Science.gov

Sample records for nonlinear frequency generation

  1. Magnetoplasmonic RF mixing and nonlinear frequency generation

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2016-07-01

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequency down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.

  2. Nonlinear negative refraction by difference frequency generation

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shen, Dongyi; Feng, Yaming; Wan, Wenjie

    2016-05-01

    Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.

  3. Guided wave methods and apparatus for nonlinear frequency generation

    DOEpatents

    Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.

    2000-01-01

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  4. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion

    NASA Astrophysics Data System (ADS)

    Jung, Hojoong; Tang, Hong X.

    2016-06-01

    A number of dielectric materials have been employed for on-chip frequency comb generation. Silicon based dielectrics such as silicon dioxide (SiO2) and silicon nitride (SiN) are particularly attractive comb materials due to their low optical loss and maturity in nanofabrication. They offer third-order Kerr nonlinearity (χ(3)), but little second-order Pockels (χ(2)) effect. Materials possessing both strong χ(2) and χ(3) are desired to enable selfreferenced frequency combs and active control of comb generation. In this review, we introduce another CMOS-compatible comb material, aluminum nitride (AlN),which offers both second and third order nonlinearities. A review of the advantages of AlN as linear and nonlinear optical material will be provided, and fabrication techniques of low loss AlN waveguides from the visible to infrared (IR) region will be discussed.We will then show the frequency comb generation including IR, red, and green combs in high-Q AlN micro-rings from single CW IR laser input via combination of Kerr and Pockels nonlinearity. Finally, the fast speed on-off switching of frequency comb using the Pockels effect of AlN will be shown,which further enriches the applications of the frequency comb.

  5. Direct generation of optical frequency combs in χ(2) nonlinear cavities

    NASA Astrophysics Data System (ADS)

    Mosca, Simona; Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio

    2016-06-01

    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2) frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  6. Difference-frequency generation in nonlinear scattering of acoustic waves by a rigid sphere.

    PubMed

    Silva, Glauber T; Bandeira, Anderson

    2013-02-01

    In this paper, the partial-wave expansion method is applied to describe the difference-frequency pressure generated in a nonlinear scattering of two acoustic waves with an arbitrary wavefront by means of a rigid sphere. Particularly, the difference-frequency generation is analyzed in the nonlinear scattering with a spherical scatterer involving two intersecting plane waves in the following configurations: collinear, crossing at right angles, and counter-propagating. For the sake of simplicity, the plane waves are assumed to be spatially located in a spherical region which diameter is smaller than the difference-frequency wavelength. Such arrangements can be experimentally accomplished in vibro-acoustography and nonlinear acoustic tomography techniques. It turns out to be that when the sphere radius is of the order of the primary wavelengths, and the downshift ratio (i.e. the ratio between the fundamental frequency and the difference-frequency) is larger than five, difference-frequency generation is mostly due to a nonlinear interaction between the primary scattered waves. The exception to this is the collinear scattering for which the nonlinear interaction of the primary incident waves is also relevant. In addition, the difference-frequency scattered pressure in all scattering configurations decays as r(-1)lnr and 1/r, where r is the radial distance from the scatterer to the observation point.

  7. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  8. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  9. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    SciTech Connect

    Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H.; Yu, N. E.; Boudrioua, A.; Kung, A. H.

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  10. Generation of green frequency comb from chirped χ(2) nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Yu, N. E.; Boudrioua, A.; Kung, A. H.; Peng, L.-H.

    2014-12-01

    Spectrally broad frequency comb generation over 510-555 nm range was reported on chirped quasi-phase-matching (QPM) χ(2) nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020-1040 nm) and the idler (1090-1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510-520 nm and the 545-555 nm spectral regime. Additional 530-535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ˜10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  11. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-01

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  12. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  13. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  14. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency

    PubMed Central

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2014-01-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises. PMID:25893167

  15. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    PubMed

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  16. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    NASA Technical Reports Server (NTRS)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  17. Nonlinear Metal-Insulator-Metal (MIM) Nanoplasmonic Waveguides Based on Electron Tunneling for Optical Rectification and Frequency Generation

    NASA Astrophysics Data System (ADS)

    Lei, Xiaoqin

    Metal-Insulator-Metal (MIM) electron tunneling diodes have recently emerged as an attractive alternative to semiconductor photodiodes for THz and optical detection due to their fast response time and relative ease of fabrication. However, current antenna-coupled MIM diode detectors are still limited by poor responsivity and low detection bandwidth due to impedance mismatch between the diode and antenna, large RC time constant of lumped MIM junctions, and narrow bandwidth of traditional antenna designs. In this thesis we address these issues by considering traveling-wave MIM detector designs which exhibit enhanced responsivity and low impedance that can be more easily matched to planar antennas. We also propose new antenna geometries based on surface modification of traditional bowtie antennas that are capable of receiving ultra-wideband THz signals. The concept of traveling-wave MIM detectors is then extended to the investigation of nonlinear MIM nanoplasmonic waveguides for on-chip single-cycle THz pulse generation, frequency conversion, as well as plasmonic switching and modulation.

  18. Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry.

    PubMed

    Ding, Yujie J

    2010-01-15

    Owing to strong coupling between transverse-optical phonons and high-frequency terahertz waves in zinc-blende semiconductors, second-order nonlinear coefficients can be dramatically enhanced within the forbidden band of the polariton resonance. However, linear absorption in this regime is also dramatically increased. We show that transverse-pumping geometry can be exploited for achieving an efficient terahertz generation at the polariton resonance. Our estimates illustrate that pump powers as low as 100 mW are sufficient for causing the significant depletion of the pump beams.

  19. Polarization renormalization due to nonlinear optical generation

    NASA Astrophysics Data System (ADS)

    Wynne, J. J.

    1984-02-01

    A classical Maxwellian analysis of the reduction of multiphoton excitation associated with the coherent third-harmonic generation of electromagnetic waves propagating in nonlinear media is presented. The approach of Bloembergen and Pershan (1962) is followed, making no use of quantum-mechanical description and considering the total electric polarization (the sum of the medium's linear response and the nonlinear source polarization) at the generated frequency. It is demonstrated that this method successfully explains the experimental results of Aron and Johnson (1977), Miller et al. (1980), Glownia and Sander (1982), and Faisal et al. (1977) by analyzing the relationship of the total and nonlinear polarization components.

  20. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  1. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  2. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  3. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  4. He's Frequency Formulation for Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Geng, Lei; Cai, Xu-Chu

    2007-01-01

    Based on an ancient Chinese algorithm, J H He suggested a simple but effective method to find the frequency of a nonlinear oscillator. In this paper, a modified version is suggested to improve the accuracy of the frequency; two examples are given, revealing that the obtained solutions are of remarkable accuracy and are valid for the whole solution…

  5. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé; Sinha, Dipen N

    2014-12-01

    The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency. PMID:25064635

  6. Nonlinear frequency response analysis of structural vibrations

    NASA Astrophysics Data System (ADS)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  7. Instantaneous, stepped-frequency, nonlinear radar

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Gallagher, Kyle; Martone, Anthony; Mazzaro, Gregory; Sherbondy, Kelly; Narayanan, Ram

    2015-05-01

    Researchers have recently developed radar systems capable of exploiting non-linear target responses to precisely locate targets in range. These systems typically achieve the bandwidth necessary for range resolution through transmission of either a stepped-frequency or chirped waveform. The second harmonic of the reflected waveform is then analyzed to isolate the non-linear target response. In other experiments, researchers have identified certain targets through the inter-modulation products they produce in response to a multi-tone stimulus. These experiments, however, do not exploit the phase information available in the inter-modulation products. We present a method for exploiting both the magnitude and phase information available in the inter-modulation products to create an "instantaneous" stepped frequency, non-linear target response. The new approach enables us to both maintain the unambiguous range dictated by the fundamental, multi-tone separation and obtain the entire target signature from a single transmitted waveform.

  8. Generating Second Harmonics In Nonlinear Resonant Cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. David; Byer, Robert L.

    1990-01-01

    Single-axial-mode lasers pump very-low-loss doubling crystals. Important advance in making resonant generation of second harmonics possible for diode-laser-pumped solid-state lasers is recent development of monolithic nonplanar ring geometries in neodymium:yttrium aluminum garnet (Nd:YAG) lasers that produce frequency-stable single-mode outputs. Other advance is development of high-quality MgO:LiNbO3 as electro-optically nonlinear material. Series of experiments devised to improve doubling efficiency of low-power lasers, and particularly of diode-laser-pumped continuous-wave Nd:YAG lasers.

  9. Image enhancement by non-linear extrapolation in frequency space

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

    1998-01-01

    An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

  10. Evaluation of nonlinear frequency compression: Clinical outcomes

    PubMed Central

    Glista, Danielle; Scollie, Susan; Bagatto, Marlene; Seewald, Richard; Parsa, Vijay; Johnson, Andrew

    2009-01-01

    This study evaluated prototype multichannel nonlinear frequency compression (NFC) signal processing on listeners with high-frequency hearing loss. This signal processor applies NFC above a cut-off frequency. The participants were hearing-impaired adults (13) and children (11) with sloping, high-frequency hearing loss. Multiple outcome measures were repeated using a modified withdrawal design. These included speech sound detection, speech recognition, and self-reported preference measures. Group level results provide evidence of significant improvement of consonant and plural recognition when NFC was enabled. Vowel recognition did not change significantly. Analysis of individual results allowed for exploration of individual factors contributing to benefit received from NFC processing. Findings suggest that NFC processing can improve high frequency speech detection and speech recognition ability for adult and child listeners. Variability in individual outcomes related to factors such as degree and configuration of hearing loss, age of participant, and type of outcome measure. PMID:19504379

  11. [Proton generator of superhigh frequency].

    PubMed

    Liberman, E A; Eĭdus, V L

    1981-01-01

    Possible mechanism of superhigh frequency (10(10)-10(12) Hz) electromagnetic oscillation generation by an external proton in a system of hydrogen bonds of biomacromolecules is briefly discussed. The external proton in a proton channel deforms the potential profile of the proton of hydrogen bond in such a way, that there appears a possibility of the low frequency proton tunneling along the hydrogen bond. The interaction with the neighbouring bonds leads to further lowering of the generated frequency.

  12. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  13. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  14. Frequency regulator for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1982-08-10

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

  15. Frequency regulator for synchronous generators

    DOEpatents

    Karlicek, Robert F.

    1982-01-01

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

  16. Variable frequency microprocessor clock generator

    SciTech Connect

    Branson, C.N.

    1989-04-04

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between the clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.

  17. Electrically controlled nonlinear generation of light with plasmonics.

    PubMed

    Cai, Wenshan; Vasudev, Alok P; Brongersma, Mark L

    2011-09-23

    Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.

  18. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  19. Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency

    NASA Astrophysics Data System (ADS)

    Zuo, Peng; Zhou, Yu; Fan, Zheng

    2016-07-01

    Nonlinear ultrasonic Lamb waves are popular to characterize the nonlinearity of materials. However, the widely used nonlinear Lamb mode suffers from two associated complications: inherent dispersive and multimode natures. To overcome these, the symmetric Lamb mode (S0) at low frequency region is explored. At the low frequency region, the S0 mode is little dispersive and easy to generate. However, the secondary mode still exists, and increases linearly for significant distance. Numerical simulations and experiments are used to validate the nonlinear features and therefore demonstrate an easy alternative for nonlinear Lamb wave applications.

  20. DPOAE generation dependence on primary frequencies ratio

    NASA Astrophysics Data System (ADS)

    Botti, Teresa; Sisto, Renata; Moleti, Arturo; D'Amato, Luisa; Sanjust, Filippo

    2015-12-01

    Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1 - f2 and 2f2 - f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2 - f1 DPOAE, as a consequence of its generation mechanism. While the 2f1 - f2 generation place is known to be the tonotopic place x(f2), the 2f2 - f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2 - f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay

  1. Nonlinear behavior of electrodynamic loudspeaker suspension at low frequencies

    NASA Astrophysics Data System (ADS)

    Feng, ZiXin; Shen, Yong; Heng, Wei; Liu, YunFeng

    2013-07-01

    The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.

  2. Nonlinear multiferroic phase shifters for microwave frequencies

    SciTech Connect

    Ustinov, Alexey B.; Kalinikos, Boris A.; Srinivasan, G.

    2014-02-03

    A nonlinear microwave phase shifter based on a planar multiferroic composite has been studied. The multiferroic structure is fabricated in the form of a bilayer consisting of yttrium iron garnet and barium strontium titanate. The principle of operation of the device is based on the linear and nonlinear control of the phase shift of the hybrid spin-electromagnetic waves propagating in the bilayer. The linear control is realized with magnetic and electric fields. The nonlinear control is provided by the input power of microwave signal. The device showed a nonlinear phase shift up to 250°, electric field induced phase shift up to 330°, and magnetic field induced phase shift of more than 180°.

  3. Computed Linear/Nonlinear Acoustic Response of a Cascade for Single/Multi Frequency Excitation

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S.

    2004-01-01

    This paper examines mode generation and propagation characteristics of a 2-D cascade due to incident vortical disturbances using a time domain approach. Full nonlinear Euler equations are solved employing high order accurate spatial differencing and time marching techniques. The solutions show the generation and propagation of mode orders that are expected from theory. Single frequency excitations show linear response over a wide range of amplitudes. The response for multi-frequency excitations tend to become nonlinear due to interaction between frequencies and self interaction.

  4. Integral criterion for selecting nonlinear crystals for frequency conversion

    SciTech Connect

    Grechin, Sergei G

    2009-02-28

    An integral criterion, which takes into account all parameters determining the conversion efficiency, is offered for selecting nonlinear crystals for frequency conversion. The angular phase-matching width is shown to be related to the beam walk-off angle. (nonlinear optical phenomena)

  5. The nonlinear dust potential and collision frequencies in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Vladimirov, S. V.

    2016-10-01

    The nonlinear modification to the Debye-Hückel potential of a dust grain depends on the thermodynamic properties of the background plasma. When the grain carries more than one electronic charge, the nonlinear self-interaction of the potential substantially modifies the ion-dust collision frequency. The electron-negatively charged dust collision frequency on the other hand remains largely unaffected by such a nonlinear modification. In the absence of nonlinear modification, collisions between the electrons and the negatively charged dust cease completely when the potential energy is four times the electron thermal energy. Thus once the dust acquires maximum charge, it will encounter electrons only because of its induced dipole field. Our electron-dust collision frequency agrees well with the previously known result whereas ion-dust collision frequency is always small compared with the known fitting formula.

  6. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  7. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, Michiyuki

    1981-01-01

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Also, apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  8. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  9. Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank

    2011-10-01

    Presented here is a new time-frequency signal processing methodology based on Hilbert-Huang transform (HHT) and a new conjugate-pair decomposition (CPD) method for characterization of nonlinear normal modes and parametric identification of nonlinear multiple-degree-of-freedom dynamical systems. Different from short-time Fourier transform and wavelet transform, HHT uses the apparent time scales revealed by the signal's local maxima and minima to sequentially sift components of different time scales. Because HHT does not use pre-determined basis functions and function orthogonality for component extraction, it provides more accurate time-varying amplitudes and frequencies of extracted components for accurate estimation of system characteristics and nonlinearities. CPD uses adaptive local harmonics and function orthogonality to extract and track time-localized nonlinearity-distorted harmonics without the end effect that destroys the accuracy of HHT at the two data ends. For parametric identification, the method only needs to process one steady-state response (a free undamped modal vibration or a steady-state response to a harmonic excitation) and uses amplitude-dependent dynamic characteristics derived from perturbation analysis to determine the type and order of nonlinearity and system parameters. A nonlinear two-degree-of-freedom system is used to illustrate the concepts and characterization of nonlinear normal modes, vibration localization, and nonlinear modal coupling. Numerical simulations show that the proposed method can provide accurate time-frequency characterization of nonlinear normal modes and parametric identification of nonlinear dynamical systems. Moreover, results show that nonlinear modal coupling makes it impossible to decompose a general nonlinear response of a highly nonlinear system into nonlinear normal modes even if nonlinear normal modes exist in the system.

  10. Continuous control of the nonlinearity phase for harmonic generations.

    PubMed

    Li, Guixin; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis Wing Han; Pun, Edwin Yue Bun; Cheah, Kok Wai; Zentgraf, Thomas; Zhang, Shuang

    2015-06-01

    The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase. The continuous phase control over the local nonlinearity is demonstrated for second and third harmonic generation by using nonlinear metasurfaces consisting of nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase engineering of the effective nonlinear polarizability enables complete control over the propagation of harmonic generation signals. Therefore, this method seamlessly combines the generation and manipulation of harmonic waves, paving the way for highly compact nonlinear nanophotonic devices. PMID:25849530

  11. Microwave harmonic generation and nonlinearity in microplasmas

    NASA Astrophysics Data System (ADS)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2016-06-01

    Nonlinearities in microplasmas excited by microwaves are described both experimentally and through a 2D fluid model. A split-ring resonator generates a microplasma in a 150 μm discharge gap at 1 GHz. Nonlinearity generates both radiated and conducted harmonics which are measured from 0.2–760 Torr (Ar) for power levels between 0.5 and 3 W. Asymmetric electrode configurations produce the highest 3rd harmonic power (>10 mW) at an optimal pressure of the order of 0.3 Torr. The microplasma is also demonstrated as a mixer. The experimental results are explained with the aid of a fluid model of the microplasma. The model shows that the smaller electrode in an asymmetric device is forced to attain a large microwave potential that strongly modulates the sheath thickness and the local electron energy. The voltage-dependent sheath width gives rises to a nonlinear sheath capacitance as well as short pulses of hot electron flux to the electrode. The modeled 3rd harmonic current is converted to an extractable harmonic power by a microwave circuit model. Using this technique the modeled and measured harmonic production of the microplasma are found to compare favorably.

  12. Nonlinear terahertz frequency conversion via graphene microribbon array

    NASA Astrophysics Data System (ADS)

    Nasari, H.; Abrishamian, M. S.

    2016-07-01

    By exploiting the interesting trait of graphene to have electrically tunable first- and third-order conductivities besides its capability to support plasmonic resonances at terahertz frequencies, here, through the nonlinear finite-difference time-domain numerical technique we developed, we demonstrate a noticeable improvement in the conversion efficiency of third-harmonic generation (THG) from a graphene microribbon array by more than five orders of magnitude compared to an infinite graphene sheet, under normal illumination of terahertz waves. As the Fermi level and period length of the ribbon array increase, the transmission obviously manifests a blue shift but denotes a red shift with an increase in ribbon width. The quality factor of resonance (and so the THG efficiency) also shows improvement with an increase in graphene Fermi level, carrier mobility and period length and is degraded by an increase in ribbon width. Generating new frequencies, terahertz signal processing, spectroscopy and so on are among the plethora of valuable potential applications envisioned to be developed based on the findings reported here.

  13. Nonlinear electron resonance heating in dual frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Ziegler, D.; Mussenbrock, T.; Brinkmann, R. P.

    2006-10-01

    Capacitively coupled plasmas (CCP's) play a major role in material processing. The drawback of conventional single frequency CCP's is that the ion bombardment energy and the ion flux to the substrate itself cannot be controlled independently. The problem can be remedied by the use of dual frequency CCP's. In such sources, the ratio of the applied frequencies is obviously an important control parameter. Rauf^1 found that at large ratios (e.g., 100,kHz/13.56,MHz) the spectrum of the discharge current was just the superposition of two single-frequency spectra. For more comparable frequencies (e.g.,6.78,MHz/13.56,MHz), however, quite surprising nonlinear effects were observed. It is exactly this nonlinear behavior and its influence on the total energy budget that is discussed in this contribution - we present and analyze a nonlinear global model for a dual frequency CCP. Based on an exact analytical solution of the underlying equations we discuss the behavior of the model for various voltage ratios, frequency ratios, and gas pressures. We investigate in particular the heating at the plasma series resonance, either by direct excitation or via the nonlinear electron resonance heating mechanism^2. ^1 S. Rauf and M.J. Kushner, IEEE Trans Plasma Sci. 27, 1329 (1999)^2 T. Mussenbrock and R.P. Brinkmann, Appl. Phys. Lett. 88, 151503 (2006)

  14. Nonlinear harmonic generation in distributed optical klystrons

    SciTech Connect

    H.P. Freund; George R. Neil

    2001-12-01

    A distributed optical klystron has the potential for dramatically shortening the total interaction length in high-gain free-electron lasers (INP 77-59, Novosibirsk, 1977; Nucl. Instr. and Meth A 304 (1991) 463) in comparison to a single-wiggler-segment configuration. This shortening can be even more dramatic if a nonlinear harmonic generation mechanism is used to reach the desired wavelength. An example operating at a 4.5{angstrom} fundamental and a 1.5{angstrom} harmonic is discussed.

  15. Frequency bands of strongly nonlinear homogeneous granular systems.

    PubMed

    Lydon, Joseph; Jayaprakash, K R; Ngo, Duc; Starosvetsky, Yuli; Vakakis, Alexander F; Daraio, Chiara

    2013-07-01

    Recent numerical studies on an infinite number of identical spherical beads in Hertzian contact showed the presence of frequency bands [Jayaprakash, Starosvetsky, Vakakis, Peeters, and Kerschen, Nonlinear Dyn. 63, 359 (2011)]. These bands, denoted here as propagation and attenuation bands (PBs and ABs), are typically present in linear or weakly nonlinear periodic media; however, their counterparts are not intuitive in essentially nonlinear periodic media where there is a complete lack of classical linear acoustics, i.e., in "sonic vacua." Here, we study the effects of PBs and ABs on the forced dynamics of ordered, uncompressed granular systems. Through numerical and experimental techniques, we find that the dynamics of these systems depends critically on the frequency and amplitude of the applied harmonic excitation. For fixed forcing amplitude, at lower frequencies, the oscillations are large in amplitude and governed by strongly nonlinear and nonsmooth dynamics, indicating PB behavior. At higher frequencies the dynamics is weakly nonlinear and smooth, in the form of compressed low-amplitude oscillations, indicating AB behavior. At the boundary between the PB and the AB large-amplitude oscillations due to resonance occur, giving rise to collisions between beads and chaotic dynamics; this renders the forced dynamics sensitive to initial and forcing conditions, and hence unpredictable. Finally, we study asymptotically the near field standing wave dynamics occurring for high frequencies, well inside the AB. PMID:23944453

  16. Comparison of Medium Frequency Burst Generation Theories

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Weatherwax, A. T.; Yoon, P. H.

    2009-12-01

    Auroral Medium Frequency (MF) burst is a naturally occurring spontaneous impulsive radio emission observed at ground level between 800 and 4500 kHz. MF burst has been shown to be associated with auroral substorm onset, commonly observed coincidentally with auroral roar and hiss, with typical durations of a few minutes, amplitudes of ~10-14 V^2 /m^2 Hz, and measured to be left hand polarized. Despite several suggested theories, the exact generation mechanism for MF burst still remains a mystery. Recent experimental findings combined with a discussion of normal wave modes available in the auroral ionosphere allow us to constrain potential modes of generation. Normal modes available in the auroral ionosphere (Omega_ce = ~800-1600 kHz, omega_pe = ~100-6000 kHz between 100 and 1000 km altitude) include R-X, L-O, Z (L-X), Langmuir-upper hybrid, electron cyclotron, electron acoustic, and electron cyclotron sound. Each mode is considered in light of experimental evidence, including accessibility to the L-O mode for propagation to ground with left hand polarization, and requirements for excitation by an auroral electron beam (100-10s of keV). A linear mode conversion process is also preferred over non-linear due to their inefficiency. Specific scenarios include: mode conversion of Langmuir waves at a range of altitudes on either the top or bottom side F-region, short wavelength (thermal branch) Langmuir waves, electron acoustic waves, electron cyclotron sound waves, direct generation of the L mode, and refraction and conversion of Z / upper hybrid waves - similar to that of auroral roar.

  17. Optical frequency comb generation from aluminum nitride microring resonator.

    PubMed

    Jung, Hojoong; Xiong, Chi; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-08-01

    Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single-wavelength continuous-wave pump laser. Further, the Kerr coefficient (n₂) of AlN is extracted from our experimental results.

  18. 3-D Mesh Generation Nonlinear Systems

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  19. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  20. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  1. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  2. Generation of a frequency comb and applications thereof

    DOEpatents

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  3. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  4. CFD Data Generation Process for Nonlinear Loads

    NASA Technical Reports Server (NTRS)

    Arslan, Alan; Magee, Todd; Unger, Eric; Hartwich, Peter; Agrawal, Shreekant; Giesing, Joseph; Bharadvaj, Bala; Chaderjian, Neal; Murman, Scott

    1999-01-01

    This paper discusses the development of a process to generate a CFD database for the non-linear loads process capability for critical loads evaluation at Boeing Long Beach. The CFD simulations were performed for wing/body configurations at high angles of attack and Reynolds numbers with transonic and elastic deflection effects. Convergence criteria had to be tailored for loads applications rather than the usual drag performance. The time-accurate approach was subsequently adopted in order to improve convergence and model possible unsteadiness in the flowfield. In addition, uncertainty issues relating to the turbulence model and grid resolution in areas of high vortical flows were addressed and investigated for one of the cases.

  5. Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Rustagi, K. C.; Mehendale, S. C.; Meenakshi, S.

    1982-06-01

    The paper presents a quantitative theory of nonlinear frequency conversion in stacks of crystals in which the phase mismatch due to dispersion is compensated by changing the sign of the nonlinear coupling coefficient in successive crystals. The effects of systematic and random departures in crystal lengths are studied with emphasis on the evolution of the relative phase. It is shown that with the appropriate choice of the signs of the nonlinear coupling coefficient in various crystals, high efficiency frequency conversion should be possible using almost any sufficiently large set of nonlinear crystals. In addition, the theory of second harmonic generation in periodic stacks and in rotating twinned crystals of zinc-blend structure is described.

  6. Highly nonlinear fibers for very wideband supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Grüner-Nielsen, Lars; Pálsdóttir, Bera

    2008-02-01

    Supercontinuum generation in highly nonlinear fibers (HNLF) pumped with femtosecond pulses is an area of large interest for applications such as broad band light sources, tunable femtosecond sources, frequency metrology, and fluorescence microscopy. In the last few years, a lot of focus has been put on optimizing photonics crystal fibers for supercontinuum application. In this paper, we will focus on conventional silica based HNLF, which e.g. have the advantage of precise dispersion control, and easy splicing to standard single mode fibers. We have performed a systematic experimental study of the effect of dispersion, of the HNLF as well as the input power to the HNLF. To pump the fiber we have build an femtosecond fiber laser consisting of a passive mode locked figure eight oscillator followed by an amplifier. The dispersion before coupling into the HNLF was optimized for broadest supercontinuum generation. Supercontinuum generation in both standard and polarization maintaining HNLF are studied.

  7. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  8. Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves

    SciTech Connect

    Johnston, T. W.; Tyshetskiy, Y.; Ghizzo, A.; Bertrand, P.

    2009-04-15

    Driving a one-dimensional collisionless Maxwellian (Vlasov) plasma with a sufficiently strong longitudinal ponderomotive driver for a sufficiently long time results in a self-sustaining nonsinusoidal wave train with well-trapped electrons even for frequencies well below the plasma frequency, i.e., in the plasma wave spectral gap. Typical phase velocities of these waves are somewhat above the electron thermal velocity. This new nonlinear wave is being termed a kinetic electrostatic electron nonlinear (KEEN) wave. The drive duration must exceed the bounce period {tau}{sub B} of the trapped electrons subject to the drive, as calculated from the drive force and the linear plasma response to the drive. For a given wavenumber a wide range of KEEN wave frequencies can be readily excited. The basic KEEN structure is essentially kinetic, with the trapped electron density variation being almost completely shielded by the free electrons, leaving just enough net charge to support the wave.

  9. Nonlinear frequency coupling in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    Waskoenig, J.; Gans, T.

    2010-05-03

    Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

  10. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  11. Nonlinear amplification of side-modes in frequency combs.

    PubMed

    Probst, R A; Steinmetz, T; Wilken, T; Hundertmark, H; Stark, S P; Wong, G K L; Russell, P St J; Hänsch, T W; Holzwarth, R; Udem, Th

    2013-05-20

    We investigate how suppressed modes in frequency combs are modified upon frequency doubling and self-phase modulation. We find, both experimentally and by using a simplified model, that these side-modes are amplified relative to the principal comb modes. Whereas frequency doubling increases their relative strength by 6 dB, the growth due to self-phase modulation can be much stronger and generally increases with nonlinear propagation length. Upper limits for this effect are derived in this work. This behavior has implications for high-precision calibration of spectrographs with frequency combs used for example in astronomy. For this application, Fabry-Pérot filter cavities are used to increase the mode spacing to exceed the resolution of the spectrograph. Frequency conversion and/or spectral broadening after non-perfect filtering reamplify the suppressed modes, which can lead to calibration errors. PMID:23736390

  12. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    SciTech Connect

    Wang, W. X.; Diamond, P. H.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.

    2010-07-07

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by “intrinsic” torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a “flow pinch” in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  13. Nonlinear amplitude frequency characteristics of attenuation in rock under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2006-12-01

    Laboratory experiments have been carried out to investigate the influence of change in strain amplitude on the frequency dependence of attenuation in samples of sandstone, smoky quartz and duralumin. The measurements were performed using the reflection method on pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. The attenuation in rocks is nonlinearly dependent on frequency and strain amplitude. In sandstone for P-waves and in smoky quartz for P- and S-waves, the dependences Q-1p(f) and Q-1s(f) have the attenuation peak. With increasing amplitude, the peak frequency can shift towards both the lower and the higher frequencies. It depends on the location of the frequency of an incident (input) pulse with respect to the peak frequency on the frequency axis. For sandstone the peak frequency of P-waves shifts towards the higher frequencies. For smoky quartz the shift of peak frequency is absent in P-waves, and S-waves shift towards the lower frequencies. The attenuation at the incident frequency always monotonically decreases with amplitude, and the other frequency components have complex or monotonic characters depending on the location of the incident frequency in the relaxation spectrum. Q-1p(f) in duralumin has monotonic character, i.e. a relaxation peak in the measurement frequency band is absent. Attenuation strongly decreases with increasing frequency and weakly depends on strain amplitude. The curve Q-1s(f) has an attenuation peak, and its character essentially depends on strain amplitude. With increasing amplitude, the peak frequency shifts towards the lower frequencies. The unusual increase of peak frequency of the P-wave spectrum in the bottom reflection in comparison with peak frequency in spectrum of the initial reflection is detected. The unusual behaviour of attenuation is explained by features of the joint action of viscoelastic and microplastic mechanisms. These results can be used for improving methods

  14. Nonlinear Trivelpiece-Gould Waves: Frequency, Functional Form, and Stability

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H. E.

    2015-11-01

    This poster considers the frequency, spatial form, and stability, of nonlinear Trivelpiece- Gould (TG) waves on a cylindrical plasma column of length L and radius rp, treating both traveling and standing waves, and focussing on the regime of experimental interest in which L/rp >> 1. In this regime TG waves are weakly dispersive, allowing strong mode-coupling between Fourier harmonics. The mode coupling implies that linear theory for such waves is a poor approximation even at fairly small amplitudes, and nonlinear theories that include only a small number of harmonics (such as 3-wave parametric resonance theory) fail to fully capture the stability properties of the system. We find that nonlinear standing waves suffer jumps in their functional form as their amplitude is varied continuously. The jumps are caused by nonlinear resonances between the standing wave and nearly linear waves whose frequencies and wave numbers are harmonics of the standing wave. Also, the standing waves are found to be unstable to a multi-wave version of 3-wave parametric resonance, with an amplitude required for instability onset that is much larger than expected from three wave theory. For traveling wave, linearly stability is found for all amplitudes that could be studied, in contradiction to 3-wave theory. Supported by National Science Foundation Grant PHY-1414570, Department of Energy Grants DE-SC0002451and DE-SC0008693.

  15. Generation of Rabi-frequency radiation using exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Barachati, Fábio; De Liberato, Simone; Kéna-Cohen, S.

    2015-09-01

    We study the use of exciton-polaritons in semiconductor microcavities to generate radiation spanning the infrared to terahertz regions of the spectrum by exploiting transitions between upper and lower polariton branches. The process, which is analogous to difference-frequency generation (DFG), relies on the use of semiconductors with a nonvanishing second-order susceptibility. For an organic microcavity composed of a nonlinear optical polymer, we predict a DFG irradiance enhancement of 2.8 ×102 , as compared to a bare nonlinear polymer film, when triple resonance with the fundamental cavity mode is satisfied. In the case of an inorganic microcavity composed of (111) GaAs, an enhancement of 8.8 ×103 is found, as compared to a bare GaAs slab. Both structures show high wavelength tunability and relaxed design constraints due to the high modal overlap of polariton modes.

  16. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  17. Generation of macroscopic superposition states with small nonlinearity

    SciTech Connect

    Jeong, H.; Ralph, T.C.; Kim, M. S.; Ham, B.S.

    2004-12-01

    We suggest a scheme to generate a macroscopic superposition state ('Schroedinger cat state') of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.

  18. Electromagnetic scattering from nonlinear anisotropic cylinders. I - Fundamental frequency

    NASA Astrophysics Data System (ADS)

    Hasan, Moh'd. A.; Uslenghi, P. L. E.

    1990-04-01

    The solution of the problem of electromagnetic scattering of obliquely incident plane waves by homogeneous, nonlinear anisotropic cylindrical structures is obtained. The medium of the scatterer is characterized by Volterra-type integrals for the electric and magnetic flux density vectors D and B, respectively. The nonlinear problem is solved using the perturbation method. The effects of nonlinearities on the field properties both inside and outside the scatterer, together with the effect on the radar cross section, are investigated for the fundamental frequency components. To demonstrate the validity of the approach, the results obtained by the perturbation method are compared with those obtained using the plane wave representation method of Censor (1983), where the iteration method is used to solve the resulting dispersion equation. The results are in very good agreement in both amplitude and phase of the fields for the case of very weak nonlinearity. When the relative magnitude of the nonlinear component of the permittivity is increased, the iteration method shows a faster divergence of the phase from the linear phase.

  19. Nonlinear mode interactions and frequency-jump effects in a doubly tuned oscillator configuration

    NASA Astrophysics Data System (ADS)

    Grun, J.; Lashinsky, H.

    1980-05-01

    Frequency-jump effects associated with nonlinear mode competition are investigated in an oscillator configuration consisting of a passive linear resonance system coupled to an active nonlinear resonance system. These effects give rise to a hysteresis pattern whose height and width can be related to system parameters such as the resonance frequencies, dissipation, coupling coefficient, etc. It is noted that these effects offer a novel means of determining these parameters in cases in which conventional techniques may not be desirable or as advantageous. The analysis provides an qualitative explanation of empirical observations in a recent nuclear magnetic resonance experiment (Timsit and Daniels, 1976). The results also apply to other nonlinear resonance systems such as lasers, microwave generators, and electronic oscillators.

  20. Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects

    NASA Astrophysics Data System (ADS)

    Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.

    2015-10-01

    The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.

  1. Nonlinear control of high-frequency phonons in spider silk.

    PubMed

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk's dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  2. Nonlinear control of high-frequency phonons in spider silk

    NASA Astrophysics Data System (ADS)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  3. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  4. High frequency electromagnetic detection by nonlinear conduction modulation in graphene nanowire diodes

    NASA Astrophysics Data System (ADS)

    Winters, M.; Thorsell, M.; Strupiński, W.; Rorsman, N.

    2015-10-01

    We present graphene nanowires implemented as dispersion free self switched microwave diode detectors. The microwave properties of the detectors are investigated using vector corrected large signal measurements in order to determine the detector responsivity and noise equivalent power (NEP) as a function of frequency, input power, and device geometry. We identify two distinct conductance nonlinearities which generate detector responsivity: an edge effect nonlinearity near zero bias due to lateral gating of the nanowire structures, and a velocity saturation nonlinearity which generates current compression at high power levels. The scaling study shows that detector responsivity obeys an exponential scaling law with respect to nanowire width, and a peak responsivity (NEP) of 250 V/W (50 pW/ √{ Hz } ) is observed in detectors of the smallest width. The results are promising as the devices exhibit responsivities which are comparable to state of the art self switched detectors in semiconductor technologies.

  5. Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity.

    PubMed

    Moore, R C; Fujimaru, S; Kotovsky, D A; Gołkowski, M

    2013-12-01

    Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves. PMID:24476285

  6. Controllable Raman soliton self-frequency shift in nonlinear metamaterials

    SciTech Connect

    Xiang Yuanjiang; Wen Shuangchun; Guo Jun; Fan Dianyuan

    2011-09-15

    Controllable and dispersive magnetic permeability in the metamaterials (MMs) provides us more freedom to harness the propagation of ultrashort electromagnetic pulses at will. Here we discuss the controllability of the Raman soliton self-frequency shift (SSFS) in the MMs with a nonlinear electric polarization. First, we derive a generalized nonlinear Schroedinger equation suitable for few-cycle pulse propagation in the MMs with delayed Raman response, and demonstrate the Raman effect, high-order Raman-related nonlinearity, and high-order nonlinear dispersion terms occurring in this equation. Second, we present a theoretical investigation on the controllability of the Raman SSFS in the MMs. In particular, we identify the combined effects of the anomalous self-steepening (SS), third-order dispersion (TOD), and Raman effect on SSFS. It is shown that the positive SS effect suppresses SSFS; however, the negative SS effect enhances SSFS, and the positive TOD leads to the deceleration of SSFS. Finally, the effects of SS on the SSFS of the second-order soliton are also discussed.

  7. Optical generation of narrowband high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Hung, Shi-Yao; Hsieh, Bao-Yu; Li, Pai-Chi

    2014-03-01

    We propose a multilayer film structure to generate high frequency and narrowband ultrasound. It consists of three light-absorbing layers and two light-transmittance layers. The amplitude is tunable by adjusting the optical absorption coefficient of light-absorbing layers. The delay can be adjusted by changing thicknesses of light-transmittance layers. In one example, the generated high frequency narrowband ultrasound signal has a center frequency of 18.4MHz and 32.6% fractional bandwidth using the proposed multilayer structure. Compared with this result, the single layer structure produces a center frequency of 20.2MHz and 125.7% fractional bandwidth. In addition, a single laser pulse was employed to generate US on the multilayer film as an US source and PA signals of the high optical absorption region of the phantom at the same time. Because the spectral characteristics of the ultrasound signals generated by the multi-layer film are tunable, it can be designed such that the US echo and PA echo are spectrally separable, thus enabling simultaneous US/PA imaging using only a single laser pulse. Feasibility of this proposed method was demonstrated by imaging of a cyst-like phantom.

  8. A Second Generation Nonlinear Factor Analysis.

    ERIC Educational Resources Information Center

    Etezadi-Amoli, Jamshid; McDonald, Roderick P.

    1983-01-01

    Nonlinear common factor models with polynomial regression functions, including interaction terms, are fitted by simultaneously estimating the factor loadings and common factor scores, using maximum likelihood and least squares methods. A Monte Carlo study gives support to a conjecture about the form of the distribution of the likelihood ratio…

  9. Frequency analysis of nonlinear oscillations via the global error minimization

    NASA Astrophysics Data System (ADS)

    Kalami Yazdi, M.; Hosseini Tehrani, P.

    2016-06-01

    The capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.

  10. Nonlinear frequency shift of electrostatic waves in general collisionless plasma: Unifying theory of fluid and kinetic nonlinearities

    SciTech Connect

    Liu, Chang; Dodin, Ilya Y.

    2015-08-15

    The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.

  11. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    NASA Astrophysics Data System (ADS)

    Bjarlin Jensen, Ole; Michael Petersen, Paul

    2013-09-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic locking.

  12. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  13. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre–Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  14. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter.

    PubMed

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Jiang, Junfeng; Meng, Zhuo; Chen, Hongxin

    2013-02-11

    We present a simple and effective method to compensate the optical frequency tuning nonlinearity of a tunable laser source (TLS) in a long range optical frequency-domain reflectometry (OFDR) by using the deskew filter, where a frequency tuning nonlinear phase obtained from an auxiliary interferometer is used to compensate the nonlinearity effect on the beating signals generated from a main OFDR interferometer. The method can be applied to the entire spatial domain of the OFDR signals at once with a high computational efficiency. With our proposed method we experimentally demonstrated a factor of 93 times improvement in spatial resolution by comparing the results of an OFDR system with and without nonlinearity compensation. In particular we achieved a measurement range of 80 km and a spatial resolution of 20 cm and 1.6 m at distances of 10 km and 80 km, respectively with a short signal processing time of less than 1 s for 5 × 10(6) data points. The improved performance of the OFDR with a high spatial resolution, a long measurement range and a short process time will lead to practical applications in the real-time monitoring, test and measurement of fiber optical communication networks and sensing systems.

  15. Necklace beam generation in nonlinear colloidal engineered media.

    PubMed

    Silahli, Salih Z; Walasik, Wiktor; Litchinitser, Natalia M

    2015-12-15

    Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity. PMID:26670494

  16. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  17. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  18. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  19. Cross-polarized wave generation by effective cubic nonlinear optical interaction.

    PubMed

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M

    2001-03-15

    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.

  20. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    SciTech Connect

    Liao, Ben-Shan; Bai, Zhaojun; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  1. Nonlinear Generation of Vorticity by Surface Waves.

    PubMed

    Filatov, S V; Parfenyev, V M; Vergeles, S S; Brazhnikov, M Yu; Levchenko, A A; Lebedev, V V

    2016-02-01

    We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect. PMID:26894714

  2. Manifestation of nonlinear elasticity in rock: Convincing evidence over large frequency and strain intervals from laboratory studies

    SciTech Connect

    Johnson, P.A. |; Rasolofosaon, P.N.J.

    1995-11-01

    Nonlinear elastic response in rock is established as a robust and representative characteristic of rock rather than a curiosity. This behavior is illustrated from a variety of experiments conducted over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behavior in rock: (1) Nonlinear response in rock is enormous; (2) the response takes place over a large frequency interval (dc--10{sup 6} Hz at least); (3) the response not only occurs, as is commonly appreciated, at large strains but also at small strains where nonlinear response and the manifestations of this behavior are commonly disregarded. Nonlinear response may manifest itself in a variety of manners, including a nonlinear stress{minus}strain relation (hysteretic/discrete memory), nonlinear dissipation, harmonic generation, and resonant peak shift, all of which are related. The experiments described include: quasistatic stress{minus}strain tests (strains of 10{sup -4}--10{sup -1} at frequencies near dc-1Hz); torsional oscillator experiments (strains of 10{sup {minus}4}--10{sup {minus}7}, frequencies between 0.1 and 100Hz); resonant bar experiments (strains of 10{sup {minus}4}--10{sup {minus}8}, frequencies between 10{sup 3} and 10{sup 4} Hz); and dynamic, propagating wave experiments (strains of 10{sup {minus}6}--10{sup {minus}9}, frequencies between 10{sup 3} and 10{sup 6} Hz). [Work supported by OBES/DOE through the University of California and the Institut Francais du Petrole.

  3. Octave-spanning supercontinuum generation via microwave frequency multiplication

    NASA Astrophysics Data System (ADS)

    Cole, D. C.; Beha, K. M.; Diddams, S. A.; Papp, S. B.

    2016-06-01

    We demonstrate a system based on telecom components for the generation of a coherent octave-spanning supercontinuum from a continuous-wave laser. The system utilizes direct multiplication of a 10 GHz signal derived from a commercial synthesizer to carve pulses from the laser, which are then iteratively chirped and compressed in two stages. After reducing the repetition rate of the resulting pulse train to 2.5 GHz using selective transmission through an electro-optic gate, propagation through highly-nonlinear fiber generates an octave-spanning supercontinuum spectrum. We discuss the impact of the noise of the modulation frequency on the coherence of the supercontinuum and discuss its mitigation. Close agreement between experiment and theory is shown throughout, and we use our ability to precisely model the experiment to propose an extension of the system to 20 GHz repetition rate.

  4. Modulation instability and short-pulse generation in media with relaxing Kerr nonlinearity and high self-steepening

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Lapin, V A

    2014-01-31

    The modulation instability in waveguides with high Kerr nonlinearity, characterised by a delayed nonlinear response, has been investigated with allowance for the self-steepening parameter and third-order dispersion. General expressions for the modulation gain are obtained. The influence of the waveguide parameters on the gain is analysed. It is shown that the joint effect of the delayed nonlinear response and negative nonlinearity dispersion leads to an increase in the modulation gain. The relations obtained are confirmed by numerical simulation. The results of this study can be used to design compact generators of high-frequency pulse trains. (nonlinear optical phenomena)

  5. Quasi-phase-matched backward second-harmonic generation by complementary media in nonlinear metamaterials.

    PubMed

    Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2012-10-01

    High efficiency of the second-harmonic and sum-frequency generation can be obtained in optical superlattice by using the conventional quasi-phase-matched (QPM) method. Although this trick can be played on the acoustic wave, the media with negative nonlinear parameters are not common in acoustics. Furthermore, the QPM method used in acoustic metamaterials has been less studied. In this work, a protocol is provided to realize the QPM method by using nonlinear complementary media in acoustic metamaterials in order to obtain large backward second-harmonic generation. Compared with the conventional method, the method gains a broader bandwidth and can be used in both acoustic and electromagnetic waves.

  6. Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip

    NASA Astrophysics Data System (ADS)

    Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.

    2014-07-01

    We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.

  7. Sum-frequency generation echo and grating from interface

    SciTech Connect

    Volkov, Victor

    2014-10-14

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ{sup (4)} two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ{sub YYYZX} and χ{sub YYYZY} macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics.

  8. Nonlinear frequency compression: Influence of start frequency and input bandwidth on consonant and vowel recognition.

    PubMed

    Alexander, Joshua M

    2016-02-01

    By varying parameters that control nonlinear frequency compression (NFC), this study examined how different ways of compressing inaudible mid- and/or high-frequency information at lower frequencies influences perception of consonants and vowels. Twenty-eight listeners with mild to moderately severe hearing loss identified consonants and vowels from nonsense syllables in noise following amplification via a hearing aid simulator. Low-pass filtering and the selection of NFC parameters fixed the output bandwidth at a frequency representing a moderately severe (3.3 kHz, group MS) or a mild-to-moderate (5.0 kHz, group MM) high-frequency loss. For each group (n = 14), effects of six combinations of NFC start frequency (SF) and input bandwidth [by varying the compression ratio (CR)] were examined. For both groups, the 1.6 kHz SF significantly reduced vowel and consonant recognition, especially as CR increased; whereas, recognition was generally unaffected if SF increased at the expense of a higher CR. Vowel recognition detriments for group MS were moderately correlated with the size of the second formant frequency shift following NFC. For both groups, significant improvement (33%-50%) with NFC was confined to final /s/ and /z/ and to some VCV tokens, perhaps because of listeners' limited exposure to each setting. No set of parameters simultaneously maximized recognition across all tokens. PMID:26936574

  9. Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium

    PubMed Central

    Lee, Wonjung; Kovačič, Gregor; Cai, David

    2013-01-01

    In this work, we examine the important theoretical question of whether dispersion relations can arise from purely nonlinear interactions among waves that possess no linear dispersive characteristics. Using two prototypical examples of nondispersive waves, we demonstrate how nonlinear interactions can indeed give rise to effective dispersive-wave–like characteristics in thermal equilibrium. Physically, these example systems correspond to the strong nonlinear coupling limit in the theory of wave turbulence. We derive the form of the corresponding dispersion relation, which describes the effective dispersive structures, using the generalized Langevin equations obtained in the Zwanzig–Mori projection framework. We confirm the validity of this effective dispersion relation in our numerical study using the wavenumber–frequency spectral analysis. Our work may provide insight into an important connection between highly nonlinear turbulent wave systems, possibly with no discernible dispersive properties, and the dispersive nature of the corresponding renormalized waves. PMID:23401526

  10. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  11. Quadrupole second harmonic generation and sum-frequency generation in ZnO quantum dots

    SciTech Connect

    Maikhuri, Deepti; Purohit, S. P. Mathur, K. C.

    2015-04-15

    The second harmonic generation (SHG) and the sum frequency generation (SFG) processes are investigated in the conduction band states of the singly charged ZnO quantum dot (QD) embedded in the HfO{sub 2}, and the AlN matrices. With two optical fields of frequency ω{sub p} and ω{sub q} incident on the dot, we study the variation with frequency of the second order nonlinear polarization resulting in SHG and SFG, through the electric dipole and the electric quadrupole interactions of the pump fields with the electron in the dot. We obtain enhanced value of the second order nonlinear susceptibility in the dot compared to the bulk. The effective mass approximation with the finite confining barrier is used for obtaining the energy and wavefunctions of the quantized confined states of the electron in the conduction band of the dot. Our results show that both the SHG and SFG processes depend on the dot size, the surrounding matrix and the polarization states of the pump beams.

  12. Microwave frequency tuning and harmonic generation in ferroelectric thin film transmission lines

    NASA Astrophysics Data System (ADS)

    Booth, James C.; Ono, R. H.; Takeuchi, Ichiro; Chang, Kao-Shuo

    2002-07-01

    We evaluate dielectric tuning on nanosecond time scales in ferroelectric Ba0.3Sr0.7TiO3 thin films by measuring nonlinear harmonic generation at a fundamental frequency of 3 GHz. We compare the form of the distributed nonlinear capacitance per unit length C(Vrf) extracted from a simple model of harmonic generation in coplanar waveguide transmission line structures with the nonlinear capacitance C(Vdc) measured using a dc bias voltage, and obtain excellent agreement for temperatures in the range 235-295 K. This demonstrated agreement implies that full dielectric tuning can be expected in these ferroelectric thin films on nanosecond time scales, and also demonstrates that detrimental high-frequency nonlinear effects in device structures can be accurately predicted based on dc biased measurements.

  13. Possibility of efficient generation of multiphoton entangled states using a one-dimensional nonlinear photonic crystal

    SciTech Connect

    Dong Yunxia; Zhang Xiangdong

    2010-03-15

    A rigorous quantum theory for the generation of multiphoton entangled states based on two consecutive three-frequency interactions of waves in a one-dimensional nonlinear photonic crystal is developed using the field expansion and differentiation methods. The three-photon correlation coefficient and the average photon numbers generated in the structure are calculated. All order expansion terms are included in the calculation. The generation conditions for multiphoton entangled states in such a structure are also analyzed. It is shown that the created photons in the present structures obey the super-Poisson statistics at the interacting frequencies and are in a multiparticle entangled state. This means the nonlinear photonic crystal can be applied as a highly efficient source of an entangled multiphoton for highly integrated all-optical circuits.

  14. Multipolar interference for non-reciprocal nonlinear generation

    PubMed Central

    Poutrina, Ekaterina; Urbas, Augustine

    2016-01-01

    We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the produced light decoupled from the direction of at least one of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. These general phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters. PMID:27126209

  15. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    SciTech Connect

    Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  16. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals

    SciTech Connect

    Chen, Bao-Qin; Zhang, Chao; Liu, Rong-Juan; Li, Zhi-Yuan

    2014-10-13

    We have designed and fabricated a lithium niobate (LN) nonlinear photonic crystal (NPC) with a two-dimensional (2D) ellipse structure of inverse poling domains. The structure can offer continuously varying reciprocal lattice vectors in different directions to compensate the phase-mismatching during the second harmonic generation (SHG) for diverse pump wavelengths. We consider three propagation directions with large effective nonlinear susceptibility and measure the nonlinear conversion efficiency of SHG. The experimental data are in good agreement with the quantitative calculation results using the effective susceptibility model with pump depletion. With high-efficiency SHG in multiple propagation direction, the 2D ellipse structure of LN NPC has the potential to realize various broadband nonlinear frequency conversion processes in different propagation direction with a single crystal.

  17. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  18. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    SciTech Connect

    Eimerl, D.

    1985-10-28

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology.

  19. Nonlinear Superconducting Metamaterials in Free-Space at mm-wave Frequencies

    NASA Astrophysics Data System (ADS)

    Anlage, Steven; Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Delfanazari, K.; Savinov, V.; Zheludev, N.

    2014-03-01

    Superconducting metamaterials show the promise of low loss, compact size and extreme tunability and nonlinearity, allowing for new applications. Most demonstrations of these metamaterials have been conducted in waveguide geometries, either in co-planar form or three-dimensional single-conductor structures. Here we demonstrate for the first time a widely tunable superconducting metamaterial operating under the free-space illumination of a quasi-optical beam in the 100 GHz regime. The meta-atoms are Radio Frequency Superconducting QUantum Interference Devices (RF SQUIDs) that form compact self-resonant objects endowed with the nonlinearity of the Josephson effect. The metamaterial is tuned with dc magnetic flux, temperature and mm-wave power, and holds promise for a new generation of mm-wave agile devices. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.

  20. Theoretical Sum Frequency Generation Spectroscopy of Peptides

    PubMed Central

    2015-01-01

    Vibrational sum frequency generation (SFG) has become a very promising technique for the study of proteins at interfaces, and it has been applied to important systems such as anti-microbial peptides, ion channel proteins, and human islet amyloid polypeptide. Moreover, so-called “chiral” SFG techniques, which rely on polarization combinations that generate strong signals primarily for chiral molecules, have proven to be particularly discriminatory of protein secondary structure. In this work, we present a theoretical strategy for calculating protein amide I SFG spectra by combining line-shape theory with molecular dynamics simulations. We then apply this method to three model peptides, demonstrating the existence of a significant chiral SFG signal for peptides with chiral centers, and providing a framework for interpreting the results on the basis of the dependence of the SFG signal on the peptide orientation. We also examine the importance of dynamical and coupling effects. Finally, we suggest a simple method for determining a chromophore’s orientation relative to the surface using ratios of experimental heterodyne-detected signals with different polarizations, and test this method using theoretical spectra. PMID:25203677

  1. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  2. Effect of nonlinear electromechanical interaction upon wind power generator behavior

    NASA Astrophysics Data System (ADS)

    Selyutskiy, Yury D.; Klimina, Liubov A.

    2014-12-01

    A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.

  3. Discussion about generation mechanisms of third-order nonlinear signals in surface acoustic wave resonators based on simulation

    NASA Astrophysics Data System (ADS)

    Nakagawa, Ryo; Suzuki, Takanao; Shimizu, Hiroshi; Kyoya, Haruki; Nako, Katsuhiro; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we discuss the generation mechanisms of third-order nonlinearity in surface acoustic wave (SAW) devices on the basis of simulation results, which are obtained by a proposed method for this discussion. First, eight nonlinear terms are introduced to the piezoelectric constitutive equations, and nonlinear stress and electric flux fields are estimated using linear strain and electric fields calculated by a linear analysis, i.e., the coupling of mode simulation. Then, their contributions are embedded as voltage and current sources, respectively, in an equivalent circuit model, and nonlinear signals appearing at external ports are estimated. It is shown that eight coefficients of the nonlinear terms can be determined from a series of experiments carried out at various driving and resulting frequencies. This is because the effect of each nonlinear term on the nonlinear signal outputs changes markedly with the conditions. When the coefficients are determined properly, the simulations agree well with some measurement results under various conditions.

  4. Nonlinear absorption and harmonic generation of laser in a gas with anharmonic clusters

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2013-02-15

    The nonlinear absorption and harmonic generation of intense short pulse laser in a gas embedded with anharmonic clusters are investigated theoretically. When the laser induced excursion of cluster electrons becomes comparable to cluster radius, the restoration force on electrons no longer remains linearly proportional to the excursion. As a consequence, the plasmon resonance is broadened, leading to broadband laser absorption. It also leads to second and third harmonic generations, at much higher level than the one due to ponderomotive nonlinearity. The harmonic yield is resonantly enhanced at the plasmon resonance {omega}={omega}{sub pe}/{radical}(3), where {omega} is the frequency of the laser and {omega}{sub pe} is the plasma frequency of cluster electrons.

  5. SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Voitenko, Y.; De Keyser, J.

    2015-02-01

    We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.

  6. Frequency-Domain Models for Nonlinear Microwave Devices Based on Large-Signal Measurements

    PubMed Central

    Jargon, Jeffrey A.; DeGroot, Donald C.; Gupta, K. C.

    2004-01-01

    In this paper, we introduce nonlinear large-signal scattering ( S) parameters, a new type of frequency-domain mapping that relates incident and reflected signals. We present a general form of nonlinear large-signal S-parameters and show that they reduce to classic S-parameters in the absence of nonlinearities. Nonlinear large-signal impedance ( Z) and admittance ( D) parameters are also introduced, and equations relating the different representations are derived. We illustrate how nonlinear large-signal S-parameters can be used as a tool in the design process of a nonlinear circuit, specifically a single-diode 1 GHz frequency-doubler. For the case where a nonlinear model is not readily available, we developed a method of extracting nonlinear large-signal S-parameters obtained with artificial neural network models trained with multiple measurements made by a nonlinear vector network analyzer equipped with two sources. Finally, nonlinear large-signal S-parameters are compared to another form of nonlinear mapping, known as nonlinear scattering functions. The nonlinear large-signal S-parameters are shown to be more general. PMID:27366621

  7. Multireflection sum frequency generation vibrational spectroscopy.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Chen, Zhan

    2015-08-18

    We developed a multireflection data collection method in order to improve the signal-to-noise ratio (SNR) and sensitivity of sum frequency generation (SFG) spectroscopy, which we refer to as multireflection SFG, or MRSFG for short. To achieve MRSFG, a collinear laser beam propagation geometry was adopted and trapezoidal Dove prisms were used as sample substrates. An in-depth discussion on the signal and SNR in MRSFG was performed. We showed experimentally, with "m" total internal reflections in a Dove prism, MRSFG signal is ∼m times that of conventional SFG; SNR of the SFG signal-to-background is improved by a factor of >m(1/2) and

  8. Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.

    PubMed

    He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui

    2016-03-01

    The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses. PMID:26974068

  9. Digital slip frequency generator and method for determining the desired slip frequency

    DOEpatents

    Klein, Frederick F.

    1989-01-01

    The output frequency of an electric power generator is kept constant with variable rotor speed by automatic adjustment of the excitation slip frequency. The invention features a digital slip frequency generator which provides sine and cosine waveforms from a look-up table, which are combined with real and reactive power output of the power generator.

  10. Sum-Frequency Generation from Chiral Media and Interfaces

    SciTech Connect

    Ji, Na

    2006-02-13

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.

  11. Generation of FCC-compliant and background-free millimeter-wave ultrawideband signal based on nonlinear polarization rotation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua

    2014-05-01

    We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).

  12. Optical vortex interaction and generation via nonlinear wave mixing

    SciTech Connect

    Lenzini, F.; Residori, S.; Bortolozzo, U.; Arecchi, F. T.

    2011-12-15

    Optical vortex beams are made to interact via degenerate two-wave mixing in a Kerr-like nonlinear medium. Vortex mixing is shown to occur inside the medium, leading to exchange of topological charge and cascaded generation of vortex beams. A mean-field model is developed and is shown to account for the selection rules of the topological charges observed after the wave-mixing process. Fractional charges are demonstrated to follow the same rules as for integer charges.

  13. Calculation of coupled secular oscillation frequencies and axial secular frequency in a nonlinear ion trap by a homotopy method.

    PubMed

    Doroudi, Alireza

    2009-11-01

    In this paper the homotopy perturbation method is used for calculation of the frequencies of the coupled secular oscillations and axial secular frequencies of a nonlinear ion trap. The motion of the ion in a rapidly oscillating field is transformed to the motion in an effective potential. The equations of ion motion in the effective potential are in the form of a Duffing-like equation. The homotopy perturbation method is used for solving the resulted system of coupled nonlinear differential equations and the resulted axial equation for obtaining the expressions for ion secular frequencies as a function of nonlinear field parameters and amplitudes of oscillations. The calculated axial secular frequencies are compared with the results of Lindstedt-Poincare method and the exact results. PMID:20365087

  14. Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations - Part I: Experimental study

    NASA Astrophysics Data System (ADS)

    Dajun, Wang; Chunyan, Zhou; Li, Junbao; Shen, Song; Li, Min; Liu, Xijun

    2013-07-01

    This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water-shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell-fluid coupled system.

  15. REVIEW ARTICLE: Optical frequency comb generation in gas-filled hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Couny, F.; Benabid, F.

    2009-10-01

    The efficiency of gas-based nonlinear processes is often limited by the diffraction of the pump laser as it propagates through the nonlinear medium. As a consequence, phenomena with strong nonlinear response requirements, such as high harmonic generation or Raman sideband generation, lack the required laser-matter interaction to fulfil their potential. Indeed, the conversion efficiency of these techniques is usually low and the experimental set-up cumbersome. The advent of hollow core photonic crystal fibre technology drafts new territories for nonlinear optics, and in particular offers new alternatives for sub-femtosecond pulse generation. The air-guiding fibre combines unprecedented laser confinement over long interaction lengths and, when filled with an adequate nonlinear gas, offers improved conversion efficiency and up to a million-fold reduction of the pump power threshold. This paper presents a review of the types of hollow core PCF available for nonlinear applications and the results obtained for efficient Raman conversion in H2-filled hollow core PCF that led to the observation of a multi-octave frequency comb spanning from ~325 to ~2300 nm using a single pump laser with relatively low power. The generated ultra-broad spectrum creates a simple route towards a compact source of attosecond pulses.

  16. Generation of low-frequency components in ultrasonic waves penetrating the interface between contacting solids

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Okamoto, T.; Kurihara, K.; Sugiura, T.

    2014-02-01

    It is difficult to detect a closed crack by conventional ultrasonic testing. However, nonlinear ultrasonics may be useful for detection of a closed crack in structures. This study experimentally examined propagation of ultrasonic waves through the interface between contacting solids. We simulated a closed crack by compressing two aluminum blocks. The input frequency was changed in the range of 1.0-2.0MHz and two different types of surface roughness of specimens were used. As a result, generation of low-frequency components at about 600 kHz was found regardless of the input frequency. Such a feature of low-frequency components is different from that of subharmonics. Additionally, this phenomenon was not confirmed in specimens with smoother surface. Therefore, surface roughness can be one of important factors of generating low-frequency components. The results suggest that these low-frequency components can be useful for detecting a closed crack.

  17. Tailoring supercontinuum generation using highly nonlinear photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Namihira, Y.; Islam, M. A.; Razzak, S. M. A.; Hirako, Y.; Miyagi, K.; Kaijage, S. F.; Higa, H.

    2012-09-01

    This paper discusses about the tailoring supercontinuum (SC) generation based on a highly nonlinear germanium (Ge) doped photonic crystal fiber (HNL-GePCF) with all normal group velocity dispersion (GVD). Using finite element method (FEM) with a circular perfectly matched boundary layer (PML), it is shown through simulations that how simply the center wavelength can be shifted from one center point to another after optimizing at a particular wavelength using the proposed HNL-GePCF. Moreover, SC spectra at 1.06, 1.31 and 1.55 μm have been generated using picosecond optical pulses produced from relatively less expensive laser sources.

  18. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  19. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed. PMID:27410862

  20. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large. PMID:27627405

  1. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Xiao, C. Z.; Wang, Q.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; He, X. T.

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number k λD e is small, such as k λD e=0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15 % when the wave amplitude |e ϕ / Te|˜0.1 , which indicates that in the condition of small k λD e , the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  2. A nonlinear screen as an element for sound absorption and frequency conversion systems

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.

    2016-01-01

    The paper discusses a model for a screen with dissipative and nonlinear elastic properties that can be used in acoustic sound absorption and frequency conversion systems. Calculation and estimation schemes are explained that are necessary for understanding the functional capabilities of the device. Examples of the nonlinear elements in the screen and promising applications are described.

  3. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  4. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    PubMed

    Magnani, Christophe; Economo, Michael N; White, John A; Moore, Lee E

    2014-01-01

    The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains. PMID:25191226

  5. Quadripartite continuous-variable entanglement generation by nondegenerate optical parametric amplification cascaded with a sum-frequency process

    NASA Astrophysics Data System (ADS)

    Yu, Youbin; Wang, HuaiJun; Zhao, Junwei; Ji, Fengmin; Wang, Yajuan; Cheng, Xiaomin

    2016-10-01

    Quadripartite continuous-variable (CV) entanglement with different optical frequencies can be generated by nondegenerate optical parametric amplification cascaded with a sum-frequency process in only one optical superlattice. Firstly, the idler beam is generated by a different frequency process between pump and signal beams. Then, the sum-frequency beam will be generated by a cascaded sum-frequency process between pump and idler beams in the same optical superlattice. The conversion dynamics of the cascaded nonlinear processes is investigated by using a quantum stochastic method. The quantum correlations among pump, signal, idler and sum-frequency beams are calculated by applying a sufficient inseparability criteria for quadripartite CV entanglement. The results show that quadripartite CV entangled beams can be produced by this single-pass cascaded nonlinear process in one optical superlattice.

  6. Signal replication by multiple sum- or difference-frequency generation.

    PubMed

    McKinstrie, C J; Agarwal, A; Banwell, T C; Dailey, J M

    2015-09-21

    In this paper, the coupled-mode equations for sum-frequency generation (SFG) and difference-frequency generation (DFG) driven by multiple pumps are solved, and the noise figures of idler generation are determined. For SFG, the (common) noise figure is n, the number of pumps (and idlers), whereas for DFG, the (common) noise figure is 2, independent of n. Thus, DFG driven by multiple pumps enables the generation of multiple low-noise idlers.

  7. Nonlinear resonant magnetoelectric interactions and efficient frequency doubling in a ferromagnetic-ferroelectric layered structure

    NASA Astrophysics Data System (ADS)

    Fetisov, L. Y.; Fetisov, Y. K.; Sreenivasulu, G.; Srinivasan, G.

    2013-03-01

    Mechanical strain mediated non-linear magnetoelectric (NLME) coupling is studied in layered composites of ferromagnetic FeBSiC and piezoelectric lead zirconate titanate (PZT) bimorph. The NLME manifests as frequency doubling in the voltage response of the sample to an applied ac magnetic field. It is shown that NLME is strong (i) in the absence of DC magnetic bias, (ii) when the frequency of h is tuned to half the frequency for bending oscillations, and (iii) a PZT bimorph (instead of a single layer of PZT) is used. A model is discussed for the non-linear magnetoelectric coupling that is of interest for RF frequency doublers.

  8. Surface acoustic wave opto-mechanical oscillator and frequency comb generator

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  9. Estimation and veering analysis of nonlinear resonant frequencies of cracked plates

    NASA Astrophysics Data System (ADS)

    Saito, A.; Castanier, M. P.; Pierre, C.

    2009-10-01

    In this paper, veering phenomena in the nonlinear vibration frequencies of a cantilevered cracked plate are investigated, and an efficient method for estimating these frequencies is proposed. Of particular interest is the vibration response in parameter regions where the natural frequency loci show veerings. For a representative finite element model, it is shown that the veerings due to crack length variation involve the switching of mode shapes and modal interactions. The nonlinearity caused by the crack closing effect is then introduced, and its effect on the vibration response near the veerings is discussed. The nonlinear forced response analysis is carried out using a hybrid frequency/time domain method, which is based on the method of harmonic balance. The nonlinear vibration response near loci veerings and crossings due to the variation of crack length is investigated in detail. Finally, a novel method for estimating the nonlinear resonant frequency is introduced by generalizing the concept of bilinear frequency approximation, and the method is validated with the results of nonlinear forced response analysis for several veering regions.

  10. Sum frequency generation studies of membrane transport phenomena

    SciTech Connect

    Dyer, R.B.; Shreve, A.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work is to study the transport of protons and ions across biological membranes, one of the most fundamental processes in living organisms, critical for energy transduction in respiration and photosynthesis and for a wide variety of cellular signal transduction events. Membrane protein structure and function, in particular proton and ion pumping are poorly understood. The authors have developed sum frequency generation (SFG) spectroscopy for the study of membrane phenomena, a nonlinear spectroscopic technique that is uniquely sensitive to interfaces and with demonstrated structural specificity. They have used SFG and conventional vibrational spectroscopic approaches to study proton transport processes in cytochrome c oxidase. A key finding has been the identification of vibrational modes associated with proton labile groups, including a glutamic acid near the redox active binuclear center and structural waters. These groups are sensitive to the ligation and redox states of the metal centers and hence are ideal candidates for coupling redox energy to proton transport processes.

  11. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Chakrabarti, Nikhil

    2016-08-01

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev-Petviashvili solitons.

  12. Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Ren, Bo; Liang, Zhu; Chen, Jianwei; Zhang, Haiwu; Yue, Qingwen; Xu, Qing; Zhao, Xiangyong; Luo, Haosu

    2012-11-01

    Cantilever driving low frequency piezoelectric energy harvester (CANDLE) has been found as a promising structure for vibration energy harvesting. This paper presents the nonlinear output properties of the CANDLE to optimize the performance of the device. Simulation results of the finite element method illustrate that nonlinear contacts between the cymbal transducers and the cantilever beam are main reasons of the nonlinear output. However, high excitation acceleration of the nonlinear leap point limits the application of the device. Based on the simulation results and theory analysis, the excitation acceleration is reduced to 30 m/s2 by increasing the proof mass.

  13. Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients

    NASA Astrophysics Data System (ADS)

    Fenimore, D. L.; Schepler, K. L.; Zelmon, D.; Kück, S.; Ramabadran, U. B.; von Richter, P.; Small, D.

    1996-09-01

    Rubidium titanyl arsenate (RTA), a crystallographic isomorph of potassium titanyl phosphate, shows promise for nonlinear-frequency generation throughout the 1-5- mu m spectral region. Difference-frequency generation in an RTA crystal produced tunable output in the 3.2-4.2- mu m wavelength range. A single 1.064- mu m Nd:YAG laser pumped both a LiNbO3 optical parametric oscillator used to generate a tunable signal beam and the RTA crystal used for difference-frequency generation. Conversion efficiencies were limited to 4% primarily by the large beam divergence of the signal beam. Phase-matching measurements were in excellent agreement with new IR-corrected RTA Sellmeier equations based on refractive-index measurements. .

  14. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  15. Photon wave function formalism for analysis of Mach-Zehnder interferometer and sum-frequency generation

    NASA Astrophysics Data System (ADS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-08-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach-Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  16. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion.

    PubMed

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  17. Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia

    2015-11-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.

  18. Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity

    NASA Astrophysics Data System (ADS)

    Guha, Anurup; Bijudas, C. R.

    2016-04-01

    Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.

  19. Generation of multiple optical frequencies referenced to a frequency comb for precision free-space frequency transfer

    NASA Astrophysics Data System (ADS)

    Chun, Byung Jae; Kang, Hyun Jay; Kim, Young-Jin; Kim, Seung-Woo

    2016-03-01

    Generating multiple optical frequencies referenced to the frequency standard is an important task in optical clock dissemination and optical communication. An apparatus for frequency-comb-referenced generation of multiple optical frequencies is demonstrated for high-precision free-space transfer of multiple optical frequencies. The relative linewidth and frequency instability at each channel corresponds to sub-1 Hz and 1.06×10-15 at 10 s averaging time, respectively. During the free-space transfer, the refractive index change of transmission media caused by atmospheric turbulences induces phase and frequency noise on optical frequencies. These phase and frequency noise causes induced linewidth broadening and frequency shift in optical frequencies which can disturb the accurate frequency transfer. The proposed feedback loop with acousto-optic modulator can monitor and compensate phase/frequency noise on optical frequencies. As a result, a frequency-comb-referenced single optical mode is compensated with a high signal to noise ratio (SNR) of 80 dB. By sharing the same optical paths, this feedback loop is confirmed to be successfully transferred to the neighboring wavelength channels (a 100 GHz spaced channel). This result confirms our proposed system can transfer optical frequencies to the remote site in free-space without performance degradation.

  20. High-speed measurement of rotational anisotropy nonlinear optical harmonic generation using position-sensitive detection.

    PubMed

    Harter, J W; Niu, L; Woss, A J; Hsieh, D

    2015-10-15

    We present a method of performing high-speed rotational anisotropy nonlinear optical harmonic generation experiments at rotational frequencies of several hertz by projecting the harmonic light reflected at different angles from a sample onto a stationary position-sensitive detector. The high rotational speed of the technique, 10(3) to 10(4) times larger than existing methods, permits precise measurements of the crystallographic and electronic symmetries of samples by averaging over low frequency laser-power, beam-pointing, and pulse-width fluctuations. We demonstrate the sensitivity of our technique by resolving the bulk fourfold rotational symmetry of GaAs about its [001] axis using second-harmonic generation. PMID:26469591

  1. Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-09-01

    We demonstrate what is to our knowledge the first frequency-resolved optical gating (FROG) technique to measure ultrashort pulses from an unamplified Ti:sapphire laser oscillator without direction-of-time ambiguity. This technique utilizes surface third-harmonic generation as the nonlinear-optical effect and, surprisingly, is the most sensitive third-order FROG geometry yet. {copyright} {ital 1996 Optical Society of America.}

  2. Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.

    2016-04-01

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    PubMed Central

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  4. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    SciTech Connect

    Volkov, Victor

    2014-10-21

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets’ surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  5. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation.

    PubMed

    Wu, Rui; Torres-Company, Victor; Leaird, Daniel E; Weiner, Andrew M

    2013-03-11

    The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.

  6. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    NASA Astrophysics Data System (ADS)

    Volkov, Victor

    2014-10-01

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets' surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  7. Hybrid highly nonlinear fiber for spectral supercontinuum generation in mobile femtosecond clockwork

    NASA Astrophysics Data System (ADS)

    Korel, I. I.; Nyushkov, B. N.; Denisov, V. I.; Pivtsov, V. S.; Koliada, N. A.; Sysoliatin, A. A.; Ignatovich, S. M.; Kvashnin, N. L.; Skvortsov, M. N.; Bagayev, S. N.

    2014-07-01

    We have proposed and tested a novel design of a short-length dispersion-managed hybrid highly nonlinear fiber (HNLF), which is intended for low-noise spectral supercontinuum generation with controlled intensity distribution over the range 1-2 µm. It is shown experimentally that such a HNLF facilitates development of a mobile femtosecond optical clockwork, which is based on a fiber-optic femtosecond laser system and an original fiber-coupled Nd : YAG/I2 optical frequency standard with a long-term instability lowered to 3 × 10-15.

  8. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, William R.; Wilson, Emma D.; Assaf, Tareq; Rossiter, Jonathan; Dodd, Tony J.; Porrill, John; Anderson, Sean R.

    2015-05-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input-output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics.

  9. Time-frequency analysis for parametric and non-parametric identification of nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.

    2013-04-01

    This paper points out the differences between linear and nonlinear system identification tasks, shows that time-frequency analysis is most appropriate for nonlinearity identification, and presents advanced signal processing techniques that combine time-frequency decomposition and perturbation methods for parametric and non-parametric identification of nonlinear dynamical systems. Hilbert-Huang transform (HHT) is a recent data-driven adaptive time-frequency analysis technique that combines the use of empirical mode decomposition (EMD) and Hilbert transform (HT). Because EMD does not use predetermined basis functions and function orthogonality for component extraction, HHT provides more concise component decomposition and more accurate time-frequency analysis than the short-time Fourier transform and wavelet transform for extraction of system characteristics and nonlinearities. However, HHT's accuracy seriously suffers from the end effect caused by the discontinuity-induced Gibbs' phenomenon. Moreover, because HHT requires a long set of data obtained by high-frequency sampling, it is not appropriate for online frequency tracking. This paper presents a conjugate-pair decomposition (CPD) method that requires only a few recent data points sampled at a low-frequency for sliding-window point-by-point adaptive time-frequency analysis and can be used for online frequency tracking. To improve adaptive time-frequency analysis, a methodology is developed by combining EMD and CPD for noise filtering in the time domain, reducing the end effect, and dissolving other mathematical and numerical problems in time-frequency analysis. For parametric identification of a nonlinear system, the methodology processes one steady-state response and/or one free damped transient response and uses amplitude-dependent dynamic characteristics derived from perturbation analysis to determine the type and order of nonlinearity and system parameters. For non-parametric identification, the methodology

  10. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Technical Reports Server (NTRS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-01-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  11. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Astrophysics Data System (ADS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-11-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  12. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    PubMed

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses. PMID:24515065

  13. Phase matching in frequency mixing with internally generated waves

    NASA Astrophysics Data System (ADS)

    Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.

    1983-11-01

    The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.

  14. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  15. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle.

    PubMed

    Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P

    2010-04-19

    Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages.

  16. Simultaneous generation of a frequency-multiplied and phase-shifted microwave signal with large tunability.

    PubMed

    Feng, Danqi; Xie, Heng; Chen, Guodong; Qian, Lifen; Sun, Junqiang

    2014-07-28

    We demonstrate a photonic approach to simultaneously realize a frequency-multiplied and phase-shifted microwave signal based on the birefringence effects in the high nonlinear fiber. The phase shift caused by asymmetric variations in refractive indexes of fiber between two orthogonal polarization states is introduced into two coherent harmonic of the modulated signals. By beating the phase-modulated sidebands, a frequency-multiplied microwave signal is generated and its phase can be adjusted by simply controlling the pump power. A microwave signal at doubled- or quadrupled-frequency with a full 2π phase shift is obtained over a frequency range from 10 GHz to 30 GHz. The proposed approach has the potential applications in the system with larger-broadband, higher-frequency and -data-rate system, even to handle a multi-wavelength operation.

  17. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    PubMed Central

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method. PMID:25133237

  18. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    PubMed

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  19. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.

    PubMed

    Chen, Nelson G

    2016-08-01

    Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.

  20. Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO(4) for quantum computing over the optical frequency comb.

    PubMed

    Pysher, Matthew; Bahabad, Alon; Peng, Peng; Arie, Ady; Pfister, Olivier

    2010-02-15

    We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ (type 0), ZYY (type I), and YYZ/YZY (type II) second-harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO(4) crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator. PMID:20160819

  1. Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO(4) for quantum computing over the optical frequency comb.

    PubMed

    Pysher, Matthew; Bahabad, Alon; Peng, Peng; Arie, Ady; Pfister, Olivier

    2010-02-15

    We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ (type 0), ZYY (type I), and YYZ/YZY (type II) second-harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO(4) crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator.

  2. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    SciTech Connect

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-08-15

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas.

  3. 17. Control Area, Frequency Changer and Generator Building VIEW NORTHWEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Control Area, Frequency Changer and Generator Building VIEW NORTHWEST, SOUTH AND EAST ELEVATION - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  4. 18. Control Area, Frequency Changer and Generator Building, interior view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Control Area, Frequency Changer and Generator Building, interior view of remaining control panels VIEW WEST - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  5. 14. Control Area, Interconnecting Corridor and Frequency Changer and Generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Control Area, Interconnecting Corridor and Frequency Changer and Generator Building, general view VIEW SOUTHWEST, NORTH ELEVATION - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  6. Frequency-resolved optical grating using third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.

    1995-12-01

    We demonstrate the first frequency-resolved optical gating measurement of an laser oscillator without the time ambiguity using third-harmonic generation. The experiment agrees well with the phase-retrieved spectrograms.

  7. Spatial Frequency Clustering in Nonlinear Dust-Density Waves

    SciTech Connect

    Menzel, K. O.; Arp, O.; Piel, A.

    2010-06-11

    Self-excited density waves were studied in a strongly coupled dusty plasma of a radio-frequency discharge under microgravity conditions. The spatiotemporal evolution of the complicated three-dimensional wave field was investigated and analyzed for two different situations. The reconstructed instantaneous phase information of the wave field revealed a partial synchronization within multiple distinct domains. The boundaries of these regions coincide with the locations of topological defects.

  8. Frequency dependence of optical third-harmonic generation from doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-01-01

    In connection with the controversial question about the frequency dependence of the optical third-harmonic generation (THG) from doped graphene, which has recently been discussed in the literature, we develop an analytical theory for the THG susceptibility of doped graphene by using the original Genkin-Mednis nonlinear-conductivity-theory formalism including mixed intra- and interband terms. The theory is free of any nonphysical divergences at zero frequency, and it predicts the main resonant peak in the THG spectrum to be located at the photon energy ħω equal to two thirds of the Fermi energy EF of charge carriers in doped graphene.

  9. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators.

    PubMed

    Jung, Hojoong; Fong, King Y; Xiong, Chi; Tang, Hong X

    2014-01-01

    Aluminum nitride (AlN) has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an AlN microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply an electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.

  10. Theory of sum frequency generation from metal surfaces

    NASA Astrophysics Data System (ADS)

    Liebsch, A.

    The time-dependent density functional approach is used to evaluate the optical sum frequency generation from metal surfaces. Attention is focussed on the magnitude and frequency variation of the element χzzz(ω1,ω2). Four types of metal surfaces are considered: simple metals, alkali metal overlayers, noble metals, and charged metal surfaces. Differences and similarities with respect to second harmonic generation from these surfaces are pointed out.

  11. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  12. Transient-evoked otoacoustic emission generators in a nonlinear cochlea.

    PubMed

    Moleti, Arturo; Botti, Teresa; Sisto, Renata

    2012-04-01

    This study focuses on the theoretical prediction and experimental evaluation of the latency of transient-evoked otoacoustic emissions. Response components with different delay have been identified in several studies. The main generator of the transient response is assumed to be coherent reflection from cochlear roughness near the resonant place. Additional components of different latency can be generated by different mechanisms. Experimental data are re-analyzed in this study to evaluate the dependence of the latency on stimulus level, for each component of the response, showing that previous estimates of the otoacoustic emission latency were affected by systematic errors. The latency of the emission from each generator changes very little with stimulus level, whereas their different growth rate causes sharp changes of the single-valued latency, estimated as the time of the absolute maximum of the bandpass filtered response. Results of passive linear models, in which gain and bandwidth of the cochlear amplifier are strictly related, are incompatible with the observations. Although active linear models including delayed stiffness terms do predict much slower dependence of latency on the stimulus level, a suitable nonlinear model should be designed, capable of decoupling more effectively the dependence on stimulus level of amplitude and phase of the otoacoustic response.

  13. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm. PMID:26573690

  14. Nonlinear modification of the laser noise power spectrum induced by frequency-shifted optical feedback

    NASA Astrophysics Data System (ADS)

    Lacot, Eric; Houchmandzadeh, Bahram; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier

    2016-09-01

    In this article, we study the nonlinear coupling between the stationary (i.e., the beating modulation signal) and transient (i.e., the laser quantum noise) dynamics of a laser subjected to frequency-shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback conditions. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal, and the shape of the noise power spectrum gives an image of the transfer modulation function (i.e., of the amplification gain) of the nonlinear-laser dynamics. The theoretical predictions, confirmed by numerical resolutions, are in good agreement with the experimental data.

  15. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  16. Evaluation of frequency dependent non-linear optical property using long-range correction method

    NASA Astrophysics Data System (ADS)

    Yokoi, Yukina; Ishimaru, Hiroki; Kamiya, Muneaki; Sekino, Hideo

    2015-02-01

    We for the first time performed a systematic evaluation of dynamic second hyperpolarizabilities corresponding to all the third-order Nonlinear Optical (NLO) processes using Time Dependent Density Functional Theory (TDDFT) with exchange functional corrected for long-range interaction. We develop a program system which quantitatively evaluate the frequency dependent non-linear optical property of molecules, and apply to the polyene molecules of different lengths. The dispersion curves obtained for each NLO processes have divergence at the frequency corresponding to the one predicted by Sum Over State (SOS) interpretation of the property.

  17. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide

    PubMed Central

    Kuyken, Bart; Ideguchi, Takuro; Holzner, Simon; Yan, Ming; Hänsch, Theodor W.; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picqué, Nathalie

    2015-01-01

    Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500–3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip. PMID:25697764

  18. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  19. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide.

    PubMed

    Kuyken, Bart; Ideguchi, Takuro; Holzner, Simon; Yan, Ming; Hänsch, Theodor W; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picqué, Nathalie

    2015-01-01

    Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500-3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip. PMID:25697764

  20. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Saito, Yoshihiko; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Takazawa, Akira; Kato, Mayumi; Ito, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-06-01

    We developed a high power and high beam quality 589 nm coherent light source by sum-frequency generation in order to utilize it as a laser guide star at the Subaru telescope. The sum-frequency generation is a nonlinear frequency conversion in which two mode-locked Nd:YAG lasers oscillating at 1064 and 1319 nm mix in a nonlinear crystal to generate a wave at the sum frequency. We achieved the qualities required for the laser guide star. The power of laser is reached to 4.5 W mixing 15.65 W at 1064 nm and 4.99 W at 1319 nm when the wavelength is adjusted to 589.159 nm. The wavelength is controllable in accuracy of 0.1 pm from 589.060 and 589.170 nm. The stability of the power holds within 1.3% during seven hours operation. The transverse mode of the beam is the TEM 00 and M2 of the beam is smaller than 1.2. We achieved these qualities by the following technical sources; (1) simple construction of the oscillator for high beam quality, (2) synchronization of mode-locked pulses at 1064 and 1319 nm by the control of phase difference between two radio frequencies fed to acousto-optic mode lockers, (3) precise tunability of wavelength and spectral band width, and (4) proper selection of nonlinear optical crystal. We report in this paper how we built up each technical source and how we combined those.

  1. Difference-frequency generation of optical radiation from two-color x-ray pulses.

    PubMed

    Shwartz, E; Shwartz, S

    2015-03-23

    We describe the process of difference-frequency generation of short optical pulses from two-color X-ray pulses. By assuming 10¹¹ photons per X-ray pulse, we predict that the optical count rate can exceed 10⁷ photons per pulse. Similar to other effects involving nonlinear interactions of X-rays and optical radiation, the effect we describe can be used for microscopic studies of chemical bonds and as a probe for light-matter interactions on the atomic scale. Since the X-ray damage threshold is much higher than the optical damage threshold, the efficiency of difference-frequency generation from two X-ray pulses is expected to be orders of magnitude higher than the efficiency of effects such as sum/difference-frequency mixing between X-rays and optical intense short-pulse sources. PMID:25837087

  2. Hydrodynamic model for sum and difference frequency generation at metal surfaces

    NASA Astrophysics Data System (ADS)

    Maytorena, Jesús A.; Mochán, W. Luis; Mendoza, Bernardo S.

    1998-01-01

    We develop a hydrodynamic model for the calculation of sum and difference frequency generation (SFG/DFG) at the surface of nonlocal conductors with arbitrary equilibrium electronic density profiles n0. We apply our model to simple profiles and calculate the nonlinear surface susceptibility tensor χszzz(ω1,ω2) and the radiated efficiency R(ω3=ω1+/-ω2) as a function of the pump frequencies ω1 and ω2. R is strongly enhanced due to the excitation of the dipolar surface plasmon characterized by a resonant frequency ωd it displays ridges whenever ω1, ω2, or ω3~ωd, an additional ridge at the bulk plasma frequency ω3~ωb, and very large double resonance peaks whenever two ridges cross each other. These results suggest that SFG/DFG spectroscopy might be a useful probe of surface collective modes.

  3. Time-frequency analysis of nonlinear and non-stationary weak signals of corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Shanghe; Wei, Ming; Hu, Xiao Feng

    2013-03-01

    It is very useful to study the signals radiated from corona discharges for the purposes of high-voltage line monitoring. Time-frequency analysis can clearly reveal the time-varying spectrum characteristics of such signals, which is very useful for analyzing and processing the non-linear and non-stationary weak signals, such as the signals radiated from corona discharges. Several time-frequency analysis methods, such as the Short-Time Fourier Transform (STFT), Wigner-Ville distribution and the Hilbert-Huang Transform (HHT) and so on, are used in this paper. The simulation data with the same and different amplitudes are comparatively analyzed by these time-frequency distribution methods. It can be concluded that the time-frequency analysis method based on HHT is more efficient to identify and suitable for the non-linear and non-stationary weak signals.

  4. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  5. Nonlinear generation of whistler waves by an ion beam

    NASA Technical Reports Server (NTRS)

    Akimoto, K.; Winske, D.

    1989-01-01

    An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.

  6. Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying

    2014-11-01

    Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.

  7. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-05-01

    Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.

  8. High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal.

    PubMed

    Chen, Bao-Qin; Zhang, Chao; Hu, Chen-Yang; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-08-21

    Nonlinear frequency conversion offers an effective way to expand the laser wavelength range based on birefringence phase matching (BPM) or quasi-phase-matching (QPM) techniques in nonlinear crystals. So far, efficient high-harmonic generation is enabled only via multiple cascaded crystals because of the extreme difficulty to simultaneously satisfy BPM or QPM for multiple nonlinear up-conversion processes within a single crystal. Here we report the design and fabrication of a chirped periodic poled lithium niobate (CPPLN) nonlinear crystal that offers controllable multiple QPM bands to support 2nd-8th harmonic generation (HG) simultaneously. Upon illumination of a mid-IR femtosecond pulse laser, we observe the generation of an ultrabroadband visible white light beam corresponding to 5th-8th HG with a record high conversion efficiency of 18%, which is high compared to conventional supercontinuum generation, especially in the HG parts. Our CPPLN scheme opens up a new avenue to explore and engineer novel nonlinear optical interactions in solid state materials for application in ultrafast lasers and broadband laser sources. PMID:26340190

  9. High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal.

    PubMed

    Chen, Bao-Qin; Zhang, Chao; Hu, Chen-Yang; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-08-21

    Nonlinear frequency conversion offers an effective way to expand the laser wavelength range based on birefringence phase matching (BPM) or quasi-phase-matching (QPM) techniques in nonlinear crystals. So far, efficient high-harmonic generation is enabled only via multiple cascaded crystals because of the extreme difficulty to simultaneously satisfy BPM or QPM for multiple nonlinear up-conversion processes within a single crystal. Here we report the design and fabrication of a chirped periodic poled lithium niobate (CPPLN) nonlinear crystal that offers controllable multiple QPM bands to support 2nd-8th harmonic generation (HG) simultaneously. Upon illumination of a mid-IR femtosecond pulse laser, we observe the generation of an ultrabroadband visible white light beam corresponding to 5th-8th HG with a record high conversion efficiency of 18%, which is high compared to conventional supercontinuum generation, especially in the HG parts. Our CPPLN scheme opens up a new avenue to explore and engineer novel nonlinear optical interactions in solid state materials for application in ultrafast lasers and broadband laser sources.

  10. High-Efficiency Broadband High-Harmonic Generation from a Single Quasi-Phase-Matching Nonlinear Crystal

    NASA Astrophysics Data System (ADS)

    Chen, Bao-Qin; Zhang, Chao; Hu, Chen-Yang; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-08-01

    Nonlinear frequency conversion offers an effective way to expand the laser wavelength range based on birefringence phase matching (BPM) or quasi-phase-matching (QPM) techniques in nonlinear crystals. So far, efficient high-harmonic generation is enabled only via multiple cascaded crystals because of the extreme difficulty to simultaneously satisfy BPM or QPM for multiple nonlinear up-conversion processes within a single crystal. Here we report the design and fabrication of a chirped periodic poled lithium niobate (CPPLN) nonlinear crystal that offers controllable multiple QPM bands to support 2nd-8th harmonic generation (HG) simultaneously. Upon illumination of a mid-IR femtosecond pulse laser, we observe the generation of an ultrabroadband visible white light beam corresponding to 5th-8th HG with a record high conversion efficiency of 18%, which is high compared to conventional supercontinuum generation, especially in the HG parts. Our CPPLN scheme opens up a new avenue to explore and engineer novel nonlinear optical interactions in solid state materials for application in ultrafast lasers and broadband laser sources.

  11. Electron–phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2016-09-01

    This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped–clamped boundary conditions.

  12. Electron-phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2016-09-01

    This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.

  13. Nonlinear-optical frequency-doubling metareflector: pulsed regime

    NASA Astrophysics Data System (ADS)

    Popov, A. K.; Myslivets, S. A.

    2016-01-01

    The properties of backward-wave second-harmonic metareflector operating in pulse regime are investigated. It is made of metamaterial which enables phase matching of contra-propagating fundamental and second-harmonic waves. References are given to the works that prove such a possibility. Physical principles underlying differences in the proposed and standard settings as well as between continuous-wave and pulsed regimes are discussed. Pulsed regime is more practicable and has a broader scope of applications. A set of partial differential equations which describe such a reflector with the account for losses are solved numerically. It is shown that unlike second-harmonic generation in standard settings, contra-propagating pulse of second harmonic may become much longer than the incident fundamental one and the difference grows with decrease in the input pulse length as compared to thickness of the metaslab. The revealed properties are important for applications and may manifest themselves beyond the optical wavelength range.

  14. Instantaneous stepped-frequency, non-linear radar part 2: experimental confirmation

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Mazzaro, Gregory; Gallagher, Kyle; Martone, Anthony; Sherbondy, Kelly; Narayanan, Ram

    2016-05-01

    Last year, we presented the theory behind "instantaneous stepped-frequency, non-linear radar". We demonstrated through simulation that certain devices (when interrogated by a multi-tone transmit signal) could be expected to produce a multi-tone output signal near harmonics of the transmitted tones. This hypothesized non-linear (multitone) response was then shown to be suitable for pulse compression via standard stepped-frequency processing techniques. At that time, however, we did not have measured data to support the theoretical and simulated results. We now present laboratory measurements confirming our initial hypotheses. We begin with a brief description of the experimental system, and then describe the data collection exercise. Finally, we present measured data demonstrating the accurate ranging of a non-linear target.

  15. High frequency analysis of a plate carrying a concentrated nonlinear spring-mass system

    NASA Astrophysics Data System (ADS)

    Culver, Dean; Dowell, Earl

    2016-09-01

    Examining the behavior of dynamical systems with many degrees of freedom undergoing random excitation at high frequency often requires substantial computation. These requirements are even more stringent for nonlinear systems. One approach for describing linear systems, Asymptotic Modal Analysis (AMA), has been extended to nonlinear systems in this paper. A prototypical system, namely a thin plate carrying a concentrated hardening cubic spring-mass, is explored. The study focuses on the response of three principal variables to random, frequency-bounded excitation: the displacement of the mounting location of the discrete spring-mass, the relative displacement of the discrete mass to this mounting location, and the absolute displacement of the discrete mass. The results indicate that extending AMA to nonlinear systems for input frequency bands containing a large number of modes is feasible. Several advantageous properties of nonlinear AMA are found, and an additional reduced frequency-domain modal method, Dominance-Reduced Classical Modal Analysis (DRCMA), is proposed that is intermediate in accuracy and the cost of computation between AMA and Classical Modal Analysis (CMA).

  16. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  17. Spatial properties of entangled photon pairs generated in nonlinear layered structures

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.

    2011-11-01

    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also, structures efficiently generated photon pairs showing antibunching and anticoalescence can be obtained. Three reasons for splitting the correlated area in photonic-band-gap structures are revealed: zig-zag movement of photons inside the structure, spatial symmetry, and polarization-dependent properties. Also, spectral splitting can be observed in these structures.

  18. Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline

    NASA Astrophysics Data System (ADS)

    Diamessis, P. J.; Wunsch, S.; Delwiche, I.; Richter, M. P.

    2014-06-01

    The interaction of an internal wave beam (IWB) with an idealized oceanic pycnocline is examined using two-dimensional fully nonlinear direct numerical simulations based on a spectral multidomain penalty method in the vertical direction. The phenomenon of focus is the nonlinear generation of harmonics. A total of 24 simulations have been performed, varying the normalized pycnocline thickness and the ratio of peak pycnocline Brunt-Väisälä frequency to that of the stratified lower layer. Harmonics at the point of IWB entry into the pycnocline increase in amplitude and number with a measure of the maximum gradient of the Brunt-Väisälä frequency, suggesting refraction as an important factor in harmonic generation. Among the simulations performed, two distinct limits of pycnocline thickness are identified. For thin pynoclines, whose thickness is 10% of the incident IWB's horizontal wavelength, harmonics trapped within the pycnocline have maximum amplitude when their frequency and wavenumber match those of the natural pycnocline interfacial wave mode. Results in this case are compared with weakly nonlinear theory for harmonic generation by plane wave refraction. For thicker pycnoclines, whose thickness is equal the incident IWB's horizontal wavelength, IWB refraction results in harmonic generation at multiple locations in addition to pycnocline entry, giving rise to complex flow structure inside the pycnocline.

  19. High power and high SFDR frequency conversion using sum frequency generation in KTP waveguides.

    PubMed

    Barbour, Russell J; Brewer, Tyler; Barber, Zeb W

    2016-08-01

    We characterize the intermodulation distortion of high power and efficient frequency conversion of modulated optical signals based on sum frequency generation (SFG) in a periodically poled potassium titanyl phosphate (KTP) waveguide. Unwanted frequency two-tone spurs are generated near the converted signal via a three-step cascaded three-wave mixing process. Computer simulations describing the process are presented along with the experimental measurements. High-conversion efficiencies and large spur-free dynamic range of the converted optical signal are demonstrated. PMID:27472638

  20. Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method.

    PubMed

    Mezil, Sylvain; Chigarev, Nikolay; Tournat, Vincent; Gusev, Vitalyi

    2016-07-01

    The local evaluation of several parameters of a crack is realized with a nonlinear laser ultrasonic method. The method is based on the sample excitation by two laser beams, independently intensity modulated at two cyclic frequencies ωH and ωL (ωH≫ωL) and on the detection of nonlinear frequency-mixing ultrasonic components at frequencies ωH±nωL (n an integer). Frequency-mixing is a nonlinear process originating from the modulation of the crack state at low frequency ωL by laser-induced thermo-elastic stresses, which causes in turn the modulation of the acoustic waves at frequency ωH reflected/transmitted by the crack. We carry experiments with increasing laser power and observe a non-monotonous variation in the amplitude of up to 6 nonlinear sidelobes. We also improve a previously introduced theoretical model which leads to interpreting the experimental observations by the combined action on the crack of the thermo-elastic waves at low frequency ωL and of the stationary thermo-elastic stresses at ω=0. The latter are induced by the average laser power absorbed by the sample. While thermo-elastic wave can periodically modulate the parameters of the crack up to its periodic opening/closing, the stationary heating could cause complete local closure of the crack. By fitting the experimental amplitude evolutions for all monitored sidelobes with the theoretically predicted ones, various local parameters of the crack are extracted, including its local width and effective rigidity.

  1. Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping

    NASA Astrophysics Data System (ADS)

    Lebreuilly, José; Wouters, Michiel; Carusotto, Iacopo

    2016-10-01

    We report a theoretical study of a quantum optical model consisting of an array of strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted two-level atoms. Projective methods are used to eliminate the atomic dynamics and write a generalized master equation for the photonic degrees of freedom only, where the frequency-dependence of gain introduces non-Markovian features. In the simplest single cavity configuration, this pumping scheme gives novel optical bistability effects and allows for the selective generation of Fock states with a well-defined photon number. For many cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a Grand-Canonical statistical ensemble at a temperature determined by the effective atomic linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott state with one photon per cavity are found.

  2. Remoted all optical instantaneous frequency measurement system using nonlinear mixing in highly nonlinear optical fiber.

    PubMed

    Bui, Lam Anh; Mitchell, Arnan

    2013-04-01

    A novel remoted instantaneous frequency measurement system using all optical mixing is demonstrated. This system copies an input intensity modulated optical carrier using four wave mixing, delays this copy and then mixes it with the original signal, to produce an output idler tone. The intensity of this output can be used to determine the RF frequency of the input signal. This system is inherently broadband and can be easily scaled beyond 40 GHz while maintaining a DC output which greatly simplifies receiving electronics. The remoted configuration isolates the sensitive and expensive receiver hardware from the signal sources and importantly allows the system to be added to existing microwave photonic implementations without modification of the transmission module. PMID:23571944

  3. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  4. Multifunctional radio-frequency generator for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  5. Efficient Generation of Frequency-Multiplexed Entangled Single Photons

    NASA Astrophysics Data System (ADS)

    Qiu, Tian-Hui; Xie, Min

    2016-08-01

    We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.

  6. Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Defoort, M.; Taheri-Tehrani, P.; Horsley, D. A.

    2016-10-01

    Resonators used in frequency-reference oscillators must maintain a stable frequency output even when subjected to temperature variations. The traditional solution is to construct the resonator from a material with a low temperature coefficient, such as AT-cut quartz, which can achieve absolute frequency stability on the order of ±25 ppm over commercial temperature ranges. In comparison, Si microresonators suffer from the disadvantage that silicon's temperature coefficient of frequency (TCF) is approximately two orders of magnitude greater than that of AT-cut quartz. In this paper, we present an in situ passive temperature compensation scheme for Si microresonators based on nonlinear amplitude-frequency coupling which reduces the TCF to a level comparable with that of an AT-quartz resonator. The implementation of this passive technique is generic to a variety of Si microresonators and can be applied to a number of frequency control and timing applications.

  7. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    SciTech Connect

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-12-31

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength {lambda}=8.5 {mu}m suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length N{lambda}. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users` experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 {mu}m have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up.

  8. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    PubMed Central

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  9. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  10. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  11. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    PubMed Central

    Jing, Yun; Tao, Molei; Clement, Greg T.

    2011-01-01

    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985

  12. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    PubMed

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  13. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.; Zhang, W.; Sun, G. Y.; Fisch, N. J.

    2015-10-15

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  14. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  15. Research on testing the nonlinear optical performance of nonlinear optical materials based on the effect of second-harmonic generation.

    PubMed

    Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong

    2014-01-01

    In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.

  16. Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state

    SciTech Connect

    Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey; Sergeev, A.; Bollinger, Anthony T.; Božović, Ivan

    2015-02-20

    The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency νcut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above νcut. Thus, high-frequency radiation is much less effective in inducing vortex-antivortex dissociation in the oscillating superconducting condensate.

  17. Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state

    DOE PAGESBeta

    Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey; Sergeev, A.; Bollinger, Anthony T.; Božović, Ivan

    2015-02-20

    The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency νcut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above νcut. Thus, high-frequency radiation is much less effective inmore » inducing vortex-antivortex dissociation in the oscillating superconducting condensate.« less

  18. The Sensitive Infrared Signal Detection by Sum Frequency Generation

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin

    2013-01-01

    An up-conversion device that converts 2.05-micron light to 700 nm signal by sum frequency generation using a periodically poled lithium niobate crystal is demonstrated. The achieved 92% up-conversion efficiency paves the path to detect extremely weak 2.05-micron signal with well established silicon avalanche photodiode detector for sensitive lidar applications.

  19. Generation of difference frequencies in nonhelicoidal smectic liquid crystals

    SciTech Connect

    Andreev, A L; Andreeva, T B; Kompanets, I N

    2011-10-31

    Generation of six difference frequencies in cells with nonhelicoidal smectic liquid crystals for six argon laser lines has been experimentally obtained for the first time. The maximum energy conversion efficiency is about 3% at a total input radiation power of 125 mW.

  20. Effect of Gaussian intensity profiles on difference-frequency generation

    NASA Astrophysics Data System (ADS)

    Rustagi, K. C.; Gupta, P. K.

    1980-04-01

    The effect of a Gaussian intensity profile on the efficiency of difference-frequency generation in the near-field limit is evaluated. The effect of a nonuniform intensity profile in the incident beams are significant qualitatively as well as quantitatively. These effects become more important when the incident pump intensity is much larger than the incident idler intensity.

  1. Nonlinearly-constrained optimization using asynchronous parallel generating set search.

    SciTech Connect

    Griffin, Joshua D.; Kolda, Tamara Gibson

    2007-05-01

    Many optimization problems in computational science and engineering (CS&E) are characterized by expensive objective and/or constraint function evaluations paired with a lack of derivative information. Direct search methods such as generating set search (GSS) are well understood and efficient for derivative-free optimization of unconstrained and linearly-constrained problems. This paper addresses the more difficult problem of general nonlinear programming where derivatives for objective or constraint functions are unavailable, which is the case for many CS&E applications. We focus on penalty methods that use GSS to solve the linearly-constrained problems, comparing different penalty functions. A classical choice for penalizing constraint violations is {ell}{sub 2}{sup 2}, the squared {ell}{sub 2} norm, which has advantages for derivative-based optimization methods. In our numerical tests, however, we show that exact penalty functions based on the {ell}{sub 1}, {ell}{sub 2}, and {ell}{sub {infinity}} norms converge to good approximate solutions more quickly and thus are attractive alternatives. Unfortunately, exact penalty functions are discontinuous and consequently introduce theoretical problems that degrade the final solution accuracy, so we also consider smoothed variants. Smoothed-exact penalty functions are theoretically attractive because they retain the differentiability of the original problem. Numerically, they are a compromise between exact and {ell}{sub 2}{sup 2}, i.e., they converge to a good solution somewhat quickly without sacrificing much solution accuracy. Moreover, the smoothing is parameterized and can potentially be adjusted to balance the two considerations. Since many CS&E optimization problems are characterized by expensive function evaluations, reducing the number of function evaluations is paramount, and the results of this paper show that exact and smoothed-exact penalty functions are well-suited to this task.

  2. Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone

    DOE PAGESBeta

    Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Schubnel, Alexandre; Fortin, Jerome

    2016-04-14

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less

  3. Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber.

    PubMed

    Nicholson, J W; Bise, R; Alonzo, J; Stockert, T; Trevor, D J; Dimarcello, F; Monberg, E; Fini, J M; Westbrook, P S; Feder, K; Grüner-Nielsen, L

    2008-01-01

    Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF. PMID:18157247

  4. Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Leo, F.; Hansson, T.; Ricciardi, I.; De Rosa, M.; Coen, S.; Wabnitz, S.; Erkintalo, M.

    2016-01-01

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behavior. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems. We expect our findings to have wide impact on the study of temporal and spectral dynamics in a diverse range of dispersive, quadratically nonlinear resonators.

  5. Optical sum-frequency generation in a whispering-gallery-mode resonator

    NASA Astrophysics Data System (ADS)

    Strekalov, Dmitry V.; Kowligy, Abijith S.; Huang, Yu-Ping; Kumar, Prem

    2014-05-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals.

  6. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    SciTech Connect

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  7. All-fiber smooth supercontinuum generation in highly nonlinear dispersion-shifted fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Gu, Chun; Xu, Lixin; Wang, Anting; Chen, Guoliang; Zheng, Huan; Zheng, Rui; Fu, Huaiduo; Ming, Hai

    2009-11-01

    Supercontinuum(SC) source has found numerous applications, such as DWDM, frequency metrology, optical coherence tomography, and optical measurement. We demonstrate an all-fiber supercontimuun source generated in highly nonlinear fiber (HNLF). The HNLF is pumped by our mode-locked fiber laser with pulse width and peak power, 21.1ps and kW, respectively. An ultra-broadband supercontinuum extends from 1000 nm to 1750 nm is obtained, and the spectrum is flat with the amplitude variation less than 4dB except around the fiber zero dispersion wavelength. The spectrum of our supercontinuum source can extend beyond 1750 nm, but due to the limitation of the measured range of optical spectrum analyzer (AQ6317B), the spectrum of the supercontinuum source beyond 1750 nm is not yet obtained in our lab now. The spectral broadening mechanism of smoothed supercontinnum is considered by the higher-order soliton fission and their blue-shifted dispersive wave.

  8. Generation of ultra-short THz pulses in new optical nonlinear materials based on organic polymers

    NASA Astrophysics Data System (ADS)

    Mikerin, S. L.; Plekhanov, A. I.; Simanchuk, A. E.; Yakimanskii, A. V.

    2016-07-01

    Using the method of optical rectification of femtosecond laser pulses, we report the generation of short (a few field cycles) terahertz pulses in the samples of films based on polyimides with covalently bound chromophore molecules of DR type. The spectral width of the produced pulses is limited by the pump pulse duration. The quadratic nonlinear optical properties are imparted to the films in the process of their fabrication by orienting the chromophore molecules in the external electric field of the applied electrodes having an original configuration. The samples are compared with the ZnTe crystal. Using the methods of coherent spectroscopy, their transmission and refractive index dispersion spectra are investigated in the frequency range 0.5 – 2.6 THz. The studied polymer composition is promising for the application in coherent spectrometers both for increasing the working spectral range without dips and for improving the spatial resolution in the near-field terahertz spectroscopy.

  9. Nonlinear frequency compression: effects on sound quality ratings of speech and music.

    PubMed

    Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-03-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality.

  10. Nonlinear frequency compression: effects on sound quality ratings of speech and music.

    PubMed

    Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-03-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  11. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-05-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10-100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC.

  12. Frequency analysis of finite beams on nonlinear Kelvin-Voight foundation under moving loads

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Esmailzadeh, E.; Younesian, D.

    2011-03-01

    The vibration of an Euler-Bernoulli beam, resting on a nonlinear Kelvin-Voight viscoelastic foundation, traversed by a moving load is studied in the frequency domain. The objective is to obtain the frequency responses of the beam and the effects of different parameters on the system response. The parameters include the magnitude and speed of the moving load and the foundation nonlinearity and its damping coefficient. The solution is obtained by using the Galerkin method in conjunction with the multiple scales method (MSM). The governing nonlinear partial differential equations of motion are discretized into sets of nonlinear ordinary differential equations. Subsequently, the solution is calculated for different harmonics by using the MSM as one of the powerful perturbation techniques. The steady-state responses of the main harmonic as well as its two super-harmonics are then obtained. As a case study, a conventional railway track is dynamically simulated and the jump phenomenon in the response is observed for three harmonics. Moreover, a thorough stability analysis of the system is carried out.

  13. Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8 - 1 {mu}m in silica fibres

    SciTech Connect

    Anashkina, E A; Andrianov, A V; Kim, A V

    2013-03-31

    We consider different mechanisms of nonlinear frequency up-conversion of femtosecond pulses emitted by an erbium fibre system ({lambda} = 1.5 {mu}m) to the range of 0.8 - 1.2 {mu}m in nonlinear silica fibres. The generation efficiency and the centre frequencies of dispersive waves are found as functions of the parameters of the fibre and the input pulse. Simple analytical estimates are obtained for the spectral distribution of the intensity and the frequency shift of a wave packet in the region of normal dispersion during the emission of a high-order soliton under phase matching conditions. In the geometrical optics approximation the frequency shifts are estimated in the interaction of dispersive waves with solitons in various regimes. (extreme light fields and their applications)

  14. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    SciTech Connect

    Gupta, Naveen Singh, Arvinder; Singh, Navpreet

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.

  15. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.

    PubMed

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-10-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. PMID:24008430

  16. Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices

    NASA Astrophysics Data System (ADS)

    Filicori, Fabio; Traverso, Pier A.; Florian, Corrado

    2003-05-01

    Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.

  17. Optimizations of ozone generator at low resonance frequency

    NASA Astrophysics Data System (ADS)

    Garamoon, A. A.; Elakshar, F. F.; Elsawah, M.

    2009-11-01

    The effect of the frequency on the different parameters of ozone generation in the dielectric barrier discharge (DBD) has been investigated. It is found that at low frequency, (f0 = 325 Hz), an electric resonance can be obtained in the electric circuit. The onset voltage, at which the ozone starts to build up, was reduced from 3.25 kV at 50 Hz to 1.57 kV at 325 Hz. The efficiency has been increased from nearly zero at 50 Hz to 232.94 g/kW h at 200 Hz under applied voltage of 2.025 kV. in here

  18. Frequency domain holography of laser wakefield accelerators in the nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Kalmykov, S.; Dong, P.; Reed, S. A.; Downer, M.; Shvets, G.

    2009-11-01

    We present the theoretical basis of frequency domain holography (FDH), a technique for single-shot visualization of laser driven plasma wakes. In FDH, the nonlinear index modulations of the plasma wake are recorded as phase shifts in a co-propagating probe pulse, and interference with a reference allows for the reconstruction of the wake structure. Earlier experimental work [N. H. Matlis et al., Nature Phys. 2, 749 (2006)] has shown that reconstruction of the probe phase is sufficient for imaging weakly nonlinear periodic wakes. In the highly nonlinear regime, the laser ponderomotive force blows out plasma electrons and forms a density ``bubble'' that strongly focuses the probe light. We show that imaging the bubble requires full (amplitude and phase) reconstruction of the probe pulse, and find reconstructions of simulated frequency domain holograms in full agreement with direct PIC modeling of the probe pulse. We also assess the sensitivity of the technique to the spectral bandwidth of the probe and reference pulses. In combination with ray-tracing techniques which help evaluate the localized frequency up- and down-shifts of the probe light (``photon acceleration''), FDH appears to be a unique tool for visualization of plasma wakes. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  19. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  20. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  1. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  2. Optical millimeter-wave generation with modified frequency quadrupling scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Shanghong; Zhu, Zihang; Li, Yongjun; Chu, Xingchun; Li, Xuan

    2013-11-01

    A dispersion-tolerant full-duplex radio-over-fiber (RoF) system based on modified quadrupling-frequency optical millimeter (mm)-wave generation using an integrated nested Mach-Zehnder modulator (MZM), an electrical phase modulator, and an electrical gain is proposed. Not only does the scheme reduce the cost and complexity of base station by reusing the downlink optical carrier, but also the generated optical mm-wave signal with base-band data carried only by 1-s order sideband can overcome both the fading effect and bit walk-off effect caused by the fiber dispersion. Simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical mm-wave is transmitted over 120-km single-mode fiber, and the bidirectional 2.5 Gbit/s data are successfully transmitted over 40 km for both upstream and downstream channels with <1-dB power penalty.

  3. Dynamics of microresonator frequency comb generation: models and stability

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  4. Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology.

    PubMed

    Cruz, Flavio C

    2008-08-18

    Optical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering. In contrast to combs from mode-locked lasers or microcavities, the absence of a resonator allows large tuning of the frequency spacing from tens of gigahertz to beyond teraHertz.

  5. Effects of Nonlinear Frequency Compression on ACC Amplitude and Listener Performance

    PubMed Central

    Kirby, Benjamin J.; Brown, Carolyn J.

    2015-01-01

    Objectives Nonlinear frequency compression is a signal processing technique used to increase the audibility of high frequency speech sounds for hearing aid users with sloping, high frequency hearing loss. However, excessive compression ratios may reduce spectral contrast between sounds and negatively impact speech perception. This is of particular concern in infants and young children who may not be able to provide feedback about frequency compression settings. This study explores use of an objective cortical auditory evoked potential that is sensitive to changes in spectral contrast, the auditory change complex (ACC), in the verification of frequency compression parameters. Design ACC responses were recorded from adult listeners to a spectral ripple contrast stimulus that was processed using a range of frequency compression ratios (1:1, 1.5:1, 2:1, 3:1, and 4:1). Vowel identification, consonant identification, speech recognition in noise (QuickSIN), and behavioral ripple discrimination thresholds were also measured under identical frequency compression conditions. In Experiment 1, these tasks were completed in 10 adults with normal hearing. In Experiment 2, these same tasks were repeated in 10 adults with sloping, high frequency hearing loss. Results Repeated measures ANOVAs were completed for each task and each group with frequency compression ratio as the within-subjects factor. Increasing the compression ratio did not affect vowel identification for the normal hearing group but did cause a significant decrease in vowel identification for the hearing-impaired listeners. Increases in compression ratio were associated with significant decrements in ACC amplitudes, consonant identification scores, ripple discrimination thresholds, and speech perception in noise scores for both groups of listeners. Conclusions The ACC response, like speech and non-speech perceptual measures, is sensitive to frequency compression ratio. Further work is needed to establish optimal

  6. Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation.

    PubMed

    Fujita, Kazuue; Hitaka, Masahiro; Ito, Akio; Yamanishi, Masamichi; Dougakiuchi, Tatsuo; Edamura, Tadataka

    2016-07-25

    We present ultra-broadband room temperature monolithic terahertz quantum cascade laser (QCL) sources based on intra-cavity difference frequency generation, emitting continuously more than one octave in frequency between 1.6 and 3.8 THz, with a peak output power of ~200 μW. Broadband terahertz emission is realized by nonlinear mixing between single-mode and multi-mode spectra due to distributed feedback grating and Fabry-Perot cavity, respectively, in a mid-infrared QCL with dual-upper-state active region design. Besides, at low temperature of 150 K, the device produces a peak power of ~1.0 mW with a broadband THz emission centered at 2.5 THz, ranging from 1.5 to 3.7 THz.

  7. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.

    PubMed

    Tang, Qiaochu; Yang, Yongliang; Li, Xinxin

    2014-04-01

    An electromagnetic kinetic energy harvester has been developed, which can convert ultra-low-frequency motion and vibration energy into electrical power. This harvester employs a two-stage vibratory structure to collect low-frequency kinetic energy and effectively transfer it into electric power by using a pair of high-frequency resonant generators. Non-contact magnetic repulsive force is herein utilized for the 1st-stage sliding vibrator to drive the 2nd-stage resonators into frequency-up-conversion resonance. The non-contact actuation is helpful for durable and long-life working of the device. The prototyped device is fabricated and the design is well confirmed by experimental test. The harvester can be well operated at the frequency as low as 0.25 Hz. Under driving acceleration of 1 g at 0.5 Hz, the miniaturized harvester can generate a peak power of 4.42 mW and an average power of 158 μW. PMID:24784650

  8. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  9. Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching

    NASA Astrophysics Data System (ADS)

    Shao, Guang-hao; Wu, Zi-jian; Chen, Jin-hui; Xu, Fei; Lu, Yan-qing

    2013-12-01

    We propose and investigate the quasi-phase-matched (QPM) nonlinear optical frequency conversion of optical vortices in periodically poled lithium niobate. Laguerre-Gaussian (LG) modes are used to represent the orbital angular momentum (OAM) states, characterized with the azimuthal and radial indices. Typical three-wave nonlinear interactions among the involved OAM modes are studied with the help of coupling wave equations. Being different from normal QPM process where the energy and quasimomentum conservations are satisfied, both of the azimuthal and radial indices of the OAM states stay constant in most of the cases. However, abnormal change of the radial index is observed when there is asynchronous nonlinear conversion in different parts of the beams. The QPM nonlinear evolution of fractional OAM states is also discussed showing some interesting properties. In comparison with the traditional birefringent phase matching, the QPM technique avoids the undesired walk-off effect to reserve high-quality LG modes. We believe the QPM is an effective way to convert, amplify, and switch OAM states in various optical vortex related applications.

  10. Ultrabroadband mid-infrared spectroscopy with four-wave difference frequency generation

    NASA Astrophysics Data System (ADS)

    Fuji, Takao; Shirai, Hideto; Nomura, Yutaka

    2015-09-01

    Four-wave difference frequency generation (FWDFG) is a third-order optical parametric process, which is generally explained as {ω }1+{ω }2-{ω }3\\to {ω }4 or {ω }1-{ω }2-{ω }3\\to {ω }4, where three input frequencies are {ω }1, {ω }2, and {ω }3, and the output frequency is {ω }4. Here we report the use of FWDFG for chirped-pulse upconversion (CPU) of an ultrabroadband mid-infrared (MIR) supercontinuum and the application of the technique for MIR spectroscopy. When the CPU technique is used for MIR spectroscopy, ultrashort MIR pulses are converted into visible ones. This way, the spectra can be recorded with a visible spectrometer, which has much higher performance than MIR spectrometers. In the previous experiments, the CPU has been performed by using sum-frequency generation (SFG) with a solid crystal, and the bandwidth has been limited to less than 1000 cm-1 due to the phase matching condition of the SFG. This limitation can be removed by using FWDFG, which is a third-order nonlinear process that allows us to use centrosymmetric nonlinear media such as gases for the upconversion. Since gaseous media have much less dispersion than solid media, the bandwidth of the phase-matching condition for the upconversion process becomes very broad. In our experiments, the entire spectrum of the MIR supercontinuum spanning from 200 to 5500 cm-1 was upconverted by using a 4.9 ps chirped pulse to visible wavelength radiation, which was detected with a conventional visible dispersive spectrometer. The technique has been applied to attenuated total reflectance MIR spectroscopy. Absorption spectra of liquids in the range from 200 to 5500 cm-1 were measured with a visible spectrometer on a single-shot basis.

  11. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  12. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  13. Ecological prediction with nonlinear multivariate time-frequency functional data models

    USGS Publications Warehouse

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  14. Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio.

    PubMed

    Botti, Teresa; Sisto, Renata; Sanjust, Filippo; Moleti, Arturo; D'Amato, Luisa

    2016-02-01

    In this study, a systematic analysis of the dependence on stimulus level and primary frequency ratio r of the different components of human distortion product otoacoustic emissions has been performed, to check the validity of theoretical models of their generation, as regards the localization of the sources and the relative weight of distortion and reflection generation mechanisms. 2f1 - f2 and 2f2 - f1 distortion product otoacoustic emissions of 12 normal hearing ears from six human subjects have been measured at four different levels, in the range [35, 65] dB sound pressure level, at eight different ratios, in the range [1.1, 1.45]. Time-frequency filtering was used to separate distortion and reflection components. Numerical simulations have also been performed using an active nonlinear cochlear model. Both in the experiment and in the simulations, the behavior of the 2f1 - f2 distortion and reflection components was in agreement with previous measurements and with the predictions of the two-source model. The 2f2 - f1 response showed a rotating-phase component only, whose behavior was in general agreement with that predicted for a component generated and reflected within a region basal to the characteristic place of frequency 2f2 - f1, although alternative interpretations, which are also discussed, cannot be ruled out.

  15. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  16. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    PubMed Central

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-01-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed. PMID:27193213

  17. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-01-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed. PMID:27193213

  18. On the passage of high-level pulsed radio frequency interference through a nonlinear satellite transponder

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1984-01-01

    Attention is given to the uncoded bit error rate (BER) performance of a satellite communications system whose modulation scheme is binary PSK and whose transponder contains an arbitrary amplitude nonlinearity, all in the presence of high level pulsed radio frequency interference (RFI). A general approach is presented for direct BER evaluations, in contrast to other approaches which may employ SNR suppression factors. The computed results are based on arbitrarily specified RFI scenarios, in the presence of hard limiter, clipper, or blanker amplitude nonlinearities. Performance curves demonstrate the superiority of an appropriately chosen blanker when the RFI environment is most severe. The results obtained also pertain to the sensitivity of performance to the information bit rate, signal power variations, and the ratio of CW to noise content. The CW effects are found to be the most severe.

  19. Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Ledbetter, M. P.; Rochester, S. M.; Budker, D.; Jackson Kimball, D. F.; Hovde, D. C.; Gawlik, W.; Pustelny, S.; Zachorowski, J.; Yashchuk, V. V.

    2006-05-01

    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (τrel˜1s) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 10-11G/Hz for small (≲1μG ) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (˜500mG) , of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.

  20. Generation of optical frequency combs in a fiber-ring/microresonator laser system.

    PubMed

    Guo, Changlei; Che, Kaijun; Xu, Huiying; Zhang, Pan; Tang, Deyu; Ren, Changyan; Luo, Zhengqian; Cai, Zhiping

    2016-06-01

    We propose and experimentally demonstrate a simple scheme for generating optical frequency combs (OFCs) in a fiber-ring/microresonator laser system. The ultrahigh Q whispering gallery mode microresonator is employed both as a mode reflection mirror to generate erbium lasing and as a Kerr-nonlinearity initiator that introduces optical parametric oscillation signals to form OFCs. By controlling the coupling position between the fiber taper and microresonator, optimizing the fiber polarization, as well as the pump power from a 974 nm laser diode (LD), versatile OFCs can be tuned out from single-wavelength states. The OFCs have single, multiple, or combined free spectral ranges. In addition, a Raman-gain-assisted OFC is also observed with a bandwidth of ∼230  nm. This LD-pumped and multifunctional laser system could find applications in precision spectroscopy, biochemical sensing, and optical fiber communication systems. PMID:27244418

  1. Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere

    NASA Astrophysics Data System (ADS)

    Kopnin, S. I.; Popel, S. I.

    2008-06-01

    It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth’s ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth’s surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110-120 km.

  2. Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.

    2008-06-15

    It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth's ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth's surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110-120 km.

  3. High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; Quirce, Ana; Valle, Angel; Esquivias, Ignacio; Pesquera, Luis; García Tijero, Jose Manuel

    2013-03-01

    We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity.

  4. Generation of low-frequency waves at Comet Halley

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Wong, H. K.; Glassmeier, K. H.

    1990-02-01

    The extent to which the properties of the waves observed at comet Halley during the Giotto encounter can be understood within the context of linearized Vlasov theory is investigated. In the region that is magnetically connected to the comet, fluctuations in the plasma frame of reference are detected near 4 and 10 mHz, close to the water cyclotron frequency, as well as at 20-60 mHz, which is well above the water cyclotron frequency. Using a variety of approximations for the ion distribution function, it is shown that waves having properties similar to those observed can then be generated with appropriate choices of plasma parameters. In the region that is magnetically disconnected from the comet, distinct peaks are observed in the magnetic power spectrum at 7, 21, 29, and 35 mHz, with a hint of a peak at 14 mHz.

  5. Quantum versus classical phase-locking transition in a frequency-chirped nonlinear oscillator

    SciTech Connect

    Barth, I.; Friedland, L.; Gat, O.; Shagalov, A. G.

    2011-07-15

    Classical and quantum-mechanical phase-locking transition in a nonlinear oscillator driven by a chirped-frequency perturbation is discussed. Different limits are analyzed in terms of the dimensionless parameters P{sub 1}={epsilon}/{radical}(2m({Dirac_h}/2{pi}){omega}{sub 0}{alpha}) and P{sub 2}=(3({Dirac_h}/2{pi}){beta})/(4m{radical}({alpha})) ({epsilon}, {alpha}, {beta}, and {omega}{sub 0} being the driving amplitude, the frequency chirp rate, the nonlinearity parameter, and the linear frequency of the oscillator). It is shown that, for P{sub 2}<>P{sub 1}+1, the transition involves quantum-mechanical energy ladder climbing (LC). The threshold for the phase-locking transition and its width in P{sub 1} in both AR and LC limits are calculated. The theoretical results are tested by solving the Schroedinger equation in the energy basis and illustrated via the Wigner function in phase space.

  6. Nonlinear generation of magnetostatic fluctuations by drift waves

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Kaw, P. K.

    1984-10-01

    A self-consistent analysis of nonlinear coupling between drift waves and magnetostatic modes in tokomak discharges is presented. It is shown that an instability arises in the magnetostatic modes when they couple back to the drift waves. The disturbances are modeled with a parallel electron momentum equation and, in the case of a hydrogen plasma, have a growth rate close to 100 msec. The growth rate could, however, accelerate with higher electron densities, which may be a problem in current cold plasma toroidal devices which have a 5 msec confinement time.

  7. Carrier-envelope offset frequency stabilization in a femtosecond optical parametric oscillator without nonlinear interferometry.

    PubMed

    Balskus, Karolis; Fleming, Melissa; McCracken, Richard A; Zhang, Zhaowei; Reid, Derryck T

    2016-03-01

    By exploiting the correlation between changes in the wavelength and the carrier-envelope offset frequency (f(CEO)) of the signal pulses in a synchronously pumped optical parametric oscillator, we show that f(CEO) can be stabilized indefinitely to a few megahertz in a 333 MHz repetition-rate system. Based on a position-sensitive photodiode, the technique is easily implemented, requires no nonlinear interferometry, has a wide capture range, and is compatible with feed-forward techniques that can enable f(CEO) stabilization at loop bandwidths far exceeding those currently available to OPO combs. PMID:26974092

  8. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  9. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.

    PubMed

    Klenner, Alexander; Mayer, Aline S; Johnson, Adrea R; Luke, Kevin; Lamont, Michael R E; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L; Keller, Ursula

    2016-05-16

    Silicon nitride (Si3N4) waveguides represent a novel photonic platform that is ideally suited for energy efficient and ultrabroadband nonlinear interactions from the visible to the mid-infrared. Chip-based supercontinuum generation in Si3N4 offers a path towards a fully-integrated and highly compact comb source for sensing and time-and-frequency metrology applications. We demonstrate the first successful frequency comb offset stabilization that utilizes a Si3N4 waveguide for octave-spanning supercontinuum generation and achieve the lowest integrated residual phase noise of any diode-pumped gigahertz laser comb to date. In addition, we perform a direct comparison to a standard silica photonic crystal fiber (PCF) using the same ultrafast solid-state laser oscillator operating at 1 µm. We identify the minimal role of Raman scattering in Si3N4 as a key benefit that allows to overcome the fundamental limitations of silica fibers set by Raman-induced self-frequency shift. PMID:27409927

  10. An implicit and adaptive nonlinear frequency domain approach for periodic viscous flows

    NASA Astrophysics Data System (ADS)

    Mosahebi, A.; Nadarajah, S.

    2014-12-01

    An implicit nonlinear Lower-Upper symmetric Gauss-Seidel (LU-SGS) solver has been extended to the adaptive Nonlinear Frequency Domain method (adaptive NLFD) for periodic viscous flows. The discretized equations are linearized in both spatial and temporal directions, yielding an innovative segregate approach, where the effects of the neighboring cells are transferred to the right-hand-side and are updated iteratively. This property of the solver is aligned with the adaptive NLFD concept, in which different cells have different number of modes; hence, should be treated individually. The segregate analysis of the modal equations prevents assembling and inversion of a large left-hand-side matrix, when high number of modes are involved. This is an important characteristic for a selected flow solver of the adaptive NLFD method, where a high modal content may be required in highly unsteady parts of the flow field. The implicit nonlinear LU-SGS solver has demonstrated to be both robust and computationally efficient as the number of modes is increased. The developed solver is thoroughly validated for the laminar vortex shedding behind a stationary cylinder, high angle of attack NACA0012 airfoil, and a plunging NACA0012 airfoil. An order of magnitude improvement in the computational time is observed through the developed implicit approach over the classical modified 5-stage Runge-Kutta method.

  11. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-01

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  12. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    SciTech Connect

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  13. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics

    NASA Astrophysics Data System (ADS)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  14. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    PubMed

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  15. Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing

    NASA Astrophysics Data System (ADS)

    Loubeau, Alexandra

    Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models

  16. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-03-01

    Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperature and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.

  17. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond.

    PubMed

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  18. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    PubMed Central

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  19. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  20. Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation

    SciTech Connect

    Jeong, Hyunseok

    2005-09-15

    Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.

  1. Relativistically intense plane electromagnetic waves in electron-positron plasmas: Nonlinear self-modulation and harmonics generation regimes

    SciTech Connect

    Shiryaev, O. B.

    2006-11-15

    A fully nonlinear one-dimensional problem describing the interactions of relativistically intense plane electromagnetic waves and cold locally non-neutral electron-positron plasmas is derived from Maxwell and fluid dynamics equations. Numerical and asymptotic solutions to this problem for phase velocities close to the speed of light are presented. Depending on the magnitude of the plasma longitudinal electric-field potential, the system considered is found to support two distinct regimes of plane electromagnetic wave propagation: a nonlinear self-modulation one with the coupling of a fast transversely polarized electromagnetic field to a slow longitudinal plasma field, and a harmonics generation one with both of these fields oscillating with comparable frequencies. In the former case, a splitting of the electromagnetic field spectrum into a series of closely located bands occurs, whereas in the latter one the propagating field spectrum is a set of radiation harmonics.

  2. Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.

    PubMed

    Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan

    2016-08-20

    We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.

  3. Near-infrared supercontinnum generation in single-mode nonlinear Yb(3+)-doped fiber amplifier.

    PubMed

    Lin, Ja-Hon; Lee, Yin-Wen; Lin, Ting-Chun; Lai, Beng-Cheng; Pal, Mrinmay; Das, Shyamal; Dhar, Anirban; Paul, Mukul Chandra

    2014-06-30

    Near-infrared supercontinnum (SC) generation, accompanied with several emission bands at visible and ultraviolet, is experimentally investigated in an all-fiber single-mode Yb(3+)-doped silica fiber MOPA. The seed is an all-normal-dispersion mode-locked Yb(3+)-doped single-mode fiber laser using a nonlinear polarization evolution mechanism. With the pump power of several hundreds of milliwatts, SC spanning of 1010 nm to 1600 nm was generated in a 20-m single-mode germano-zirconia-silica Yb(3+)-doped fiber amplifier. The intensive nonlinear effects, namely stimulated Raman scattering, four wave mixing, and self-phase modulation, enable the SC generation in the small-core fiber amplifier without the use of photonic crystal fibers or tapered fibers. Such a compact and cost-effective SC generation system enables applications in optical coherent tomography, optical metrology, and nonlinear microscopy. PMID:24977865

  4. Across-frequency nonlinear inhibition by GABA in processing of interaural time difference.

    PubMed

    Mori, K

    1997-09-01

    The barn owl uses the interaural time difference (ITD) to determine the azimuth of a sound source. Narrowband ITD-sensitive neurons cannot distinguish a given ITD from those that produce the same interaural phase difference (phase ambiguity). Neurons in the external nucleus of the inferior colliculus (ICx) resolve the ambiguity by gathering ITD information across many frequencies, thereby suppressing false responses (side peaks, SP) relative to the true ITD (the main peak, MP) in a response versus ITD curve. This process was quantitatively studied by comparing the ITD curve for a pair of tones presented simultaneously (two-tone curve) to the simple sum (predicted curve) of the individual ITD curves for the same tones presented separately. Sixteen of the 39 neurons tested did not show a significant difference in MP and SP responses between these curves (category I); 14 neurons showed significant SP suppression (category II). During iontophoretic application of bicuculline methiodide, a GABA(A) antagonist, most (n = 7/8) category II neurons lost nonlinear SP suppression and became linear, whereas category I neurons retained linear summation (n = 3/3). Thus, the nonlinear cross-frequency interaction of ITD responses in ICx neurons was mediated mostly by GABAergic inhibition, which enhanced SP suppression, and helped resolve phase ambiguity. PMID:9307308

  5. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  6. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  7. Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Poisson, Florian; Bossy, Emmanuel

    2015-09-01

    We investigate theoretically the photoacoustic generation by a gold nanosphere in water in the thermoelastic regime. Specifically, we consider the long-pulse illumination regime, in which the time for electron-phonon thermalization can be neglected and photoacoustic wave generation arises solely from the thermoelastic stress caused by the temperature increase of the nanosphere or its liquid environment. Photoacoustic signals are predicted based on the successive resolution of a thermal diffusion problem and a thermoelastic problem, taking into account the finite size of the gold nanosphere, thermoelastic and elastic properties of both water and gold, and the temperature dependence of the thermal expansion coefficient of water. For sufficiently high illumination fluences, this temperature dependence yields a nonlinear relationship between the photoacoustic amplitude and the fluence. For nanosecond pulses in the linear regime, we show that more than 90 % of the emitted photoacoustic energy is generated in water, and the thickness of the generating layer around the particle scales close to the square root of the pulse duration. The amplitude of the photoacoustic wave in the linear regime is accurately predicted by the point-absorber model introduced by Calasso et al. [Phys. Rev. Lett. 86, 3550 (2001), 10.1103/PhysRevLett.86.3550], but our results demonstrate that this model significantly overestimates the amplitude of photoacoustic waves in the nonlinear regime. We therefore provide quantitative estimates of a critical energy, defined as the absorbed energy required such that the nonlinear contribution is equal to that of the linear contribution. Our results suggest that the critical energy scales as the volume of water over which heat diffuses during the illumination pulse. Moreover, thermal nonlinearity is shown to be expected only for sufficiently high ultrasound frequency. Finally, we show that the relationship between the photoacoustic amplitude and the

  8. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared.

    PubMed

    Iwakuni, Kana; Okubo, Sho; Tadanaga, Osamu; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2016-09-01

    We have observed an ultra-broadband frequency comb with a wavelength range of at least 0.35 to 4.4 μm in a ridge-waveguide-type periodically poled lithium niobate device. The PPLN waveguide is pumped by a 1.0-2.4 μm wide frequency comb with an average power of 120 mW generated using an erbium-based mode-locked fiber laser and a following highly nonlinear fiber. The coherence of the extended comb is confirmed in both the visible (around 633 nm) and the mid-infrared regions. PMID:27607952

  9. Perturbation theory for graphene-integrated waveguides: Cubic nonlinearity and third-harmonic generation

    NASA Astrophysics Data System (ADS)

    Gorbach, Andrey V.; Ivanov, Edouard

    2016-07-01

    We present perturbation theory for analysis of generic third-order nonlinear processes in graphene-integrated photonic structures. The optical response of graphene is treated as the nonlinear boundary condition in Maxwell's equations. The derived models are applied for analysis of third-harmonic generation in a graphene-coated dielectric microfiber. An efficiency of up to a few percent is predicted when using subpicosecond pump pulses with energies of the order of 0.1 nJ in a submillimeter-long fiber when operating near the resonance of the graphene nonlinear conductivity ℏ ω =(2 /3 ) EF .

  10. Estimate error of frequency-dependent Q introduced by linear regression and its nonlinear implementation

    NASA Astrophysics Data System (ADS)

    Li, Guofa; Huang, Wei; Zheng, Hao; Zhang, Baoqing

    2016-02-01

    The spectral ratio method (SRM) is widely used to estimate quality factor Q via the linear regression of seismic attenuation under the assumption of a constant Q. However, the estimate error will be introduced when this assumption is violated. For the frequency-dependent Q described by a power-law function, we derived the analytical expression of estimate error as a function of the power-law exponent γ and the ratio of the bandwidth to the central frequency σ . Based on the theoretical analysis, we found that the estimate errors are mainly dominated by the exponent γ , and less affected by the ratio σ . This phenomenon implies that the accuracy of the Q estimate can hardly be improved by adjusting the width and range of the frequency band. Hence, we proposed a two-parameter regression method to estimate the frequency-dependent Q from the nonlinear seismic attenuation. The proposed method was tested using the direct waves acquired by a near-surface cross-hole survey, and its reliability was evaluated in comparison with the result of SRM.

  11. Multi-band local microwave signal generation based on an optical frequency comb generator

    NASA Astrophysics Data System (ADS)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua

    2015-03-01

    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  12. Effects of non-linearities on magnetic field generation

    SciTech Connect

    Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com

    2014-09-01

    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.

  13. Nonlinear Stress/Strain Behavior of a Synthetic Porous Medium at Seismic Frequencies

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Ibrahim, R. H.

    2008-12-01

    Laboratory experiments on porous core samples have shown that seismic-band (100 Hz or less) mechanical, axial stress/strain cycling of the porous matrix can influence the transport behavior of fluids and suspended particles during steady-state fluid flow through the cores. In conjunction with these stimulated transport experiments, measurements of the applied dynamic axial stress/strain were made to investigate the nonlinear mechanical response of porous media for a poorly explored range of frequencies from 1 to 40 Hz. A unique core-holder apparatus that applies low-frequency mechanical stress/strain to 2.54-cm-diameter porous samples during constant-rate fluid flow was used for these experiments. Applied stress was measured with a load cell in series with the source and porous sample, and the resulting strain was measured with an LVDT attached to the core face. A synthetic porous system consisting of packed 1-mm-diameter glass beads was used to investigate both stress/strain and stimulated mass-transport behavior under idealized conditions. The bead pack was placed in a rubber sleeve and static confining stresses of 2.4 MPa radial and 1.7 MPa axial were applied to the sample. Sinusoidal stress oscillations were applied to the sample at 1 to 40 Hz over a range of RMS stress amplitude from 37 to 275 kPa. Dynamic stress/strain was measured before and after the core was saturated with deionized water. The slope of the linear portion of each stress/strain hysteresis loop was used to estimate Young's modulus as a function of frequency and amplitude for both the dry and wet sample. The modulus was observed to increase after the dry sample was saturated. For both dry and wet cases, the modulus decreased with increasing dynamic RMS stress amplitude at a constant frequency of 23 Hz. At constant RMS stress amplitude, the modulus increased with increasing frequency for the wet sample but remained constant for the dry sample. The observed nonlinear behavior of Young's modulus

  14. Frequency-resolved optical gating with the use of second-harmonic generation

    SciTech Connect

    DeLong, K.W.; Trebino, R. ); Hunter, J.; White, W.E. )

    1994-11-01

    We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail. SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.

  15. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    SciTech Connect

    Krier, James M.

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  16. Influence of absorption on stability of terahertz difference frequency generation.

    PubMed

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-01-20

    This work presents numerical studies of the stability feature of terahertz difference frequency generation (THz-DFG) with a ZnGeP(2) crystal using two pump wavelengths. We found that the maximum output of a THz wave is located in the unstable output region because of the competitive equilibrium between the absorption and the gain. Furthermore, the output stability is dependent on the pump stability. Different from the results at the pump wavelength of 9.588 μm, there is neither an appropriate stable output region nor gain saturation region at the pump wavelength of 1.064 μm for a larger absorption coefficient. This work demonstrates that the stable output region of the THz wave is difficult to obtain when the pump absorption is excessively large in DFG. PMID:26835915

  17. Hydraulic impulse generator and frequency sweep mechanism for borehole applications

    DOEpatents

    Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.

    2006-11-21

    This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.

  18. Next generation of variable frequency drives and application guidelines

    SciTech Connect

    Sen, P.K.; Gjorvad, S.

    1999-11-01

    With the advent in power electronics, increase in power handling capacity of silicone controlled rectifiers and other power electronic devices and the use of high speed digital signal processor (DSP), new and better control principles are now utilized for the design of numerous variable frequency drives (VFDs) for large induction motors. One of the latest technologies developed is the direct torque control (DTC) devices which utilizes the electromagnetic state of the motor to control the flux in the magnetic core and hence, the torque. The response of the drive to changes in the required torque is dramatically improved. DTC provides a precise torque control without the need for a feedback device, such as an encoder or tachogenerator. This paper will discuss the next generation of VFDs utilizing DTC and its application considerations in electric power industry.

  19. Agile high resolution arbitrary waveform generator with jitterless frequency stepping

    DOEpatents

    Reilly, Peter T. A.; Koizumi, Hideya

    2010-05-11

    Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.

  20. Two-Dimensional Frequency Resolved Optomolecular Gating of High-Order Harmonic Generation.

    PubMed

    Ferré, A; Soifer, H; Pedatzur, O; Bourassin-Bouchet, C; Bruner, B D; Canonge, R; Catoire, F; Descamps, D; Fabre, B; Mével, E; Petit, S; Dudovich, N; Mairesse, Y

    2016-02-01

    Probing electronic wave functions of polyatomic molecules is one of the major challenges in high-harmonic spectroscopy. The extremely nonlinear nature of the laser-molecule interaction couples the multiple degrees of freedom of the probed system. We combine two-dimensional control of the electron trajectories and vibrational control of the molecules to disentangle the two main steps in high-harmonic generation-ionization and recombination. We introduce a new measurement scheme, frequency-resolved optomolecular gating, which resolves the temporal amplitude and phase of the harmonic emission from excited molecules. Focusing on the study of vibrational motion in N_{2}O_{4}, we show that such advanced schemes provide a unique insight into the structural and dynamical properties of the underlying mechanism.

  1. Two-Dimensional Frequency Resolved Optomolecular Gating of High-Order Harmonic Generation.

    PubMed

    Ferré, A; Soifer, H; Pedatzur, O; Bourassin-Bouchet, C; Bruner, B D; Canonge, R; Catoire, F; Descamps, D; Fabre, B; Mével, E; Petit, S; Dudovich, N; Mairesse, Y

    2016-02-01

    Probing electronic wave functions of polyatomic molecules is one of the major challenges in high-harmonic spectroscopy. The extremely nonlinear nature of the laser-molecule interaction couples the multiple degrees of freedom of the probed system. We combine two-dimensional control of the electron trajectories and vibrational control of the molecules to disentangle the two main steps in high-harmonic generation-ionization and recombination. We introduce a new measurement scheme, frequency-resolved optomolecular gating, which resolves the temporal amplitude and phase of the harmonic emission from excited molecules. Focusing on the study of vibrational motion in N_{2}O_{4}, we show that such advanced schemes provide a unique insight into the structural and dynamical properties of the underlying mechanism. PMID:26894708

  2. Generation of frequency-chirped optical pulses with felix

    SciTech Connect

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M.

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  3. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum.

    PubMed

    Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  4. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    PubMed Central

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  5. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  6. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.

    PubMed

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2014-02-24

    Supercontinuum generation in a highly nonlinear fiber pumped by noise-like pulses from an erbium-doped fiber ring laser is investigated. To generate ultrabroad spectra, a fiber amplifier is used to boost the power launched into the highly nonlinear fiber. After amplification, not only the average power of the noise-like pulses is enhanced but the spectrum of the pulses is also broadened due to nonlinear effects in the fiber amplifier. This leads to a reduction of the peak duration in their autocorrelation trace, suggesting a similar extent of pulse compression; by contrast, the pedestal duration increases only slightly, suggesting that the noise-like characteristic is maintained. By controlling the pump power of the fiber amplifier, the compression ratio of the noise-like pulse duration can be adjusted. Due to the pulse compression, supercontinuum generation with a broader spectrum is therefore feasible at a given average power level of the noise-like pulses launched into the highly nonlinear fiber. As a result, supercontinuum generation with an optical spectrum spanning from 1208 to 2111 nm is achieved using a 1-m nonlinear fiber pumped by amplified noise-like pulses of 15.5 MHz repetition rate at an average power of 202 mW. PMID:24663739

  7. Analysis of supercontinuum generation in highly nonlinear fibers pumped by erbium fiber laser sources: observations and optimizations

    NASA Astrophysics Data System (ADS)

    Shum, Ping; Tang, Ming L.; Qian, Yi; Gong, Yan D.

    2005-01-01

    The purpose of this paper is to use numerical simulations and experiments to investigate the SCG in HNLF and optimize the SCG according to the parameters of fiber and pump pulse. Complex temporal and spectral characteristics of supercontinuum generation are investigated in the zero-dispersion wavelength (ZDW) region of highly nonlinear fibers. The simulations are based on an extended nonlinear Schrödinger equation (NLSE), which is valid even in circumstances where the bandwidth of the SCG is of the same order as the central frequency of the input pulse, and includes higher order nonlinearity, dispersion and intrapulse stimulated Raman scattering. We developed a finite difference scheme incorporating modified 4-th order Runge-Kutta algorithm to solve the equation. We discuss the SCG by varying the parameters of input pulse, such as pulse width, peak power, and center wavelength, to explore the dynamics of SCG in normal and anomalous dispersion regions. An optimal approach for supercontinuum generation is proposed and proved by experiments and simulations. The measured and calculated spectra are compared and exhibit good qualitative agreements. Our works provide a useful approach to design a practical SC source by using the conventional HNLF and readily available low power fiber laser sources.

  8. Quantum dot mode locked lasers for coherent frequency comb generation

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  9. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    SciTech Connect

    Bora, B.

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  10. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves

    NASA Astrophysics Data System (ADS)

    Song, Xianhai; Li, Lei; Zhang, Xueqiang; Huang, Jianquan; Shi, Xinchun; Jin, Si; Bai, Yiming

    2014-10-01

    to nonlinear inversion of high-frequency surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed.

  11. Higher harmonic generation in nonlinear waveguides of arbitrary cross-section.

    PubMed

    Srivastava, Ankit; Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco

    2010-05-01

    This article concerns the generation and properties of double harmonics in nonlinear isotropic waveguides of complex cross-section. Analytical solutions of nonlinear Rayleigh-Lamb waves and rod waves have been known for some time. These solutions explain the phenomenon of cumulative double harmonic generation of guided waves. These solutions, however, are only applicable to simple geometries. This paper combines the general approach of the analytical solutions with semi-analytical finite element models to generalize the method to more complex geometries, specifically waveguides with arbitrary cross-sections. Supporting comparisons with analytical solutions are presented for simple cases. This is followed by the study of the case of a rail track. One reason for studying nonlinear guided waves in rails is the potential measurement of thermal stresses in welded rail.

  12. Analysis of third harmonic generation and four wave mixing in gold nanostructures by nonlinear finite difference time domain.

    PubMed

    Sasanpour, Pezhman; Shahmansouri, Afsaneh; Rashidian, Bizhan

    2010-11-01

    Third order nonlinear effects and its enhancement in gold nanostructures has been numerically studied. Analysis method is based on computationally solving nonlinear Maxwell's equations, considering dispersion behavior of permittivity described by Drude model and third order nonlinear susceptibility. Simulation is done by method of nonlinear finite difference time domain method, in which nonlinear equations of electric field are solved by Newton-Raphshon method. As the main outcomes of third order nonlinear susceptibility, four wave mixing and third harmonic generation terms are produced around gold nanostructures. Results of analysis on different geometries and structures show that third order nonlinearity products are more enhanced in places where electric field enhancement is occurred due to surface plasmons. Results indicates that enhancement of nonlinearities is strongly occurred in structures whose interface is dielectric. According to analysis results, nonlinear effects are highly concentrated in the vicinity of nanostructures. Hence this approach can be used in applications where localized ultraviolet light is required.

  13. The shape of the nonlinearity generating the combination tone 2f1-f2.

    PubMed

    Strube, H W

    1986-05-01

    If the level behavior of the cubic difference tone is explained by a static nonlinear characteristic, the correspondence between this characteristic and certain components and quantities of the basilar membrane must be clarified. This is attempted here for a nonlinearity compatible with the idea of an active undamping feedback mechanism saturating at high levels. The relation between asymptotic behavior of the nonlinearity and the measured CDT level dependence is established. Agreement with psychoacoustic data requires a very "softly" compressing characteristic; linear or logarithmic asymptotes are ruled out. The psychoacoustically known level dependence is well reproduced for small primary-frequency differences by cancellation experiments with a digitally simulated basilar-membrane model. PMID:3711450

  14. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    SciTech Connect

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-06-30

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  15. Sound generation by a centrifugal pump at blade passing frequency

    SciTech Connect

    Morgenroth, M.; Weaver, D.S.

    1996-12-01

    This paper reports the results of an experimental study of the pressure pulsations produced by a centrifugal volute pump at its blade passing frequency and their amplification by acoustic resonance in a connected piping system. Detailed measurements were made of the pressure fluctuations in the piping as a function of pump speed and flow rate. A semi-empirical model was used to separate acoustic standing waves from hydraulic pressure fluctuations. The effects of modifying the cut-water geometry were also studied, including the use of flow visualization to observe the flow behavior at the cut-water. The results suggest that the pump may act as an acoustic pressure or velocity source, depending on the flow rate. At conditions of acoustic resonance, the pump acted as an open termination of the piping, i.e., as a node in the acoustic pressure standing waves. Rounding the cut-water had the effect of reducing the amplitude of acoustic resonance, apparently because of the ability of the stagnation point to move and thereby reduce the vorticity generated. A notable example of this acoustic resonance in the Primary Heat Transport (PHT) system at Ontario Hydro`s Darlington nuclear power station.

  16. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  17. Wave-front phase-modulation control and focusing of second-harmonic light generated in transparent nonlinear random structures

    NASA Astrophysics Data System (ADS)

    Yao, Can; Rodriguez, Francisco J.; Bravo-Abad, Jorge; Martorell, Jordi

    2013-06-01

    We theoretically investigate how phase-only spatial light modulation can enable controlling and focusing the second-harmonic light generated in transparent nonlinear random structures. The studied structures are composed of domains with random sizes and antiparallel polarization, which accurately model widely used ferroelectric crystals such as strontium barium niobate. Using a first-principles Green-function formalism, we account for the effect that spatial light modulation of the fundamental beam introduces into the second-order nonlinear frequency conversion occurring in the considered class of structures. This approach provides a complete description of the physical origin of the second-harmonic light generation in the system, as well as the optimization of the light intensity in any arbitrary direction. Our numerical results show how the second-harmonic light is influenced by both the disorder in the structure and the boundaries of the crystal. Particularly, we find that the net result from the interplay between disorder and boundary effects is strongly dependent on the dimensions of the crystal and the observation direction. Remarkably, our calculations also show that although in general the maximum possible enhancement of the second-order light is the same as the one corresponding to linear light scattering in turbid media, in the Cerenkov phase matching direction the enhancement can exceed the linear limit. The theoretical analysis presented in this work expands the current understanding of light control in complex media and could contribute to the development of a new class of imaging and focusing techniques based on nonlinear frequency mixing in random optical materials.

  18. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  19. Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability

    SciTech Connect

    Nilson, P. M.; Gao, L.; Igumenshchev, I. V.; Fiksel, G.; Yan, R.; Davies, J. R.; Martinez, D.; Smalyuk, V. A.; Haines, M. G.; Blackman, E. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-04-01

    Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh–Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.

  20. Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface subjected to double-frequency forcing.

    PubMed

    Haimovich, Ory; Oron, Alexander

    2013-05-01

    The nonlinear dynamics of a thin axisymmetric liquid film on a horizontal cylindrical substrate subjected to an axial double-frequency forcing that consists of two components of different amplitudes and frequencies and a possible phase shift is considered in this paper. A nonlinear evolution equation governing the spatiotemporal dynamics of the film interface has been derived in the long-wave limit. Similar to the case of a single-frequency forcing considered in our earlier work, there exists a critical forcing amplitude below which the film undergoes a long-time capillary rupture typical for a static cylinder, whereas above it the film remains continuous. We find that it is possible to arrest the rupture even if the forcing parameters of each of the two components correspond separately to the domain where rupture takes place. It is shown that the critical forcing amplitude is easily determined via a single-frequency case when the two forcing frequencies are equal. In the case of different forcing amplitudes and frequencies, the variation of the critical forcing amplitude as a function of the frequency ratio exhibits a unique behavior displaying the emergence of spikes. A related case of an amplitude-modulated single-frequency forcing is also addressed here. For a sufficiently small frequency of the amplitude modulation, a significant increase of the pattern amplitude is observed. In the case of commensurate forcing frequencies, the flow is found to be quasiperiodic. PMID:23767550

  1. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    SciTech Connect

    Wergifosse, Marc de; Champagne, Benoît; Castet, Frédéric

    2015-05-21

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (β{sub HRS}) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of β{sub HRS} in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new β{sub xyz} value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  2. Neural-scaled entropy predicts the effects of nonlinear frequency compression on speech perception.

    PubMed

    Rallapalli, Varsha H; Alexander, Joshua M

    2015-11-01

    The Neural-Scaled Entropy (NSE) model quantifies information in the speech signal that has been altered beyond simple gain adjustments by sensorineural hearing loss (SNHL) and various signal processing. An extension of Cochlear-Scaled Entropy (CSE) [Stilp, Kiefte, Alexander, and Kluender (2010). J. Acoust. Soc. Am. 128(4), 2112-2126], NSE quantifies information as the change in 1-ms neural firing patterns across frequency. To evaluate the model, data from a study that examined nonlinear frequency compression (NFC) in listeners with SNHL were used because NFC can recode the same input information in multiple ways in the output, resulting in different outcomes for different speech classes. Overall, predictions were more accurate for NSE than CSE. The NSE model accurately described the observed degradation in recognition, and lack thereof, for consonants in a vowel-consonant-vowel context that had been processed in different ways by NFC. While NSE accurately predicted recognition of vowel stimuli processed with NFC, it underestimated them relative to a low-pass control condition without NFC. In addition, without modifications, it could not predict the observed improvement in recognition for word final /s/ and /z/. Findings suggest that model modifications that include information from slower modulations might improve predictions across a wider variety of conditions.

  3. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    NASA Astrophysics Data System (ADS)

    de Wergifosse, Marc; Castet, Frédéric; Champagne, Benoît

    2015-05-01

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (βHRS) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of βHRS in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new βxyz value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  4. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform.

    PubMed

    Ding, Zhenyang; Liu, Tiegen; Meng, Zhuo; Liu, Kun; Chen, Qinnan; Du, Yang; Li, Dingjie; Yao, X Steve

    2012-06-01

    We propose using non-uniform FFT to minimize the degrading effect of frequency tuning nonlinearity of a tunable laser source (TLS) in an optical frequency-domain reflectometry (OFDR) system. We use an auxiliary interferometer to obtain the required instantaneous optical frequency of the TLS and successfully demonstrate 100 times enhancement in spatial resolution of OFDR with only a 20% increase in computation time. The corresponding measurement reflectivity sensitivity is better than -80 dB, sufficient to detect bending induced index changes in an optical fiber. PMID:22755676

  5. Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Ding, Zhenyang; Liu, Tiegen; Meng, Zhuo; Liu, Kun; Chen, Qinnan; Du, Yang; Li, Dingjie; Yao, X. Steve

    2012-06-01

    We propose using non-uniform FFT to minimize the degrading effect of frequency tuning nonlinearity of a tunable laser source (TLS) in an optical frequency-domain reflectometry (OFDR) system. We use an auxiliary interferometer to obtain the required instantaneous optical frequency of the TLS and successfully demonstrate 100 times enhancement in spatial resolution of OFDR with only a 20% increase in computation time. The corresponding measurement reflectivity sensitivity is better than -80 dB, sufficient to detect bending induced index changes in an optical fiber.

  6. Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander N.; Iorsh, Ivan V.; Sukhorukov, Andrey A.

    2016-09-01

    We develop a general theoretical framework of integrated paired photon-plasmon generation through spontaneous wave mixing in nonlinear plasmonic and metamaterial nanostructures, rigorously accounting for material dispersion and losses in quantum regime through the electromagnetic Green function. We identify photon-plasmon correlations in layered metal-dielectric structures with 70% internal heralding quantum efficiency, and reveal novel mechanism of broadband generation enhancement due to topological transition in hyperbolic metamaterials.

  7. Diamond nonlinear photonics

    NASA Astrophysics Data System (ADS)

    Hausmann, B. J. M.; Bulu, I.; Venkataraman, V.; Deotare, P.; Lončar, M.

    2014-05-01

    Despite progress towards integrated diamond photonics, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres, as well as stable and high-power frequency microcombs operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

  8. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

    SciTech Connect

    Smith, A.V.; Armstrong, D.J.; Alford, W.J.

    1998-01-01

    We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x,t), rather than Fourier space, (k,{omega}), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing. {copyright} 1998 Optical Society of America

  9. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    SciTech Connect

    Hau, Jan-Niklas Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander

    2015-12-15

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber

  10. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Chagelishvili, George; Khujadze, George; Oberlack, Martin; Tevzadze, Alexander

    2015-12-01

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, "Linear mechanism of wave emergence from vortices in smooth shear flows," Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, "Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow," Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, "Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow," J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, "Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow," Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber plane, which

  11. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method. PMID:22792612

  12. Linear Generation and Nonlinear Decay of Electrostatic Hydrogen Cyclotron Waves on Auroral Field Lines

    NASA Astrophysics Data System (ADS)

    Bergmann, Rachelle Ann

    The linear generation of electrostatic hydrogen cyclotron (EHC) waves in the auroral acceleration region near an altitude of 1R(,E) is examined. A field-aligned electron drift and an ion beam are included simultaneously in the plasma model. Each of these has the capability to excite EHC waves. Two assumptions are made, (1) that the plasma can be described by three Maxwellian species and, (2) that the properties of observed EHC waves are the same as the properties of the linearly excited modes. With these assumptions and a plasma model based on S3-3 satellite data, it is concluded that EHC waves driven by an electron drift compare more favorably with observed EHC waves than those driven by an ion beam. Further, the temperature of the drifting electrons should be on the order of the temperature of the stationary ions. Saturation of a linearly excited EHC wave by coherent decay to another EHC wave and an ion acoustic mode is considered. Frequency and wave number matching can be satisfied in this three -wave interaction if the daughter ion acoustic mode is oblique to the geomagnetic field. Many three-wave triads exist for a single parent. A calculation of the coupling coefficient between any three electrostatic waves in a uniformly magnetized plasma comprised of drifting Maxwellian species is derived. This is used to find the threshold electric field of a parent wave necessary for the daughter modes to have a positive non-linear growth rate. It is found that this threshold is below observed EHC wave amplitudes, and is zero when the parent EHC wave couples to a linearly marginally stable EHC daughter wave. Thus, this three-wave interaction may occur in the auroral acceleration region. A preliminary investigation into the temporal development of this interaction is conducted. Though the model is incomplete, the results indicate that this decay can act as a saturation mechanism for the linear growth. In the asymptotic state of the time development, it is the linearly

  13. Homo and heteroepitaxial growth and study of orientation-patterned GaP for nonlinear frequency conversion devices

    NASA Astrophysics Data System (ADS)

    Tassev, V. L.; Vangala, S.; Peterson, R.; Kimani, M.; Snure, M.; Markov, I.

    2016-03-01

    Frequency conversion in orientation-patterned quasi-phase matched materials is a leading approach for generating tunable mid- and long-wave coherent IR radiation for a wide variety of applications. A number of nonlinear optical materials are currently under intensive investigation. Due to their unique properties, chiefly wide IR transparency and high nonlinear susceptibility, GaAs and GaP are among the most promising. Compared to GaAs, GaP has the advantage of having higher thermal conductivity and significantly lower 2PA in the convenient pumping range of 1- 1.7 μm. HVPE growth of OPGaP, however, has encountered certain challenges: low quality and high price of commercially available GaP wafers; and strong parasitic nucleation during HVPE growth that reduces growth rate and aggravates layer quality, often leading to pattern overgrowth. Lessons learned from growing OPGaAs were not entirely helpful, leaving us to alternative solutions for both homoepitaxial growth and template preparation. We report repeatable one-step HVPE growth of up to 400 μm thick OPGaP with excellent domain fidelity deposited for first time on OPGaAs templates. The templates were prepared by wafer fusion bonding or MBE assisted polarity inversion technique. A close to equilibrium growth at such a large lattice mismatch (-3.6%) is itself noteworthy, especially when previously reported attempts (growth of OPZnSe on OPGaAs templates) at much smaller mismatch (+0.3%) have produced limited results. Combining the advantages of the two most promising materials, GaAs and GaP, is a solution that will accelerate the development of high power, tunable laser sources for the mid- and long-wave IR, and THz region.

  14. Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics.

    PubMed

    Ding, Wei; Zhou, Liangcheng; Chou, Stephen Y

    2014-05-14

    We propose and experimentally demonstrate a new plasmonic nonlinear light generation (NLG) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only achieves high second-harmonic generation (SHG) enhancement (76-fold), large SHG tunability by bias (8%/V), wide tuning range (280%), 7.8 × 10(-9) conversion efficiency, and high stability but also exhibits a SHG tuning, that is bipolar rather than unipolar, not due to the third-order nonlinear polarization term, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose a new SHG tuning mechanism: the second-order nonlinear polarization term enhanced by plasmonic effects, changed by charge injection and negative oxygen vacancies movement, and is nearly 3 orders of magnitude larger than EFISH. p-CASH is a bipolar parallel-plate capacitor with thin layers of plasmonic nanostructures, a TiOx (semiconductor and nonlinear) and a SiO2 (insulator) sandwiched between two electrodes. Fabrication of p-CASH used nanoimprint on 4″ wafer and is scalable to wallpaper-sized areas. The new structure, new properties, and new understanding should open up various new designs and applications of NLG in various fields.

  15. On the generation of nonlinear travelling waves in confined geometries using electric fields

    PubMed Central

    Cimpeanu, R; Papageorgiou, D. T

    2014-01-01

    We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid–surface–structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid–fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019

  16. On the generation of nonlinear travelling waves in confined geometries using electric fields.

    PubMed

    Cimpeanu, R; Papageorgiou, D T

    2014-07-28

    We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid-surface-structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid-fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019

  17. Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics.

    PubMed

    Ding, Wei; Zhou, Liangcheng; Chou, Stephen Y

    2014-05-14

    We propose and experimentally demonstrate a new plasmonic nonlinear light generation (NLG) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only achieves high second-harmonic generation (SHG) enhancement (76-fold), large SHG tunability by bias (8%/V), wide tuning range (280%), 7.8 × 10(-9) conversion efficiency, and high stability but also exhibits a SHG tuning, that is bipolar rather than unipolar, not due to the third-order nonlinear polarization term, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose a new SHG tuning mechanism: the second-order nonlinear polarization term enhanced by plasmonic effects, changed by charge injection and negative oxygen vacancies movement, and is nearly 3 orders of magnitude larger than EFISH. p-CASH is a bipolar parallel-plate capacitor with thin layers of plasmonic nanostructures, a TiOx (semiconductor and nonlinear) and a SiO2 (insulator) sandwiched between two electrodes. Fabrication of p-CASH used nanoimprint on 4″ wafer and is scalable to wallpaper-sized areas. The new structure, new properties, and new understanding should open up various new designs and applications of NLG in various fields. PMID:24730390

  18. Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response of BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Rojac, Tadej; Bencan, Andreja; Drazic, Goran; Kosec, Marija; Damjanovic, Dragan

    2012-09-01

    We report on the frequency and stress dependence of the direct piezoelectric d33 coefficient in BiFeO3 ceramics. The measurements reveal considerable piezoelectric nonlinearity, i.e., dependence of d33 on the amplitude of the dynamic stress. The nonlinear response suggests a large irreversible contribution of non-180° domain walls to the piezoelectric response of the ferrite, which, at present measurement conditions, reached a maximum of 38% of the total measured d33. In agreement with this interpretation, both types of non-180° domain walls, characteristic for the rhombohedral BiFeO3, i.e., 71° and 109°, were identified in the poled ceramics using transmission electron microscopy. In support to the link between nonlinearity and non-180° domain-wall contribution, we found a correlation between nonlinearity and processes leading to depinning of domain walls from defects, such as quenching from above the Curie temperature and high-temperature sintering. In addition, the nonlinear piezoelectric response of BiFeO3 showed a frequency dependence that is qualitatively different from that measured in other nonlinear ferroelectric ceramics, such as "soft" (donor-doped) Pb(Zr,Ti)O3 (PZT), i.e., in the case of the BiFeO3 large nonlinearities were observed only at low field frequencies (<0.1 Hz); possible origins of this dispersion are discussed. Finally, we show that, once released from pinning centers, the domain walls can contribute extensively to the electromechanical response of BiFeO3; in fact, the extrinsic domain-wall contribution is relatively as large as in Pb-based ferroelectric ceramics with morphotropic phase boundary (MPB) composition, such as PZT. This finding might be important in the search of new lead-free MPB compositions based on BiFeO3 as it suggests that such compositions might also exhibit large extrinsic domain-wall contribution to the piezoelectric response.

  19. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.

    PubMed

    Lee, Wai Shing; Ott, Edward; Antonsen, Thomas M

    2013-09-01

    This paper addresses the behavior of large systems of heterogeneous, globally coupled oscillators each of which is described by the generic Landau-Stuart equation, which incorporates both phase and amplitude dynamics of individual oscillators. One goal of our paper is to investigate the effect of a spread in the amplitude growth parameter of the oscillators and of the effect of a homogeneous nonlinear frequency shift. Both of these effects are of potential relevance to recently reported experiments. Our second goal is to gain further understanding of the macroscopic system dynamics at large coupling strength, and its dependence on the nonlinear frequency shift parameter. It is proven that at large coupling strength, if the nonlinear frequency shift parameter is below a certain value, then there is a unique attractor for which the oscillators all clump at a single amplitude and uniformly rotating phase (we call this a single-cluster "locked state"). Using a combination of analytical and numerical methods, we show that at higher values of the nonlinear frequency shift parameter, the single-cluster locked state attractor continues to exist, but other types of coexisting attractors emerge. These include two-cluster locked states, periodic orbits, chaotic orbits, and quasiperiodic orbits.

  20. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window.

    PubMed

    Saitoh, Kunimasa; Koshiba, Masanori

    2004-05-17

    We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W(-1)km(-1) at 1.55 microm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses. PMID:19475038

  1. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Koshiba, Masanori

    2004-05-01

    We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W-1km-1 at 1.55 µm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses.

  2. Excitation threshold of Stimulated Electromagnetic Emissions SEEs generated at pump frequency near the third electron gyroharmonic

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Bernhardt, P. A.; Scales, W.

    2012-12-01

    The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska provides effective radiated powers in the megawatt range that have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. In recent HAARP heating experiments, it has been shown that during the Magnetized Stimulated Brillouin Scattering MSBS instability, the pumped electromagnetic wave may decay into an electromagnetic wave and a low frequency electrostatic wave (either ion acoustic IA wave or electrostatic ion cyclotron EIC wave). Using Stimulated Electromagnetic Emission (SEE) spectral features, side bands which extend above and below the pump frequency can yield significant diagnostics for the modified ionosphere. It has been shown that the IA wave frequency offsets can be used to measure electron temperature in the heated ionosphere and EIC wave offsets can be used as a sensitive method to determine the ion species by measuring ion mass using the ion gyro-frequency offset. The threshold of each emission line has been measured by changing the amplitude of pump wave. The experimental results aimed to show the threshold for transmitter power to excite IA wave propagating along the magnetic field lines as well as for EIC wave excited at an oblique angle relative to the background magnetic field. Another parametric decay instability studied is the ion Bernstein decay instability that has been attributed to the simultaneous parametric decay of electron Bernstein waves into multiple electron Bernstein and ion Bernstein waves. The SIB process is thought to involve mode conversion from EM to EB waves followed by parametric decay of the EB wave to multiple EB and IB waves. The parametric decay instability of ion Bernstein modes has been observed simultaneously for the first time at the third electron gyroharmonics during 2011 Summer Student Research

  3. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  4. Time-Ordering Effects in the Generation of Entangled Photons Using Nonlinear Optical Processes

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolás; Sipe, J. E.

    2015-03-01

    We study the effects of time ordering in photon generation processes such as spontaneous parametric down-conversion (SPDC) and four wave mixing (SFWM). The results presented here are used to construct an intuitive picture that allows us to predict when time-ordering effects significantly modify the joint spectral amplitude (JSA) of the photons generated in SPDC and SFWM. These effects become important only when the photons being generated lie with the pump beam that travels through the nonlinear material for a significant amount of time. Thus sources of spectrally separable photons are ideal candidates for the observation of modifications of the JSA due to time ordering.

  5. Sum frequency and second harmonic generation from the surface of a liquid microjet.

    PubMed

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C; Brown, Matthew A; Roke, Sylvie

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  6. Sum frequency and second harmonic generation from the surface of a liquid microjet

    SciTech Connect

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  7. On the generation of large amplitude spiky solitons by ultralow frequency earthquake emission in the Van Allen radiation belt

    SciTech Connect

    Mofiz, U. A.

    2006-08-15

    The parametric coupling between earthquake emitted circularly polarized electromagnetic radiation and ponderomotively driven ion-acoustic perturbations in the Van Allen radiation belt is considered. A cubic nonlinear Schroedinger equation for the modulated radiation envelope is derived, and then solved analytically. For ultralow frequency earthquake emissions large amplitude spiky supersonic bright solitons or subsonic dark solitons are found to be generated in the Van Allen radiation belt, detection of which can be a tool for the prediction of a massive earthquake may be followed later.

  8. Dispersion relations and the nonlinear generation of C1-surface exciton polaritons in spatially dispersive ZnO

    NASA Astrophysics Data System (ADS)

    Fukui, M.; So, V. C.-Y.; Stegeman, G. I.

    1980-07-01

    The recent experiments of DeMartini, Colocci, Kohn, and Shen [

    Phys. Rev. Lett. 38, 1223 (1977)
    ] on the nonlinear generation of C1- (n=1 in the series) surface exciton polaritons in spatially dispersive ZnO are analyzed. It is shown for a prism-air-sample geometry that the air-gap thickness plays an important role in determining the polariton attenuation, and to a lesser degree the polariton energy. Reasonably good agreement with the experimental dispersion relations of DeMartini and co-workers is obtained by including spatial dispersion via the additional boundary condition (ABC) ∂P→ex/∂z=0 for the excitonic polarization P→ex at the surface: The ABC P→ex=0 does not yield a good fit. The theory of the nonlinear generation of surface exciton polaritons in isotropic, spatially dispersive media is developed and applied to angle- and frequency-scanning experimental geometries. Numerical estimates of both the power radiated out via the prism (in the absence of surface roughness) and the line shape were also found to be in reasonable agreement with experiment for the ABC ∂P→ex/∂x=0, but not for P→ex=0.

  9. Investigation of third order nonlinearity in propagation of cylindrical waves in homogeneous nonlinear media

    NASA Astrophysics Data System (ADS)

    Ranjbar, Monireh; Bahari, Ali

    2016-09-01

    Four-wave mixing in propagation of cylindrical waves in a homogeneous nonlinear optical media has been investigated theoretically. An explicit analytical expression which contains all the main nonlinear optical effects, including third harmonic generation, sum and difference frequency generation has been obtained. A comparison between sum frequency efficiency for exact and approximation expression in a homogeneous nonlinear medium has been done. The effect of increasing the nonlinear optical coefficient (χeff(3)) and increasing the frequency difference between two adjacent waves (Δ ω) , on the efficiency of sum frequency generation in homogeneous media has been investigated.

  10. On the generation of shelves by long nonlinear waves in stratified flows

    NASA Astrophysics Data System (ADS)

    Prasad, Dilip; Akylas, T. R.

    1997-09-01

    The phenomenon of shelf generation by long nonlinear internal waves in stratified flows is investigated. The problem of primary interest is the case of a uniformly stratified Boussinesq fluid of finite depth. In analysing the transient evolution of a finite-amplitude long-wave disturbance, the expansion procedure of Grimshaw & Yi (1991) breaks down far downstream, and it proves expedient to follow a matched-asymptotics procedure: the main disturbance is governed by the nonlinear theory of Grimshaw & Yi (1991) in the ‘inner’ region, while the ‘outer’ region comprises multiple small-amplitude fronts, or shelves, that propagate downstream and carry O(1) mass. This picture is consistent with numerical simulations of uniformly stratified flow past an obstacle (Lamb 1994). The case of weakly nonlinear long waves in a fluid layer with general stratification is also examined, where it is found that shelves of fourth order in wave amplitude are generated. Moreover, these shelves may extend both upstream and downstream in general, and could thus lead to an upstream influence of a type that has not been previously considered. In all cases, transience of the main nonlinear wave disturbance is a necessary condition for the formation of shelves.

  11. Nonlinear Tidal Distortion and Low Frequency Residual Effects in a Coastal Creek

    NASA Astrophysics Data System (ADS)

    Jachec, S. M.; Hansell, H. C.

    2012-12-01

    A 62 day observational campaign in the spring 2011, recorded free surface and meteorological observations used to determine hydrodynamic conditions of an area in the northern region of Mosquito Lagoon, FL. Mean water level ranges at instrument locations decrease from 0.35 to 0.22 m moving further from the primary inlet. A harmonic analysis revealed mean extracted tidal ranges at the former stations decreasing from 0.34 to 0.21 m. Nonlinear distortion increases with distance into the system, with a maximum tidal range decrease of 0.13 m and high tide time lag of 0.89 hrs between extreme stations. Ebb durations averaged 1 hr longer than flood, indicating a flood-dominant system. Spectral and cross-spectral analyses showed significant coherence between wind and non-tidal fluctuations in the low frequency regime. Using a modified conservation of mass equation, flow calculations reveal a partitioning of the flow between tides and winds.; Study site: Mosquito Lagoon, FL. ; Tidal amplitude attenuation of M2 and M4 tides through creek.

  12. Nonlinear optical frequency conversion with KTP and BiBO crystals for lasers in space

    NASA Astrophysics Data System (ADS)

    Potreck, Arne; Schröder, Helmut; Lammers, Melanie; Tzeremes, Georgios; Riede, Wolfgang

    2014-09-01

    Within ESA's ADM-Aeolus and EarthCARE missions Doppler-wind Lidar systems will be operated in the Earth's orbit to measure global wind profiles. The active instrument will be based on a Nd:YAG laser, frequency tripled by nonlinear optical crystals. Different crystals are therefore to compare and qualify in regard of their space acceptability. A dedicated set-up to measure the maximum conversion efficiencies and its stability during longterm operation for KTP crystals (SHG) and BiBO crystals (SHG and THG) is presented in this work. In order to detect gray-tracking and its influence on thermal lensing in situ, measurements with a Shack-Hartmann sensor and a co-aligned HeNe laser were performed. Conversion efficiencies were 76+/-3 % at SHG for KTP and BiBO crystals and 48+/-2 % at THG with a combination of two BiBO crystals. During longterm experiments of 60 million laser pulses, conversion efficiencies were demonstrated to be stable over time (+/-1 % at SHG with KTP and +/-2 % at THG with BiBO). The occurrence of gray-tracking was detected in the KTP crystal and the resulting thermal lensing with an exponential saturation over time was observed in situ.

  13. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.

    PubMed

    Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu

    2010-06-01

    An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.

  14. Effects of nonlinear frequency compression on speech identification in children with hearing loss

    PubMed Central

    Hillock-Dunn, Andrea; Buss, Emily; Duncan, Nicole; Roush, Patricia A; Leibold, Lori

    2015-01-01

    Objective This study evaluated effects of nonlinear frequency compression (NLFC) processing in children with hearing loss for consonant identification in quiet and for spondee identification in competing noise or speech. It was predicted that participants would benefit from NLFC for consonant identification in quiet when access to high-frequency information was critical, but that NLFC would be less beneficial, or even detrimental, when identification relied on mid-frequency cues. Further, it was hypothesized that NLFC could result in greater susceptibility to masking in the spondee task. The rationale for these predictions is that improved access to high-frequency information comes at the cost of decreased spectral resolution. Design A repeated-measures design compared speech perception outcomes in 17 pediatric hearing aid users (9-17 years) wearing Naida V SP “laboratory” hearing aids with NLFC on and off. Data were also collected in an initial baseline session in which children wore their personal hearing aids. Children with a wide range of audiometric configurations were included, but all participants were full-time users of hearing aids with active NLFC. For each hearing aid condition, speech perception was assessed in the sound field using a closed-set 12-alternative consonant-vowel identification measure in quiet, and a closed-set 4-alternative spondee identification measure in a speech-shaped noise or in a two-talker speech masker. Results No significant differences in performance were observed between laboratory hearing aid conditions with NLFC activated or deactivated for either speech perception measure. An unexpected finding was that the majority of participants had no difficulty identifying the high-frequency consonant /s/, even when NLFC was deactivated. Investigation into individual differences revealed that subjects with a greater difference in audible bandwidth with NLFC on versus NLFC off were less likely to demonstrate improvements in high-frequency

  15. Analysis of nonlinear frequency mixing in 1D waveguides with a breathing crack using the spectral finite element method

    NASA Astrophysics Data System (ADS)

    Joglekar, D. M.; Mitra, M.

    2015-11-01

    A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the

  16. Active control of highly efficient third-harmonic generation in ultrathin nonlinear metasurfaces

    NASA Astrophysics Data System (ADS)

    Gong, Zibo; Li, Chong; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2016-10-01

    Active electric control of highly efficient third harmonic generation was realized in an ultrathin nonlinear metasurface by using a nanocomposite consisting of gold nanoparticles dispersed in polycrystalline strontium titanate as the electro-optic material. Owing to the nonlinearity enhancement associated with the slow light effect, quantum confinement effect, and field-reinforcement, a high conversion efficiency of 3 × 10-5 was obtained, which is two orders of magnitude larger than previously reported efficiencies at comparable pump intensities. A modulation of 12% in the intensity of the third harmonic generation and a 30-nm shift in the transparency window center were achieved by varying the applied voltage from -30 V to zero. Our results pave the way toward the realization of multi-functional integrated photonic devices and chips based on metasurfaces.

  17. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field. PMID:26964990

  18. Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams

    NASA Astrophysics Data System (ADS)

    Porras, Miguel A.; Ruiz-Jiménez, Carlos; Losada, Juan Carlos

    2015-12-01

    In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NLUBB) whose inward Hänkel beam amplitude equals the amplitude of the linear Bessel beam that the axicon would generate in linear propagation. A simple analytical formula that determines the NLUBB attractor is given. Steady or unsteady propagation depends on whether the attracting NLUBB has a small, exponentially growing, unstable mode. In the case of unsteady propagation, periodic, quasiperiodic, or chaotic dynamics after the axicon reproduces similar dynamics after the development of the small unstable mode into the large perturbation regime.

  19. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field.

  20. Ionospheric Responses to Nonlinear Acoustic Waves Generated by Natural Hazard Events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-12-01

    Ionospheric total electron content (TEC) fluctuations following large-magnitude earthquakes and resulting tsunamis, e.g. Tohoku in 2011, have been noted in many recent investigations [e.g., Galvan et al., Radio Science, 47(4), 2012]. Earthquakes impact the atmosphere through vertical displacements of the Earth's crust or ocean surfaces producing, as one effect, low-frequency acoustic waves. These waves can achieve significant amplitudes during propagation through the rarefied upper atmosphere, and are capable of driving sizable ionospheric electron density (TEC) fluctuations and electrical currents. Earthquake-generated acoustic waves are readily identifiable in GPS observations as 0.1-2 TECU, 3-5 mHz, oscillations, which are delayed from the quake occurrence by roughly the sound travel time between the ground and ionosphere. In some extreme cases, the onset of acoustic oscillations is concurrent with a persistent, sharp decrease in TEC (~5 TECU) above the epicenter [e.g., Kakinami et al., GRL, 39(13), 2012]. Ionospheric responses to large amplitude acoustic waves are investigated using a coupled atmosphere-ionosphere model [Zettergren and Snively, GRL, 40(20), 2013]. Of particular interest are effects of acoustic wave amplitude and nonlinearity on ionospheric responses, including production of detectable TEC oscillations and longer-lived responses like TEC depletions. The atmospheric dynamics model solves a Navier-Stokes' system of equations and incorporates generation of acoustic waves through acceleration source terms at ground-level. The ionospheric model solves a fluid system of equations for each of the major ionospheric species, and includes an electrostatic description of dynamo currents. The coupled model enables direct computation of observable quantities, such as vertical TEC and magnetic field fluctuations. Here we construct simulation case studies for realistic earthquake events and compare results against published TEC and magnetic field data. This

  1. Nonlinear harmonic generation in high-gain free-electron lasers

    SciTech Connect

    Dattoli, G.; Ottaviani, P.L.; Pagnutti, S.

    2005-06-01

    We reconsider the derivation of semianalytical expressions providing the most significant aspects of the high-gain free-electron laser dynamics. We obtain new expressions for the growth of the laser power, of the e-beam-induced energy spread, and of the higher-order nonlinearly generated harmonics. The procedure we employ, based on theoretical ansatz and fitting methods, allows the determination of crucial quantities like the expected harmonic output power and its dependences on the e-beam parameters.

  2. The Krigifier: A Procedure for Generating Pseudorandom Nonlinear Objective Functions for Computational Experimentation

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.

    1999-01-01

    Comprehensive computational experiments to assess the performance of algorithms for numerical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear objective functions. We propose a procedure that is based on the convenient fiction that objective functions are realizations of stochastic processes. This report details the calculations necessary to implement our procedure for the case of certain stationary Gaussian processes and presents a specific implementation in the statistical programming language S-PLUS.

  3. Influence of nonlinear effects on the efficiency of a thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Rogolino, P.; Sellitto, A.; Cimmelli, V. A.

    2015-10-01

    We propose a nonlinear model for thermoelectric coupling which is based on the thermomass theory for heat conduction. We show that in this model, the second Kelvin relation and the classical Onsager relations are no longer satisfied simultaneously, namely, if one holds, then the other one breaks down, and viceversa. As a function of the different breaking, we evaluate the efficiency of a thermoelectric generator. The influence of the electric-charge gradient on the efficiency of thermoelectric coupling is investigated as well.

  4. Pulsed infrared difference frequency generation in CdGeAs/sub 2/

    DOEpatents

    Piltch, M.S.; Rink, J.P.; Tallman, C.R.

    1975-11-26

    A laser apparatus for generating a line-tunable pulsed infrared difference frequency output is described. The apparatus comprises a CO/sub 2/ laser which produces a first frequency, a CO laser which produces a second frequency, and a mixer for combining the output of the CO/sub 2/ and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  5. Pulsed infrared difference frequency generation in CdGeAs.sub.2

    DOEpatents

    Piltch, Martin S.; Rink, John P.; Tallman, Charles R.

    1977-03-08

    The disclosure relates to a laser apparatus for generating a line-tunable pulsed infrared difference frequency output. The apparatus comprises a CO.sub.2 laser which produces a first frequency, a CO laser which produces a second frequency and a mixer for combining the output of the CO.sub.2 and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  6. Global bifurcation and hysteresis of self-generated oscillations in a microscopic model of nonlinear transport in p-Ge

    NASA Astrophysics Data System (ADS)

    Hüpper, G.; Schöll, E.; Reggiani, L.

    1989-12-01

    Starting from a Monte Carlo simulation of the microscopic energy and momentum relaxation processes of hot carriers in p-Ge at liquid helium temperatures we derive a set of coupled nonlinear dynamic equations for the mean carrier density, the mean carrier energy, and the electric field. The static current density - field characteristic displays N-shaped negative differential conductivity induced by impact ionization of a shallow acceptor level and optical phonon emission. In the positive differential conductivity regime of this characteristic we find a subcritical Hopf bifurcation and two global bifurcations of self-generated voltage oscillations (collision of two limit cycles, and bifurcation of a limit cycle from a separatrix with critical frequency scaling) and hysteresis between oscillatory and stationary states. Such behavior was not obtained in previous semiconductor models, but is supported by recent experimental findings.

  7. Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Taormina, Alberto; Busacca, Alessandro C.; Oliveri, Roberto L.; Bivona, Saverio; Cino, Alfonso C.; Stivala, Salvatore; Sanseverino, Stefano Riva; Leone, Claudio

    2010-03-01

    We present a detailed analysis and comparison of dielectric waveguides made of CdTe, GaP, GaAs and InP for modal phase matched optical difference frequency generation (DFG) in the terahertz domain. From the form of the DFG equations, we derived the definition of a very general figure of merit (FOM). In turn, this FOM enabled us to compare different configurations, by taking into account linear and nonlinear susceptibility dispersion, terahertz absorption, and a rigorous evaluation of the waveguide modes properties. The most efficient waveguides found with this procedure are predicted to approach the quantum efficiency limit with input optical power in the order of kWs.

  8. Generation of photon pairs through parametric processes in nonlinear waveguides with the account of losses

    NASA Astrophysics Data System (ADS)

    Vavulin, D. N.; Sukhorukov, A. A.

    2016-08-01

    We present an analytical description of the process of spontaneous four-wave mixing in a cubic nonlinear fiber with linear losses. We consider the generation of photon pairs in the fiber when in the input of fiber is fed the pumping wave and single signal photon. The focus of attention is on three cases: when the signal photon propagates in the fiber without generating of biphotons; when the photon pair is generated; and when the photon is lost in the fiber. We also consider the cascade processes, but do not give them an analytical description because of their smallness. Description of the biphotons generation process we provide using the Schrodinger-type equation, and take into account the losses in the fiber through the introduction of the virtual beam splitters. We demonstrate the effectiveness of the generation of photon pairs through parametric processes.

  9. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.

    PubMed

    How, Jacqueline A; Elliott, Stephen J; Lineton, Ben

    2010-02-01

    Numerical techniques are used to explore the influence on the predicted basilar membrane (BM) response of the position of the nonlinearity within the micromechanical feedback loop of an active nonlinear cochlear model. This position is found to influence both the harmonic and distortion product spectra of the predicted BM response. The BM motion at the fundamental or primary frequencies is not significantly altered by the position of the nonlinearity, however, provided that the gain is appropriately adjusted. The observed effects are explained in terms of the frequency responses of the elements within the micromechanical feedback loop.

  10. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-01

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo. PMID:25948257

  11. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals.

    PubMed

    Hansen, A K; Tawfieq, M; Jensen, O B; Andersen, P E; Sumpf, B; Erbert, G; Petersen, P M

    2015-06-15

    Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M(2)=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M(2)=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

  12. Theoretical investigation and computational modeling of the difference frequency generation by interaction of few cycle laser pulses in a GaAs crystal

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, D. L.; Hakhoumian, A. A.; Martirosyan, R. M.; Nikoghosyan, A. S.; Laziev, E. M.; Hovhannisyan, G. D.

    2010-08-01

    We present the results of theoretical studies of the generation process of difference frequency radiation arising via interaction of mutually orthogonal linearly polarized few-cycle laser pulses propagating in an isotropic nonlinear medium. Numerical time-integration by the finite-difference method of nonlinear Maxwell-equation systems has been performed. We consider the interaction of pulses having the central wavelengths of 1.98 and 1.55 µm, duration of 30 fs with the corresponding electric field amplitudes of 295 × 106 and 463 × 106 V m-1, propagating along the normal to the ⟨110⟩ plane in 854 µm thickness of GaAs crystal. The process of difference frequency pulse formation arising via spectral filtration of a supercontinuum formed in the spectra of pump pulses at the output of a nonlinear crystal is studied.

  13. Center Wavelength Adoption Techniques for Supercontinuum Generating Highly Nonlinear Noncircular Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Anwar; Namihira, Yoshinori

    2013-05-01

    A supercontinuum (SC) light source is designed using a highly nonlinear noncircular core photonic crystal fiber (HNL-NcPCF) with all-normal group velocity dispersion (GVD) to demonstrate how simply an SC can be generated at different center wavelengths in a normal GVD regime. Using the finite element method (FEM) with a perfectly matched layer (PML), the design of two or more PCF-based light sources at different neighboring center wavelengths is demonstrated numerically. Moreover, SC generations are demonstrated numerically at 1.06, 1.31, and 1.55 µm in a normal dispersion regime using picosecond optical pulses.

  14. Recovery of image distorted by turbulent atmosphere using phase-conjugate image generated by difference frequency generation

    NASA Astrophysics Data System (ADS)

    Zou, Xingquan; Hong, Pengda; Ding, Yujie J.

    2014-12-01

    We demonstrate dynamic recovery of blurred images caused by atmospheric turbulence. In particular, using a phase-conjugate wave generated by a second-order nonlinear crystal or composite, we restore the original quality of the image after the optical radiation forming the image propagates through the turbulent atmosphere. One of the key elements for our experiment is a rotating phase plate being placed in the beam path for simulating turbulent atmosphere. Using the nonlinear composite, we demonstrate that the image recovery is insensitive to the polarization of the optical radiation forming the image.

  15. Recovery of image distorted by turbulent atmosphere using phase-conjugate image generated by difference frequency generation

    SciTech Connect

    Zou, Xingquan; Hong, Pengda; Ding, Yujie J.

    2014-12-15

    We demonstrate dynamic recovery of blurred images caused by atmospheric turbulence. In particular, using a phase-conjugate wave generated by a second-order nonlinear crystal or composite, we restore the original quality of the image after the optical radiation forming the image propagates through the turbulent atmosphere. One of the key elements for our experiment is a rotating phase plate being placed in the beam path for simulating turbulent atmosphere. Using the nonlinear composite, we demonstrate that the image recovery is insensitive to the polarization of the optical radiation forming the image.

  16. A model for the generation of strongly nonlinear, weakly nonhydrostatic interfacial waves in a rotating ocean

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Gerkema, Theo

    2015-04-01

    We derive a new two-fluid layer model consisting of a set of forced rotation-modified Boussinesq equations for studying the generation and evolution of strongly nonlinear weakly nonhydrostatic dispersive interfacial waves in a rotating ocean. The forcing for internal tide generation is due to tide-topography interaction (an oscillating non-flat bottom mimicking a barotropic tidal flow over topography). The resulting model forms a generalization of the Miyata-Choi-Camassa (MCC) equations, to which we add topography, tidal forcing and Coriolis dispersion due to Earth's rotation. Solitons are generated by disintegration of the first-mode of the internal tide. Because of strong non-linearity, they can attain a table-shaped form. Our moving (accelerating) topography is not an inertial frame and, hence, the transformation to a frame at rest is not simply a Galilean transformation. The effect of this transformation is discussed and is shown to be slight for the parameters under consideration. The set of equations is solved numerically using finite-difference methods. Numerical experiments using these equations are a useful tool for exploring and interpreting the conditions under which full nonlinearity becomes important for soliton generation. In particular, this is the case for table-top solitons when approaching the theoretical maximum amplitude and the appearance of nonlinearities when the two-layer system consists of two layers of equal thickness. At the early stage of the strongly nonlinear disintegration of an internal tide into table-top solitons, we observe that the low mode internal tide splits up into two different groups of rank-ordered solitons: a train of depressions on the leading edge and a train of elevations, after the former packet, with initially smaller amplitudes. Evolving in time, the largest elevations reach the smaller depressions in the train ahead, and three leading solitons at the front attain almost equal amplitudes. The table-top soliton

  17. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  18. Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Iftikhar, Ahmad; Ziauddin

    2014-09-01

    A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence (SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium (85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency (EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified, which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.

  19. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes.

    PubMed

    Moura, André L; Carreño, Sandra J M; Pincheira, Pablo I R; Fabris, Zanine V; Maia, Lauro J Q; Gomes, Anderson S L; de Araújo, Cid B

    2016-01-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the (4)F3/2 → (4)I11/2 transition of neodymium ions (Nd(3+)), was achieved by exciting the Nd(3+) with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the (4)F9/2, ((4)F7/2,(4)S3/2), ((4)F5/2,(2)H9/2), and (4)F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission. PMID:27250647

  20. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes

    NASA Astrophysics Data System (ADS)

    Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2016-06-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.

  1. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes

    PubMed Central

    Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2016-01-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission. PMID:27250647

  2. High temperature VSCF (Variable Speed Constant Frequency) generator system

    NASA Astrophysics Data System (ADS)

    Maphet, Thomas Allen; McCabria, Jack Lee; Kouba, Carroll Charles; Mitchell, James Thomas; Kwiecinski, James Robert

    1989-04-01

    The high temperature VSCF generator program was designed to develop a generating system capable of withstanding constantly high oil-in temperatures of 200 C in an ambient environment of 200 C. This is a requirement due to anticipated new fighter aircraft designs that will not be capable of cooling the oil to 100 C as in today's designs due to size restrictions of the heat exchanger and/or extended operation of the aircraft at supersonic speeds. The generator uses composite material to withstand the constant use of 200 C inlet oil.

  3. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution

    NASA Astrophysics Data System (ADS)

    Cea, T.; Castellani, C.; Benfatto, L.

    2016-05-01

    The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.

  4. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion.

    PubMed

    Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-01-30

    We numerically and experimentally demonstrate efficient generation of an equalized optical comb with 150-nm bandwidth. The comb was generated by low-power, continuous-wave seeds, eliminating the need for pulsed laser sources. The new architecture relies on efficient creation of higher-order mixing tones in phase-matched nonlinear fiber stages separated by a linear compressor. Wideband generation was enabled by precise dispersion engineering of multiple-stage parametric mixers.

  5. Generation of highly stable WDM time-bin entanglement by cascaded sum-frequency generation and spontaneous parametric downconversion in a PPLN waveguide device.

    PubMed

    Arahira, Shin; Murai, Hitoshi; Sasaki, Hironori

    2016-08-22

    In this paper we report the generation of wavelength-division-multiplexed, time-bin entangled photon pairs by using cascaded optical second nonlinearities (sum-frequency generation and subsequent spontaneous parametric downconversion) in a periodically poled LiNbO3 device. Visibilities of approximately 94% were clearly observed in two-photon interference experiments for all the wavelength-multiplexed channels under investigation (five pairs), with insensitivity to the polarization states of the photon pairs. We also evaluated the performances in terms of quantum-key-distribution (QKD) applications by using four single-photon detectors, which enables to evaluate the QKD performance properly. The results showed long-term stability over 70 hours, maintaining approximately 3% of the quantum error rate and 110 bit/s of the sifted key rate. PMID:27557236

  6. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy.

    PubMed

    Jubb, Aaron M; Hua, Wei; Allen, Heather C

    2012-01-01

    The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.

  7. All-optical generation of binary phase-coded microwave signal based on cross-polarization modulation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Zhu, Ning Hua

    2014-03-15

    We report a novel all-optical approach to generate a binary phase-coded microwave signal based on a cross-polarization modulation effect in a highly nonlinear fiber. The carrier frequency of the binary phase-coded microwave signal is widely tunable. Moreover, the precise π phase shift of the microwave signal is independent of the optical power of the control beam. The proposed approach is theoretically analyzed and experimentally verified. For a proof-of-concept demonstration, the binary phase-coded microwave signals with a carrier frequency of 20 GHz at a coding rate of 5  Gb/s and with a carrier frequency of 30 GHz at a coding rate of 7.5  Gb/s are experimentally generated. The pulse compression capability of the system is also evaluated. The measured and simulated results fit well with each other.

  8. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  9. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  10. Broadband Supercontinuum Spectrum Generated Highly Nonlinear Photonic Crystal Fiber Applicable to Medical and Optical Communication Systems

    NASA Astrophysics Data System (ADS)

    Begum, Feroza; Namihira, Yoshinori; Kaijage, Shubi F.; Kinjo, Tatsuya

    2011-09-01

    Optical-fiber-based supercontinuum (SC) light sources have attracted much research attention in recent years. High-quality nonlinear optical fibers allow us to readily implement stable and practical SC sources. In this work, we present a highly nonlinear photonic crystal fiber (HN-PCF) in optical coherence tomography (OCT) and telecommunication windows that can generate SC spectra. The finite difference method with an anisotropic perfectly matched layer boundary condition is used to calculate different properties of the proposed HN-PCF. From numerical simulation results, it is found that the HN-PCF nonlinear coefficients are more than 108.0, 74.0, and 53.0 (W·km)-1 at 1.06, 1.31, and 1.55 µm, respectively. The flattened chromatic dispersion is 0 to -4.0 ps/(nm·km) in the wavelength range of 1.06 to 1.7 µm (640 nm bandwidth), and the confinement loss is lower than 10-2 dB/km in the entire wavelength range. The generated supercontinuum bandwidths are 295.0, 408.0, and 590.0 nm at 1.06, 1.31, and 1.55 µm, respectively. The calculated longitudinal resolutions for biomedical imaging are 1.2, 1.2, and 1.1 µm at 1.06, 1.31, and 1.55 µm, respectively.

  11. Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Ni

    2013-01-01

    A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps · nm-1 · km-1 over an ultra-broad waveband range of the S—C—L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter, such as the lattice constant Λ, the air-filling fraction f, and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.

  12. Multiple side-band generation for two-frequency components injected into a tapered amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun

    2013-04-01

    We have experimentally studied the multiple side-band generation for two-frequency components injected into a tapered amplifier and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power and tapered amplifier current. In laser cooling potassium40 and potassium41 with hyperfine splitting of 1.3GHz and 254MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms.

  13. Multiple side-band generation for two-frequency components injected into a tapered amplifier.

    PubMed

    Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun

    2013-04-01

    We have experimentally studied multiple side-band generation for two-frequency components injected into a tapered amplifier (TA) and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry-Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power, and TA current. In laser-cooling potassium40 and potassium41 with hyperfine splitting of 1.3 GHz and 254 MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms. PMID:23546277

  14. High-power optical millimeter-wave signal generation with tunable frequency multiplication factor

    NASA Astrophysics Data System (ADS)

    Han, Yi-shi; Zheng, Zhenyu; Luo, Zhixiao; Min, Zhixuan; Xu, Ou; Liu, Jie

    2015-01-01

    This work demonstrates a simple and novel scheme for millimeter-wave (MMW) signal generation using optical multi-sidebands (OMSB) modulation. In the proposed methods, several pairs of optical sidebands can be generated by employing parallel phase modulators driven by a low frequency radio frequency (RF) signal. The optical sidebands will beat at a photodetector (PD) to generate high frequency MMW signal with tunable frequency multiplication factor, such as frequency octupling, 12-tupling, 16-tupling and 18-tupling. Since no optical filters or DC bias are used, the MMW signal has the evident character of high-power output. A generalized analytic expression and simulation verification for generating the frequency multi-tupling MMW signal are developed. The influences caused by non-ideal factors are discussed in detail, and undesired power ratios versus non-ideal factors are plotted and analyzed.

  15. Sum-frequency generation from molecular monolayers using 14 {mu}m radiation from the FELIX free-electron laser

    SciTech Connect

    Van der Ham, E.W.M.; Vrehen, Q.H.F.; Eliel, E.R.

    1995-12-31

    Sum-frequency generation (SFG) has developed into a widely applied tool for study of surfaces and interfaces where molecules are present. It combines the surface specificity of a second-order nonlinear optical technique with the power of a spectroscopic method, and it can be used under widely varying experimental conditions ranging from UHV to electrochemical cells. The important characteristic of SFG is that it allows one to study the average spatial orientation of a molecular bond in a monolayer of molecules at an interface. Until recently SFG measurements were confined to the frequency interval Y {mu} > 1700 cm{sup -1} because of a lack of suitable laser sources at wave-lengths {lambda} > 6 {mu}m. So for most molecules only a few vibrational modes and thus intramolecular bonds can be studied. We have developed a universal sum-frequency spectrometer around the FELIX free-electron law that covers the complete molecular fingerprint since we can generate any IR wavelength between 2.75 and 110 f{mu} at the FELIX facility. We have used this setup for a series of exploratory SFG experiments in a frequency range that was hitherto unexplored in the study of molecular monolayers. We have studied thiol monolayers chemisorbed on a variety of noble metals (Au, Ag, Pt) where we focussed on the C-S stretch vibration at {nu} = 702 cm{sup -1} ({lambda} = 14.3 {mu}m). We have found spectroscopic features revealing the presence of both the trane and gauche conformers of the adsorbed molecules. The present measurements open a whole new wavelength range for nonlinear optical studies of interfaces.

  16. Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2011-11-30

    Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

  17. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment. PMID:26647962

  18. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.

  19. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma

    PubMed Central

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962

  20. Backward phase-matching for nonlinear optical generation in negative-index materials.

    PubMed

    Lan, Shoufeng; Kang, Lei; Schoen, David T; Rodrigues, Sean P; Cui, Yonghao; Brongersma, Mark L; Cai, Wenshan

    2015-08-01

    Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is 'backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ∼780 nm indicates the fulfilment of the phase-matching condition of k(2ω) = 2k(ω) and n(2ω) = -n(ω), where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.

  1. Multimilling-Insert Wear Assessment Using Non-Linear Virtual Sensor, Time-Frequency Distribution and Neural Networks

    NASA Astrophysics Data System (ADS)

    James Li, C.; Tzeng, Tzong-Chyi

    2000-11-01

    The objective of this study is to establish a signal processing methodology that can infer the state of milling insert wear from translational vibration measured on the spindle housing of a milling machine. First, the tool wear signature in a translational vibration is accentuated by mapping the translational vibration into a torsional vibration using a previously identified non-linear relationship between the two, i.e. a virtual sensor. Second, a time-frequency distribution, i.e. a Choi-Williams distribution, is calculated from the torsional vibration. Third, scattering matrices and orthogonalisation are employed to identify the time-frequency components that are best correlated to the state of wear. Fourth, a neural network is trained to estimate the extent of wear from these critical time frequency components. The combination of the virtual sensor, time-frequency analysis and neural network is then validated with data obtained from real cutting tests.

  2. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  3. A simple and direct method for generating travelling wave solutions for nonlinear equations

    SciTech Connect

    Bazeia, D. Das, Ashok; Silva, A.

    2008-05-15

    We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.

  4. Terahertz generation by nonlinear mixing of laser pulses in a clustered gas

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2011-05-15

    A scheme of terahertz (THz) generation by two collinear laser pulses of finite spot size in a clustered gas is investigated theoretically. The lasers quickly ionize the atoms of the clusters, converting them into plasma balls, and exert a ponderomotive force on the cluster electrons, producing a beat frequency longitudinal current of limited transverse extent. The current acts as an antenna to produce beat frequency terahertz radiation. As the cluster expands under the hydrodynamic pressure, plasma frequency of cluster electrons {omega}{sub pe} decreases and approaches {radical}(3) times the frequency of laser, resonant heating and expansion of clusters occurs. On further expansion of clusters as {omega}{sub pe} approaches {radical}(3) times the terahertz frequency, resonant enhancement in THz radiated power occurs.

  5. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    SciTech Connect

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)

  6. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  7. Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators.

    PubMed

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  8. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Savel'ev, Sergey; Yampol'skii, V. A.; Rakhmanov, A. L.; Nori, Franco

    2010-02-01

    The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, ωJ, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when ∂ω/∂k ≈ 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above ωJ, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single Josephson junction or in layered superconductors. Furthermore, the

  9. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  10. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  11. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  12. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  13. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    PubMed Central

    Arkhipov, Ievgen I.; Peřina Jr., Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes. PMID:27658508

  14. Generation of optical frequency combs in fibres: an optical pulse analysis

    NASA Astrophysics Data System (ADS)

    Zajnulina, Marina; Böhm, Michael; Blow, Keith; Chavez Boggio, José M.; Rieznik, Andres A.; Haynes, Roger; Roth, Martin M.

    2014-07-01

    The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

  15. Numerical analysis of second harmonic generation for THz-wave in a photonic crystal waveguide using a nonlinear FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2016-04-01

    We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.

  16. Evaluation of DAST and zinc telluride nonlinear crystals for efficient terahertz generation

    SciTech Connect

    Venkatesh, M.; Chaudhary, A. K.; Rao, K. S.

    2015-07-31

    Terahertz (THz) signal is generated from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (i.e. DAST Crystal) and Zinc telluride (ZnTe) nonlinear crystals by employing 140 fs laser pulses at 800 nm with 80 MHz repetition rate. The semi insulating gallium arsenide photoconductive stripline antennas (gap =5 µm, length = 20 µm) is used as a Terahertz detector. The detected temporal profile of Terahertz radiation generated from DAST crystal is high as compared to ZnTe crystal in terms of amplitude. THz effective bandwidths of these crystals are extended up to 1.1 THz range. The potential of THz generation of DAST and ZnTe crystals are evaluated with respect to incident laser power.

  17. Frequency Selective Surface Bandpass Filters Applied To Thermophotovoltaic Generators

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, Mark D.; Horne, W. Paul; Sundaram, Vasan S.

    2004-11-01

    EDTEK, Inc. is developing three TPV applications, a portable diesel fueled generator for military and remote users, a hybrid solar-gas fueled power system intended for light industry and commercial 24-hour use, and a radioisotope fueled generator for deep-space spacecraft. The application of FSS bandpass filters for spectral control in these three different TPV applications has been analyzed. It has been determined that the design of the filter cannot be evaluated solely on the parameters of the filter itself. The interactions between the filter and the emitter and the TPV cells must be taken into account. In addition to the technical analysis of the converter, the overall system losses must be included in the analysis and the design requirements such as fuel efficiency, weight, generator size, cost and other factors must be included in the analysis. The analysis shows that the FSS filters are useful for producing the three systems with good efficiencies; however, different designs are required for the filters for each application.

  18. Mixing frequency induces [WO4]2- generating blue luminescence

    NASA Astrophysics Data System (ADS)

    Xia, Zhongchao; Yang, Fugui

    2014-02-01

    In the process of investigating end-pumped continuous intra-cavity Raman laser, a strong blue luminescence at wavelength 473 nm (nanometer) in pure [XO4]2- (X = W, Y, …) has been observed. This luminescence is strange and inconsistent with the traditional single up-conversion luminescence theory, scintillation theory. Basing on the optics theory and scintillation crystal theory, we suggest a "mixing frequency inducing blue emission" mechanism to explain the phenomenon. The mixing wavelength 473.4 nm with the four wavelengths of 808, 890, 912, and 1.064 nm stimulates and induces the blue emission of the [WO4]2-. The mechanism is in good harmony with the experiment.

  19. Design, modeling, and diagnostics of microplasma generation at microwave frequency

    NASA Astrophysics Data System (ADS)

    Miura, Naoto

    Plasmas are partially ionized gases that find wide utility in the processing of materials, especially in integrated circuit fabrication. Most industrial applications of plasma occur in near-vacuum where the electrons are hot (>10,000 K) but the gas remains near room temperature. Typical atmospheric plasmas, such as arcs, are hot and destructive to sensitive materials. Recently the emerging field of microplasmas has demonstrated that atmospheric ionization of cold gases is possible if the plasma is microscopic. This dissertation investigates the fundamental physical properties of two classes of microplasma, both driven by microwave electric fields. The extension of point-source microplasmas into a line-shaped plasma is also described. The line-shape plasma is important for atmospheric processing of materials using roll-coating. Microplasma generators driven near 1 GHz were designed using microstrip transmission lines and characterized using argon near atmospheric pressure. The electrical characteristics of the microplasma including the discharge voltage, current and resistance were estimated by comparing the experimental power reflection coefficient to that of an electromagnetic simulation. The gas temperature, argon metastable density and electron density were obtained by optical absorption and emission spectroscopy. The microscopic internal plasma structure was probed using spatially-resolved diode laser absorption spectroscopy of excited argon states. The spatially resolved diagnostics revealed that argon metastable atoms were depleted within the 200mum core of the microplasma where the electron density was maximum. Two microplasma generators, the split-ring resonator (SRR) and the transmission line (T-line) generator, were compared. The SRR ran efficiently with a high impedance plasma (>1000 O) and was stabilized by the self-limiting of absorbed power (<1W) as a lower impedance plasma caused an impedance mismatch. Gas temperatures were <1000 K and electron

  20. Materials and characterization using acoustic nonlinearity parameters and harmonic generation - Effects of crystalline and amorphous structures

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1990-01-01

    The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.

  1. Numerically Generated Tangent Stiffness Matrices for Geometrically Non-Linear Structures

    NASA Astrophysics Data System (ADS)

    Lebofsky, Sonia

    The aim of this thesis is to develop a general numerical solution method for geometrically non-linear structures. Most common work involves tedious derivations of analytic tangent stiffness matrices. The major objective of the current work is to develop a numerically generated tangent stiffness matrix that allows for a general and easily implementable solution method. The thesis begins with the definition of the tangent stiffness matrix and a discussion of the Newton-Raphson incremental-iterative method typically used to solve geometrically non-linear problems. This is followed by a detailed description of how the tangent stiffness matrix is numerically generated using complex variable differentiation to approximate sensitivities. The thesis proceeds with details of the solution method applied to three different structural elements: 3D truss, membrane, and 3D beam. These discussions include numeric examples for each type of structure, the results of which are compared with the literature and ANSYS solutions. The results from the present work show that solutions obtained using the general numerically generated tangent stiffness matrix are accurate. While computational effort is increased, the method is especially attractive in the context of research involving small finite element models.

  2. Broadband second harmonic generation in an imperfect nonlinear photonic crystal with random defects

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yali; Ren, Xiaobin; Fan, Jingyang

    2016-09-01

    In this paper, we study broadband second harmonic generation (SHG) in an imperfect nonlinear photonic crystal in which defects are introduced with random lengths. We show that the efficient SHG output is obtained when the length of each defect varies near certain specialized values. The bandwidth of the SHG output broadens with the increasing randomness of defect length. Moreover, the SHG bandwidth is nearly unaffected only when the total length of the whole structure is long enough. The disordered structure also exhibits good tolerance to the fabrication error, which provides a way to control SHG intensity and bandwidth separately.

  3. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.

    PubMed

    Rácz, J; de Châtel, P F; Szabó, I A; Szunyogh, L; Nándori, I

    2016-01-01

    The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is "simultaneously rotating and alternating," i.e., the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies. PMID:26871122

  4. Materials characterization using acoustic nonlinearity parameters and harmonic generation - Engineering materials

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1990-01-01

    The paper reviews nonlinear bulk compressional wave acoustic measurement systems and the applications of measurements from such systems to engineering materials. Preliminary measurements indicate that it is possible to determine percent second phase precipitates in aluminum alloys, while other measurements show promise in the determination of properties related to the fatigue states of metals. It is also shown that harmonic generation can be used for the study of crack opening loads in compact tension specimens, which in turn gives useful information about the fatigue properties of various engineering materials.

  5. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    SciTech Connect

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-15

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincare plots.

  6. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rácz, J.; de Châtel, P. F.; Szabó, I. A.; Szunyogh, L.; Nándori, I.

    2016-01-01

    The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is "simultaneously rotating and alternating," i.e., the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies.

  7. Nonlinear dynamics of double-pass cross-polarized wave generation in the saturation regime.

    PubMed

    Iliev, Marin; Meier, Amanda K; Greco, Michael; Durfee, Charles G

    2015-01-10

    The conversion efficiency of cross-polarized wave (XPW) generation can be improved using two separate thinner nonlinear crystals versus a single thick one, due to the evolution of the beam sizes and individual phases after the first crystal. In this paper, we present an alternative scheme in which a curved mirror is used to reimage a plane just after the BaF2 crystal for a second pass. We also develop a simple analytic model for XPW conversion that describes the origin of a nonlinear phase mismatch and nonlinear lensing for both the fundamental wave and XPW. Coupled with the numerical solution for the process and the Fresnel propagation after the first pass, we also explore the factors that affect the efficiency of saturated, seeded XPW conversion. These include the development of the on-axis relative phase difference in the first crystal and after it (during free-space propagation), mode matching, wavefront curvature difference, and crystal tuning angle. We also experimentally demonstrate that the beam quality of the XPW signal after the second pass can be improved by the reimaging. PMID:25967620

  8. Residual generation for fault detection and isolation in a class of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jun; Yang, Guang-Hong

    2013-02-01

    This article studies the problem of fault detection and isolation (FDI) for a class of uncertain nonlinear systems via a residual signal generated by a novel nonlinear adaptive observer. The considered faults are modelled by a set of time-varying vectors, in which a prescribed subset of faults are specially monitored and thus separable from the other faults. In the presence of Lipschitz-like nonlinearities and modelling uncertainties, the sensitivity of the residual signal to the monitored faults and its insensitivity to the other faults are rigorously analysed. Under a persistent excitation condition, the performances of the proposed fault diagnosis scheme, including the robustness to uncertainties, the quickness of estimation, the accuracy of estimation, the sensitivity to the monitored faults and the insensitivity to the complement faults, are quantified by a series of explicit design functions relevant to the observer parameters. It turns out that the number of faults which can be completely diagnosed is independent of the number of output sensors. A simulation example is given to illustrate the effectiveness of the proposed FDI method.

  9. Nonlinear techniques in optical synthetic aperture radar image generation and target recognition.

    PubMed

    Weaver, S; Wagner, K

    1995-07-10

    One of the most successful optical signal-processing applications to date has been the use of optical processors to convert synthetic aperture radar (SAR) data into images of the radar reflectivity of the ground. We have demonstrated real-time input to a high-space-bandwidth optical SAR imagegeneration system by using a dynamic organic holographic recording medium and SAR phase-history data. Real-time speckle reduction in optically processed SAR imagery has been accomplished by the use of multilook averaging to achieve nonlinear modulus-squared accumulation of subaperture images. We designed and assembled an all-optical system that accomplished real-time target recognition in SAR imagery. This system employed a simple square-law nonlinearity in the form of an optically addressed spatial light modulator at the SAR image plane to remove the effects of speckle phase profiles returned from complex SAR targets. The detection stage enabled the creation of an optical SAR automatic target recognition system as a nonlinear cascade of an optical SAR image generator and an optical correlator.

  10. Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation

    NASA Astrophysics Data System (ADS)

    Sai Santosh Kumar, R.; Sree Harsha, S.; Narayana Rao, D.

    2007-03-01

    We present here an enhanced broadband supercontinuum generation in a potassium di-hydrogen phosphate (KDP) crystal. The enhancement in the bandwidth of the white light is obtained towards the shorter wavelength regime (<400 nm) by employing supercontinuum generation and sum frequency generation in tandem. The tunability in the blue region of the spectrum with angle is demonstrated. The bandwidth of supercontinuum achieved spans from 350 nm to 1300 nm. Further, we show the excellent polarization maintenance of continuum generated in KDP in comparison to that generated in water and BK-7 glass.

  11. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  12. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  13. Surface plasma source with saddle antenna radio frequency plasma generator

    SciTech Connect

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-15

    A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  14. Generation of two-mode optical signals with broadband frequency tunability and low spurious signal level.

    PubMed

    Song, Ho-Jin; Shimizu, Naofumi; Nagatsuma, Tadao

    2007-10-29

    For continuous millimeter and terahertz-wave applications, a two-mode optical signal generation technique that uses two arrayed waveguide gratings and two optical switch units is presented. In addition to easy and fast operation, this scheme offers broadband frequency tunability and high signal purity with a low spurious mode level. Mode spacing, which corresponds to the frequency of the generated MM/THz-wave signal after photomixing, was successfully swept in the range of 200 ~ 550 GHz and the optical spurious mode suppression ratio higher than 25 dBc was achieved. In addition, spurious modes characteristics were investigated by using second harmonic generation (SHG) autocorrelation methods for several frequencies.

  15. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect

    Liu, Yong; Gracia, Jose R; Hadley, Stanton W; Liu, Yilu

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  16. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  17. Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods

    NASA Astrophysics Data System (ADS)

    Matringe, Nadir; Moura, Arnaldo Vieira; Rebiha, Rachid

    We describe powerful computational methods, relying on linear algebraic methods, for generating ideals for non-linear invariants of algebraic hybrid systems. We show that the preconditions for discrete transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and so can be suitably represented by matrices. We reduce the non-trivial invariant generation problem to the computation of the associated eigenspaces by encoding the new consecution requirements as specific morphisms represented by matrices. More specifically, we establish very general sufficient conditions that show the existence and allow the computation of invariant ideals. Our methods also embody a strategy to estimate degree bounds, leading to the discovery of rich classes of inductive, i.e. provable, invariants. Our approach avoids first-order quantifier elimination, Grobner basis computation or direct system resolution, thereby circumventing difficulties met by other recent techniques.

  18. Generation of uniform relativistic electron layer and linear and nonlinear coherent Thomson scattering

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Meyer-Ter-Vehn, J.; Fernandez, J. C.; Hegelich, B. M.

    2010-11-01

    A novel, multi-layer target [H.-C. Wu et al., PRL 104, 234801 (2010)] is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering (CTS). A few-cycle laser pulse produces an electron layer from an ultrathin foil and then a second foil reflects the laser pulse, but lets the electrons pass through unperturbed. 2D-PIC simulations show that after interacting with the drive and reflected laser pulses, the electrons form a very uniform flyer that propagates in the direction of laser propagation. Such a flyer backscatters light with a full Doppler shift factor of 4γ^2. Nonlinear CTS theory for relativistic laser intensity shows that compared with linear CTS, a relativistically intense laser induces transverse motion of the electron layer and decreases the linear Doppler shift by a factor 1+a0^2 . Consequently, in order to obtain the same x-ray photon energy as linear CTS, the nonlinear case needs higher electron energy. Theory also shows that CTS efficiency reaches saturation when laser amplitudea0>2. PIC simulations show that a powerful x-ray pulse (1 keV, 10 attoseconds, and GW power) can be generated and that diffraction-limited focusing may boost the intensity to of order 10^24W/cm^2.

  19. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates.

    PubMed

    Müller, Martin F; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2010-04-01

    This paper investigates the characteristics of the second harmonic generation of Lamb waves in a plate with quadratic nonlinearity. Analytical asymptotic solutions to Lamb waves are first obtained through the use of a perturbation method. Then, based on a careful analysis of these asymptotic solutions, it is shown that the cross-modal generation of a symmetric second harmonic mode by an antisymmetric primary mode is possible. These solutions also demonstrate that modes showing internal resonance-nonzero power flux to the second harmonic mode, plus phase velocity matching-are most useful for measurements. In addition, when using finite wave packets, which is the case in most experimental measurements, group velocity matching is required for a cumulative increase in the second harmonic amplitude with propagation distance. Finally, five mode types (which are independent of material properties) that satisfy all three requirements for this cumulative increase in second harmonic amplitude-nonzero power flux, plus phase and group velocity matching-are identified. These results are important for the development of an experimental procedure to measure material nonlinearity with Lamb waves.

  20. Generation and control of sound bullets with a nonlinear acoustic lens

    PubMed Central

    Spadoni, Alessandro; Daraio, Chiara

    2010-01-01

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment. PMID:20368461

  1. Generation and control of sound bullets with a nonlinear acoustic lens.

    PubMed

    Spadoni, Alessandro; Daraio, Chiara

    2010-04-20

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment. PMID:20368461

  2. IR pumped third-harmonic generation and sum-frequency generation in diatomic molecules

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Billman, K. W.

    1976-01-01

    The potential efficiency of using nonlinear up-conversion techniques for the high efficiency type lasers (CO,CO2, and chemical) is assessed. Results indicate that: the small pump photon energy necessitates the use of molecular media for conversion if resonance enhancement is to be used and that molecular systems present several problems. These difficulties include: their levels are complex; their transition probabilities are often unknown; and the oscillator strengths among vibrational levels in the ground electronic state of a molecule are much smaller than those among electronic states of an atom, thus limiting the magnitude of nonlinear interactions. It is shown that this problem can be eliminated by making use of vibronic transitions which, being primarily electronic transitions have much larger matrix elements and efficient conversion can be achieved with molecular systems.

  3. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks.

    PubMed

    Malekiha, Mahdi; Tselniker, Igor; Plant, David V

    2016-02-22

    In this work, we propose and experimentally demonstrate a novel low-complexity technique for fiber nonlinearity compensation. We achieved a transmission distance of 2818 km for a 32-GBaud dual-polarization 16QAM signal. For efficient implantation, and to facilitate integration with conventional digital signal processing (DSP) approaches, we independently compensate fiber nonlinearities after linear impairment equalization. Therefore this algorithm can be easily implemented in currently deployed transmission systems after using linear DSP. The proposed equalizer operates at one sample per symbol and requires only one computation step. The structure of the algorithm is based on a first-order perturbation model with quantized perturbation coefficients. Also, it does not require any prior calculation or detailed knowledge of the transmission system. We identified common symmetries between perturbation coefficients to avoid duplicate and unnecessary operations. In addition, we use only a few adaptive filter coefficients by grouping multiple nonlinear terms and dedicating only one adaptive nonlinear filter coefficient to each group. Finally, the complexity of the proposed algorithm is lower than previously studied nonlinear equalizers by more than one order of magnitude.

  4. Efficient nonlinear generation of high power, higher order, ultrafast "perfect" vortices in green.

    PubMed

    Apurv Chaitanya, N; Jabir, M V; Samanta, G K

    2016-04-01

    We report on efficient nonlinear generation of ultrafast, higher order "perfect" vortices at the green wavelength. Based on Fourier transformation of the higher order Bessel-Gauss (BG) beam generated through the combination of the spiral phase plate and axicon, we have transformed the Gaussian beam of the ultrafast Yb-fiber laser at 1060 nm into perfect vortices of power 4.4 W and order up to 6. Using single-pass second-harmonic generation (SHG) of such vortices in 5 mm long chirped MgO-doped, periodically poled congruent LiNbO3 crystal, we have generated perfect vortices at green wavelength (530 nm) with output power of 1.2 W and vortex order up to 12 at a single-pass conversion efficiency of 27%, independent of the orders. This is the highest single-pass SHG efficiency of any optical beams other than Gaussian beams. Unlike the disintegration of higher order vortices due to spatial walk-off effect in birefringent crystals, here, the use of the quasi-phase-matching process enables generation of high-quality vortices, even at higher orders. The green perfect vortices of all orders have temporal and spectral widths of 507 fs and 1.9 nm, respectively, corresponding to a time-bandwidth product of 1.02. PMID:27192233

  5. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Chu, Xingchun; Dong, Yi

    2015-11-01

    Microwave frequency multiplication using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) to generate an optical millimeter-wave (mm-wave) with 16-tupling of the radio frequency (RF) driving signal frequency is proposed. A theoretical analysis leading to the optimum operating conditions including the direct current (dc) bias points, the modulation index, and the phase difference between RF driving signals is developed and demonstrated. A 160 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 21.5 dB and a radio frequency spurious suppression ratio (RFSSR) of 38 dB is generated from a 10 GHz RF driving signal, which largely reduce the frequency of electrical driving signal and electrooptic devices. Since no optical filter is employed to suppress the undesired optical sidebands, the system exhibits the advantage of large frequency tunable range.

  6. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    SciTech Connect

    Nariyuki, Y.

    2015-02-15

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.

  7. Frequency-resolved optical grating using surface third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1995-11-01

    We demonstrate the frequency-resolved optical grating technique using third-harmonic generation on the surface of a cover glass with ultra-short optical pulses and compare that with the phase-retrieved spectrogram.

  8. Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier.

    PubMed

    Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo

    2008-02-01

    We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.

  9. Vibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low- and mid-frequency ranges

    NASA Astrophysics Data System (ADS)

    Ege, Kerem; Boutillon, Xavier; Rébillat, Marc

    2013-03-01

    The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.

  10. Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser.

    PubMed

    Zhang, Peng; Wang, Tianshu; Jia, Qingsong; Sun, Hongwei; Dong, Keyan; Liu, Xin; Kong, Mei; Jiang, Huilin

    2014-04-10

    A simple photonic approach to generate microwave frequency switched microwave signal is proposed and experimentally demonstrated. In this scheme, a Brillouin fiber laser with double-Brillouin-frequency spacing is used. The Brillouin ring configuration suppresses incoming Brillouin pump and even-order Stokes signals in the cavity. In addition, it also allows propagation of the odd-order Brillouin Stokes signals from configuration to output coupler. A dual-wavelength optical signal is heterodyned at the high-speed photodetector to produce a microwave signal. Frequency switched microwave signals, at 10.75 and 21.39 GHz, respectively, can be obtained through adjusting the polarization controller (PC) and loss of the variable optical attenuator (VOA).

  11. Nonlinear theory of the narrow-band generation and detection of terahertz radiation in resonant tunneling heterostructures

    SciTech Connect

    Kapaev, V. V.

    2015-08-15

    The nonlinear regime of high-frequency response for resonant tunneling structures in a time-periodic electric field has been investigated using a technique for solving the time-dependent Schrödinger equation based on a Floquet mode expansion of the wave functions. The dependences of current harmonic amplitudes on ac signal amplitude have been calculated and the limiting values of the generated field have been determined for singleand double-well resonant tunneling structures. The dynamic Stark effect is shown to play an important role in the formation of response. It leads to a quadratic (in ac field amplitude) shift in the positions of resonances E{sub r} in single-well structures and in double-well ones in the nonresonant case and to a splitting at resonance hν ≈ E{sub r2}–E{sub r1} (ν is the signal frequency, E{sub r1} and E{sub r2} are the energies of the size-quantization levels) in double-well structures proportional to the ac signal amplitude. The phenomenon of ac signal detection by resonant tunneling structures has been investigated. The effect of resonant direct-current amplification in double-well structures has been detected at a signal frequency satisfying the condition hν ≈ E{sub r2}–E{sub r1}. In asymmetric systems, detection is shown to be possible in the absence of a dc bias, which allows zero-biased detectors based on them to be created.

  12. Harmonic generation at high field strengths - Frequency shifts and saturation phenomena. [optical mixing technique

    NASA Technical Reports Server (NTRS)

    Stappaerts, E. A.

    1975-01-01

    Optical harmonic generation and mixing in the gas phase has been proposed as a technique for the generation of coherent radiation in the vacuum ultraviolet and soft X-ray spectral region. At the high field strengths required by these processes the interaction between atoms and the electromagnetic field shows intensity-dependent resonances. In this paper we modify harmonic generation theory to include the effect of these frequency shifts. Closed-form expressions for generated dipole moment, absorption probability, and coherence length are presented. The most important consequences of frequency shifts on resonantly enhanced processes are that the pump laser must be tuned away from the small-field resonance frequency, that the conversion efficiency may saturate, and that the dispersion of the medium may change sign. As an example, the generation of 198-A radiation by a five-photon mixing process in Li(+) is considered.

  13. Discrete Frequency Entangled Photon Pair Generation Based on Silicon Micro-ring Cavities

    NASA Astrophysics Data System (ADS)

    Suo, Jing; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde

    2016-10-01

    In this paper, we propose and demonstrate a scheme to generate discrete frequency entangled photon pairs based on a silicon micro-ring resonator. The resonator is placed in a Sagnac fiber loop. Stimulated by two pump lights at two different resonance wavelengths of the resonator, photon pairs at another two resonance wavelengths are generated along two opposite directions in the fiber loop, by the nondegenerate spontaneous four wave mixing in the resonator. Their states are superposed and interfered at the output ports of the fiber loop to generate frequency entangled photon pairs. On the other hand, since the pump lights come from two continuous wave lasers, energy-time entanglement is an intrinsic property of the generated photon pairs. The entanglements on frequency and energy-time are demonstrated experimentally by the experiments of spatial quantum beating and Franson-type interference, respectively, showing that the silicon micro-ring resonators are ideal candidates to realize complex photonic quantum state generation.

  14. Ensemble forecast of typhoon generated by orthogonal conditional nonlinear optimal perturbations

    NASA Astrophysics Data System (ADS)

    Huo, Zhenhua; Duan, Wansuo; Zhou, Feifan

    2016-04-01

    Orthogonal conditional nonlinear optimal perturbations (CNOPs) are the initial perturbations that have the largest impact on the forecast results in orthogonal subspaces of the initial perturbation space. Previous studies demonstrate the successful application of orthogonal CNOPs in ensemble forecasting. And further analysis indicates that orthogonal CNOPs may be more adapt to the prediction of strong events, among which typhoon events occur in the tropical or subtropical areas where the diabatic physical processes is very important and has strong nonlinear behavior. For these reasons, this paper focuses on the application of orthogonal CNOPs in ensemble forecast of typhoon. In this study, orthogonal CNOPs, orthogonal singular vectors (SVs), bred vectors (BVs) and random perturbations (RPs) are applied for typhoon ensemble forecasts using MM5 model. The results show that, for typhoons Matsa in 2005 and Sepat in 2007, ensemble forecasts generated by orthogonal CNOPs greatly improve the control forecast, successfully predicts the landing location of Matsa, and gives the warning information of the landing of Sepat. In detail, for the ensemble mean associated with orthogonal CNOPs, the averaging track forecast error over 5 days is decreased by 45.58 km for Matsa and 87.8 km for Sepat, compared with control forecast. However, ensemble forecasts generated by other three methods could not successfully predict the landing location of Matsa and give the warning information of the landing of Sepat. Compared with orthogonal SVs, BVs and RPs, ensemble forecasts generated by orthogonal CNOPs corresponds to the largest ensemble spread, improves the control forecast at the largest extent, and best samples the distribution of initial analysis errors. All these results show that orthogonal CNOPs may provide another useful technique for ensemble forecast of typhoon.

  15. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.

    PubMed

    Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki

    2012-06-18

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

  16. Nonlinear quantum piston for the controlled generation of vortex rings and soliton trains

    NASA Astrophysics Data System (ADS)

    Pinsker, Florian; Berloff, Natalia G.; Pérez-García, Víctor M.

    2013-05-01

    We propose a simple way to generate nonlinear excitations in a controllable way by managing interactions in Bose-Einstein condensates. Under the action of a quantum analog of a classical piston, the condensed atoms are pushed through the trap, generating vortex rings infully three-dimensional condensates or soliton trains in quasi-one-dimensional scenarios. The vortex rings form due to transverse instability of the shock-wave train, enhanced and supported by the energy transfer between waves. We elucidate in what sense the self-interactions within the atom cloud define the properties of the generated vortex rings and soliton trains. Based on the quantum-piston scheme we study the behavior of two-component Bose-Einstein condensates and analyze how the presence of an additional superfluid influences the generation of vortex rings or solitons in the other component, and vice versa. Finally, we show the dynamical emergence of skyrmions within two-component systems in the immiscible regime.

  17. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  18. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGESBeta

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  19. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  20. Evolution of supersaturation of amorphous pharmaceuticals: nonlinear rate of supersaturation generation regulated by matrix diffusion.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-04-01

    The importance of rate of supersaturation generation on the kinetic solubility profiles of amorphous systems has recently been shown by us; however, the previous focus was limited to constant rates of supersaturation generation. The objective of the current study is to further examine the effect of nonlinear rate profiles of supersaturation generation in amorphous systems, including (1) instantaneous or infinite rate (i.e., initial degree of supersaturation), (2) first-order rate (e.g., from dissolution of amorphous drug particles), and (3) matrix diffusion regulated rate (e.g., drug release from amorphous solid dispersions (ASDs) based on cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels), on the kinetic solubility profiles of a model poorly soluble drug indomethacin (IND) under nonsink dissolution conditions. The previously established mechanistic model taking into consideration both the crystal growth and ripening processes was extended to predict the evolution of supersaturation resulting from nonlinear rates of supersaturation generation. Our results confirm that excessively high initial supersaturation or a rapid supersaturation generation leads to a surge in maximum supersaturation followed by a rapid decrease in drug concentration owing to supersaturation-induced precipitation; however, an exceedingly low degree of supersaturation or a slow rate of supersaturation generation does not sufficiently raise the supersaturation level, which results in a lower but broader maximum kinetic solubility profile. Our experimental data suggest that an optimal area-under-the-curve of the kinetic solubility profiles exists at an intermediate initial supersaturation level for the amorphous systems studied here, which agrees well with the predicted trend. Our model predictions also support our experimental findings that IND ASD in cross-linked PHEMA exhibits a unique kinetic solubility profile because the resulting supersaturation level is governed by a matrix

  1. Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents.

    PubMed

    Rotstein, Horacio G

    2015-04-01

    We investigate the biophysical and dynamic mechanisms of generation of subthreshold amplitude and phase resonance in response to sinusoidal input currents in two-dimensional models of quadratic type. These models feature a parabolic voltage nullcline and a linear nullcline for the recovery gating variable, capturing the interplay of the so-called resonant currents (e.g., hyperpolarization-activated mixed-cation inward and slow potassium) and amplifying currents (e.g., persistent sodium) in biophysically realistic parameter regimes. These currents underlie the generation of resonance in medial entorhinal cortex layer II stellate cells and CA1 pyramidal cells. We show that quadratic models exhibit nonlinear amplifications of the voltage response to sinusoidal inputs in the resonant frequency band. These are expressed as an increase in the impedance profile as the input amplitude increases. They are stronger for values positive than negative to resting potential and are accompanied by a shift in the phase profile, a decrease in the resonant and phase-resonant frequencies, and an increase in the sharpness of the voltage response. These effects are more prominent for smaller values of ∊ (larger levels of the time scale separation between the voltage and the resonant gating variable) and for values of the resting potential closer to threshold for spike generation. All other parameter fixed, as ∊ increases the voltage response becomes "more linear"; i.e., the nonlinearities are present, but "ignored". In addition, the nonlinear effects are strongly modulated by the curvature of the parabolic voltage nullcline (partially reflecting the effects of the amplifying current) and the slope of the resonant current activation curve. Following the effects of changes in the biophysical conductances of realistic conductance-based models through the parameters of the quadratic model, we characterize the qualitatively different effects that resonant and amplifying currents have on

  2. a Frequency Domain Based NUMERIC-ANALYTICAL Method for Non-Linear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Sekar, P.

    1998-04-01

    In this paper a multiharmonic balancing technique is used to develop certain algorithms to determine periodic orbits of non-liner dynamical systems with external, parametric and self excitations. Essentially, in this method the non-linear differential equations are transformed into a set of non-linear algebraic equations in terms of the Fourier coefficients of the periodic solutions which are solved by using the Newton-Raphson technique. The method is developed such that both fast Fourier transform and discrete Fourier transform algorithms can be used. It is capable of treating all types of non-linearities and higher dimensional systems. The stability of periodic orbits is investigated by obtaining the monodromy matrix. A path following algorithm based on the predictor-corrector method is also presented to enable the bifurcation analysis. The prediction is done with a cubic extrapolation technique with an arc length incrementation while the correction is done with the use of the least square minimisation technique. The under determined system of equations is solved by singular value decomposition. The suitability of the method is demonstrated by obtaining the bifurcational behaviour of rolling contact vibrations modelled by Hertz contact law.

  3. The study of the nonlinear correction of the FMCW absolute distance measurement using frequency-sampling and precision analysis

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Gan, Yu; Chen, Fengdong; Liu, Bingguo; Zhuang, Zhitao; Xu, Xinke; Liu, Guodong

    2014-12-01

    This article uses the external cavity laser to realize FMCW high precision absolute distance measurement, as the external cavity laser owns the advantage of large tuning range of frequency. Firstly, aim at the problem of nonlinear tuning of the external cavity laser, a study of method of frequency-sampling has been shown. Secondly, in this article the mathematical model of the absolute dis tance measurement system has been established, and the sources of the errors of the FMCW absolute distance measurement has been analyzed, and the accuracy model has been established. Finally, a ball which is put at a distance about 3 meters is measured, and the random error is 0.3479μm, the standard uncertainty of measurement system is 0.3479μm+3.141Rppm.

  4. Low-Frequency MEMS Electrostatic Vibration Energy Harvester With Corona-Charged Vertical Electrets and Nonlinear Stoppers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.

    2015-12-01

    This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.

  5. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  6. A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer.

    PubMed

    Lukashkin, A N; Russell, I J

    1998-02-01

    This paper describes a model for generating the hair cell receptor potential based on a second-order Boltzmann function. The model includes only the resistive elements of the hair cell membranes with batteries across them and the series resistance of the external return path of the transducer current through the tissue of the cochlea. The model provides a qualitative description of signal processing by the hair cell transducer and shows that the nonlinearity of the hair cell transducer can give rise to nonlinear phenomena, such as intermodulation distortion products and two-tone suppression with patterns similar to those which have been recorded from the peripheral auditory system. Particular outcomes of the model are the demonstration that two-tone suppression depends not on the saturation of the receptor current, but on the behaviour of the hair cell transducer function close to the operating point. The model also shows that there is non-monotonic growth and phase change for any spectral component, but not for the fundamental of the receptor potential. PMID:9479750

  7. Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber.

    PubMed

    Ou, Hongya; Dai, Shixun; Zhang, Peiqing; Liu, Zijun; Wang, Xunsi; Chen, Feifei; Xu, Hang; Luo, Baohua; Huang, Yicong; Wang, Rongping

    2016-07-15

    We report the fabrication of a novel high nonlinear fiber made of Ge-Sb-Se chalcogenide glasses with high numerical aperture (∼1.0), where the core and the cladding glasses consist of Ge15Sb25Se60 and Ge15Sb20Se65 (mol. %), respectively. The nonlinear refractive index (n2) of the core glass is 19×10-18  m2/W at 1.55 μm, and its laser-induced damage threshold under irradiation of 3.0 μm fs laser is approximately 3674  GW/cm2. By pumping a 20-cm-long fiber with a core diameter of 23 μm using 150 fs pulses at 6.0 μm, supercontinuum spanning from ∼1.8 to ∼14  μm was generated. PMID:27420495

  8. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    SciTech Connect

    Zabolotskii, A. A.

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.

  9. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy.

    PubMed

    Tuer, Adam E; Krouglov, Serguei; Prent, Nicole; Cisek, Richard; Sandkuijl, Daaf; Yasufuku, Kazuhiro; Wilson, Brian C; Barzda, Virginijus

    2011-11-10

    Collagen (type I) fibers are readily visualized with second harmonic generation (SHG) microscopy though the molecular origin of the signal has not yet been elucidated. In this study, the molecular origin of SHG from type I collagen is investigated using the time-dependent coupled perturbed Hartree-Fock calculations of the hyperpolarizibilities of glycine, proline, and hydroxyproline. Two effective nonlinear dipoles are found to orient in-the-plane of the amino acids, with one of the dipoles aligning close to the pitch orientation in the triple-helix, which provides the dominant contribution to the SHG polarization properties. The calculated hyperpolarizability tensor element ratios for the collagen triple-helix models: [(Gly3)n]3, [(Gly-Pro2)n]3, and [(Gly-Pro-Hyp)n]3, are used to predict the second-order nonlinear susceptibility ratios, χ(zzz)(2)/χ(iiz)(2) and χ(zii)(2)/χ(iiz)(2) of collagen fibers. From SHG microscopy polarization in, polarization out (PIPO) measurements of type I collagen in human lung tissue, a theoretical method is used to extract the triple-helix orientation angle with respect to the collagen fiber. The study shows the dominant role of amino acid orientation in the triple-helix for determining the polarization properties of SHG and provides a method for determining the triple-helix orientation angle in the collagen fibers. PMID:21970315

  10. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  11. Tunable terahertz frequency comb generation using time-dependent graphene sheets

    NASA Astrophysics Data System (ADS)

    Ginis, Vincent; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2015-04-01

    We investigate the interaction between electromagnetic pulses and two-dimensional current sheets whose conductivity is controlled as a function of time by the generation of photocarriers, and we discuss its applicability to tunable frequency comb generation. To this aim, we develop an analytical model that permits the calculation of the scattered waves off a thin sheet with time-dependent, dispersive sheet conductivity. We evaluate the transmitted spectrum as a function of the dispersive behavior and the modulation frequency of the number of photocarriers. We conclude that such active materials, e.g., time-dependent graphene sheets, open up the possibility to manipulate the frequency of incident pulses and, hence, could lead to highly tunable, miniaturized frequency comb generation.

  12. Filter-less frequency-doubling microwave signal generator with tunable phase shift

    NASA Astrophysics Data System (ADS)

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin

    2016-07-01

    A prototype for frequency-doubling microwave signal generator with tunable phase shift based on a filter-less architecture is proposed and analyzed. In the proposal, one dual parallel polarization modulator is used as the key component to generate two ±1st order sidebands along the orthogonal polarization directions with suppressed carrier. Then the polarization states of the two sidebands are aligned with the principal axes of an electro-optical phase modulator (EOPM). Tunable phase shift is implemented by controlling the direct current voltage applied to the EOPM. Without using any filters or wavelength-dependent components, the system possesses good frequency tunability and it can be applied to multi-wavelength operation. Taking advantage of the ability of frequency multiplication, the frequency tuning range can be wider than the operation bandwidth of the modulator. By theoretical analyses and simulated verifications, a frequency-doubling microwave signal ranging from 22 to 40 GHz with full range phase shift is achieved.

  13. Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki

    2014-03-01

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and arts. In this letter, we report on real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal. The active projection-imaging system consisted of (1) THz wave generation, (2) THz-near-infrared hybrid optics, (3) THz wave up-conversion, and (4) an InGaAs camera working at 60 frames per second. The pumping laser system consisted of two optical parametric oscillators pumped by a nano-second frequency-doubled Nd:YAG laser. THz-wave images of handmade samples at 19.3 THz were taken, and videos of a sample moving and a ruler stuck with a black polyethylene film moving were supplied online to show real-time ability. Thanks to the high speed and high responsivity of this technology, real-time THz imaging with a higher signal-to-noise ratio than a commercially available THz micro-bolometer camera was proven to be feasible. By changing the phase-matching condition, i.e., by changing the wavelength of the pumping laser, we suggest THz imaging with a narrow THz frequency band of interest in a wide range from approximately 2 to 30 THz is possible.

  14. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    PubMed

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  15. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  16. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness. PMID:26030557

  17. How additive noise generates a phantom attractor in a model with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-10-01

    Two-dimensional nonlinear system forced by the additive noise is studied. We show that an increasing noise shifts random states and localizes them in a zone far from deterministic attractors. This phenomenon of the generation of the new "phantom" attractor is investigated on the base of probability density functions, mean values and variances of random states. We show that increasing noise results in the qualitative changes of the form of pdf, sharp shifts of mean values, and spikes of the variance. To clarify this phenomenon mathematically, we use the fast-slow decomposition and averaging over the fast variable. For the dynamics of the mean value of the slow variable, a deterministic equation is derived. It is shown that equilibria and the saddle-node bifurcation point of this deterministic equation well describe the stochastic phenomenon of "phantom" attractor in the initial two-dimensional stochastic system.

  18. Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit; Konar, Swapan; Khan, Kaisar R.

    2015-01-01

    We present the design of a photonic crystal fiber which promises to yield very large optical nonlinearity ˜151 W-1 km-1 at 1.55 μm wavelength. The fiber possesses two zero dispersion points whose locations can be tuned by varying the air hole diameter and hole pitch. The fiber dispersion is anomalous between these two zero dispersion points and its value is moderate. The fiber has been used to numerically simulate optical supercontinuum (SC) generation using low power pump pulses of 50 fs duration at a 1.55-μm wavelength. At the end of 15-cm fiber, SC broadening of about 1200 and 1700 nm can be achieved with pulses of 1 and 5 kW peak power, respectively.

  19. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    NASA Astrophysics Data System (ADS)

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-01

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincaré plots.

  20. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    SciTech Connect

    He, Zhaoguo; Zong, Qiugang Wang, Yongfu; Liu, Siqing; Lin, Ruilin; Shi, Liqin

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.