the first two-'band' calculation of third-order hyperpolarizabilities on finite pi-electron systems of varying length. In contrast to the results of the one-'band' models, the hyperpolarizability densities increase rapidly and then, after about 10-15 repeating units, approach an asymptotic value.
A finite element method for analysis of vibration induced by maglev trains
NASA Astrophysics Data System (ADS)
Ju, S. H.; Ho, Y. S.; Leong, C. C.
2012-07-01
This paper developed a finite element method to perform the maglev train-bridge-soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton-Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.
BRST charges for finite nonlinear algebras
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.
2010-07-01
Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a nonlinear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
Finite area method for nonlinear conical flows
NASA Technical Reports Server (NTRS)
Sritharan, S. S.; Seebass, A. R.
1982-01-01
A fully conservative finite area method for the computation of steady inviscid flow about general conical bodies at incidence is described. The procedure utilizes the potential approximation and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each mesh cell and a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In the supersonic regions the scheme is desymmetrized by adding appropriate artificial viscosity in conservation form. The algorithm is nearly an order of a magnitude faster than present Euler methods and predicts known results accurately and qualitative features such as nodal point lift off correctly. Results are compared with those of other investigations.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes
Parsons, I D; Solberg, J M
2006-02-03
This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.
HIFU Induced Heating Modelling by Using the Finite Element Method
NASA Astrophysics Data System (ADS)
Martínez, R.; Vera, A.; Leija, L.
High intensity focused ultrasound is a thermal therapy method used to treat malignant tumors and other medical conditions. Focused ultrasound concentrates acoustic energy at a focal zone. There, temperature rises rapidly over 56 °C to provoke tissue necrosis. Device performance depends on its fabrication placing computational modeling as a powerful tool to anticipate experimentation results. Finite element method allows modeling of multiphysics systems. Therefore, induced heating was modeled considering the acoustic field produced by a concave radiator excited with electric potentials from 5 V to 20 V. Nonlinear propagation was neglected and a linear response between the acoustic fields and pressure distribution was obtained. Finally, the results showed that acoustic propagation and heating models should be improved and validated with experimental measurements.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Parallel finite element simulation of mooring forces on floating objects
NASA Astrophysics Data System (ADS)
Aliabadi, S.; Abedi, J.; Zellars, B.
2003-03-01
The coupling between the equations governing the free-surface flows, the six degrees of freedom non-linear rigid body dynamics, the linear elasticity equations for mesh-moving and the cables has resulted in a fluid-structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed-mesh and moving-mesh techniques. Here, the free-surface flow simulations are based on the Navier-Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free-surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian-Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non-linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable.
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
3-d finite element model development for biomechanics: a software demonstration
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
Finite element modeling of retinal prosthesis mechanics
NASA Astrophysics Data System (ADS)
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
2012-01-01
Background Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP). Materials and Methods Nine standard composite femurs were acquired, divided into three groups and fixed with LP (n = 3), ABP (n = 3) and DCSP (n = 3). The fracture was modeled by a 20 mm gap created at the subtrochanteric region to experimentally study the biomechanical response of each implant under both static and dynamic axial loading paradigms. To confirm the experimental findings and to understand the critical interactions at the boundaries, the synthetic femur/implant systems were numerically analyzed by constructing hierarchical finite element models with nonlinear hyperelastic properties. The predictions from the analyses were then compared against the experimental measurements to demonstrate the validity of each numeric model, and to characterize the internal load distribution in the femur and load bearing properties of each implant. Results The average measurements indicated that the constructs with ABP, DCPS and LP respectively had overall stiffness values of 70.9, 110.2 and 131.4 N/mm, and exhibited reversible deformations of 12.4, 4.9 and 4.1 mm when the applied dynamic load was 400 N and plastic deformations of 11.3, 2.4 and 1.4 mm when the load was 1000 N. The corresponding peak cyclic loads to failure were 1100, 1167 and 1600 N. The errors between the
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Decahaumphai, P.; Tamma, K. K.; Wieting, A. R.
1981-01-01
An integrated thermal-structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. New integrated thermal-structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal-structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction-elasticity solutions and conventional finite element thermal-finite element structural analyses. Results indicate that the approach offers significant potential for further development with other elements.
Baird, J.A.; Apostal, M.C.; Rotelli, R.L. Jr.; Tinianow, M.A.; Wormley, D.N.
1984-06-01
The Theoretical Description for the GEODYN interactive finite-element computer program is presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit-Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates nonlinear, time-dependent, loading and boundary conditions.
Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.
1984-06-01
User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.
Finite Element Model of Cardiac Electrical Conduction.
NASA Astrophysics Data System (ADS)
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Modular Finite Element Methods Library Version: 1.0
2010-06-22
MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.
NASA Technical Reports Server (NTRS)
Namburu, Raju R.; Tamma, Kumar K.
1993-01-01
An integrated finite element approach is presented for interdisciplinary thermal-structural problems. Of the various numerical approaches, finite element methods with direct time integration procedures are most widely used for these nonlinear problems. Traditionally, combined thermal-structural analysis is performed sequentially by transferring data between thermal and structural analysis. This approach is generally effective and routinely used. However, to solve the combined thermal-structural problems, this approach results in cumbersome data transfer, incompatible algorithmic representations, and different discretized element formulations. The integrated approach discussed in this paper effectively combines thermal and structural fields, thus overcoming the above major shortcomings. The approach follows Lax-Wendroff type finite element formulations with flux and stress based representations. As a consequence, this integrated approach uses common algorithmic representations and element formulations. Illustrative test examples show that the approach is effective for integrated thermal-structural problems.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Three dimensional inelastic finite element analysis of laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. H., Jr.; Kamat, M. P.
1980-01-01
Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.
Solar Electric Generating System II finite element analysis
Dohner, J.L.; Anderson, J.R.
1994-04-01
On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.
Thermal Analysis of Thin Plates Using the Finite Element Method
NASA Astrophysics Data System (ADS)
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1991-01-01
The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686
Finite-length swimmer in a nonlinearly viscoelastic fluid
NASA Astrophysics Data System (ADS)
Fu, Henry
2010-11-01
Many swimming microorganisms naturally encounter non-Newtonian, viscoelastic fluids, including mucus in airways, the stomach, and the reproductive tract. Most of the analytical work on swimming in such complex media has involved swimmers of infinite length, in both two-dimensional and three-dimensional geometries. I present an analytic calculation of a finite-length three-dimensional swimmer, the Golestanian 3-sphere swimmer, in the limit of small sphere radius relative to sphere separation and small displacement relative to sphere radius. I discuss the effect of nonlinear viscoelasticity on the swimming speeed and on the internal forces exerted by the spheres on one another. Finite-length corrections occur at second order in displacements, the same order as the Newtonian swimming speed and the viscoelastic corrections observed for infinite swimmers. For this finite-length swimmer, viscoelastic corrections to the swimming speed rely on spatial asymmetry in the swimming stroke amplitude.
NASA Astrophysics Data System (ADS)
Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.
2016-05-01
In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.
Lower extremity finite element model for crash simulation
Schauer, D.A.; Perfect, S.A.
1996-03-01
A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.
NASA Astrophysics Data System (ADS)
Kouhi, Mohammad; Oñate, Eugenio
2015-07-01
A new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oñate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented.
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
Neck incision planning for total laryngectomy: A finite element analysis.
Feng, Allen L; Clark, James H; Agrawal, Nishant; Moussa, Walied; Richmon, Jeremy D
2015-11-26
Post-operative complications can be attributed to technical aspects of surgery, yet no studies have investigated the mechanics behind commonly used incisions for total laryngopharyngectomies (TLP). This procedure, seen in head and neck cancer patients, necessitates free tissue transfer to construct a neo-pharynx, creating an inherently greater risk of complications. We sought to investigate the impact of neck incision location on these post-operative complications for TLP using finite element analysis (FEA). A nonlinear hyperelastic 2-D finite element model was used to evaluate the stress and strain along the incision line of two separate neck incision models commonly used for TLP: low-neck apron (LNA) incisions that incorporate the patient׳s tracheostoma and mid-neck apron (MNA) incisions that do not communicate with the tracheostoma. A constant displacement was applied to the incision to simulate normal neck extension experienced during the post-operative phase. Each neck incision was also modeled at varying strain energy densities to simulate various stages of wound healing. For a constant displacement of 40mm, the principal von Mises stress of the LNA incision varied between 5.87 and 6.41MPa, depending on the hyperelastic properties of the healing incision. This stress was concentrated at the junction of the incision and the fixed tracheostomal edge. The MNA model demonstrated a principal von Mises stress that varied between 0.558 and 0.711MPa and was concentrated along the midline of the neck incision. MNA incisions for TL patients result in principal von Mises stresses which are up to 11 times lower than those seen in LNA incisions. These results coincided with clinical observations from a concurrent study that showed a decrease in rate of wound dehiscence for patients undergoing TLP with an MNA incision.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
A finite element method for time varying geometry in multibody structures
NASA Technical Reports Server (NTRS)
Housner, J. M.; Wu, S. C.; Chang, C. W.
1988-01-01
A three-dimensional finite element formulation using convected coordinates is presented for the multibody dynamics of truss-like configurations. Unlike existing formulations, the present one does not superimpose nonlinear rigid body kinematics with linear structural mode shapes, an approach that has recently been shown to be grossly inaccurate under certain conditions. Instead, the finite element method is extended to treat large motions/deformations. The formulation is oriented toward joint dominated structures and places the generalized coordinates at the joints. For the planar spin-up of a flexible beam, results are compared with those derived from a commercially available computer program. The two programs predict nearly identical results.
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
NASA Technical Reports Server (NTRS)
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
NASA Astrophysics Data System (ADS)
Vohar, B.; Kegl, M.; Ren, Z.
2008-12-01
Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Simulation of two-dimensional waterflooding using mixed finite elements
Chavent, G.; Jaffre, J.; Cohen, G.; Dupuy, M.; Dieste, I.
1982-01-01
A new method for the simulation of incompressible diphasic flows in two dimensions is presented, the distinctive features of which are: (1) reformation of the basic equation and specific choices of the finite element approximation of the same; (11) use of a mixed finite elements method, approximating both scalar and vector functions. Several test examples are shown, including gravity and capillary effects. The use of discontinuous basis functions proved successful for an accurate representation of sharp fronts. 16 refs.
Integration of geometric modeling and advanced finite element preprocessing
NASA Technical Reports Server (NTRS)
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Finite element analysis of vibration and damping of laminated composites
NASA Astrophysics Data System (ADS)
Rikards, Rolands
Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Finite time blow-up in nonlinear suspension bridge models
NASA Astrophysics Data System (ADS)
Radu, Petronela; Toundykov, Daniel; Trageser, Jeremy
2014-12-01
This paper settles a conjecture by Gazzola and Pavani [10] regarding solutions to the fourth order ODE w+kw″+f(w)=0 which arises in models of traveling waves in suspension bridges when k>0. Under suitable assumptions on the nonlinearity f and initial data, we demonstrate blow-up in finite time. The case k≤0 was first investigated by Gazzola et al., and it is also handled here with a proof that requires less differentiability on f. Our approach is inspired by Gazzola et al. and exhibits the oscillatory mechanism underlying the finite-time blow-up. This blow-up is nonmonotone, with solutions oscillating to higher amplitudes over shrinking time intervals. In the context of bridge dynamics this phenomenon appears to be a consequence of mutually-amplifying interactions between vertical displacements and torsional oscillations.
POD-Galerkin reduced-order modeling with adaptive finite element snapshots
NASA Astrophysics Data System (ADS)
Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens
2016-11-01
We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Painter Street Overcrossing: Linear-elastic finite element dynamic analysis
Salveson, M.W.
1991-08-01
Painter Street Overcrossing is a two span continuous box girder bridge Highway 101 near Rio Del, California. It has been heavily instrumented with strong motion accelerometers by the California Department of Mines and Geology Strong Motion Instrumentation Program. On 11/21/86, the response of the bridge to a magnitude 5.1 earthquake (epicentral distance 32 km) was measured. This report considers the data generated at stations six, seven, and eight, during this earthquake. Station six recorded the vertical accelerations at the midpoint of the long span. Station seven recorded the transverse accelerations at the top of the bent. Station eight recorded the vertical accelerations at the midpoint of the short span. Typically, seismic analysis is done with the aid of a linear-elastic finite element code. Damping is assumed to be viscous. This report summarizes the results of such an analysis using the commercial P.C. based program SAP90. This analysis conforms as closely as possible to a typical'' seismic analysis. It is intended to be used as basis for comparison against a non-linear analysis to be done using NIKE3D. This report contains detailed information about the models used to represent the bridge. The results of each analysis and discussions of the results are included. 2 refs., 37 figs.
Rock penetration : finite element sensitivity and probabilistic modeling analyses.
Fossum, Arlo Frederick
2004-08-01
This report summarizes numerical analyses conducted to assess the relative importance on penetration depth calculations of rock constitutive model physics features representing the presence of microscale flaws such as porosity and networks of microcracks and rock mass structural features. Three-dimensional, nonlinear, transient dynamic finite element penetration simulations are made with a realistic geomaterial constitutive model to determine which features have the most influence on penetration depth calculations. A baseline penetration calculation is made with a representative set of material parameters evaluated from measurements made from laboratory experiments conducted on a familiar sedimentary rock. Then, a sequence of perturbations of various material parameters allows an assessment to be made of the main penetration effects. A cumulative probability distribution function is calculated with the use of an advanced reliability method that makes use of this sensitivity database, probability density functions, and coefficients of variation of the key controlling parameters for penetration depth predictions. Thus the variability of the calculated penetration depth is known as a function of the variability of the input parameters. This simulation modeling capability should impact significantly the tools that are needed to design enhanced penetrator systems, support weapons effects studies, and directly address proposed HDBT defeat scenarios.
FEMA: a Finite Element Model of Material Transport through Aquifers
Yeh, G.T.; Huff, D.D.
1985-01-01
This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Finite element methods for enhanced oil recovery Simulation
Cohen, M.F.
1985-02-01
A general, finite element procedure for reservoir simulation is presented. This effort is directed toward improving the numerical behavior of standard upstream, or upwind, finite difference techniques, without significantly increasing the computational costs. Two methods from previous authors' work are modified and developed: upwind finite elements and the Petrov-Galerkin method. These techniques are applied in a one- and two-dimensional, surfactant/ polymer simulator. The paper sets forth the mathematical formulation and several details concerning the implementation. The results indicate that the PetrovGalerkin method does significantly reduce numericaldiffusion errors, while it retains the stability of the first-order, upwind methods. It is also relatively simple to implement. Both the upwind, and PetrovGalerkin, finite element methods demonstrate little sensitivity to grid orientation.
Higher-order adaptive finite-element methods for orbital-free density functional theory
Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram
2012-08-15
In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100-1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.
Finite element study of plate buckling induced by spatial temperature gradients
Thornton, E.A.; Kolenski, J.D.; Marino, R.P.
1993-01-01
Finite element analyses of thermal buckling of thin metallic plates with prescribed spatial temperature distributions are described. Thermally induced compressive membrane stresses and transverse plate displacement imperfections initiate plates buckling. A finite element formulation based on von Karman plate theory is presented. The resulting nonlinear equations are solved for incremental temperature increases by Newton-Raphson iteration. The computational method is used to investigate the buckling response of rectangular plates with steady and unsteady spatially varying temperature distributions. The role of initial plate imperfections and temperature distributions on the nonlinear response of plate displacements and stresses is described. The relatively high levels of stress induced by spatial temperature gradients should be considered carefully in the postbuckling design of panels for aerospace vehicles subjected to combined mechanical and thermal loads. 31 refs.
An alternative Laplacian electrostatic field finite element formulation
Barber, P.F.; Lauber, T.S.
1987-01-01
An alternative finite element method for calculating three-dimensional electrostatic fields is described. The matrix equation is assembled using linear tetrahedral elements and an electrical network solution techniques known as impedance matrix building with axis discarding. The solutions of sample problems are described.
Grid generation for two-dimensional finite element flowfield computation
NASA Technical Reports Server (NTRS)
Tatum, K. E.
1980-01-01
The finite element method for fluid dynamics was used to develop a two dimensional mesh generation scheme. The method consists of shearing and conformal maps with upper and lower surfaces handled independently to allow sharp leading edges. The method also generates meshes of triangular or quadrilateral elements.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Exponential convergence through linear finite element discretization of stratified subdomains
NASA Astrophysics Data System (ADS)
Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali
2016-10-01
Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.
2014-01-01
The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915
Finite element model update via Bayesian estimation and minimization of dynamic residuals
Alvin, K.F.
1996-12-31
An algorithm is presented for updating finite element models based upon a minimization of dynamic residuals. The dynamic residual of interest is the force unbalance in the homogeneous form of the equations of motion arising from errors in the model`s mass and stiffness when evaluated with the identified modal parameters. The present algorithm is a modification and extension of a previously-developed Sensitivity-Based Element-By-Element (SB-EBE) method for damage detection and finite element model up- dating. In the present algorithm, SB-EBE has been generalized to minimize a dynamic displacement residual quantity, which is shown to improve test- analysis mode correspondence. Furthermore, the algorithm has been modified to include Bayesian estimation concepts, and the underlying nonlinear optimization problem has been consistently linearized to improve the convergence properties. The resulting algorithm is demonstrated via numerical and experimental examples to be an efficient and robust method for both localizing model errors and estimating physical parameters.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
Deformation modes in the finite element absolute nodal coordinate formulation
NASA Astrophysics Data System (ADS)
Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.
2006-12-01
The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
NASA Astrophysics Data System (ADS)
Blanloeuil, P.; Meziane, A.
2015-10-01
The non-collinear mixing technique is applied for detection and characterization of closed cracks. The method is based on the nonlinear interaction of two shear waves generated with an oblique incidence. This interaction leads to the scattering of a longitudinal wave. A Finite Element model is used to demonstrate its application to a closed crack. Contact acoustic nonlinearity is the nonlinear effect considered here and is modeled using unilateral contact law with Coulomb's friction. Directivity patterns are computed using a two-step procedure. The Finite Element (FE) model provides the near-field solution on a circular boundary surrounding the closed crack. The solution in the far-field is then determined assuming that the material has a linear behavior. Directivity patterns will be used to analyze the direction of propagation of longitudinal wave(s) scattered from the closed crack. Numerical results show that the method is effective and promising when applied to a closed crack. Scattering of the longitudinal wave also enables us to image the crack, giving position and size indications. Finally, the method offers the possibility to distinguish classical nonlinearity from contact acoustic nonlinearity.
NASA Technical Reports Server (NTRS)
Barut, A.; Madenci, Erdogan; Tessler, A.
1997-01-01
This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.
NASA Technical Reports Server (NTRS)
Mei, Chuh
1987-01-01
A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Finite element method for eigenvalue problems in electromagnetics
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, Joseph M.
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Adaptive finite-element ballooning analysis of bipolar ionized fields
Al-Hamouz, Z.M.
1995-12-31
This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch`s assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson`s equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors` surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis.
Electrical and Joule heating relationship investigation using Finite Element Method
NASA Astrophysics Data System (ADS)
Thangaraju, S. K.; Munisamy, K. M.
2015-09-01
The finite element method is vastly used in material strength analysis. The nature of the finite element solver, which solves the Fourier equation of stress and strain analysis, made it possible to apply for conduction heat transfer Fourier Equation. Similarly the Current and voltage equation is also liner Fourier equation. The nature of the governing equation makes it possible to numerical investigate the electrical joule heating phenomena in electronic component. This paper highlights the Finite Element Method (FEM) application onto semiconductor interconnects to determine the specific contact resistance (SCR). Metal and semiconductor interconnects is used as model. The result confirms the possibility and validity of FEM utilization to investigate the Joule heating due electrical resistance.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Derivation of a Tappered p-Version Beam Finite Element
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1989-01-01
A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.
Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics
NASA Astrophysics Data System (ADS)
Dmitrochenko, Oleg
2008-06-01
A family of structural finite elements using a modern absolute nodal coordinate formulation (ANCF) is discussed in the paper with many applicationsE This approach has been initiated in 1996 by A. Shabana. It introduces large displacements of 2D/3D finite elements relative to the global reference frame without using any local frame. The elements employ finite slopes as nodal variables and can be considered as generalizations of ordinary finite elements that use infinitesimal slopes. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices and generalized gravity forces as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This approach allows applying known abstractions of real elastic bodies: Euler-Bernoulli beams, Timoshenko beams and more general models as well as Kirchhoff and Mindlin plate theories. Shabana et al. proposed a sub-family of thick beam and plate finite elements with large deformations and employ the 3D theory of continuum mechanics. Despite the universality of such approach it has to use extra degrees of freedom when simulating thin beams and plates, which case is most important. In our research, we propose another sub-family of thin beams as well as rectangular and triangle plates. We use Kirchhoff plate theory with nonlinear strain-displacement relationships to obtain elastic forces. A number of static and dynamic simulation examples of problems with 2D/3D very elastic beams and plate underwent large displacements and/or deformations will be shown in the presentation.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
NASA Astrophysics Data System (ADS)
Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.
2016-09-01
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.
Correlation of composite material test results with finite element analysis
NASA Astrophysics Data System (ADS)
Guƫu, M.
2016-08-01
In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Finite element models of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Muller, G. R.
1980-01-01
Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna.; Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Two-dimensional finite-element temperature variance analysis
NASA Technical Reports Server (NTRS)
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
Finite element microscopic stress analysis of cracked composite systems
NASA Technical Reports Server (NTRS)
Ko, W. L.
1978-01-01
This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Finite element analyses for seismic shear wall international standard problem
Park, Y.J.; Hofmayer, C.H.
1998-04-01
Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.
A finite element technique for a system of fully-discrete time-dependent Joule heating equations
NASA Astrophysics Data System (ADS)
Chin, Pius W. M.
2016-06-01
A system of decoupled nonlinear fully-discrete time-dependent Joule heating equation is studied. Instead of the traditional technique of combining the Euler and the finite element methods, we design a reliable scheme consisting of coupling the Non-standard finite difference in the time space and finite element method in the space variables. We prove for the optimal rate of convergence of the solution of the said scheme in both the H1 as well as the L2-norms. Furthermore, we show that the scheme under study preserves the properties of the exact solution. Numerical experiments are provided to confirm our theoretical analysis.
Nonlinear triggered lightning models for use in finite difference calculations
NASA Technical Reports Server (NTRS)
Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.
1989-01-01
Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.
New hybrid quadrilateral finite element for Mindlin plate
NASA Astrophysics Data System (ADS)
Chin, Yi; Zhang, Jingyu
1994-02-01
A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.
2016-01-01
Purpose This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results The maximum extent of micromotion was approximately 100 μm in the low-density cancellous bone models, whereas it was under 30 μm in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading. PMID:27382504
A General-Purpose Mesh Generator for Finite Element Codes.
1984-02-28
Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Crack modeling of rotating blades with cracked hexahedral finite element method
NASA Astrophysics Data System (ADS)
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
The strain-based beam finite elements in multibody dynamics
NASA Astrophysics Data System (ADS)
Gams, M.; Planinc, I.; Saje, M.
2007-08-01
We present a strain-based finite-element formulation for the dynamic analysis of flexible elastic planar multibody systems, composed of planar beams. We consider finite displacements, rotations and strains. The discrete dynamic equations of motion are obtained by the collocation method. The strains are the basic interpolated variables, which makes the formulation different from other formulations. The further speciality of the formulation is the strong satisfaction of the cross-sectional constitutive conditions at collocation points. In order to avoid the nested integrations, a special algorithm for the numerical integration over the length of the finite element is proposed. The midpoint scheme is used for the time integration. The performance of the formulation is illustrated via numerical examples, including a stiff multibody system.
DYCAST: A finite element program for the crash analysis of structures
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.; Ogilvie, P.
1987-01-01
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Finite element forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.
1981-01-01
A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.
Spanwise variation of potential form drag. [finite element method
NASA Technical Reports Server (NTRS)
Clever, W. C.
1977-01-01
The finite element method is used to calculate the spanwise variation of potential form drag of a wing at subsonic and supersonic speeds using linearly varying panels. The wing may be of arbitrary planform and nonplanar provided the wing panels are parallel to the aircraft axis.
Experiences in interfacing NASTRAN with another finite element program
NASA Technical Reports Server (NTRS)
Schwerzler, D. D.; Leverenz, R. K.
1972-01-01
The coupling of NASTRAN to another finite element program developed for the static analysis of automotive structures is discussed. The two programs were coupled together to use the substructuring capability of the in-house program and the normal mode analysis capability of NASTRAN. Modifications were made to the NASTRAN program in order to make the coupling feasible.
Finite-element analysis of end-notch flexure specimens
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.
Finite element analysis of end notch flexure specimen
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Boundary control of parabolic systems - Finite-element approximation
NASA Technical Reports Server (NTRS)
Lasiecka, I.
1980-01-01
The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.
Finite Element Studies Of Tangent Mounted Conical Optics
NASA Astrophysics Data System (ADS)
Stoneking, J.; Casstevens, J.; Stillman, D.
1982-12-01
This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.
A finite element approach for prediction of aerothermal loads
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.
1986-01-01
A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
Advance finite element modeling of rotor blade aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Sangha, K. B.; Panda, B.
1994-01-01
An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
Hierarchicalp-version finite elements for radiation heat transfer
NASA Astrophysics Data System (ADS)
Gould, Dana Craig
Methods to compute surface-to-surface radiation heat transfer between diffuse-gray surfaces using hierarchical p-version finite elements have been developed and applied to the analysis of a high-speed aircraft wing. A review of traditional methods for surface-to-surface radiation exchange is given. Traditional methods rely on the assumption of isothermal surfaces with incoming and outgoing radiation heat flux assumed constant over the surface. These assumptions are not appropriate for p-version finite elements, so new methods for evaluating the incoming and outgoing radiation flux over a finite element surface were required. Two methods for computing the surface-to-surface radiation heat transfer that do not rely on the above assumptions are developed and validated. The first approach uses traditional methods to compute the radiation exchange on an element sub-mesh, then transfers this data back to the parent element for the computation of the radiation heat flux. The second method requires the numerical integration of the net radiation exchange equation for each element. The methods are validated and evaluated using simple problems with analytical solutions. The radiation sub-element method is less costly than the direct integration method, but it is also less accurate. Both methods are computationally more expensive than traditional methods for a given number of degrees of freedom; however, for a given accuracy, they are less expensive. The new methods are used to analyze the wing of a High Speed Civil Transport vehicle. The p-elements were effective in capturing significant temperature variations over large sections of the wing and reduced the mesh complexity and associated modeling time while maintaining accuracy.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.
2015-12-01
Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties
A finite element solution algorithm for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Periodic trim solutions with HP-version finite elements in time
NASA Technical Reports Server (NTRS)
1991-01-01
Finite Element in Time has been proven to be a powerful alternative solving strategy for the rotor craft trim problem. Additionally, Finite Element Method in Time has been developed in various versions like time-marching framework, Galerkin framework, Rayleigh-Ritz framework, and mixed formulation. Recently, this method was applied to the rotorcraft trim problem to obtain linearized solutions. The rotorcraft trim problem consists of trying to find a period solution for period-coefficient, differential equations subject to side constraints where certain force and momentum balance equations are forced to be equal to zero. There are free (or trim) parameters that are chosen to meet these side constraints. This project aims at expanding the application, in terms of the rotorcraft trim problem, from a linearized solution to nonlinear solution.
Use of geostatistical modeling to capture complex geology in finite-element analyses
Rautman, C.A.; Longenbaugh, R.S.; Ryder, E.E.
1995-12-01
This paper summarizes a number of transient thermal analyses performed for a representative two-dimensional cross section of volcanic tuffs at Yucca Mountain using the finite element, nonlinear heat-conduction code COYOTE-II. In addition to conventional design analyses, in which material properties are formulated as a uniform single material and as horizontally layered, internally uniform matters, an attempt was made to increase the resemblance of the thermal property field to the actual geology by creating two fairly complex, geologically realistic models. The first model was created by digitizing an existing two-dimensional geologic cross section of Yucca Mountain. The second model was created using conditional geostatistical simulation. Direct mapping of geostatistically generated material property fields onto finite element computational meshes was demonstrated to yield temperature fields approximately equivalent to those generated through more conventional procedures. However, the ability to use the geostatistical models offers a means of simplifying the physical-process analyses.
Barham, M; White, D; Steigmann, D; Rudd, R
2009-04-08
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these two methods is used to test/validate the finite element method.
MHOST: An efficient finite element program for inelastic analysis of solids and structures
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
An efficient finite element program for 3-D inelastic analysis of gas turbine hot section components was constructed and validated. A novel mixed iterative solution strategy is derived from the augmented Hu-Washizu variational principle in order to nodally interpolate coordinates, displacements, deformation, strains, stresses and material properties. A series of increasingly sophisticated material models incorporated in MHOST include elasticity, secant plasticity, infinitesimal and finite deformation plasticity, creep and unified viscoplastic constitutive model proposed by Walker. A library of high performance elements is built into this computer program utilizing the concepts of selective reduced integrations and independent strain interpolations. A family of efficient solution algorithms is implemented in MHOST for linear and nonlinear equation solution including the classical Newton-Raphson, modified, quasi and secant Newton methods with optional line search and the conjugate gradient method.
Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials
NASA Astrophysics Data System (ADS)
Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.
2013-06-01
The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.
NASA Astrophysics Data System (ADS)
Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath
2016-05-01
Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.
Inclusion of lumped elements in finite difference time domain electromagnetic calculations
Thomas, V.A.; Jones, M.E.; Mason, R.J.
1994-12-31
A general approach for including lumped circuit elements in a finite difference, time domain (FD-TD) solution of Maxwell`s equations is presented. The methodology allows the direct access to SPICE to model the lumped circuits, while the full 3-Dimensional solution to Maxwell`s equations provides the electromagnetic field evolution. This type of approach could be used to mode a pulsed power machine by using a SPICE model for the driver and using an electromagnetic PIC code for the plasma/electromagnetics calculation. The evolution of the driver can be made self consistent with the behavior of the plasma load. Other applications are also possible, including modeling of nonlinear microwave circuits (as long as the non-linearities may be expressed in terms of a lumped element) and self-consistent calculation of very high speed computer interconnections and digital circuits.
Active muscle response using feedback control of a finite element human arm model.
Östh, Jonas; Brolin, Karin; Happee, Riender
2012-01-01
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.
NASA Astrophysics Data System (ADS)
Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De
During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.
Finite element evaluation of erosion/corrosion affected reducing elbow
Basavaraju, C.
1996-12-01
Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety.
FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER
NASA Technical Reports Server (NTRS)
Bowles, D. E.
1994-01-01
Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.
NASA Technical Reports Server (NTRS)
Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.
1996-01-01
Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
Finite Elements Analysis of a Composite Semi-Span Test Article With and Without Discrete Damage
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)
2000-01-01
AS&M Inc. performed finite element analysis, with and without discrete damage, of a composite semi-span test article that represents the Boeing 220-passenger transport aircraft composite semi-span test article. A NASTRAN bulk data file and drawings of the test mount fixtures and semi-span components were utilized to generate the baseline finite element model. In this model, the stringer blades are represented by shell elements, and the stringer flanges are combined with the skin. Numerous modeling modifications and discrete source damage scenarios were applied to the test article model throughout the course of the study. This report details the analysis method and results obtained from the composite semi-span study. Analyses were carried out for three load cases: Braked Roll, LOG Down-Bending and 2.5G Up-Bending. These analyses included linear and nonlinear static response, as well as linear and nonlinear buckling response. Results are presented in the form of stress and strain plots. factors of safety for failed elements, buckling loads and modes, deflection prediction tables and plots, and strainage prediction tables and plots. The collected results are presented within this report for comparison to test results.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
Structural health monitoring system design using finite element analysis
Stinemates, D. W.; Bennett, J. G.
2002-01-01
The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and damage identification. To do this, a finite element model was constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from the physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.
A fast hidden line algorithm for plotting finite element models
NASA Technical Reports Server (NTRS)
Jones, G. K.
1982-01-01
Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.
Finite element model of magnetoconvection of a ferrofluid
NASA Astrophysics Data System (ADS)
Snyder, Suzanne M.; Cader, Tahir; Finlayson, Bruce A.
2003-06-01
Combined natural and magnetic convective heat transfer through a ferrofluid in a cubic enclosure is simulated numerically. The momentum equation includes a magnetic term that arises when a magnetic fluid is in the presence of a magnetic field gradient and a temperature gradient. In order to validate the theory, the wall temperature isotherms and Nusselt numbers are compared to experimental work of Sawada et al. (Int. J. Appl. Electromagn. Mater. 4 (1994) 329). Results are obtained using standard computational fluid dynamics codes, with modifications to account for the Langevin factor when needed. The CFD code FIDAP uses the finite element method, sometimes with a user-defined subroutine. The CFD code FEMLAB uses the finite element method with a user-supplied body force.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Sensitive analysis of a finite element model of orthogonal cutting
NASA Astrophysics Data System (ADS)
Brocail, J.; Watremez, M.; Dubar, L.
2011-01-01
This paper presents a two-dimensional finite element model of orthogonal cutting. The proposed model has been developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting will be validated by comparing these process variables to experimental and numerical results obtained by Filice et al. [1]. This model can be considered to be reliable enough to make qualitative analysis of entry parameters related to cutting process and frictional models. A sensitivity analysis is conducted on the main entry parameters (coefficients of the Johnson-Cook law, and contact parameters) with the finite element model. This analysis is performed with two levels for each factor. The sensitivity analysis realised with the numerical model on the entry parameters has allowed the identification of significant parameters and the margin identification of parameters.
A finite element model of ferroelectric/ferroelastic polycrystals
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
Finite element modelling of the 1969 Portuguese tsunami
NASA Astrophysics Data System (ADS)
Guesmia, M.; Heinrich, Ph.; Mariotti, C.
1996-03-01
On the 28 th February 1969, the coasts of Portugal, Spain and Morocco were affected by water waves generated by a submarine earthquake (Ms=7.3) with epicenter located off Portugal. The propagation of this tsunami has been simulated by a finite element numerical model solving the Boussinesq equations. These equations have been discretized using the finite element Galerkin method and a Crank-Nicholson scheme in time. The 2-D simulation of the 1969 tsunami is carried out using the hydraulic source calculated from the geophysical model of Okada and seismic parameters of Fukao. The modeled waves are compared with the recorded waves with respect to the travel times, the maximum amplitudes, the periods of the signal. Good agreement is found for most of the studied gauges. The comparison between Boussinesq and shallow-water models shows that the effects of frequency dispersion are minor using Fukao's seismic parameters.
Finite element calculation of residual stress in dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
Exemplifying Quantum Systems in a Finite Element Basis
Young, Toby D.
2009-08-13
This paper presents a description of the abstractions required for the expression and solution of the linear single-particle Schroedinger equation in a finite element basis. This paper consists of two disparate themes: First, to layout and establish the foundations of finite element analysis as an approximate numerical solution to extendable quantum mechanical systems; and second, to promote a high-performance open-source computational model for the approximate numerical solution to quantum mechanical systems. The structural foundation of the one-and two-dimensional time-independent Schroedinger equation describing an infinite potential well is explored and a brief overview of the hierarchal design of the computational library written in C++ is given.
An emulator for minimizing computer resources for finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, R.; Utku, S.; Islam, M.; Salama, M.
1984-01-01
A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).
An emulator for minimizing finite element analysis implementation resources
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.
1982-01-01
A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.
Finite element analyses of two antirotational designs of implant fixtures.
Akour, Salih N; Fayyad, Mohammed A; Nayfeh, Jamal F
2005-03-01
The purpose of this study was to compare the effect of cyclic compressive forces on loosening of the abutment retaining screw of dental implant fixtures with two different antirotational designs using the finite element analysis. A three-dimensional model of externally hexed and trichannel dental implant fixtures with their corresponding abutments and retaining screws was developed. Comparison between the two designs was carried out using finite element analysis. The results revealed that the externally hexed design has significantly higher overall stress, contact stress, and deflection compared with the trichannel design. The trichannel antirotational design has the least potential for fracture of the implant/abutment assembly in addition to its capability for preventing rotation of the prosthesis and loosening of the screw.
Finite Element Analysis Applied to Dentoalveolar Trauma: Methodology Description
da Silva, B. R.; Moreira Neto, J. J. S.; da Silva, F. I.; de Aguiar, A. S. W.
2011-01-01
Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated. PMID:21991463
A finite element model for residual stress in repair welds
Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.
1996-03-28
This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.
Tube Bulge Process : Theoretical Analysis And Finite Element Simulations
Velasco, Raphaeel; Boudeau, Nathalie
2007-04-07
This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain.
Finite Element Modeling of Micromachined MEMS Photon Devices
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-09-20
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
A finite-element analysis of bipolar ionized field
Abdel-Salam, M.; Al-Hamouz, Z.
1995-05-01
This paper describes a new iterative method for the analysis of the bipolar ionized field in HVDC transmission lines without resorting to Deutsch`s assumption. The finite-element technique (FET) is used to solve Poisson`s equation where the constancy of the conductors` surface field at the corona inception value is directly implemented in the finite-element formulation. The proposed method has been tested on laboratory and full-scale models. The calculated V-I characteristics agreed well with those calculated and measured previously. The dependence of the corona current as well as its monopolar and bipolar components on the conductor height is discussed. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize the proposed method of analysis.
Design Optimization of Coronary Stent Based on Finite Element Models
Qiu, Tianshuang; Zhu, Bao; Wu, Jinying
2013-01-01
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation. PMID:24222743
Finite element analysis of fiber-reinforced fixed partial dentures.
Nakamura, Takashi; Ohyama, Tatsuo; Waki, Tomonori; Kinuta, Soichiro; Wakabayashi, Kazumichi; Takano, Naoki; Yatani, Hirofumi
2005-06-01
Two-dimensional finite element models were created for a three-unit posterior fixed partial denture. An experimental resin-impregnated glass fiber was used as the fiber-reinforced composite (FRC) for the framework. The FRC was evaluated using varying combinations of position and thickness, alongside with two types of veneering composite. A load of 50 N simulating bite force was applied at the pontic in a vertical direction. Tensile stress was examined using a finite element analysis program. Model without FRC showed tensile stress concentrations within the veneering composite on the cervical side of the pontic--from the connector area to the bottom of the pontic. Model with FRC at the top of the pontic had almost the same stress distribution as the model without FRC. Models with 0.4-0.8 mm thick FRC positioned at the bottom of the pontic showed maximum tensile stresses reduced by 4-19% within the veneering composite. PMID:16022451
Finite element analysis of electrically excited quartz tuning fork devices.
Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel
2013-05-30
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Study of the available finite element software packages at KSC
NASA Technical Reports Server (NTRS)
Lu, Chu-Ho
1990-01-01
The interaction among the three finite element software packages, SDRCI/I-DEAS, MSC/NASTRAN, and I/FEM, used at NASA, Kennedy Space Center is addressed. The procedures for using more than one of these application software packages to model and analyze a structure design are discussed. Design and stress analysis of a solid rocket booster fixture is illustrated by using four different combinations of the three software packages. Their results are compared and show small yet acceptable differences.
Finite Element Composite Analysis Program (FECAP) for a microcomputer
NASA Technical Reports Server (NTRS)
Bowles, David E.
1988-01-01
A special purpose finite element composite analysis program for analyzing composite material behavior with a microcomputer is described. The formulation assumes a state of generalized plane strain in a material consisting of two or more orthotropic phases. Loading can be mechanical and/or thermal. The theoretical background, computer implementation, and program users guide are described in detail. A sample program is solved showing the required user input and computer generated output.
[Whiplash injury analysis of cervical vertebra by finite element method].
Wang, Tao; Li, Zheng-Dong; Shao, Yu; Chen, Yi-Jiu
2015-02-01
Finite element method (FEM) is an effective mathematical method for stress analysis, and has been gradually applied in the study of biomechanics of human body structures. This paper reviews the construction, development, materials assignment and verification of FEM model of cervical vertebra, and it also states the research results of injury mechanism of whiplash injury and biomechanical response analysis of the cervical vertebra using FEM by researchers at home and abroad. PMID:26058135
An interactive virtual environment for finite element analysis
Bradshaw, S.; Canfield, T.; Kokinis, J.; Disz, T.
1995-06-01
Virtual environments (VE) provide a powerful human-computer interface that opens the door to exciting new methods of interaction with high-performance computing applications in several areas of research. The authors are interested in the use of virtual environments as a user interface to real-time simulations used in rapid prototyping procedures. Consequently, the authors are developing methods for coupling finite element models of complex mechanical systems with a VE interface for real-time interaction.
Application of Finite Element Method to Analyze Inflatable Waveguide Structures
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1998-01-01
A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.
A Decoupled Finite Element Heterogeneous Coarse Mesh Transport Method.
Mosher, S. W.; Rahnema, Farzad
2005-01-01
In a recent paper, an original finite element (FE) method was presented for solving eigenvalue transport problems on a coarse spatial mesh. The method employed a surface Green's function expansion of the angular flux trial functions, so that heterogeneous coarse-meshes could be treated with relative ease. Numerical problems were solved using the multigroup discrete ordinates approximation in one-dimensional (1-D) slab geometry. Unfortunately, difficulties were encountered in finding solutions to the algebraic finite element equations, which led to sizeable angular flux discontinuities at coarse-mesh interfaces and significant errors. For this reason, a nonvariational iterative technique was ultimately favored for converging the angular flux distribution, and was used in conjunction with a Rayleigh quotient for converging the eigenvalue. In this paper, a new derivation of finite element equations is presented, which seems to offer a remedy for at least some of the numerical ills that plagued the previous work. First, the equations are derived in terms of a generalized response function expansion. This allows a more efficient response basis to be employed and vastly reduces the overall computational effort without a substantial loss of accuracy. Second, the tight coupling between coarse-meshes in the original equations is effectively broken by assuming that an accurate estimate of the flux distribution entering a given coarse-mesh is known. With an additional assumption that an accurate eigenvalue estimate is known, an iterative approach to solving these decoupled finite element (DFE) equations is developed. The DFE method has been applied to both 1- and 2-D heterogeneous coarse-mesh problems with a far greater degree of success than the original FE method. However, some numerical difficulties remain to be overcome before the new approach can be considered robust.
Piezoelectric theory for finite element analysis of ultrasonic motors
Emery, J.D.; Mentesana, C.P.
1997-06-01
The authors present the fundamental equations of piezoelectricity and references. They show how a second form of the equations and a second set of coefficients can be found, through inversions involving the elasticity tensor. They show how to compute the clamped permittivity matrix from the unclamped matrix. The authors list the program pzansys.ftn and present examples of its use. This program does the conversions and calculations needed by the finite element program ANSYS.
Discontinuous Galerkin Finite Element Method for Parabolic Problems
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.
2004-01-01
In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.
Three-dimensional finite element modeling of liquid crystal devices
NASA Astrophysics Data System (ADS)
Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal
2011-03-01
A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.
Stability and Convergence of Underintegrated Finite Element Approximations
NASA Technical Reports Server (NTRS)
Oden, J. T.
1984-01-01
The effects of underintegration on the numerical stability and convergence characteristics of certain classes of finite element approximations were analyzed. Particular attention is given to hourglassing instabilities that arise from underintegrating the stiffness matrix entries and checkerboard instabilities that arise from underintegrating constrain terms such as those arising from incompressibility conditions. A fundamental result reported here is the proof that the fully integrated stiffness is restored in some cases through a post-processing operation.
A verification procedure for MSC/NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.
1995-01-01
Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.
Finite Element Method Applied to Fuse Protection Design
NASA Astrophysics Data System (ADS)
Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin
2014-03-01
In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.