Sample records for nonlinear gauge interactions

  1. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  2. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  3. Nonlinear forecasting analysis of inflation-deflation patterns of an active caldera (Campi Flegrei, Italy)

    USGS Publications Warehouse

    Cortini, M.; Barton, C.C.

    1993-01-01

    The ground level in Pozzuoli, Italy, at the center of the Campi Flegrei caldera, has been monitored by tide gauges. Previous work suggests that the dynamics of the Campi Flegrei system, as reconstructed from the tide gauge record, is chaotic and low dimensional. According to this suggestion, in spite of the complexity of the system, at a time scale of days the ground motion is driven by a deterministic mechanism with few degrees of freedom; however, the interactions of the system may never be describable in full detail. New analysis of the tide gauge record using Nonlinear Forecasting, confirms low-dimensional chaos in the ground elevation record at Campi Flegrei and suggests that Nonlinear Forecasting could be a useful tool in volcanic surveillance. -from Authors

  4. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  5. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  6. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  7. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  8. Canonical Descriptions of High Intensity Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Le Cornu, B. J.

    The problem of laser-plasma interaction has been studied extensively in the context of inertial confinement fusion (ICF). These studies have focussed on effects like the nonlinear force, self-focusing, Rayleigh- Taylor instabilities, stimulated Brillouin scattering and stimulated Raman scattering observed in ICF schemes. However, there remains a large discrepancy between theory and experiment in the context of nuclear fusion schemes. Several authors have attempted to gain greater understanding of the physics involved by the application of standard or 'canonical' methods used in Lagrangian and Hamiltonian mechanics to the problem of plasma physics. This thesis presents a new canonical description of laser-plasma interaction based on the Podolsky Lagrangian. Finite self-energy of charged particles, incroporation of high-frequency effects and an ability to quantise are the main advantages of this new model. The nature of the Podolsky constant is also analysed in the context of plasma physics, specifically in terms of the plasma dispersion relation. A new gauge invariant expression of the energy-momentum tensor for any gauge invariant Lagrangian dependent on second order derivatives is derived for the first time. Finally, the transient and nontransient expressions of the nonlinear ponderomotive force in laser-plasma interaction are discussed and shown to be closely approximated by a canonical derivation of the electromagnetic Lagrangian, a fact that seems to have been missed in the literature.

  9. Quantum droplets of light in the presence of synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Wilson, Kali; Westerberg, Niclas; Valiente, Manuel; Duncan, Callum; Wright, Ewan; Ohberg, Patrik; Faccio, Daniele

    2017-04-01

    Recently, quantum droplets have been demonstrated in dipolar Bose-Einstein condensates, where the long range (nonlocal) attractive interaction is counterbalanced by a local repulsive interaction. In this work, we investigate the formation of quantum droplets in a two-dimensional nonlocal fluid of light. Fluids of light allow us to control the geometry of the system, and thus introduce vorticity which in turn creates an artificial magnetic field for the quantum droplet. In a quantum fluid of light, the photons comprising the fluid are treated as a gas of interacting Bose-particles, where the nonlocal interaction comes from the nonlinearity inherent in the material, in our case an attractive third-order thermo-optical nonlinearity. In contrast to matter-wave droplets, photon fluid droplets are not stabilised by local particle-particle scattering, but from the quantum pressure itself, i.e., a balance between diffraction and the nonlocal nonlinearity. We will present a numerical and analytical investigation of the ground state of these droplets and of their subsequent dynamics under the influence of a self-induced artificial magnetic field, and discuss experimental work with the possibility to include artificial gauge interactions between droplets.

  10. Thermalization and confinement in strongly coupled gauge theories

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2016-11-01

    Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.

  11. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  12. On effective holographic Mott insulators

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-12-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  13. Non-linear power spectra in the synchronous gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  14. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  15. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system

    NASA Astrophysics Data System (ADS)

    Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello

    2018-01-01

    An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.

  16. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  17. Gauge invariant gluon spin operator for spinless nonlinear wave solutions

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.

    2017-04-01

    We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.

  18. Non-linear motions in reprocessed GPS station position time series

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gendt, Gerd

    2010-05-01

    Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.

  19. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  20. Instant-Form and Light-Front Quantization of Field Theories

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James

    2018-05-01

    In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.

  1. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  2. Nambu mechanism of dynamical symmetry breaking by the top quark

    NASA Astrophysics Data System (ADS)

    Pham, Xuan-Yem

    1990-05-01

    It may be possible that the gauge symmetry breaking of the standard electroweak interactions is not due to the elementary scalar Higgs fields but has a dynamic origin intimately involving the top quark. A prototype of this dynamical scenario is the Nambu and Jona-Lasinio model in which both the top quark and the gauge bosons become massive by some strong attractive nonlinear interactions similar to the gap energy produced in BCS superconductivity. Self-consistent equations for the charged Goldstone boson and for the vector meson are used to get an upper bound for the top quark mass. In the bubble approximation of keeping only fermion loops, we obtain an equation relating the top quark mass to the W boson one; from the top mass is found to be around 84 GeV. Its typical dominant decay mode t→W+s then follows. Also discussed are distinctive signatures of the scalar overlinett bound state identified as the physical Higgs particle whose mass is twice that of the top quark.

  3. Fabrication of micromachined ceramic thin-film-type pressure sensors for overpressure tolerance and its characteristics

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Kim, Jae-Min

    2004-04-01

    This paper describes the fabrication process and characteristics of ceramic thin-film pressure sensors based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragm with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low nonlinearity and excellent temperature stability. The sensitivity is 1.21-1.097 mV/V×kgf/cm2 in temperature ranges of 25-200°C and a maximum non-linearity is 0.43 %FS.

  4. Thickness Gauging of Single-Layer Conductive Materials with Two-Point Non Linear Calibration Algorithm

    NASA Technical Reports Server (NTRS)

    Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)

    1998-01-01

    A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.

  5. Vacuum structure and gravitational bags produced by metric-independent space-time volume-form dynamics

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-07-01

    We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

  6. Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zi, Tieguang; Zhang, Hongbao

    2018-04-01

    We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T

  7. Asymptotically (A)dS dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hajkhalili, S.; Sheykhi, A.

    It is well known that with an appropriate combination of three Liouville-type dilaton potentials, one can construct charged dilaton black holes in an (anti)-de Sitter [(A)dS] spaces in the presence of linear Maxwell field. However, asymptotically (A)dS dilaton black holes coupled to nonlinear gauge field have not been found. In this paper, we construct, for the first time, three new classes of dilaton black hole solutions in the presence of three types of nonlinear electrodynamics, namely Born-Infeld (BI), Logarithmic (LN) and Exponential nonlinear (EN) electrodynamics. All these solutions are asymptotically (A)dS and in the linear regime reduce to the Einstein-Maxwell-dilaton (EMd) black holes in (A)dS spaces. We investigate physical properties and the causal structure, as well as asymptotic behavior of the obtained solutions, and show that depending on the values of the metric parameters, the singularity can be covered by various horizons. We also calculate conserved and thermodynamic quantities of the obtained solutions. Interestingly enough, we find that the coupling of dilaton field and nonlinear gauge field in the background of (A)dS spaces leads to a strange behavior for the electric field. We observe that the electric field is zero at singularity and increases smoothly until reaches a maximum value, then it decreases smoothly until goes to zero as r →∞. The maximum value of the electric field increases with increasing the nonlinear parameter β or decreasing the dilaton coupling α and is shifted to the singularity in the absence of either dilaton field (α = 0) or nonlinear gauge field (β →∞).

  8. Twofold symmetries of the pure gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-01-25

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  9. Twofold symmetries of the pure gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  10. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  11. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  12. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    PubMed

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  13. Laboratory tests of short intense envelope solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2012-04-01

    Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long-living nonlinear wave groups in dynamics of intense sea waves. [1] V.E. Zakharov, A.I. Dyachenko, A.O. Prokofiev, Eur. J. Mech. B / Fluids 25, 677 (2006). [2] A.I. Dyachenko, V.E. Zakharov, JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, JETP 109, 676 (2009).

  14. Nonlinear evolution and final fate of (charged) superradiant instability

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Bosch, Pablo; Lehner, Luis

    2016-03-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordstrom-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  15. Aspects of effective supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Tziveloglou, Panteleimon

    This work consists of two parts. In the first part we construct the complete extension of the Minimal Supersymmetric Standard Model by higher dimensional effective operators and then study its phenomenology. These operators encapsulate the effects on LHC physics of any kind of new degrees of freedom at the multiTeV scale. The effective analysis includes the case where the multiTeV physics is the supersymmetry breaking sector itself. In that case the appropriate framework is nonlinear supersymmetry. We choose to realize the nonlinear symmetry by the method of constrained superfields. Beyond the new effective couplings, the analysis suggests an interpretation of the 'little hierarchy problem' as an indication of new physics at multiTeV scale. In the second part we explore the power of constrained superfields in extended supersymmetry. It is known that in N = 2 supersymmetry the gauge kinetic function cannot depend on hypermultiplet scalars. However, it is also known that the low energy effective action of a D-brane in an N = 2 supersymmetric bulk includes the DBI action, where the gauge kinetic function does depend on the dilaton. We show how the nonlinearization of the second SUSY (imposed by the presence of the D-brane) opens this possibility, by constructing the global N = 1 linear + 1 nonlinear invariant coupling of a hypermultiplet with a gauge multiplet. The constructed theory enjoys interesting features, including a novel super-Higgs mechanism without gravity.

  16. Local existence of N=1 supersymmetric gauge theory in four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.

    2015-04-16

    In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.

  17. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability

    NASA Astrophysics Data System (ADS)

    Bosch, Pablo; Green, Stephen R.; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  18. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  19. Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of tide, surge and non-linear interaction

    NASA Astrophysics Data System (ADS)

    Zijl, Firmijn; Verlaan, Martin; Gerritsen, Herman

    2013-07-01

    In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide-surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide-surge interaction is affected by the poor representation of the tide signal in the tide-surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide-surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.

  20. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  1. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    NASA Astrophysics Data System (ADS)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  2. The Wronskian solution of the constrained discrete Kadomtsev-Petviashvili hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Maohua; He, Jingsong

    2016-05-01

    From the constrained discrete Kadomtsev-Petviashvili (cdKP) hierarchy, the discrete nonlinear Schrödinger (DNLS) equations have been derived. By means of the gauge transformation, the Wronskian solution of DNLS equations have been given. The u1 of the cdKP hierarchy is a Y-type soliton solution for odd times of the gauge transformation, but it becomes a dark-bright soliton solution for even times of the gauge transformation. The role of the discrete variable n in the profile of the u1 is discussed.

  3. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  4. Three site Higgsless model at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya

    2007-04-01

    In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less

  5. Nonlinear interaction of the Tsugaru Warm Current and tide in the Tsugaru Strait

    NASA Astrophysics Data System (ADS)

    Wada, Ryota; Waseda, Takuji; Nanjo, Hirotada

    2012-06-01

    The Tsugaru Strait, which connects the Sea of Japan with the Pacific Ocean, is characterized by the eastward Tsugaru Warm Current (TWC) and oscillating tidal currents of similar magnitude. A 15-day current observation was conducted in one of the two narrow channels in the strait, at the northwest tip of the Shimokita Peninsula. The observation revealed that the spectral energy of the semidiurnal current exceeds that of the diurnal current, contrary to the conventional view. The Tsugaru Strait regional model was developed to study the mechanism of this spectral energy reversal (140-141.5° E, 40.4-42.6° N, 500 m grid resolution). At the eastern and western open boundaries, the model was driven by the constant Tsugaru warm current and tidal elevation, which was adjusted by comparing the model with tidal gauge observations within the channel. The relative magnitude of the spectral energies differed from that of the observation when the model was driven by tide only. However, the spectral energy levels were reversed when the model was driven by both tide and current. The nonlinear interaction of periodic tidal currents and the steady TWC was explained by the vorticity equation, which describes the production and advection of residual currents from tidal currents. According to the model results, flow separation and advection of vorticity by the TWC was the most prominent factor in this phenomenon. Because of the strong nonlinearities, flow separation around the headland occurred during the tidal period with dominant current magnitude and furnished the main difference between the diurnal and semidiurnal interactions. These phenomena were enhanced by the complex topography, and demonstrate the importance of scale interaction, especially when developing high-resolution regional models.

  6. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  7. Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Shen, Shou-Feng; Zhu, Zuo-Nong

    2017-10-01

    In this paper, we prove that an integrable nonlocal complex modified Korteweg-de Vries (mKdV) equation introduced by Ablowitz and Musslimani [Nonlinearity 29, 915-946 (2016)] is gauge equivalent to a spin-like model. From the gauge equivalence, one can see that there exists significant difference between the nonlocal complex mKdV equation and the classical complex mKdV equation. Through constructing the Darboux transformation for nonlocal complex mKdV equation, a variety of exact solutions including dark soliton, W-type soliton, M-type soliton, and periodic solutions are derived.

  8. Interacting Non-Abelian Anti-Symmetric Tensor Field Theories

    NASA Astrophysics Data System (ADS)

    Ekambaram, K.; Vytheeswaran, A. S.

    2018-04-01

    Non-Abelian Anti-symmetric Tensor fields interacting with vector fields have a complicated constraint structure. We enlarge the gauge invariance in this system. Relevant gauge invariant quantities including the Hamiltonian are obtained. We also make introductory remarks on a different but more complicated gauge theory.

  9. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  10. Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Luo, Xiao

    2018-06-01

    We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk; Hwang, Jai-chan; Noh, Hyerim

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  12. On the Generalized Heisenberg Supermagnetic Model

    NASA Astrophysics Data System (ADS)

    Yan, Zhao-Wen; Zhang, Xiao-Jing; Han, Rong; Li, Chuan-Zhong

    2018-05-01

    In this paper, we construct the generalized Heisenberg supermagnetic models with two different constraints and investigate the integrability of the super integrable systems. By virtue of the gauge transformation, their corresponding gauge equivalent counterparts are derived, i.e., the super and fermionic mixed derivative nonlinear Schrödinger equations, respectively. Supported by National Natural Science Foundation of China under Grant Nos. 11605096, 11571192, and 11601247 and innovation Foundation of Inner Mongolia University for the College Students (201711208)

  13. Holographic conductivity of holographic superconductors with higher-order corrections

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin

    2018-02-01

    We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.

  14. Gauge interactions theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zichichi, A.

    This volume brings together physicists from around the world to report and discuss the exciting advances made recently in theoretical and experimental aspects of gauge interactions. Following a presentation of the theoretical foundations of and recent developments in gauge fields, the contrib utors fogus on supersymmetry, the derivation of Higgs particles from gauge fields, and heavy leptons. Other chapters discuss the use of quantum chromodynamics in describing basic interactions among quarks and gluons, in predicting the existence of glueballs, and in application to heavy flavor production in strong interactions. The editor, Antonino Zichichi, provides a study of the multiparticle hadronicmore » systems produced in highenergy soft (pp) interactions. Other interesting chapters deal with photon scattering at very high energies and theoretical alternatives to the electroweak model, and the volume concludes with proposals for future experimental facilities for European physics.« less

  15. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  16. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  17. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  18. A master equation for strongly interacting dipoles

    NASA Astrophysics Data System (ADS)

    Stokes, Adam; Nazir, Ahsan

    2018-04-01

    We consider a pair of dipoles such as Rydberg atoms for which direct electrostatic dipole–dipole interactions may be significantly larger than the coupling to transverse radiation. We derive a master equation using the Coulomb gauge, which naturally enables us to include the inter-dipole Coulomb energy within the system Hamiltonian rather than the interaction. In contrast, the standard master equation for a two-dipole system, which depends entirely on well-known gauge-invariant S-matrix elements, is usually derived using the multipolar gauge, wherein there is no explicit inter-dipole Coulomb interaction. We show using a generalised arbitrary-gauge light-matter Hamiltonian that this master equation is obtained in other gauges only if the inter-dipole Coulomb interaction is kept within the interaction Hamiltonian rather than the unperturbed part as in our derivation. Thus, our master equation depends on different S-matrix elements, which give separation-dependent corrections to the standard matrix elements describing resonant energy transfer and collective decay. The two master equations coincide in the large separation limit where static couplings are negligible. We provide an application of our master equation by finding separation-dependent corrections to the natural emission spectrum of the two-dipole system.

  19. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  20. Quantum corrections for the cubic Galileon in the covariant language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt

    We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less

  1. Unity of quark and lepton interactions with symplectic gauge symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpoot, S.

    1982-07-01

    Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge symmetry are discussed.

  2. Old wine in a new bottle: Technidilaton as the 125 GeV Higgs

    NASA Astrophysics Data System (ADS)

    Yamawaki, Koichi

    2017-12-01

    The first Nagoya SCGT workshop back in 1988 (SCGT 88) was motivated by the walking technicolor and technidilaton. Now at SCGT15 I returned to the “old wine” in “a new bottle”, the recently discovered 125 Higgs boson as the technidilaton. We show that the Standard Model (SM) Higgs Lagrangian is identical to the nonlinear realization of both the scale and chiral symmetries (“scale-invariant nonlinear sigma model”), and is further gauge equivalent to the “scale-invariant Hidden Local Symmetry (HLS) model” having possible new vector bosons as the HLS gauge bosons with scale-invariant mass: SM Higgs is nothing but a (pseudo) dilaton. The effective theory of the walking technicolor has precisely the same type of the scale-invariant nonlinear sigma model, thus further having the scale-invariant HLS gauge bosons (technirho’s, etc.). The technidilaton mass Mϕ comes from the trace anomaly, which yields Mϕ2F ϕ2 ≃ [ 8 NF 4 NC] ṡ (2.5)2 ṡ v4 via PCDC, in the underlying walking SU(NC) gauge theory with NF massless flavors, where Fϕ is the the decay constant and v = 246GeV. This implies Fϕ ≃ 5v for Mϕ ≃ 125GeV ≃ 1 2v in the one-family walking technicolor model (NC = 4,NF = 8), in good agreement with the current LHC Higgs data. In the anti-Veneziano limit, NC →∞, with NCα =fixed and NF/NC =fixed (≫ 1), we have a result: Mϕ2/v2 ˜ M ϕ2/F ϕ2 ˜ 1/(N FNC) → 0. Then the technidilaton is a naturally light composite Higgs out of the strongly coupled conformal dynamics, with its couplings even weaker than the SM Higgs. Related holographic and lattice results are also discussed. In particular, such a light flavor-singlet scalar does exists in the lattice simulations in the walking regime.

  3. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    NASA Astrophysics Data System (ADS)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  4. Some Properties of Generalized Connections in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Velhinho, J. M.

    2002-12-01

    Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...

  5. Optimized photonic gauge of extreme high vacuum with Petawatt lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Ángel; Novoa, David; Tommasini, Daniele; Mas, Héctor

    2014-03-01

    One of the latest proposed applications of ultra-intense laser pulses is their possible use to gauge extreme high vacuum by measuring the photon radiation resulting from nonlinear Thomson scattering within a vacuum tube. Here, we provide a complete analysis of the process, computing the expected rates and spectra, both for linear and circular polarizations of the laser pulses, taking into account the effect of the time envelope in a slowly varying envelope approximation. We also design a realistic experimental configuration allowing for the implementation of the idea and compute the corresponding geometric efficiencies. Finally, we develop an optimization procedure for this photonic gauge of extreme high vacuum at high repetition rate Petawatt and multi-Petawatt laser facilities, such as VEGA, JuSPARC and ELI.

  6. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  7. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  8. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, D; Huq, M; Bednarz, G

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same ismore » for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for 4D-based clinical technologies, can be better controlled if nonlinear-based methodology, which reflects respiration characteristic, is applied. Funding provided by Varian Medical Systems via Investigator Initiated Research Project.« less

  9. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.

    PubMed

    Ma, Li-Yuan; Zhu, Zuo-Nong

    2014-09-01

    In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.

  10. Cross-entropy clustering framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Tongal, Hakan; Sivakumar, Bellie

    2017-09-01

    There is an increasing interest in catchment classification and regionalization in hydrology, as they are useful for identification of appropriate model complexity and transfer of information from gauged catchments to ungauged ones, among others. This study introduces a nonlinear cross-entropy clustering (CEC) method for classification of catchments. The method specifically considers embedding dimension (m), sample entropy (SampEn), and coefficient of variation (CV) to represent dimensionality, complexity, and variability of the time series, respectively. The method is applied to daily streamflow time series from 217 gauging stations across Australia. The results suggest that a combination of linear and nonlinear parameters (i.e. m, SampEn, and CV), representing different aspects of the underlying dynamics of streamflows, could be useful for determining distinct patterns of flow generation mechanisms within a nonlinear clustering framework. For the 217 streamflow time series, nine hydrologically homogeneous clusters that have distinct patterns of flow regime characteristics and specific dominant hydrological attributes with different climatic features are obtained. Comparison of the results with those obtained using the widely employed k-means clustering method (which results in five clusters, with the loss of some information about the features of the clusters) suggests the superiority of the cross-entropy clustering method. The outcomes from this study provide a useful guideline for employing the nonlinear dynamic approaches based on hydrologic signatures and for gaining an improved understanding of streamflow variability at a large scale.

  11. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  12. Infrared weak corrections to strongly interacting gauge boson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-04-15

    We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.

  13. A periodic table of effective field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  14. A periodic table of effective field theories

    DOE PAGES

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  15. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  16. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Behrangi, Ali; Long, Di; Li, Changming; Hong, Yang

    2018-04-01

    Rain gauge observations are commonly used to evaluate the quality of satellite precipitation products. However, the inherent difference between point-scale gauge measurements and areal satellite precipitation, i.e. a point of space in time accumulation v.s. a snapshot of time in space aggregation, has an important effect on the accuracy and precision of qualitative and quantitative evaluation results. This study aims to quantify the uncertainty caused by various combinations of spatiotemporal scales (0.1°-0.8° and 1-24 h) of gauge network designs in the densely gauged and relatively flat Ganjiang River basin, South China, in order to evaluate the state-of-the-art satellite precipitation, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). For comparison with the dense gauge network serving as "ground truth", 500 sparse gauge networks are generated through random combinations of gauge numbers at each set of spatiotemporal scales. Results show that all sparse gauge networks persistently underestimate the performance of IMERG according to most metrics. However, the probability of detection is overestimated because hit and miss events are more likely fewer than the reference numbers derived from dense gauge networks. A nonlinear error function of spatiotemporal scales and the number of gauges in each grid pixel is developed to estimate the errors of using gauges to evaluate satellite precipitation. Coefficients of determination of the fitting are above 0.9 for most metrics. The error function can also be used to estimate the required minimum number of gauges in each grid pixel to meet a predefined error level. This study suggests that the actual quality of satellite precipitation products could be better than conventionally evaluated or expected, and hopefully enables non-subject-matter-expert researchers to have better understanding of the explicit uncertainties when using point-scale gauge observations to evaluate areal products.

  17. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  18. 1984 European Conference on Optics, Optical Systems and Applications, Amsterdam, Netherlands, October 9-12, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Boelger, B.; Ferwerda, H. A.

    Various papers on optics, optical systems, and their applications are presented. The general topics addressed include: laser systems, optical and electrooptical materials and devices; novel spectroscopic techniques and applications; inspection, remote sensing, velocimetry, and gauging; optical design and image formation; holography, image processing, and storage; and integrated and fiber optics. Also discussed are: nonlinear optics; nonlinear photorefractive materials; scattering and diffractions applications in materials processing, deposition, and machining; medical and biological applications; and focus on industry.

  19. A simple example of a classical gauge transformation

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.

    1983-01-01

    Attention is given to the manner in which the interaction of a gravitational field with a diffusing gas is induced by a gauge transformation. Since the gas can be thought of as a field, the diffusion process may be represented by a Lagrangian density with the symmetry property of invariance under translation. While this property is lost when the field interacts with a static gravitational field, it is formally restored when an appropriate gauge transformation is performed. This ascription of field properties to a gas offers an illuminating illustration of the coupling of matter to a gauge field within the context of classical mechanics.

  20. Unitarity of the Cabibbo-Kobayashi-Maskawa matrix and a nonuniversal gauge interaction model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Young

    2007-12-01

    Recent measurements of |V{sub us}| from kaon decays strongly support the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. The unitarity provides a stringent constraint on the parameter space of the nonuniversal gauge interaction model based on the separate SU(2){sub L} gauge group acting on the third generation fermions. I show that this constraint is stronger than those from the CERN LEP and SLC data and low-energy experiment data.

  1. CMB in the river frame and gauge invariance at second order

    NASA Astrophysics Data System (ADS)

    Roldan, Omar

    2018-03-01

    Gauge invariance: the Sachs-Wolfe formula describing the Cosmic Microwave Background (CMB) temperature anisotropies is one of the most important relations in cosmology. Despite its importance, the gauge invariance of this formula has only been discussed at first order. Here we discuss the subtle issue of second-order gauge transformations on the CMB. By introducing two rules (needed to handle the subtle issues), we prove the gauge invariance of the second-order Sachs-Wolfe formula and provide several compact expressions which can be useful for the study of gauge transformations on cosmology. Our results go beyond a simple technicality: we discuss from a physical point of view several aspects that improve our understanding of the CMB. We also elucidate how crucial it is to understand gauge transformations on the CMB in order to avoid errors and/or misconceptions as occurred in the past. The river frame: we introduce a cosmological frame which we call the river frame. In this frame, photons and any object can be thought as fishes swimming in the river and relations are easily expressed in either the metric or the covariant formalism then ensuring a transparent geometric meaning. Finally, our results show that the river frame is useful to make perturbative and non-perturbative analysis. In particular, it was already used to obtain the fully nonlinear generalization of the Sachs-Wolfe formula and is used here to describe second-order perturbations.

  2. Approximate entropy of human respiratory movement during eye-closed waking and different sleep stages.

    PubMed

    Burioka, Naoto; Cornélissen, Germaine; Halberg, Franz; Kaplan, Daniel T; Suyama, Hisashi; Sako, Takanori; Shimizu, Eiji

    2003-01-01

    The breath-to-breath variability of respiratory parameters changes with sleep stage. This study investigates any alteration in the approximate entropy (ApEn) of respiratory movement as a gauge of complexity in respiration, by stage of consciousness, in the light of putative brain interactions. Eight healthy men, who were between the ages of 23 and 29 years, were investigated. The signals of chest wall movement and EEG were recorded from 10:30 PM to 6:00 AM. After analog-to-digital conversion, the ApEn of respiratory movement (3 min) and EEG (20 s) were computed. Surrogate data were tested for nonlinearity in the original time series. The most impressive reduction in the ApEn of respiratory movement was associated with stage IV sleep, when the ApEn of the EEG was also statistically significantly decreased. A statistically significant linear relation is found between the ApEn of both variables. Surrogate data indicated that respiratory movement had nonlinear properties during all stages of consciousness that were investigated. Respiratory movement and EEG signals are more regular during stage IV sleep than during other stages of consciousness. The change in complexity described by the ApEn of respiration depends in part on the ApEn of the EEG, suggesting the involvement of nonlinear dynamic processes in the coordination between brain and lungs.

  3. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  4. Equivariant branes and equivariant homological mirror symmetry

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Tan, Meng-Chwan

    2018-03-01

    We describe supersymmetric A-branes and B-branes in open N =(2 ,2 ) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.

  5. Radiative double copy for Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Chester, David

    2018-04-01

    Recently, a double-copy formalism was used to calculate gravitational radiation from classical Yang-Mills radiation solutions. This work shows that the Yang-Mills theory coupled to a biadjoint scalar field admits a radiative double copy that agrees with solutions in the Einstein-Yang-Mills theory at the lowest finite order. Within this context, the trace-reversed metric h¯μ ν is a natural double copy of the gauge boson Aμ a . This work provides additional evidence that solutions in gauge and gravity theories are related, even though their respective Lagrangians and nonlinear equations of motion appear to be different.

  6. Torsion in gauge theory

    NASA Astrophysics Data System (ADS)

    Nieh, H. T.

    2018-02-01

    The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the ordinary derivative in the definition of the field strength Fμ ν for massless gauge theories, while for massive vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in their influential 1976 review paper. We address the question of whether this deviation from normal procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory. We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward providing justification for the assertion that the flat-space definition of the gauge-field strength should be adopted as the proper definition.

  7. Weak interactions at high energies. [Lectures, review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories frommore » the Higgs bosons to speculations about proton decay. 187 references. (JFP)« less

  8. Constrained dynamics of two interacting relativistic particles in the Faddeev-Jackiw symplectic framework

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar

    2018-05-01

    The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.

  9. Antiferromagnetism, confinement and spin response in the QED(3) effective theory of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak Hosseyni

    In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of the QED3 theory to spin response in the superconductor, relevant for neutron scattering measurements. We show that the theory explains the observed spin gap numerically and the evolution of the response in energy and momenta qualitatively. We study the issue of resonance in these measurements by developing a formalism for exciton bound states. Keywords. High-temperature superconductivity; Antiferromagnetism; Spinons; Spin response; Three-dimensional quantum electrodynamics; Chiral symmetry breaking; Confinement; Duality transformation; renormalization group; Variational methods;

  10. Aspects of the Antisymmetric Tensor Field

    NASA Astrophysics Data System (ADS)

    Lahiri, Amitabha

    1991-02-01

    With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.

  11. An accuracy improvement method for the topology measurement of an atomic force microscope using a 2D wavelet transform.

    PubMed

    Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan

    2018-05-01

    The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  13. Interpretation of neutrino-matter interactions at low energies as contraction of gauge group of Electroweak Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The very weak neutrino-matter interactions are explained with the help of the gauge group contraction of the standard Electroweak Model. The mathematical contraction procedure is connected with the energy dependence of the interaction cross section for neutrinos and corresponds to the limiting case of the Electroweak Model at low energies. Contraction parameter is connected with the universal Fermi constant of weak interactions and neutrino energy as j{sup 2}(s) = {radical}(G{sub F} s)

  14. On Membrane Motor Activity and Chloride Flux in the Outer Hair Cell: Lessons Learned from the Environmental Toxin Tributyltin

    PubMed Central

    Song, Lei; Seeger, Achim; Santos-Sacchi, Joseph

    2005-01-01

    The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (GmetL) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor GmetL directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of GmetL in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain. PMID:15596517

  15. Renormalized vibrations and normal energy transport in 1d FPU-like discrete nonlinear Schrödinger equations.

    PubMed

    Li, Simeng; Li, Nianbei

    2018-03-28

    For one-dimensional (1d) nonlinear atomic lattices, the models with on-site nonlinearities such as the Frenkel-Kontorova (FK) and ϕ 4 lattices have normal energy transport while the models with inter-site nonlinearities such as the Fermi-Pasta-Ulam-β (FPU-β) lattice exhibit anomalous energy transport. The 1d Discrete Nonlinear Schrödinger (DNLS) equations with on-site nonlinearities has been previously studied and normal energy transport has also been found. Here, we investigate the energy transport of 1d FPU-like DNLS equations with inter-site nonlinearities. Extended from the FPU-β lattice, the renormalized vibration theory is developed for the FPU-like DNLS models and the predicted renormalized vibrations are verified by direct numerical simulations same as the FPU-β lattice. However, the energy diffusion processes are explored and normal energy transport is observed for the 1d FPU-like DNLS models, which is different from their atomic lattice counterpart of FPU-β lattice. The reason might be that, unlike nonlinear atomic lattices where models with on-site nonlinearities have one less conserved quantities than the models with inter-site nonlinearities, the DNLS models with on-site or inter-site nonlinearities have the same number of conserved quantities as the result of gauge transformation.

  16. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  17. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  18. Is scale-invariance in gauge-Yukawa systems compatible with the graviton?

    NASA Astrophysics Data System (ADS)

    Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron

    2017-10-01

    We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.

  19. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which canmore » iteratively be used to obtain the lensing solution at the desired order.« less

  20. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  1. Matter-coupled de Sitter supergravity

    NASA Astrophysics Data System (ADS)

    Kallosh, R. E.

    2016-05-01

    The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.

  2. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle.

  3. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

    PubMed

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  4. Real time control and numerical simulation of pipeline subjected to landslide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuscuna, S.; Giusti, G.; Gramola, C.

    1984-06-01

    This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the globalmore » behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.« less

  5. Strong gravity and structure of topological solitons

    NASA Astrophysics Data System (ADS)

    Rybakov, Yu. P.

    The unification of Skyrme and Faddeev chiral models describing baryons and leptons respectively as topological solitons is suggested within the framework of 16-spinor field ψ = ψ1 ⊕ ψ2 nonlinear model containing two 8-semispinors ψ1 and ψ2. Using Brioschi identity for 8-spinors and special structure of the Higgs potential V implying the spontaneous symmetry breaking, it is possible to realize topological soliton-like excitations of two kinds due to the choice of S2- or S3- manifolds as phase spaces. The interactions with electromagnetic, Yang--Mills and gravitational fields are exhibited through the extention of derivatives via gauge invariance principle. Specific inclusion in the Higgs potential of the Kretschmann gravitational invariant K = RμνσλRμνσλ/48 permits one to obtain the strong gravity behavior at small distances and guarantee the correspondence with Quantum Mechanics at large distances.

  6. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  7. Pressure Testing of a Minimum Gauge PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.

    2011-01-01

    Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.

  8. More asymptotic safety guaranteed

    NASA Astrophysics Data System (ADS)

    Bond, Andrew D.; Litim, Daniel F.

    2018-04-01

    We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

  9. Primordial black holes in linear and non-linear regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahyari, Alireza; Abolhasani, Ali Akbar; Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we arguemore » that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.« less

  10. Gauge freedom in observables and Landsberg's nonadiabatic geometric phase: Pumping spectroscopy of interacting open quantum systems

    NASA Astrophysics Data System (ADS)

    Pluecker, T.; Wegewijs, M. R.; Splettstoesser, J.

    2017-04-01

    We set up a general density-operator approach to geometric steady-state pumping through slowly driven open quantum systems. This approach applies to strongly interacting systems that are weakly coupled to multiple reservoirs at high temperature, illustrated by an Anderson quantum dot. Pumping gives rise to a nonadiabatic geometric phase that can be described by a framework originally developed for classical dissipative systems by Landsberg. This geometric phase is accumulated by the transported observable (charge, spin, energy) and not by the quantum state. It thus differs radically from the adiabatic Berry-Simon phase, even when generalizing it to mixed states, following Sarandy and Lidar. As a key feature, our geometric formulation of pumping stays close to a direct physical intuition (i) by tying gauge transformations to calibration of the meter registering the transported observable and (ii) by deriving a geometric connection from a driving-frequency expansion of the current. Furthermore, our approach provides a systematic and efficient way to compute the geometric pumping of various observables, including charge, spin, energy, and heat. These insights seem to be generalizable beyond the present paper's working assumptions (e.g., Born-Markov limit) to more general open-system evolutions involving memory and strong-coupling effects due to low-temperature reservoirs as well. Our geometric curvature formula reveals a general experimental scheme for performing geometric transport spectroscopy that enhances standard nonlinear spectroscopies based on measurements for static parameters. We indicate measurement strategies for separating the useful geometric pumping contribution to transport from nongeometric effects. A large part of the paper is devoted to an explicit comparison with the Sinitsyn-Nemenmann full-counting-statistics (FCS) approach to geometric pumping, restricting attention to the first moments of the pumped observable. Covering all key aspects, gauge freedom, pumping connection, curvature, and gap condition, we argue that our approach is physically more transparent and, importantly, simpler for practical calculations. In particular, this comparison allows us to clarify how in the FCS approach an "adiabatic" approximation leads to a manifestly nonadiabatic result involving a finite retardation time of the response to parameter driving.

  11. One-loop perturbative coupling of A and A⊙ through the chiral overlap operator

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi

    2017-06-01

    We study the one-loop effective action defined by the chiral overlap operator in the four-dimensional lattice formulation of chiral gauge theories by Grabowska and Kaplan. In the tree-level continuum limit, the left-handed component of the fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to A_\\star, which is given by the gradient flow of A with infinite flow time. In this paper, we show that the continuum limit of the one-loop effective action contains local interaction terms between A and A_\\star, which do not generally vanish even if the gauge representation of the fermion is anomaly free. We argue that the presence of such interaction terms can be regarded as undesired gauge symmetry-breaking effects in the formulation.

  12. Quantum gas microscopy of the interacting Harper-Hofstadter system

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alex; Preiss, Philipp; Rispoli, Matthew; Schittko, Robert; Kaufman, Adam; Greiner, Markus

    2016-05-01

    At the heart of many topological states is the underlying gauge field. One example of a gauge field is the magnetic field which causes the deflection of a moving charged particle. This behavior can be understood through the Aharonov-Bohm phase that a particle acquires upon traversing a closed path. Gauge fields give rise to novel states of matter that cannot be described with symmetry breaking. Instead, these states, e.g. fractional quantum Hall (FQH) states, are characterized by topological invariants, such as the Chern number. In this talk, we report on experimental results upon introducing a gauge field in a system of strongly-interacting ultracold Rb87 atoms confined to a 2D optical lattice. With single-site resolution afforded by a quantum gas microscope, we can prepare a fixed atom number and project hard walls. With an artificial gauge field, this quantum simulator realizes the Harper-Hofstadter Hamiltonian. We can independently control the two tunneling strengths as well as dynamically change the flux. This flexibility enables studies of topological phenomena from many perspectives, e.g. site-resolved images of edge currents. With the strong on-site interactions possible in our system, these experiments will pave the way to observing FQH-like states in a lattice.

  13. Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system

    NASA Astrophysics Data System (ADS)

    Lim, Zhuo Min

    2018-02-01

    We consider the initial-value problem for the Chern-Simons-Schrödinger system, which is a gauge-covariant Schrödinger system in Rt × Rx2 with a long-range electromagnetic field. We show that, in the Coulomb gauge, it is locally well-posed in Hs for s ⩾ 1, and the solution map satisfies a local-in-time weak Lipschitz bound. By energy conservation, we also obtain a global regularity result. The key is to retain the non-perturbative part of the derivative nonlinearity in the principal operator, and exploit the dispersive properties of the resulting paradifferential-type principal operator using adapted Up and Vp spaces.

  14. Bäcklund Transformations in 10D SUSY Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup

    A Bäcklund transformation is derived for the Yang's type (super) equations previously derived (hep-th/9811108) by M. Saveliev and the author, from the ten-dimensional super-Yang-Mills field equations in an on-shell light cone gauge. It is shown to be based upon a particular gauge transformation satisfying nonlinear conditions which ensure that the equations retain the same form. These Yang's type field equations are shown to be precisely such that they automatically provide a solution of these conditions. This Bäcklund transformation is similar to the one proposed by A. Leznov for self-dual Yang-Mills in four dimensions. In the introduction a personal recollection on the birth of supersymmetry is given.

  15. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golterman, Maarten; Zimmerman, Leah

    2005-06-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result.

  16. Left-handed and right-handed U(1) gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; U(1) L × U(1) R . Then three right-handed neutrinos are naturally required to achieve U(1) R anomaly cancellations, while several mirror fermions are also needed to do U(1) L anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.

  17. Gauge Bosons--The Ties That Bind.

    ERIC Educational Resources Information Center

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  18. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  19. A new method for automated dynamic calibration of tipping-bucket rain gauges

    USGS Publications Warehouse

    Humphrey, M.D.; Istok, J.D.; Lee, J.Y.; Hevesi, J.A.; Flint, A.L.

    1997-01-01

    Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min-1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h-1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h-1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h-1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.

  20. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  1. Nonlinear shallow ocean-wave soliton interactions on flat beaches.

    PubMed

    Ablowitz, Mark J; Baldwin, Douglas E

    2012-09-01

    Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.

  2. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  3. U(1) Wilson lattice gauge theories in digital quantum simulators

    NASA Astrophysics Data System (ADS)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  4. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  5. Generalized Bloch theorem and topological characterization

    NASA Astrophysics Data System (ADS)

    Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.

    2015-03-01

    The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.

  6. Beyond E 11

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume; Kleinschmidt, Axel; Palmkvist, Jakob; Pope, Christopher N.; Sezgin, Ergin

    2017-05-01

    We study the non-linear realisation of E 11 originally proposed by West with particular emphasis on the issue of linearised gauge invariance. Our analysis shows even at low levels that the conjectured equations can only be invariant under local gauge transformations if a certain section condition that has appeared in a different context in the E 11 literature is satisfied. This section condition also generalises the one known from exceptional field theory. Even with the section condition, the E 11 duality equation for gravity is known to miss the trace component of the spin connection. We propose an extended scheme based on an infinite-dimensional Lie superalgebra, called the tensor hierarchy algebra, that incorporates the section condition and resolves the above issue. The tensor hierarchy algebra defines a generalised differential complex, which provides a systematic description of gauge invariance and Bianchi identities. It furthermore provides an E 11 representation for the field strengths, for which we define a twisted first order self-duality equation underlying the dynamics.

  7. A Data-driven Approach for Forecasting Next-day River Discharge

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Billah, K. S.

    2017-12-01

    This study focuses on evaluating the performance of the Soil and Water Assessment Tool (SWAT) eco-hydrological model, a simple Auto-Regressive with eXogenous input (ARX) model, and a Gene expression programming (GEP)-based model in one-day-ahead forecasting of discharge of a subtropical basin (the upper Kentucky River Basin). The three models were calibrated with daily flow at the US Geological Survey (USGS) stream gauging station not affected by flow regulation for the period of 2002-2005. The calibrated models were then validated at the same gauging station as well as another USGS gauge 88 km downstream for the period of 2008-2010. The results suggest that simple models outperform a sophisticated hydrological model with GEP having the advantage of being able to generate functional relationships that allow scientific investigation of the complex nonlinear interrelationships among input variables. Unlike SWAT, GEP, and to some extent, ARX are less sensitive to the length of the calibration time series and do not require a spin-up period.

  8. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  9. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  10. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-05-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.

  11. Interaction of non-Abelian tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2018-01-01

    The non-Abelian tensor gauge fields take value in extended Poincaré algebra. In order to define the invariant Lagrangian we introduce a vector variable in two alternative ways: through the transversal representation of the extended Poincaré algebra and through the path integral over the auxiliary vector field with the U(1) Abelian action. We demonstrate that this allows to fix the unitary gauge and derive scattering amplitudes in spinor representation.

  12. The generic world-sheet action of irrational conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clubok, K.; Halpern, M.B.

    1995-05-01

    We review developments in the world-sheet action formulation of the generic irrational conformal field theory, including the non-linear and the linearized forms of the action. These systems form a large class of spin-two gauged WZW actions which exhibit exotic gravitational couplings. Integrating out the gravitational field, we also speculate on a connection with sigma models.

  13. From N=4 Galilean superparticle to three-dimensional non-relativistic N=4 superfields

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Ivanov, Evgeny; Lukierski, Jerzy

    2018-05-01

    We consider the general N=4 , d = 3 Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for N=4 three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic κ-gauge transformations. The quantization of the model gives rise to the collection of free N=4 , d = 3 Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic N=4 supersymmetric theories.

  14. The effect of low velocity impact in the strength characteristics of composite materials laminates

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.

    1983-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system.

  15. Dark matter and gauged flavor symmetries

    DOE PAGES

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; ...

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z 3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general,more » however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less

  16. Dark matter and gauged flavor symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z 3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general,more » however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less

  17. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M. T.; Peruccacci, S.; Guzzetti, F.

    2017-05-01

    Models for forecasting rainfall-induced landslides are mostly based on the identification of empirical rainfall thresholds obtained exploiting rain gauge data. Despite their increased availability, satellite rainfall estimates are scarcely used for this purpose. Satellite data should be useful in ungauged and remote areas, or should provide a significant spatial and temporal reference in gauged areas. In this paper, the analysis of the reliability of rainfall thresholds based on rainfall remote sensed and rain gauge data for the prediction of landslide occurrence is carried out. To date, the estimation of the uncertainty associated with the empirical rainfall thresholds is mostly based on a bootstrap resampling of the rainfall duration and the cumulated event rainfall pairs (D,E) characterizing rainfall events responsible for past failures. This estimation does not consider the measurement uncertainty associated with D and E. In the paper, we propose (i) a new automated procedure to reconstruct ED conditions responsible for the landslide triggering and their uncertainties, and (ii) three new methods to identify rainfall threshold for the possible landslide occurrence, exploiting rain gauge and satellite data. In particular, the proposed methods are based on Least Square (LS), Quantile Regression (QR) and Nonlinear Least Square (NLS) statistical approaches. We applied the new procedure and methods to define empirical rainfall thresholds and their associated uncertainties in the Umbria region (central Italy) using both rain-gauge measurements and satellite estimates. We finally validated the thresholds and tested the effectiveness of the different threshold definition methods with independent landslide information. The NLS method among the others performed better in calculating thresholds in the full range of rainfall durations. We found that the thresholds obtained from satellite data are lower than those obtained from rain gauge measurements. This is in agreement with the literature, where satellite rainfall data underestimate the "ground" rainfall registered by rain gauges.

  18. Statistical Approaches for the Definition of Landslide Rainfall Thresholds and their Uncertainty Using Rain Gauge and Satellite Data

    NASA Technical Reports Server (NTRS)

    Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M. T.; Peruccacci, S.; Guzzetti, F.

    2017-01-01

    Models for forecasting rainfall-induced landslides are mostly based on the identification of empirical rainfall thresholds obtained exploiting rain gauge data. Despite their increased availability, satellite rainfall estimates are scarcely used for this purpose. Satellite data should be useful in ungauged and remote areas, or should provide a significant spatial and temporal reference in gauged areas. In this paper, the analysis of the reliability of rainfall thresholds based on rainfall remote sensed and rain gauge data for the prediction of landslide occurrence is carried out. To date, the estimation of the uncertainty associated with the empirical rainfall thresholds is mostly based on a bootstrap resampling of the rainfall duration and the cumulated event rainfall pairs (D,E) characterizing rainfall events responsible for past failures. This estimation does not consider the measurement uncertainty associated with D and E. In the paper, we propose (i) a new automated procedure to reconstruct ED conditions responsible for the landslide triggering and their uncertainties, and (ii) three new methods to identify rainfall threshold for the possible landslide occurrence, exploiting rain gauge and satellite data. In particular, the proposed methods are based on Least Square (LS), Quantile Regression (QR) and Nonlinear Least Square (NLS) statistical approaches. We applied the new procedure and methods to define empirical rainfall thresholds and their associated uncertainties in the Umbria region (central Italy) using both rain-gauge measurements and satellite estimates. We finally validated the thresholds and tested the effectiveness of the different threshold definition methods with independent landslide information. The NLS method among the others performed better in calculating thresholds in the full range of rainfall durations. We found that the thresholds obtained from satellite data are lower than those obtained from rain gauge measurements. This is in agreement with the literature, where satellite rainfall data underestimate the 'ground' rainfall registered by rain gauges.

  19. Resonant slepton production and right sneutrino dark matter in left-right supersymmetry

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Fuks, Benjamin; Huitu, Katri; Rai, Santosh Kumar; Waltari, Harri

    2017-05-01

    Right-handed sneutrinos are natural components of left-right symmetric supersymmetric models where the gauge sector is extended to include right-handed weak interactions. Unlike in other models where right-handed sneutrinos are gauge singlets, here the right sneutrino is part of a doublet and could be a dark matter candidate whose annihilation proceeds via gauge interactions. We investigate this possibility, and find that relic density, low-energy observable and direct supersymmetry search constraints can be satisfied when the lightest supersymmetric particle is a right-handed sneutrino. We introduce benchmarks for left-right supersymmetric realizations where either a sneutrino or a neutralino is the lightest superpartner. We then study the LHC signals arising through resonant right-handed slepton production via a W R gauge-boson exchange that lead to final states enriched in leptons, additionally containing a large amount of missing transverse momentum, and featuring a low jet multiplicity. We find that such a resonant production would boost the chances of discovering these weakly interacting supersymmetric particles for a mass range extending beyond 1 TeV already with a luminosity of 100 fb-1. Finally, we compare sneutrino versus neutralino scenarios, and comment on differences with other sneutrino dark matter models.

  20. Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities.

    PubMed

    Chen, Wei; Shen, Ming; Kong, Qian; Shi, Jielong; Wang, Qi; Krolikowski, Wieslaw

    2014-04-01

    We investigate analytically and numerically the interactions of dark solitons under competing nonlocal cubic and local quintic nonlinearities. It is shown that the self-defocusing quintic nonlinearity will strengthen the attractive interaction and decrease the relative distance between solitons, whereas the self-focusing quintic nonlinearity will enhance the repulsive interaction and increase soliton separation. We demonstrate these results by approximate variational approach and direct numerical simulation.

  1. Asymptotically Safe Standard Model via Vectorlike Fermions.

    PubMed

    Mann, R B; Meffe, J R; Sannino, F; Steele, T G; Wang, Z W; Zhang, C

    2017-12-29

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  2. Asymptotically Safe Standard Model via Vectorlike Fermions

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  3. Living without supersymmetry—the conformal alternative and a dynamical Higgs boson

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2017-11-01

    We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.

  4. Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1989-01-01

    The nonlinear interaction between planar or near-planar Tollmien-Schlichting waves and longitudinal vortices, induced or input, is considered theoretically for channel flows at high Reynolds numbers. Several kinds of nonlinear interaction, dependent on the input amplitudes and wavenumbers or on previously occurring interactions, are found and inter-related. The first, Type 1, is studied the most here and it usually produces spanwise focusing of both the wave and the vortex motion, within a finite scaled time, along with enhancement of both their amplitudes. This then points to the nonlinear interaction Type 2 where new interactive effects come into force to drive the wave and the vortex nonlinearly. Types 3, 4 correspond to still higher amplitudes, with 3 being related to 2, while 4 is connected with a larger-scale interaction 5 studied in an allied paper. Both 3, 4 are subsets of the full three-dimensional triple-deck-lie interaction, 6. The strongest nonlinear interactions are those of 4, 5, 6 since they alter the mean-flow profile substantially, i.e., by an 0(1) relative amount. All the types of nonlinear interaction however can result in the formation of focussed responses in the sense of spanwise concentrations and/or amplifications of vorticity and wave amplitude.

  5. Inception of self-interacting dark matter with dark charge conjugation symmetry

    DOE PAGES

    Ma, Ernest

    2017-07-04

    A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest spontaneously broken Abelian gauge model with one complex scalar and one Dirac fermion. The key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former's self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints recently obtained for all such models where the light mediator decays into standard-model particles.

  6. Running non-minimal inflation with stabilized inflaton potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika; Raut, Digesh

    In the context of the Higgs model involving gauge and Yukawa interactions with the spontaneous gauge symmetry breaking, we consider λφ4 inflation with non- minimal gravitational coupling, where the Higgs field is identified as the inflaton. Since the inflaton quartic coupling is very small, once quantum corrections through the gauge and Yukawa interactions are taken into account, the inflaton effective potential most likely becomes unstable. Furthermore, in order to avoid this problem, we need to impose stability conditions on the effective inflaton potential, which lead to not only non-trivial relations amongst the particle mass spectrum of the model, but alsomore » correlations between the inflationary predictions and the mass spectrum. For reasons of concrete discussion, we investigate the minimal B - L extension of the standard model with identification of the B - L Higgs field as the inflaton. The stability conditions for the inflaton effective potential fix the mass ratio amongst the B - L gauge boson, the right-handed neutrinos and the inflaton. This mass ratio also correlates with the inflationary predictions. So, if the B - L gauge boson and the right-handed neutrinos are discovered in the future, their observed mass ratio provides constraints on the inflationary predictions.« less

  7. Running non-minimal inflation with stabilized inflaton potential

    DOE PAGES

    Okada, Nobuchika; Raut, Digesh

    2017-04-18

    In the context of the Higgs model involving gauge and Yukawa interactions with the spontaneous gauge symmetry breaking, we consider λφ4 inflation with non- minimal gravitational coupling, where the Higgs field is identified as the inflaton. Since the inflaton quartic coupling is very small, once quantum corrections through the gauge and Yukawa interactions are taken into account, the inflaton effective potential most likely becomes unstable. Furthermore, in order to avoid this problem, we need to impose stability conditions on the effective inflaton potential, which lead to not only non-trivial relations amongst the particle mass spectrum of the model, but alsomore » correlations between the inflationary predictions and the mass spectrum. For reasons of concrete discussion, we investigate the minimal B - L extension of the standard model with identification of the B - L Higgs field as the inflaton. The stability conditions for the inflaton effective potential fix the mass ratio amongst the B - L gauge boson, the right-handed neutrinos and the inflaton. This mass ratio also correlates with the inflationary predictions. So, if the B - L gauge boson and the right-handed neutrinos are discovered in the future, their observed mass ratio provides constraints on the inflationary predictions.« less

  8. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  9. Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU

    NASA Astrophysics Data System (ADS)

    Yalciner, Bora; Zaytsev, Andrey

    2017-04-01

    Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.

  10. Dirac potential in the Doebner-Goldin equation

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Ma, Yi Rong; Hu, Fang Qi; Zhao, Qing

    2018-01-01

    We study a dissipative quantum system which is described by the Doebner-Goldin equation (DGE) model. For time-independent states, the new three-dimensional analytical solutions of the DGE are obtained by binding the vertical relation of velocity and the gradient of density in the system, when the form of a central potential such as hard core or harmonic oscillator is suggested. Through the gauge-invariant parameters which characterize the physical nature of the dissipation, we find a novel set of gauge-invariant parameters which show that the Galilean invariance is broken in this system. Moreover, a subfamily of the DGE can be obtained after a gauge transformation, which describes a dissipative quantum system with the conserved Galilean invariance. It is interesting that this dissipative quantum system is completely equivalent to a charge-monopole system, in which the Dirac potential is supplied with the nonlinear terms and two cases of the velocity potential. Especially, the two gauge potentials given by Wu and Yang emerge from solving the DGE as two cases in our approach. The results not only present some new physical comprehension of the dissipative quantum system, but also might shed light on the Dirac monopole potential, in the sense that the partition into south and north hemisphere is avoided in our new solutions.

  11. Time-Frequency Analyses of Tide-Gauge Sensor Data

    PubMed Central

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829

  12. Time-frequency analyses of tide-gauge sensor data.

    PubMed

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.

  13. Extended Weyl invariance in a bimetric model and partial masslessness

    NASA Astrophysics Data System (ADS)

    Hassan, S. F.; Schmidt-May, Angnis; von Strauss, Mikael

    2016-01-01

    We revisit a particular ghost-free bimetric model which is related to both partial masslessness (PM) and conformal gravity. Linearly, the model propagates six instead of seven degrees of freedom not only around de Sitter but also around flat spacetime. Nonlinearly, the equations of motion can be recast in the form of expansions in powers of curvatures, and exhibit a remarkable amount of structure. In this form, the equations are shown to be invariant under scalar gauge transformations, at least up to six orders in derivatives, the lowest order term being a Weyl scaling of the metrics. The terms at two-derivative order reproduce the usual PM gauge transformations on de Sitter backgrounds. At the four-derivative order, a potential obstruction that could destroy the symmetry is shown to vanish. This in turn guarantees the gauge invariance to at least six-orders in derivatives. This is equivalent to adding up to ten-derivative corrections to conformal gravity. More generally, we outline a procedure for constructing the gauge transformations order by order as an expansion in derivatives and comment on the validity and limitations of the procedure. We also discuss recent arguments against the existence of a PM gauge symmetry in bimetric theory and show that, at least in their present form, they are evaded by the model considered here. Finally, we argue that a bimetric approach to PM theory is more promising than one based on the existence of a fundamental PM field.

  14. Electrically tunable artificial gauge potential for polaritons

    PubMed Central

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  15. Phenomenology of the Higgs effective Lagrangian via F eynR ules

    NASA Astrophysics Data System (ADS)

    Alloul, Adam; Fuks, Benjamin; Sanz, Verónica

    2014-04-01

    The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of F eynR ules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of F eynR ules capable to generate model files that can be understood by the M adG raph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.

  16. Synthesis, spectral characterization and density functional theory exploration of 1-(quinolin-3-yl)piperidin-2-ol

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Syed Ali Padusha, M.; Bharanidharan, S.; Saleem, H.; Dhandapani, A.; Manivarman, S.

    2015-06-01

    The experimental and theoretical vibrational frequencies of a newly synthesized compound, namely 1-(quinolin-3-yl)piperidin-2-ol (QPPO) are analyzed. The experimental FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) of the molecule in solid phase have been recorded. The optimized molecular structure, vibrational assignments of QPPO have been investigated experimentally and theoretically using Gaussian03W software package. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The first order hyperpolarizability (β0) is calculated to find its character in non-linear optics. Gauge including atomic orbital (GIAO) method is used to calculate 1H NMR chemical shift calculations were carried out and compared with experimental data. The electronic properties like UV-Visible spectral analysis and HOMO-LUMO energies were reported. The energy gap shows that the charge transfer occurs within the molecule. Thermodynamic parameters of the title compound were calculated at various temperatures.

  17. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  18. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  19. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  20. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph

    2017-12-22

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  1. Quantization of a U(1) gauged chiral boson in the Batalin-Fradkin-Vilkovisky scheme

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    1994-03-01

    The scheme developed by Batalin, Fradkin, and Vilkovisky (BFV) to convert a second-class constrained system to a first-class one (having gauge invariance) is used in the Floreanini-Jackiw formulation of the chiral boson interacting with a U(1) gauge field. Explicit expressions of the BRST charge, the unitarizing Hamiltonian, and the BRST invariant effective action are provided and the full quantization is carried through. The spectra in both cases have been analyzed to show the presence of the proper chiral components explicitly. In the gauged model, Wess-Zumino terms in terms of the Batalin-Fradkin fields are identified.

  2. Quantization of a U(1) gauged chiral boson in the Batalin-Fradkin-Vilkovisky scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.

    1994-03-15

    The scheme developed by Batalin, Fradkin, and Vilkovisky (BFV) to convert a second-class constrained system to a first-class one (having gauge invariance) is used in the Floreanini-Jackiw formulation of the chiral boson interacting with a U(1) gauge field. Explicit expressions of the BRST charge, the unitarizing Hamiltonian, and the BRST invariant effective action are provided and the full quantization is carried through. The spectra in both cases have been analyzed to show the presence of the proper chiral components explicitly. In the gauged model, Wess-Zumino terms in terms of the Batalin-Fradkin fields are identified.

  3. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  4. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    NASA Astrophysics Data System (ADS)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  5. Asymptotic symmetries of colored gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Joung, Euihun; Kim, Jaewon; Kim, Jihun; Rey, Soo-Jong

    2018-03-01

    Three-dimensional colored gravity refers to nonabelian isospin extension of Einstein gravity. We investigate the asymptotic symmetry algebra of the SU( N)-colored gravity in (2+1)-dimensional anti-de Sitter spacetime. Formulated by the Chern-Simons theory with SU( N, N) × SU( N, N) gauge group, the theory contains graviton, SU( N) Chern-Simons gauge fields and massless spin-two multiplets in the SU( N) adjoint representation, thus extending diffeomorphism to colored, nonabelian counterpart. We identify the asymptotic symmetry as Poisson algebra of generators associated with the residual global symmetries of the nonabelian diffeomorphism set by appropriately chosen boundary conditions. The resulting asymptotic symmetry algebra is a nonlinear extension of \\widehat{su(N)} Kac-Moody algebra, supplemented by additional generators corresponding to the massless spin-two adjoint matter fields.

  6. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated from the postseismic surface deformation. Our modelling suggests that the power-law rheology exponent n controls the decay rate of aftershocks and is related to the parameter p of the Omori-Utsu law.

  7. Interaction of Intense Lasers with Plasmas

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that a<<1, where a=eA/mc^2 is a dimensionless vector potential. This formalism borrows the diagrammatic techniques from quantum field theory, yet remains classical. This classical field theory, which treats cold plasma as a relativistic field interacting with the electromagnetic fields, introduces an artificial length scale which is smaller than any physically relevant spatial scale. By adopting a special (Arnowitt -Fickler) gauge, electromagnetic waves in a cold relativistic plasma are separated into "photons" and "plasmons" which are the relativistic extensions of electrostatic and electromagnetic waves in a cold stationary plasma. The field-theoretical formalism is applied to a variety of nonlinear problems including harmonic generation, parametric instabilities, and nonlinear corrections to the index of refraction. For the first time the rate of the second harmonic emission from a homogeneous plasma is calculated and its dependence on the polarization of the incident radiation is studied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation of wakefields in a hollow plasma channel by an intense laser pulse is studied analytically. An important finding is that the resonant absorption in the channel wall dissipates the accelerating wake, thereby introducing a finite quality factor of the hollow plasma channel and reducing the number of electron bunches that can be accelerated in the wake of a single laser pulse. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).

  8. Quantum corrections to non-Abelian SUSY theories on orbifolds

    NASA Astrophysics Data System (ADS)

    Groot Nibbelink, Stefan; Hillenbach, Mark

    2006-07-01

    We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.

  9. Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index

    NASA Astrophysics Data System (ADS)

    Maruyoshi, Kazunobu; Song, Jaewon

    2017-04-01

    We find a four-dimensional N =1 gauge theory which flows to the minimal interacting N =2 superconformal field theory, the Argyres-Douglas theory, in the infrared up to the extra free chiral multiplets. The gauge theory is obtained from a certain N =1 preserving deformation of the N =2 S U (2 ) gauge theory with four fundamental hypermultiplets. From this description, we compute the full superconformal index and find agreements with the known results in special limits.

  10. Gauge-independent decoherence models for solids in external fields

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  11. The 6D superswirl

    NASA Astrophysics Data System (ADS)

    Parameswaran, S. L.; Tasinato, G.; Zavala, I.

    2006-03-01

    We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called "rugby ball" solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.

  12. Strong dynamics and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S ≳ 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S ≳ 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.

  13. General implementation of arbitrary nonlinear quadrature phase gates

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.

  14. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  15. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  16. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  17. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter

    ERIC Educational Resources Information Center

    Kobe, Donald H.; Smirl, Arthur L.

    1978-01-01

    Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)

  18. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  19. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  20. Simple standard model extension by heavy charged scalar

    NASA Astrophysics Data System (ADS)

    Boos, E.; Volobuev, I.

    2018-05-01

    We consider a Standard Model (SM) extension by a heavy charged scalar gauged only under the UY(1 ) weak hypercharge gauge group. Such an extension, being gauge invariant with respect to the SM gauge group, is a simple special case of the well-known Zee model. Since the interactions of the charged scalar with the Standard Model fermions turn out to be significantly suppressed compared to the Standard Model interactions, the charged scalar provides an example of a long-lived charged particle being interesting to search for at the LHC. We present the pair and single production cross sections of the charged scalar at different colliders and the possible decay widths for various boson masses. It is shown that the current ATLAS and CMS searches at 8 and 13 TeV collision energy lead to the bounds on the scalar boson mass of about 300-320 GeV. The limits are expected to be much larger for higher collision energies and, assuming 15 a b-1 integrated luminosity, reach about 2.7 TeV at future 27 TeV LHC thus covering the most interesting mass region.

  1. Wilson loops and chiral correlators on squashed spheres

    NASA Astrophysics Data System (ADS)

    Fucito, F.; Morales, J. F.; Poghossian, R.

    2015-11-01

    We study chiral deformations of N=2 and N=4 supersymmetric gauge theories obtained by turning on τ J tr Φ J interactions with Φ the N=2 superfield. Using localization, we compute the deformed gauge theory partition function Z(overrightarrow{τ}|q) and the expectation value of circular Wilson loops W on a squashed four-sphere. In the case of the deformed {N}=4 theory, exact formulas for Z and W are derived in terms of an underlying U( N) interacting matrix model replacing the free Gaussian model describing the {N}=4 theory. Using the AGT correspondence, the τ J -deformations are related to the insertions of commuting integrals of motion in the four-point CFT correlator and chiral correlators are expressed as τ-derivatives of the gauge theory partition function on a finite Ω-background. In the so called Nekrasov-Shatashvili limit, the entire ring of chiral relations is extracted from the ɛ-deformed Seiberg-Witten curve. As a byproduct of our analysis we show that SU(2) gauge theories on rational Ω-backgrounds are dual to CFT minimal models.

  2. Thermalized axion inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  3. Thermalized axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particlesmore » of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.« less

  4. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  5. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  6. Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Wali, Kameshwar; Viet, Nguyen Ali

    2017-01-01

    A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.

  7. Hidden GeV-scale interactions of quarks.

    PubMed

    Dobrescu, Bogdan A; Frugiuele, Claudia

    2014-08-08

    We explore quark interactions mediated by new gauge bosons of masses in the 0.3-50 GeV range. A tight upper limit on the gauge coupling of light Z(') bosons is imposed by the anomaly cancellation conditions in conjunction with collider bounds on new charged fermions. Limits from quarkonium decays are model dependent, while electroweak constraints are mild. We derive the limits for a Z(') boson coupled to baryon number and then construct a Z(') model with relaxed constraints, allowing quark couplings as large as 0.2 for a mass of a few GeV.

  8. Mind the Gap on IceCube: Cosmic neutrino spectrum and muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Araki, T.; Kaneko, F.; Konishi, Y.; Ota, T.; Sato, J.; Shimomura, T.

    2017-09-01

    The high energy cosmic neutrino spectrum reported by the IceCube collaboration shows a gap in the energy range between 500 TeV and 1 PeV. In this presentation, we illustrate that the IceCube gap is reproduced by the neutrino interaction mediated by the new gauge boson associated with a certain combination of the lepton avour number. The gauge interaction also explains the other long-standing gap in the lepton phenomenology: the gap between theory and experiment in the muon anomalous magnetic moment.

  9. Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A

    NASA Astrophysics Data System (ADS)

    Baker, E. L.; Schimel, B.; Grantham, W. J.

    1996-05-01

    Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.

  10. Light-by-Light Scattering Constraint on Born-Infeld Theory

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; You, Tevong

    2017-06-01

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV , a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1 ) Y hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ˜90 GeV , which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1 ) Y Born-Infeld theory.

  11. On the Uniqueness and Consistency of Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Rodina, Laurentiu

    In this dissertation, we study constraints imposed by locality, unitarity, gauge invariance, the Adler zero, and constructability (scaling under BCFW shifts). In the first part we study scattering amplitudes as the unique mathematical objects which can satisfy various combinations of such principles. In all cases we find that locality and unitarity may be derived from gauge invariance (for Yang-Mills and General Relativity) or from the Adler zero (for the non-linear sigma model and the Dirac-Born-Infeld model), together with mild assumptions on the singularity structure and mass dimension. We also conjecture that constructability and locality together imply gauge invariance, hence also unitarity. All claims are proved through a soft expansion, and in the process we end re-deriving the well-known leading soft theorems for all four theories. Unlike other proofs of these theorems, we do not assume any form of factorization (unitarity). In the second part we show how tensions arising between gauge invariance (as encoded by spinor helicity variables in four dimensions), locality, unitarity and constructability give rise to various physical properties. These include high-spin no-go theorems, the equivalence principle, and the emergence of supersymmetry from spin 3/2 particles. We also complete the fully on-shell constructability proof of gravity amplitudes, by showing that the improved "bonus'' behavior of gravity under BCFW shifts is a simple consequence of Bose symmetry.

  12. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  13. Hidden charged dark matter and chiral dark radiation

    NASA Astrophysics Data System (ADS)

    Ko, P.; Nagata, Natsumi; Tang, Yong

    2017-10-01

    In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.

  14. Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics.

    PubMed

    Stratoudaki, Theodosia; Ellwood, Robert; Sharples, Steve; Clark, Matthew; Somekh, Michael G; Collison, Ian J

    2011-04-01

    A dual frequency mixing technique has been developed for measuring velocity changes caused by material nonlinearity. The technique is based on the parametric interaction between two surface acoustic waves (SAWs): The low frequency pump SAW generated by a transducer and the high frequency probe SAW generated and detected using laser ultrasonics. The pump SAW stresses the material under the probe SAW. The stress (typically <5 MPa) is controlled by varying the timing between the pump and probe waves. The nonlinear interaction is measured as a phase modulation of the probe SAW and equated to a velocity change. The velocity-stress relationship is used as a measure of material nonlinearity. Experiments were conducted to observe the pump-probe interaction by changing the pump frequency and compare the nonlinear response of aluminum and fused silica. Experiments showed these two materials had opposite nonlinear responses, consistent with previously published data. The technique could be applied to life-time predictions of engineered components by measuring changes in nonlinear response caused by fatigue.

  15. Asymptotic Charges at Null Infinity in Any Dimension

    NASA Astrophysics Data System (ADS)

    Campoleoni, Andrea; Francia, Dario; Heissenberg, Carlo

    2018-03-01

    We analyse the conservation laws associated with large gauge transformations of massless fields in Minkowski space. Our aim is to highlight the interplay between boundary conditions and finiteness of the asymptotically conserved charges in any space-time dimension, both even and odd, greater than or equal to three. After discussing non-linear Yang-Mills theory and revisiting linearised gravity, our investigation extends to cover the infrared behaviour of bosonic massless quanta of any spin.

  16. Geometry of the scalar sector

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-08-17

    The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifoldmore » M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only ifMhas a SU(2) L U(1) Y invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ 2 , where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G → H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.« less

  17. Quantum chromodynamics near the confinement limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, C.

    1985-09-01

    These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means formore » going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.« less

  18. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    PubMed

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  19. Emergent gauge field for a chiral bound state on curved surface

    NASA Astrophysics Data System (ADS)

    Shi, Zhe-Yu; Zhai, Hui

    2017-09-01

    Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.

  20. Sequestered gravity in gauge mediation.

    PubMed

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-01-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  1. Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

    NASA Astrophysics Data System (ADS)

    Huffel, Helmuth; Markovic, Danijel

    2018-05-01

    A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.

  2. Hyperquarks and bosonic preon bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-11-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6){sub P} and SU(9){sub G}. This leads to a prediction of the Weinberg angle at lowmore » energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.« less

  3. On thermal corrections to near-threshold annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Laine, M., E-mail: skim@sejong.ac.kr, E-mail: laine@itp.unibe.ch

    2017-01-01

    We consider non-relativistic ''dark'' particles interacting through gauge boson exchange. At finite temperature, gauge exchange is modified in many ways: virtual corrections lead to Debye screening; real corrections amount to frequent scatterings of the heavy particles on light plasma constituents; mixing angles change. In a certain temperature and energy range, these effects are of order unity. Taking them into account in a resummed form, we estimate the near-threshold spectrum of kinetically equilibrated annihilating TeV scale particles. Weakly bound states are shown to 'melt' below freeze-out, whereas with attractive strong interactions, relevant e.g. for gluinos, bound states boost the annihilation ratemore » by a factor 4 ... 80 with respect to the Sommerfeld estimate, thereby perhaps helping to avoid overclosure of the universe. Modestly non-degenerate dark sector masses and a way to combine the contributions of channels with different gauge and spin structures are also discussed.« less

  4. Confining and repulsive potentials from effective non-Abelian gauge fields in graphene bilayers

    NASA Astrophysics Data System (ADS)

    González, J.

    2016-10-01

    We investigate the effect of shear and strain in graphene bilayers, under conditions where the distortion of the lattice gives rise to a smooth one-dimensional modulation in the stacking sequence of the bilayer. We show that strain and shear produce characteristic Moiré patterns which can have the same visual appearance on a large scale, but representing graphene bilayers with quite different electronic properties. The different features in the low-energy electronic bands can be ascribed to the effect of a fictitious non-Abelian gauge field mimicking the smooth modulation of the stacking order. Strained and sheared bilayers show a complementary behavior, which can be understood from the fact that the non-Abelian gauge field acts as a repulsive interaction in the former, expelling the electron density away from the stacking domain walls, while behaving as a confining interaction leading to localization of the electronic states in the sheared bilayers. In this latter case, the presence of the effective gauge field explains the development of almost flat low-energy bands, resembling the form of the zeroth Landau level characteristic of a Dirac fermion field. The estimate of the gauge field strength in those systems gives a magnitude of the order of several tens of tesla, implying a robust phenomenology that should be susceptible of being observed in suitably distorted bilayer samples.

  5. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGES

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  6. Interactions of large amplitude solitary waves in viscous fluid conduits

    NASA Astrophysics Data System (ADS)

    Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.

    2014-07-01

    The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.

  7. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  8. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems

    PubMed Central

    Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  9. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  10. Reactive flow model development for PBXW-126 using modern nonlinear optimization methods

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Simpson, R. L.; Urtiew, P. A.; Souers, P. C.; Garcia, F.; Garza, R. G.

    1996-05-01

    The initiation and detonation behavior of PBXW-126 has been characterized and is described. PBXW-126 is a composite explosive consisting of approximately equal amounts of RDX, AP, AL, and NTO with a polyurethane binder. The three term ignition and growth of reaction model parameters (ignition+two growth terms) have been found using nonlinear optimization methods to determine the "best" set of model parameters. The ignition term treats the initiation of up to 0.5% of the RDX. The first growth term in the model treats the RDX growth of reaction up to 20% reacted. The second growth term treats the subsequent growth of reaction of the remaining AP/AL/NTO. The unreacted equation of state (EOS) was determined from the wave profiles of embedded gauge tests while the JWL product EOS was determined from cylinder expansion test results. The nonlinear optimization code, NLQPEB/GLO, was used to determine the "best" set of coefficients for the three term Lee-Tarver ignition and growth of reaction model.

  11. Infrared analysis of Dyson-Schwinger equations taking into account the Gribov horizon in Landau gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M. Q.; Alkofer, R.; Sorella, S. P.

    2010-03-15

    The low momentum behavior of the Landau gauge Gribov-Zwanziger action is investigated using the respective Dyson-Schwinger equations. Because of the mixing of the gluon and the auxiliary fields four scenarios can be distinguished for the infrared behavior. Two of them lead to inconsistencies and can be discarded. Another one corresponds to the case where the auxiliary fields behave exactly like the Faddeev-Popov ghosts and the same scaling relation as in standard Landau gauge, {kappa}{sub A}+2{kappa}{sub c}=0, is valid. Even the parameter {kappa} is found to be the same, 0.595. The mixed propagators, which appear, are suppressed in all loops, andmore » their anomalous infrared exponent can also be determined. A fourth case provides an even stricter scaling relation that includes also the mixed propagators, but possesses the same qualitative feature, i.e. the propagators of the Faddeev-Popov ghost and the auxiliary fields are infrared enhanced and the mixed and the gluon propagators are infrared suppressed. In this case the system of equations to obtain the parameter {kappa} is nonlinear in all variables.« less

  12. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  13. Solitons in a nonlinear model of spin transport in helical molecules

    NASA Astrophysics Data System (ADS)

    Albares, P.; Díaz, E.; Cerveró, Jose M.; Domínguez-Adame, F.; Diez, E.; Estévez, P. G.

    2018-02-01

    We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing and defocusing nonlinear interaction is presented and discussed.

  14. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  15. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    PubMed

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  16. Lorentz violation and Faddeev-Popov ghosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altschul, B.

    2006-02-15

    We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors of the theory.

  17. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  18. An Alternative to the Gauge Theoretic Setting

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2011-10-01

    The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.

  19. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  20. Articulated Arm Coordinate Measuring Machine Calibration by Laser Tracker Multilateration

    PubMed Central

    Majarena, Ana C.; Brau, Agustín; Velázquez, Jesús

    2014-01-01

    A new procedure for the calibration of an articulated arm coordinate measuring machine (AACMM) is presented in this paper. First, a self-calibration algorithm of four laser trackers (LTs) is developed. The spatial localization of a retroreflector target, placed in different positions within the workspace, is determined by means of a geometric multilateration system constructed from the four LTs. Next, a nonlinear optimization algorithm for the identification procedure of the AACMM is explained. An objective function based on Euclidean distances and standard deviations is developed. This function is obtained from the captured nominal data (given by the LTs used as a gauge instrument) and the data obtained by the AACMM and compares the measured and calculated coordinates of the target to obtain the identified model parameters that minimize this difference. Finally, results show that the procedure presented, using the measurements of the LTs as a gauge instrument, is very effective by improving the AACMM precision. PMID:24688418

  1. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets.

    PubMed

    Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth

    2015-10-13

    We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.

  2. Large amplitude m=1 diocotron mode measurements in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.

    2002-01-01

    Smaller-diameter pure electron plasmas are generated in the Electron Diffusion Gauge (EDG) using a thoriated tungsten filament wound into a spiral shape with an outer diameter which is 1/4 of the trap wall diameter. The m=1 diocotron mode is excited in the plasma by means of the resistive-wall instability, using a resistor-relay circuit which allows the mode to be induced at various initial amplitudes. The dynamics of this mode may be predicted using linear theory when the amplitude is small. However, it has been observed [e.g., Fine et al., Phys. Rev. Lett. 63, 2232 (1989)] [1] that at larger amplitudes the frequency of this mode (relative to the small-amplitude frequency) exhibits a quadratic dependence on the mode amplitude. In this paper, the frequency shift and nonlinear dynamics of the m=1 diocotron mode in the EDG device are investigated.

  3. Riccati parameterized self-similar waves in two-dimensional graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2015-04-01

    An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.

  4. Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy

    NASA Astrophysics Data System (ADS)

    Takasaki, K.

    1990-08-01

    Symmetry properties of the space of complex (or formal) hyper-Kähler metrics are studied in the language of hyper-Kähler hierarchies. The construction of finite symmetries is analogous to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a (pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have a rather simple form. These infinitesimal transformations are extended to the Plebanski key functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra structure turns out to originate in a contact structure behind a set of symplectic structures inherent in the hyper-Kähler hierarchy. Possible relations to membrane theory are briefly discussed.

  5. Spinning particles, axion radiation, and the classical double copy

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Li, Jingping; Prabhu, Siddharth G.

    2018-05-01

    We extend the perturbative double copy between radiating classical sources in gauge theory and gravity to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields that include the graviton, a scalar (dilaton) ϕ and the Kalb-Ramond axion field Bμ ν. Consistency of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in d =4 , corresponds to a gyromagnetic ratio equal to Dirac's value g =2 . The color-to-kinematics map implies that on the gravity side, the bulk theory of the fields (ϕ ,gμ ν,Bμ ν) has interactions which match those of d -dimensional "string gravity," as is the case both in the BCJ double copy of pure gauge theory scattering amplitudes and the KLT relations between the tree-level S -matrix elements of open and closed string theory.

  6. Hidden local symmetry and beyond

    NASA Astrophysics Data System (ADS)

    Yamawaki, Koichi

    Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L ×SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, “SM ρ meson”, in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call “dark SM skyrmion (DSMS)”.

  7. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

    NASA Technical Reports Server (NTRS)

    Xu, Feng; Deshpande, Manohar

    2012-01-01

    Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

  8. GEOPHYSICS, ASTRONOMY AND ASTROPHYSICS: Numerical method of studying nonlinear interactions between long waves and multiple short waves

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Kuang, Hai-Lan; William, Perrie; Zou, Guang-Hui; Nan, Cheng-Feng; He, Chao; Shen, Tao; Chen, Wei

    2009-07-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.

  9. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    NASA Astrophysics Data System (ADS)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the appropriateness of soft computing technique as a practically constructive replacement for tedious analytical formulation and henceforth, effectively quantifies the modeling of TFGs.

  10. Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Smith, F. T.

    1988-01-01

    The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically for a boundary layer at high Reynolds number. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types 1-3, are found. Each can start from secondary instability and then become nonlinear, Type 1 proving to be relatively benign but able to act as a pre-cursor to the Types 2, 3 which turn out to be very powerful nonlinear interactions. Type 2 involves faster stream-wise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear 3-D triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type 3 involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the meanflow profile, on a more global scale. Streak-like formations in which there is localized concentration of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant changes in the flow structure downstream. The powerful nonlinear 3-D interactions 2, 3 are potentially very relevant to experimental findings in transition.

  11. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  12. Aspects Topologiques de la Theorie des Champs et leurs Applications

    NASA Astrophysics Data System (ADS)

    Caenepeel, Didier

    This thesis is dedicated to the study of various topological aspects of field theory, and is divided in three parts. In two space dimensions the possibility of fractional statistics can be implemented by adding an appropriate "fictitious" electric charge and magnetic flux to each particle (after which they are known as anyons). Since the statistical interaction is rather difficult to handle, a mean-field approximation is used in order to describe a gas of anyons. We derive a criterion for the validity of this approximation using the inherent feature of parity violation in the scattering of anyons. We use this new method in various examples of anyons and show both analytically and numerically that the approximation is justified if the statistical interaction is weak, and that it must be more weak for boson-based than for fermion-based anyons. Chern-Simons theories give an elegant implementation of anyonic properties in field theories, which permits the emergence of new mechanisms for anyon superconductivity. Since it is reasonable to think that superconductivity is a low energy phenomenon, we have been interested in non-relativistic C-S systems. We present the scalar field effective potential for non-relativistic matter coupled to both Abelian and non-Abelian C-S gauge fields. We perform the calculations using functional methods in background fields. Finally, we compute the scalar effective potential in various gauges and treat divergences with various regularization schemes. In three space dimensions, a generalization of Chern-Simons theory may be achieved by introducing an antisymmetric tensor gauge field. We use these theories, called B wedge F theories, to present an alternative to the Higgs mechanism to generate masses for non-Abelian gauge fields. The initial Lagrangian is composed of a fermion with current-current and dipole-dipole type self -interactions minimally coupled to non-Abelian gauge fields. The mass generation occurs upon the fermionic functional integration. We show that by suitably adjusting the coupling constants the effective theory contains massive non-Abelian gauge fields without any residual scalars or other degrees of freedom.

  13. Transport equations for subdiffusion with nonlinear particle interaction.

    PubMed

    Straka, P; Fedotov, S

    2015-02-07

    We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  15. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  16. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  17. Modulus D-term inflation

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  18. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  19. Effect of gauge-field interaction on fermion transport in two dimensions: Hartree conductivity correction and dephasing

    NASA Astrophysics Data System (ADS)

    Ludwig, T.; Gornyi, I. V.; Mirlin, A. D.; Wölfle, P.

    2008-06-01

    We consider the quantum corrections to the conductivity of fermions interacting via a Chern Simons gauge field and concentrate on the Hartree-type contributions. The first-order Hartree approximation is only valid in the limit of weak coupling λ≪g-1/2 to the gauge field ( g≫1 is the dimensionless conductance) and results in an antilocalizing conductivity correction ˜λ2gln2T . In the case of strong coupling, an infinite summation of higher-order terms is necessary, which includes both the virtual (renormalization of the frequency) and real (dephasing) processes. At intermediate temperatures, T0≪T≪gT0 , where T0˜1/g2τ and τ is the elastic scattering time, the T dependence of the conductivity is determined by the Hartree correction, δσH(T)-δσH(gT0)∝g1/2-(T/T0)1/2[1+ln(gT0/T)1/2] , so that σ(T) increases with lowering T . At low temperatures, T≪T0 , the temperature-dependent part of the Hartree correction assumes a logarithmic form with a coefficient of order unity, δσH∝ln(1/T) . As a result, the negative exchange contribution δσex∝-lngln(1/T) becomes dominant, which yields localization in the limit of T→0 . We further discuss dephasing at strong coupling and show that the dephasing rates are of the order of T , owing to the interplay of inelastic scattering and renormalization. On the other hand, the dephasing length is anomalously short, Lφ≪LT , where LT is the thermal length. For the case of composite fermions with long-range Coulomb interaction, the gauge-field propagator is less singular. The resulting Hartree correction has the usual sign and temperature dependence, δσH∝lngln(1/T) , and for realistic g is overcompensated by the negative exchange contribution due to the gauge-boson and scalar parts of the interaction. In this case, the dephasing length Lφ is of the order of LT for not too low temperatures and exceeds LT for T≲gT0 .

  20. Chern-Simons improved Hamiltonians for strings in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara

    2016-07-01

    In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.

  1. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  2. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    DOE PAGES

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; ...

    2015-03-01

    Within contemporary hadron physics there are two common methods for determining the momentum- dependence of the interaction between quarks: the top-down approach, which works toward an ab initiocomputation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-state hadron observables usingmore » a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.« less

  3. The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.

    2018-02-01

    In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

  4. A four-dimensional model with the fermionic determinant exactly evaluated

    NASA Astrophysics Data System (ADS)

    Mignaco, J. A.; Rego Monteiro, M. A.

    1986-07-01

    A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.

  5. Upper bound on the Abelian gauge coupling from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  6. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  7. Strong interactions in air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Dennis D.; Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Straße, Frankfurt am Main

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  8. Elementary particles in the early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N.A., E-mail: gromov@dm.komisc.ru

    The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less

  9. Relativistic Hamiltonian dynamics for N point particles

    NASA Astrophysics Data System (ADS)

    King, M. J.

    1980-08-01

    The theory is quantized canonically to give a relativistic quantum mechanics for N particles. The existence of such a theory has been in doubt since the proof of the No-interaction theorem. However, such a theory does exist and was generalized. This dynamics is expressed in terms of N + 1 pairs of canonical fourvectors (center-of-momentum variables or CMV). A gauge independent reduction due to N + 3 first class kinematic constraints leads to a 6N + 2 dimensional minimum kinematic phase space, K. The kinematics and dynamics of particles with intrinsic spin were also considered. To this end known constraint techniques were generalized to make use of graded Lie algebras. The (Poincare) invariant Hamiltonian is specified in terms of the gauge invarient variables of K. The covariant worldline variables of each particle were found to be gauge dependent. As such they will usually not satisfy a canonical algebra. An exception exists for free particles. The No-interaction theorem therefore is not violated.

  10. Flavor non-universal gauge interactions and anomalies in B-meson decays

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Wu, Yue-Liang

    2018-02-01

    Motivated by flavor non-universality and anomalies in semi-leptonic B-meson decays, we present a general and systematic discussion about how to construct anomaly-free U(1)‧ gauge theories based on an extended standard model with only three right-handed neutrinos. If all standard model fermions are vector-like under this new gauge symmetry, the most general family non-universal charge assignments, (a,b,c) for three-generation quarks and (d,e,f) for leptons, need satisfy just one condition to be anomaly-free, 3(a+b+c) = - (d+e+f). Any assignment can be linear combinations of five independent anomaly-free solutions. We also illustrate how such models can generally lead to flavor-changing interactions and easily resolve the anomalies in B-meson decays. Probes with {{B}}{s} - {{\\bar B}}{s} mixing, decay into τ ±, dilepton and dijet searches at colliders are also discussed. Supported by the Grant-in-Aid for Innovative Areas (16H06490)

  11. Classical gluon and graviton radiation from the bi-adjoint scalar double copy

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.

    2017-09-01

    We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.

  12. Formal and Applied AdS/CFT

    NASA Astrophysics Data System (ADS)

    Pufu, Silviu Stefan

    The gauge/gravity duality is a powerful mathematical tool that relates strongly-interacting gauge theories with large numbers of colors to classical gravitational theories with negative cosmological constant. This thesis uses the gauge/gravity duality in two ways. The first half of the thesis explores the notion of a holographic p-wave superconductor/superfluid. On the gauge theory side there is an SU(2) global symmetry that is explicitly broken to U(1) by turning on a charge density. This U(1) symmetry is in turn spontaneously broken when the ratio between temperature and charge density is smaller than a critical value. The spontaneous breaking of the U(1) symmetry is accompanied by a spontaneous breaking of rotational symmetry. On the gravity side the SU(2) and U(1) symmetries are gauged, and the symmetry-broken backgrounds are charged black branes surrounded by clouds made of off-diagonal gauge bosons. The gauge/gravity duality is used to compute various critical exponents and transport coefficients related to the phase transition between the U(1) symmetry-broken and symmetry-restored phases. The second half of this thesis builds on the recent progress on using the technique of localization for computing supersymmetry-protected quantities in gauge theories with N ≥ 2 supersymmetry on the three-sphere. Using this technique, the infinite-dimensional path integrals of these theories were reduced to finite-dimensional multi-matrix integrals. In the second half of this thesis these multi-matrix integrals are computed approximately for the case of effective gauge theories on M2-branes probing various Calabi-Yau singularities. The answers match the predictions of the gauge/gravity duality. In particular, they reproduce the N3/2 scaling of the number of degrees of freedom on N coincident M2-branes.

  13. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  14. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  15. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  16. Off-shell gluon production in interaction of a projectile with 2 or 3 targets

    NASA Astrophysics Data System (ADS)

    Braun, M. A.; Salykin, M. Yu.

    2017-07-01

    Within the effective QCD action for the Regge kinematics, the amplitudes for virtual gluon emission are studied in collision of a projectile with two and three targets. It is demonstrated that all non-Feynman singularities cancel between induced vertices and rescattering contributions. Formulas simplify considerably in a special gauge, which is a straightforward generalization of the light-cone gauge for emission of real gluons.

  17. Evaluating LSM-Based Water Budgets Over a West African Basin Assisted with a River Routing Scheme

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Boone, Aaron; Peugeot, Christophe

    2014-01-01

    Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Oum River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005-08 AMMA field campaign period during which rainfall and stream flow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily stream flow at five gauges within the basin. Results demonstrate that the RRS simulates stream flow at all gauges with relative errors varying from -22% to 3% and Nash-Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the sub-basin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated stream flows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

  18. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  19. The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Tian, Qiang

    2005-04-01

    The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.

  20. Search for gauge extensions of the MSSM at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Ahmed; Demir, Durmus A.; Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir

    2009-05-01

    The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of themore » MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+Ee{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC.« less

  1. Power-law rheology controls aftershock triggering and decay

    PubMed Central

    Zhang, Xiaoming; Shcherbakov, Robert

    2016-01-01

    The occurrence of aftershocks is a signature of physical systems exhibiting relaxation phenomena. They are observed in various natural or experimental systems and usually obey several non-trivial empirical laws. Here we consider a cellular automaton realization of a nonlinear viscoelastic slider-block model in order to infer the physical mechanisms of triggering responsible for the occurrence of aftershocks. We show that nonlinear viscoelasticity plays a critical role in the occurrence of aftershocks. The model reproduces several empirical laws describing the statistics of aftershocks. In case of earthquakes, the proposed model suggests that the power-law rheology of the fault gauge, underlying lower crust, and upper mantle controls the decay rate of aftershocks. This is verified by analysing several prominent aftershock sequences for which the rheological properties of the underlying crust and upper mantle were established. PMID:27819355

  2. Nonlinear conductivity of a holographic superconductor under constant electric field

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei

    2017-02-01

    The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.

  3. Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1988-01-01

    The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.

  4. Towards a natural theory of electroweak interactions

    NASA Astrophysics Data System (ADS)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is transmitted to the superpartners by nonstandard gauge interactions, leading to distinctive predictions for the superpartner masses. Finally, I propose a model that combines a mechanism of dynamical electroweak symmetry breaking with supersymmetry, which explains some features of the quark and lepton mass spectrum.

  5. Experimental Measurement of the Nonlinear Interaction between Counterpropagating Alfv'en Waves in the LaPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Drake, D. J.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.

    2012-10-01

    Turbulence plays an important role in the transport of mass and energy in many space and astrophysical plasmas ranging from galaxy clusters to Earth's magnetosphere. One active topic of research is the application of idealized Alfv'enic turbulence models to plasma conditions relevant to space and astrophysical plasmas. Alfv'enic turbulence models based on incompressible magnetohydrodynamics (MHD) contain a nonlinear interaction that drives the cascade of energy to smaller scales. We describe experiments at the Large Plasma Device (LaPD) that focus on the interaction of an Alfv'en wave traveling parallel to the mean magnetic field with a counterpropagating Alfv'en wave. Theory predicts the nonlinear interaction of the two primary waves will produce a secondary daughter Alfv'en wave. In this study, we present the first experimental identification of the daughter wave generated by nonlinear interactions between the primary Alfv'en waves.

  6. On discrete symmetries for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws drivenmore » for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.« less

  7. Nonlinear wave-wave interactions in the subauroral ionosphere on the basis of ISIS-2 satellite observations of Siple station VLF signals

    NASA Technical Reports Server (NTRS)

    Ohnami, S.; Hayakawa, M.; Bell, T. F.; Ondoh, T.

    1993-01-01

    Nonlinear wave-wave interaction between signals from a ground-based VLF transmitter and narrow-band ELF emissions in the subauroral ionosphere is studied by means of the bispectrum and bicoherence analysis. A bicoherence analysis has indicated that the sideband structures around the Siple transmitter signal received onboard the ISIS satellite are due to the nonlinear interaction between the Siple VLF signal and the pre-existing ELF emission.

  8. Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang

    2018-06-01

    Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.

  9. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  10. Reactive flow model development for PBXW-126 using modern nonlinear optimization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.; Simpson, R.L.; Urtiew, P.A.

    1995-08-01

    The initiation and detonation behavior of PBXW-126 has been characterized and is described. PBXW-126 is a composite explosive consisting of approximately equal amounts of RDX, AP, AL, and NTO with a polyurethane binder. The three term ignition and growth of reaction model parameters (ignition + two growth terms) have been found using nonlinear optimization methods to determine the {open_quotes}best{close_quotes} set of model parameters. The ignition term treats the initiation of up to 0.5% of the RDX The first growth term in the model treats the RDX growth of reaction up to 20% reacted. The second growth term treats the subsequentmore » growth of reaction of the remaining AP/AL/NTO. The unreacted equation of state (EOS) was determined from the wave profiles of embedded gauge tests while the JWL product EOS was determined from cylinder expansion test results. The nonlinear optimization code, NLQPEB/GLO, was used to determine the {open_quotes}best{close_quotes} set of coefficients for the three term Lee-Tarver ignition and growth of reaction model.« less

  11. Exponential nonlinear electrodynamics and backreaction effects on holographic superconductor in the Lifshitz black hole background

    NASA Astrophysics Data System (ADS)

    Sherkatghanad, Z.; Mirza, B.; Lalehgani Dezaki, F.

    We analytically describe the properties of the s-wave holographic superconductor with the exponential nonlinear electrodynamics in the Lifshitz black hole background in four-dimensions. Employing an assumption the scalar and gauge fields backreact on the background geometry, we calculate the critical temperature as well as the condensation operator. Based on Sturm-Liouville method, we show that the critical temperature decreases with increasing exponential nonlinear electrodynamics and Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. Also we find that the effects of backreaction has a more important role on the critical temperature and condensation operator in small values of Lifshitz dynamical exponent, while z is around one. In addition, the properties of the upper critical magnetic field in Lifshitz black hole background using Sturm-Liouville approach is investigated to describe the phase diagram of the corresponding holographic superconductor in the probe limit. We observe that the critical magnetic field decreases with increasing Lifshitz dynamical exponent, z, and it goes to zero at critical temperature, independent of the Lifshitz dynamical exponent, z.

  12. Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE.

    PubMed

    Schiecke, Karin; Pester, Britta; Piper, Diana; Benninger, Franz; Feucht, Martha; Leistritz, Lutz; Witte, Herbert

    2016-12-01

    Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed nonlinear interactions are logical steps to provide, e.g., deeper insight into the development of seizure onsets. Convergent cross mapping (CCM) investigates nonlinear, directed interactions between time series by using nonlinear state space reconstruction. CCM is applied to simulated and clinically relevant data, i.e., interactions between HRV and specific EEG components of children with temporal lobe epilepsy (TLE). In addition, time-variant multivariate Autoregressive model (AR)-based estimation of partial directed coherence (PDC) was performed for the same data. Influence of estimation parameters and time-varying behavior of CCM estimation could be demonstrated by means of simulated data. AR-based estimation of PDC failed for the investigation of our clinical data. Time-varying interval-based application of CCM on these data revealed directed interactions between HRV and delta-related EEG activity. Interactions between HRV and alpha-related EEG activity were visible but less pronounced. EEG components mainly drive HRV. The interaction pattern and directionality clearly changed with onset of seizure. Statistical relevant interactions were quantified by bootstrapping and surrogate data approach. In contrast to AR-based estimation of PDC CCM was able to reveal time-courses and frequency-selective views of nonlinear interactions for the further understanding of complex interactions between the epileptic network and the ANS in children with TLE.

  13. Multi-Boson Interactions at the Run 1 LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel R.; Meade, Patrick; Pleier, Marc-Andre

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCsmore » which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.« less

  14. Status of a minimal composite Higgs theory

    NASA Astrophysics Data System (ADS)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2017-12-01

    We analyze three sets of gauge ensembles in our extended physics program of a particularly important BSM gauge theory with a fermion doublet in the two-index symmetric (sextet) representation of the SU(3) BSM color gauge group. Our investigations include chiral symmetry breaking (χSB) in the p-regime and 𝜖-regime, the mass of the composite 0++ scalar, resonance spectroscopy, new physics from gauge anomaly constraints, and the role of stable sextet BSM baryons with Electroweak interactions in dark matter searches. Important new goals include studies of the 0++ scalar entangled with Goldstone dynamics in the p-regime and the 𝜖-regime, the resonance spectrum with particular attention to emerging LHC signals, like recent hints for diphoton excess at 750 GeV or diboson anomalies in the 2 TeV range. All results reported here are preliminary before journal publication including some post-conference material for the discussion.

  15. Components of variation of surface hoof strain with time.

    PubMed

    Thomason, J J; Bignell, W W; Sears, W

    2001-04-01

    The relative contribution of a number of random and fixed variables to variation in surface strain magnitudes on the hoof capsule was assessed for healthy feet under normal conditions. Principal strains were recorded in vivo from 5 rosette gauges glued around the circumference of the right forefeet of 4 horses on 4 occasions over a 9 month period. Recordings were made at every other trimming and reshoeing. During each session, gauges were positioned with a template for repeatability. Strains were recorded at the trot and canter (at consistent speeds), for straight motion and turns, and before and after the hoof was trimmed and reset. Up to 30 strides were recorded for each combination of these variables. ANOVAs were performed on midstance strains of 7008 strides to determine the relative contributions to strain variation of individual horse, test day, gait and direction combined as one factor, gauge position on the hoof, trimming, interstride variability and the interactions among these factors. The ANOVA model explained 87% of the variation, of which approximately 84% was due to fixed effects and 16% to random effects. Circumferential position of the gauges and several of the interactions including this term were by far the greatest contributors to strain variation. Differences among gauge positions, individuals and gait + direction are consistent with previous work. This study has added the relative effects, which are small but significant, of trimming on a regular basis and of time. The change in strain magnitudes with trimming was different for each horse, which leads to the possibility that over- and underuse may have to be quantified on an individual basis.

  16. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  17. FIMP dark matter freeze-in gauge mediation and hidden sector

    NASA Astrophysics Data System (ADS)

    Tsao, Kuo-Hsing

    2018-07-01

    We explore the dark matter freeze-in mechanism within the gauge mediation framework, which involves a hidden feebly interacting massive particle (FIMP) coupling feebly with the messenger fields while the messengers are still in the thermal bath. The FIMP is the fermionic component of the pseudo-moduli in a generic metastable supersymmetry (SUSY) breaking model and resides in the hidden sector. The relic abundance and the mass of the FIMP are determined by the SUSY breaking scale and the feeble coupling. The gravitino, which is the canonical dark matter candidate in the gauge mediation framework, contributes to the dark matter relic abundance along with the freeze-in of the FIMP. The hidden sector thus becomes two-component with both the FIMP and gravitino lodging in the SUSY breaking hidden sector. We point out that the ratio between the FIMP and the gravitino is determined by how SUSY breaking is communicated to the messengers. In particular when the FIMP dominates the hidden sector, the gravitino becomes the minor contributor in the hidden sector. Meanwhile, the neutralino is assumed to be both the weakly interacting massive particle dark matter candidate in the freeze-out mechanism and the lightest observable SUSY particle. We further find out the neutralino has the sub-leading contribution to the current dark matter relic density in the parameter space of our freeze-in gauge mediation model. Our result links the SUSY breaking scale in the gauge mediation framework with the FIMP freeze-in production rate leading to a natural and predicting scenario for the studies of the dark matter in the hidden sector.

  18. N-soliton interactions: Effects of linear and nonlinear gain and loss

    NASA Astrophysics Data System (ADS)

    Carretero-González, R.; Gerdjikov, V. S.; Todorov, M. D.

    2017-10-01

    We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.

  19. Photonic Aharonov–Bohm effect in photon–phonon interactions

    PubMed Central

    Li, Enbang; Eggleton, Benjamin J.; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov–Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov–Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov–Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon–phonon interactions to demonstrate that photonic Aharonov–Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon–phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov–Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential. PMID:24476790

  20. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  1. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  2. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    NASA Astrophysics Data System (ADS)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  3. X-ray structure determination, Hirshfeld surface analysis, spectroscopic (FT-IR, NMR, UV-Vis, fluorescence), non-linear optical properties, Fukui function and chemical activity of 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Yeşil, Ahmet Emin; Altun, Mehmet; Bal-Demirci, Tülay; Özdemir, Namık

    2018-06-01

    The compound 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine (Mtpyr) was synthesized and investigated using X-ray single crystal structure determination, combined with Hirshfeld topology analysis of the molecular packing. In addition, Mtpyr was characterized by experimental and theoretical FT-IR, UV-Vis, 1H NMR, 13C NMR and fluorescence emission spectra. The optimized molecular geometry (bond length, bond angle, torsion angle), the complete vibrational frequency and all other theoretical computations were calculated by using density functional theory (DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Vis spectrum, the electronic properties such as excitation energies, wavelength and oscillator strength are evaluated by TD-DFT in chloroform solution. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The calculated HOMO-LUMO band gap energies confirmed that charge transfer and chemical stability within the molecule. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using natural bond orbital (NBO) analysis. Besides Mulliken and natural population charges (NPA), non-linear optic properties (NLO), Fukui Function analysis, molecular electrostatic potential (MEP) were also computed which helps to identifying the electrophilic/nucleophilic nature.

  4. Family nonuniversal Z' models with protected flavor-changing interactions

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Jung, Martin; Serôdio, Hugo

    2015-07-01

    We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C9,10' ℓ can be tested in b →s ℓ+ℓ- transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.

  5. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  6. Cosmological signatures of a UV-conformal standard model.

    PubMed

    Dorsch, Glauber C; Huber, Stephan J; No, Jose Miguel

    2014-09-19

    Quantum scale invariance in the UV has been recently advocated as an attractive way of solving the gauge hierarchy problem arising in the standard model. We explore the cosmological signatures at the electroweak scale when the breaking of scale invariance originates from a hidden sector and is mediated to the standard model by gauge interactions (gauge mediation). These scenarios, while being hard to distinguish from the standard model at LHC, can give rise to a strong electroweak phase transition leading to the generation of a large stochastic gravitational wave signal in possible reach of future space-based detectors such as eLISA and BBO. This relic would be the cosmological imprint of the breaking of scale invariance in nature.

  7. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less

  8. Gauge Gravity and Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2008-09-01

    Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.

  9. Nonlinear interactions in mixing layers and compressible heated round jets. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Jarrah, Yousef Mohd

    1989-01-01

    The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.

  10. Lopsided gauge mediation

    NASA Astrophysics Data System (ADS)

    de Simone, Andrea; Franceschini, Roberto; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-05-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called μ- B μ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of B μ and of the other Higgs-sector soft masses, as predicted in models where both μ and B μ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.

  11. Unified gauge theories with right-handed currents and heavy fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohapatra, R.N.

    Gauge models with heavy fermions and right-handed currents are discussed based on the gauge groups SU(2)/subA/ x U(1) x SU(4) ', SU(2)/subA/ x SU(2)/subB/ x SU(4) ', and SU(4) x SU(4) ' and are constructed so as to lead to the $delta$I = 1/2 rule. SU(4) x SU(4) ' is advocated as the ultimate unifying gauge group of nature, and it is shown how at various stages of spontaneous breakdown both the SU(2)/subA/ x SU(2)/subB/ x SU(4) ' and SU(2)/subA/ x U(1) x SU(4) ' groups manifest themselves. It is also shown that CP violation takes an interesting complexion inmore » these models and leads to exactly the relations eta/sub +//sub -/ approx. = eta$sub 00$ in K/subL/ $Yields$ 2$pi$ decays. Furthermore, it is shown that the magnitude of CP violation is related to gauge interactions that violate the heavy quark degeneracy. (AIP)« less

  12. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  13. I. Aspects of the Dark Matter Problem. II. Fermion Balls

    NASA Astrophysics Data System (ADS)

    Tetradis, Nikolaos Athanassiou

    The first part of this thesis deals with the dark matter problem. A simple non-supersymmetric extension of the standard model is presented, which provides dark matter candidates not excluded by the existing dark matter searches. The simplest candidate is the neutral component of a zero hypercharge triplet, with vector gauge interactions. The upper bound on its mass is a few TeV. We also discuss possible modifications of the standard freeze-out scenario, induced by the presence of a phase transition. More specifically, if the critical temperature of the electroweak phase transition is sufficiently small, it can change the final abundances of heavy dark matter particles, by keeping them massless for a long time. Recent experimental bounds on the Higgs mass from LEP imply that this is not the case in the minimal standard model. In the second part we discuss non-trivial configurations, involving fermions which obtain their mass through Yukawa interactions with a scalar field. Under certain conditions, the vacuum expectation value of the scalar field is shifted from the minimum of the effective potential, in regions of high fermion density. This may result in the formation of fermion bound states. We study two such cases: (a) Using the non-linear SU(3)L times SU(3)R chiral Lagrangian coupled to a field theory of nuclear forces, we show that a bound state of baryons with a well defined surface may concievably form in the presence of kaon condensation. This state is of similar density to ordinary nuclei, but has net strangeness equal to about two thirds the baryon number. We discuss the properties of lumps of strange baryon matter with baryon number between ~20 and ~10 57 where gravitational effects become important. (b) The Higgs field near a very heavy top quark or any other heavy fermion is expected to be significantly deformed. By computing explicit solutions of the classical equations of motion for a spherically symmetric configuration without gauge fields, we show that in the standard model this cannot happen without violating either vacuum stability or perturbation theory at energies very close to the top quark mass.

  14. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José

    2018-03-01

    This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.

  15. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  16. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  17. Physics of Alfvén waves and energetic particles in burning plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Liu; Zonca, Fulvio

    2016-01-01

    Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.

  18. Exact analytic solution for non-linear density fluctuation in a ΛCDM universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org

    We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.

  19. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  20. Sea Level Variability in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Bruni, S.; del Conte, S.; Errico, M.; Petracca, F.; Prati, C.; Raicich, F.; Santi, E.

    2015-12-01

    Tide gauges measure local sea-level relative to a benchmark on land, therefore the interpretation of these measurements can be limited by the lack of appropriate knowledge of vertical crustal motions. The oldest sea-level records date back to the 18th century; these observations are the only centuries-old data source enabling the estimate of historical sea-level trends/variations. In general, tide gauge benchmarks were not frequently levelled, except in those stations where natural and/or anthropogenic subsidence was a major concern. However, in most cases, it is difficult to retrieve the historical geodetic levelling data. Space geodetic techniques, such as GNSS, Doris and InSAR are now providing measurements on a time and space-continuous basis, giving rise to a large amount of different data sets. The vertical motions resulting from the various analyses need to be compared and best exploited for achieving reliable estimates of sea level variations. In the Mediterranean area, there are a few centennial tide gauge records; our study focuses, in particular, on the Italian time series of Genoa, Marina di Ravenna, Venice and Trieste. Two of these stations, Marina di Ravenna and Venice, are affected by both natural and anthropogenic subsidence, the latter was particularly intense during a few decades of the 20th century because of ground fluids withdrawal. We have retrieved levelling data of benchmarks at and/or close to the tide gauges from the end of 1800 and, for the last couple of decades, also GPS and InSAR height time series in close proximity of the stations. By using an ensemble of these data, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removal of the land vertical motions, the linear long period sea-level rates of all stations are in excellent agreement. Over the last two decades, the tide gauge rates were also compared with those obtained by satellite radar altimetry data.

  1. 21st Century Projections of High Streamflow Events in the UK and Germany

    NASA Astrophysics Data System (ADS)

    Cioffi, Francesco; Rosario Conticello, Federico; Lall, Upmanu; Merz, Bruno

    2017-04-01

    Radiative effects of anthropogenic changes in atmospheric composition are expected to enhance the hydrological cycle leading to more frequent and intense floods. To explore if there will be an increased risk of river flooding in the future, 21st century projections under global warming scenarios of High Streamflow Events (HSEs) for UK and German rivers are carried out, using a model that statistically relates large-scale atmospheric predictors - 850 hPa Geopotential Height (GPH850) and Integrated Water Vapor Transport (IVT) - to the occurrence of HSEs in one or simultaneously in several streamflow gauges. Here, HSE is defined as the streamflow exceeding the 99th percentile of daily flowrate time series measured at streamflow gauges. For the common period 1960-2012, historical data from 57 streamflow gauges in UK and 61 streamflow gauges in Germany, as well as, reanalysis data of GPH850 and IVT fields, bounded from 90W to 70E and from 20N to 80N are used. The link between GPH850 configurations and HSEs, and more precisely, identification of the GPH850 states potentially able to generate HSEs, is performed by a combined Kohonen Networks (Self Organized Map, SOM) and Event Syncronization approach. Complex network and modularity methods are used to cluster streamflow gauges that share common GPH850 configurations. Then a model based on a conditional Poisson distribution, in which the parameter of the Poisson distribution is assumed to be a nonlinear function of GPH850 and IVT, allows for the identification of GPH850 state and threshold of IVT beyond which there is the HSE highest probability. Using that model, projections of 21st century changes in frequency of HSEs occurrence in UK and Germany are estimated using the simulated fields of GPH850 and IVT from selected GCMs belonging to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Among the different GCMs, those are selected whose retrospective predictor fields have consistent statistics with the corresponding reanalysis data.

  2. The {{\\rm{D}}\\bar{{\\rm{D}}}}^{{\\rm{* }}} interaction with isospin zero in an extended hidden gauge symmetry approach

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu

    2018-05-01

    The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.

  3. Interactions in higher-spin gravity: a holographic perspective

    NASA Astrophysics Data System (ADS)

    Sleight, Charlotte

    2017-09-01

    This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.

  4. Magnetic solutions in Einstein-massive gravity with linear and nonlinear fields

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Panah, Behzad Eslam; Panahiyan, Shahram; Momennia, Mehrab

    2018-06-01

    The solutions of U(1) gauge-gravity coupling is one of the interesting models for analyzing the semi-classical nature of spacetime. In this regard, different well-known singular and nonsingular solutions have been taken into account. The paper at hand investigates the geometrical properties of the magnetic solutions by considering Maxwell and power Maxwell invariant (PMI) nonlinear electromagnetic fields in the context of massive gravity. These solutions are free of curvature singularity, but have a conic one which leads to presence of deficit/surplus angle. The emphasize is on modifications that these generalizations impose on deficit angle which determine the total geometrical structure of the solutions, hence, physical/gravitational properties. It will be shown that depending on the background spacetime [being anti de Sitter (AdS) or de Sitter (dS)], these generalizations present different effects and modify the total structure of the solutions differently.

  5. Unified theory of nonlinear electrodynamics and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less

  6. Constraints and stability in vector theories with spontaneous Lorentz violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less

  7. Loop Braiding Statistics and Interacting Fermionic Symmetry-Protected Topological Phases in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Tantivasadakarn, Nathanan; Wang, Chenjie

    2018-01-01

    We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of fermionic particles, which correspond to 3D "intrinsic" FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is Z2×Z4. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.

  8. Analytical theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong Qian; Department of Physics, Shanghai University, Shanghai 200444; Wang, Q.

    2010-07-15

    We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.

  9. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  10. Localization of intense electromagnetic waves in a relativistically hot plasma.

    PubMed

    Shukla, P K; Eliasson, B

    2005-02-18

    We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.

  11. Evaluation of the interaction between hydroxyapatite and bisphosphonate by nonlinear capillary electrochromatography.

    PubMed

    Kong, Deying; Chen, Zilin

    2017-05-01

    Bisphosphonates are a class of chemical compounds used to treat diseases caused by increased bone resorption. Zoledronate is a third-generation bisphosphonate drug. Hydroxyapatite is main mineral constituent of bones, which can be bound by bisphosphonates in vivo. In this work, we report a method of nonlinear capillary electrochromatography for study on the interaction between hydroxyapatite and bisphosphonate. Hydroxyapatite was modified on the inner wall of capillary by a biomimetic-mineralization method. Then nonlinear chromatography was used to fit and analyze the interaction between zoledronate and hydroxyapatite. The association rate constants of zoledronate in hydroxyapatite-modified capillary and bare capillary are 642.3 and 195/M/min, respectively. This indicates that there is strong binding interactions and affinity between zoledronate and hydroxyapatite. Besides, the interaction between zoledronate and hydroxyapatite was confirmed further by ultraviolet spectroscopy. The method of nonlinear capillary electrochromatography provides a fast and effect approach for studying of bone metabolism disease by evaluation of interaction between hydroxyapatite and bisphosphonates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    PubMed Central

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-01-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814

  13. Perspective: Quantum Hamiltonians for optical interactions

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  14. Bosonization of free Weyl fermions

    NASA Astrophysics Data System (ADS)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  15. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Ramón; Hipólito-Ricaldi, W.S.; Videla, Nelson, E-mail: ramon.herrera@pucv.cl, E-mail: wiliam.ricaldi@ufes.br, E-mail: nelson.videla@ing.uchile.cl

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities inmore » its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.« less

  16. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    NASA Astrophysics Data System (ADS)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  17. Non-cancellation of electroweak logarithms in high-energy scattering

    DOE PAGES

    Manohar, Aneesh V.; Shotwell, Brian; Bauer, Christian W.; ...

    2015-01-01

    We study electroweak Sudakov corrections in high energy scattering, and the cancellation between real and virtual Sudakov corrections. Numerical results are given for the case of heavy quark production by gluon collisions involving the rates gg→t¯t, b¯b, t¯bW, t¯tZ, b¯bZ, t¯tH, b¯bH. Gauge boson virtual corrections are related to real transverse gauge boson emission, and Higgs virtual corrections to Higgs and longitudinal gauge boson emission. At the LHC, electroweak corrections become important in the TeV regime. At the proposed 100TeV collider, electroweak interactions enter a new regime, where the corrections are very large and need to be resummed.

  18. Physical angular momentum separation for QED

    NASA Astrophysics Data System (ADS)

    Sun, Weimin

    2017-04-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  19. One-loop perturbative coupling of A and A? through the chiral overlap operator

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi

    2018-03-01

    Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.

  20. The double copy: gravity from gluons

    NASA Astrophysics Data System (ADS)

    White, C. D.

    2018-04-01

    Three of the four fundamental forces in nature are described by so-called gauge theories, which include the effects of both relativity and quantum mechanics. Gravity, on the other hand, is described by General Relativity, and the lack of a well-behaved quantum theory - believed to be relevant at the centre of black holes, and at the Big Bang itself - remains a notorious unsolved problem. Recently a new correspondence, the double copy, has been discovered between scattering amplitudes (quantities related to the probability for particles to interact) in gravity, and their gauge theory counterparts. This has subsequently been extended to other quantities, providing gauge theory analogues of e.g. black holes. We here review current research on the double copy, and describe some possible applications.

  1. Experimental quantification of nonlinear time scales in inertial wave rotating turbulence

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Salhov, Alon; Sharon, Eran

    2017-12-01

    We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.

  2. Improvment of short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry

    NASA Astrophysics Data System (ADS)

    Chernov, Anton; Kurkin, Andrey; Pelinovsky, Efim; Yalciner, Ahmet; Zaytsev, Andrey

    2010-05-01

    A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry was presented in the paper (Yalciner A.C., Pelinovsky E., 2007). In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse are stored and analyzed by the fast Fourier transform technique (FFT) and energy spectrum curves for each location are obtained. The frequencies of each mode of free oscillations are determined from the peaks of the spectrum curves. Some main features were added for this method and will be discussed here: 1. Instead of small number of gauges which were manually installed in the studied area the information from numerical simulation now is recorded on the regular net of the «simulation» gauges which was place everywhere on the sea surface in the depth deeper than "coast" level with the fixed presetted distance between gauges. The spectral analysis of wave records was produced by Welch periodorgam method instead of simple FFT so it's possible to get spectral power estimation for wave process and determine confidence interval for spectra peaks. 2. After the power spectral estimation procedure the common peak of studied seiche can be found and mean spectral amplitudes for this peak were calculated numerically by a Simpson integration method for all gauges in the basin and the mean spectral amplitudes spatial distribution map can be ploted. The spatial distribution helps to study structure of seiche and determine effected dangerous areas. 3. Nested grid module in the NAMI-DANCE - nonlinear shallow water equations calculation software package was developed. This is very important feature for complicated different scale (ocean - sea - bay - harbor) phenomenons studying. The new developed software was tested for Mediterranian, Sea of Okhotsk and South China sea regions. This software can be usefull in local tsunami mapping and tsunami propagation in the coastal zone. References: Yalciner A.C., Pelinovsky E. A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry // Ocean engineering. V. 34. 2007. С. 747 - 757

  3. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  4. Nonlinear interaction in differential mode delay managed mode-division multiplexed transmission systems.

    PubMed

    Rademacher, Georg; Warm, Stefan; Petermann, Klaus

    2015-01-12

    We analyze the impact of Differential Mode Delay (DMD) Management on the nonlinear impairments in mode-division multiplexed transmission systems. It is found out that DMD Management can lead to a degraded performance, due to enhanced intermodal nonlinear interaction. This can be attributed to an increased correlation of co-propagating channels, similar to the effects that show up in dispersion managed single-mode systems.

  5. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  6. Experimental study of isolas in nonlinear systems featuring modal interactions

    PubMed Central

    Noël, Jean-Philippe; Virgin, Lawrence N.; Kerschen, Gaëtan

    2018-01-01

    The objective of the present paper is to provide experimental evidence of isolated resonances in the frequency response of nonlinear mechanical systems. More specifically, this work explores the presence of isolas, which are periodic solutions detached from the main frequency response, in the case of a nonlinear set-up consisting of two masses sliding on a horizontal guide. A careful experimental investigation of isolas is carried out using responses to swept-sine and stepped-sine excitations. The experimental findings are validated with advanced numerical simulations combining nonlinear modal analysis and bifurcation monitoring. In particular, the interactions between two nonlinear normal modes are shown to be responsible for the creation of the isolas. PMID:29584758

  7. Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.

    2018-06-01

    Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.

  8. Shoaling of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.

    2008-01-01

    The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.

  9. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  10. Evolution of cooperation on complex networks with synergistic and discounted group interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Li, Aming; Wang, Long

    2015-06-01

    In the real world individuals often engage in group interactions and their payoffs are determined by many factors, including the typical nonlinear interactions, i.e., synergy and discounting. Previous literatures assume that individual payoffs are either synergistically enhanced or discounted with the additional cooperators. Such settings ignore the interplay of these two factors, which is in sharp contrast with the fact that they ubiquitously coexist. Here we investigate how the coexistence and periodical switching of synergistic and discounted group interactions affect the evolution of cooperation on various complex networks. We show that scale-free networks facilitate the emergence of cooperation in terms of fixation probability for group interactions. With nonlinear interactions the heterogeneity of the degree acts as a double-edged sword: below the neutral drift it is the best for cooperation while above the neutral drift it instead provides the least opportunity for cooperators to be fixed. The advantages of the heterogeneity fade as interactive attributes switch between synergy and discounting, which suggests that the heterogeneity of population structures cannot favor cooperators in group interactions even with simple nonlinear interactions. Nonetheless, scale-free networks always guarantee cooperators the fastest rate of fixation. Our work implies that even very simple nonlinear group interactions could greatly shape the fixation probability and fixation time of cooperators in structured populations indicated by complex networks.

  11. Quantum chemical study, spectroscopic investigations, NBO and HOMO-LUMO analyses of 3-aminoquinoline (3AQ) and [Ag(3AQ)2(TCA)] complex (TCA = Trichloroacetate)

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; Kassem, Taher S.; Badr, Ahmed M. A.; Abu Youssef, Morsy A.; Assem, Rania

    2014-09-01

    The new [Ag(3AQ)2(TCA)]; (3AQ = 3-aminoquinoline and TCA = Trichloroacetate) complex is synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO) 1H chemical shift values of the free and coordinated 3AQ in the ground state have been calculated by using DFT/B3LYP method. The TD-DFT results of the [Ag(3AQ)2(TCA)] complex showed a π-π* transition band at 240.3-242.6 nm (f = 0.1334-0.1348) which has longer wavelength and lower absorption intensity than that for the free 3AQ (233.2 nm, f = 0.3958). Dipole moment, polarizability and HOMO-LUMO gap values predicted better nonlinear optical properties (NLO) for the [Ag(3AQ)2(TCA)] than the 3AQ ligand. NBO analysis has been used to predict the most accurate Lewis structure of the studied molecules. The energies of the different intramolecular charge transfer (ICT) interactions within the studied molecules were estimated using second order perturbation theory.

  12. N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191

    2012-08-15

    Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less

  13. Getting off the Straight and Narrow: Exploiting Non-Linear, Interactive Narrative Structures in Digital Stories for Language Teaching

    ERIC Educational Resources Information Center

    Prosser, Andrew

    2014-01-01

    Digital storytelling is already used extensively in language education. Web documentaries, particularly in terms of design and narrative structure, provide an extension of the digital storytelling concept, specifically in terms of increased interactivity. Using a model of interactive, non-linear storytelling, originally derived from computer game…

  14. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Anirban; Hunt, Katharine L. C.

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gaugemore » dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H{sub m} and a field term H{sub f}, and show that both H{sub m} and H{sub f} have gauge-independent expectation values. Any gauge may be chosen for the calculations; but following our partitioning, the expectation values of the molecular Hamiltonian are identical to those obtained directly in the Coulomb gauge. As a corollary of this result, the power absorbed by a molecule from a time-dependent, applied electromagnetic field is equal to the time derivative of the non-adiabatic term in the molecular energy, in any gauge.« less

  15. The Development of German Doctrine and Command And Control and Its Application to Supporting Arms, 1832 - 1945

    DTIC Science & Technology

    1991-03-01

    aspects of war.) Moral forces are difficult to grasp and impossible to quantify. 9 One cannot easily gauge forces like national and military resolve...Legion’s solution to the problem of battlefield control was to simplify it by means of standardized tactical drill coupled with a deployment that gave...conditions that will achieve the strategic goals. The operational commander must be interacting constantly with the strategic level even as he gauges his

  16. Topology, Magnetic Field, and Strongly Interacting Matter

    DOE PAGES

    Kharzeev, Dmitri E.

    2015-06-05

    Gauge theories with compact symmetry groups possess topologically nontrivial configurations of gauge field. This characteristic has dramatic implications for the vacuum structure of quantum chromodynamics (QCD) and for the behavior of QCD plasma, as well as for condensed matter systems with chiral quasi-particles. Here, I review the current status of this problem with an emphasis both on the interplay between chirality and a background magnetic field and on the observable manifestations of topology in heavy-ion collisions, Dirac semimetals, neutron stars, and the early Universe.

  17. Interharmonic modulation products as a means to quantify nonlinear D-region interactions

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.

  18. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    NASA Astrophysics Data System (ADS)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  19. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.

  20. Synchronization and Cardio-pulmonary feedback in Sleep Apnea

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ivanov, Plamen Ch.; Chen, Zhi; Hu, Kun; Paydarfar, David; Stanley, H. Eugene

    2004-03-01

    Findings indicate a dynamical coupling between respiratory and cardiac function. However, the nature of this nonlinear interaction remains not well understood. We investigate transient patterns in the cardio-pulmonary interaction under healthy conditions by means of cross-correlation and nonlinear synchronization techniques, and we compare how these patterns change under pathologic conditions such as obstructive sleep apnea --- a periodic cessation of breathing during sleep. We find that during apnea episodes the nonlinear features of cardio-pulmonary interaction change intermittently, and can exhibit variations characterized by different time delays in the phase synchronization between breathing and heartbeat dynamics.

  1. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  2. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  3. Numerical model for the weakly nonlinear propagation of sound through turbulence

    NASA Technical Reports Server (NTRS)

    Lipkens, Bart; Blanc-Benon, Philippe

    1994-01-01

    When finite amplitude (or intense) sound, such as a sonic boom, propagates through a turbulent atmosphere, the propagation is strongly affected by the turbulence. The interaction between sound and turbulence has mostly been studied as a linear phenomenon, i.e., the nonlinear behavior of the intense sound has been neglected. It has been shown that turbulence has an effect on the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. Peak pressure and rise time are important factors that determine the loudness of the sonic boom when heard outdoors. However, the interaction between turbulence and nonlinear effects has mostly not been included in propagation studies of sonic booms. It is therefore important to investigate the influence of acoustical nonlinearity on the interaction of intense sound with turbulence.

  4. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor.

    PubMed

    Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S

    2008-06-13

    We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.

  5. Microbiopsies versus Bergström needle for skeletal muscle sampling: impact on maximal mitochondrial respiration rate.

    PubMed

    Isner-Horobeti, M E; Charton, A; Daussin, F; Geny, B; Dufour, S P; Richard, R

    2014-05-01

    Microbiopsies are increasingly used as an alternative to the standard Bergström technique for skeletal muscle sampling. The potential impact of these two different procedures on mitochondrial respiration rate is unknown. The objective of this work was to compare microbiopsies versus Bergström procedure on mitochondrial respiration in skeletal muscle. 52 vastus lateralis muscle samples were obtained from 13 anesthetized pigs, either with a Bergström [6 gauges (G)] needle or with microbiopsy needles (12, 14, 18G). Maximal mitochondrial respiration (V GM-ADP) was assessed using an oxygraphic method on permeabilized fibers. The weight of the muscle samples and V GM-ADP decreased with the increasing gauge of the needles. A positive nonlinear relationship was observed between the weight of the muscle sample and the level of maximal mitochondrial respiration (r = 0.99, p < 0.05) and between needle size and maximal mitochondrial respiration (r = 0.99, p < 0.05). Microbiopsies give lower muscle sample weight and maximal rate of mitochondrial respiration compared to the standard Bergström needle.Therefore, the higher the gauge (i.e. the smaller the size) of the microbiopsy needle, the lower is the maximal rate of respiration. Microbiopsies of skeletal muscle underestimate the maximal mitochondrial respiration rate, and this finding needs to be highlighted for adequate interpretation and comparison with literature data.

  6. Frank Wilczek, Asymptotic Freedom, and Strong Interaction

    Science.gov Websites

    whereby quarks behave as free particles when they are close together, but become more strongly attracted , Issue 26; 1973 Asymptotically Free Gauge Theories I; DOE Technical Report; 1973 Scaling Deviations for Neutrino Reactions in Asymptotically Free Field Theories; DOE Technical Report; 1974 Weak-interaction

  7. SO(3) "Nuclear Physics" with ultracold Gases

    NASA Astrophysics Data System (ADS)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  8. Strongly coupled gauge theories: What can lattice calculations teach us?

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A.; Brower, R. C.; Rebbi, C.; Weinberg, E.; Witzel, O.

    2017-12-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light 0++ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the vev of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories.

  9. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  10. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  11. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  12. Parametric investigation of scalable tactile sensors

    NASA Astrophysics Data System (ADS)

    Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.

    2017-05-01

    In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.

  13. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  14. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  15. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, Franz

    2015-03-27

    This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.

  16. Nonlinear modeling of wave-topography interactions, shear instabilities and shear induced wave breaking using vortex method

    NASA Astrophysics Data System (ADS)

    Guha, Anirban

    2017-11-01

    Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.

  17. Heavy-lifting of gauge theories by cosmic inflation

    NASA Astrophysics Data System (ADS)

    Kumar, Soubhik; Sundrum, Raman

    2018-05-01

    Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a "heavy-lifting" mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.

  18. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2013-12-01

    Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.

  19. A quantum description of linear, and non-linear optical interactions in arrays of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arabahmadi, Ehsan; Ahmadi, Zabihollah; Rashidian, Bizhan

    2018-06-01

    A quantum theory for describing the interaction of photons and plasmons, in one- and two-dimensional arrays is presented. Ohmic losses and inter-band transitions are not considered. We use macroscopic approach, and quantum field theory methods including S-matrix expansion, and Feynman diagrams for this purpose. Non-linear interactions are also studied, and increasing the probability of such interactions, and its application are also discussed.

  20. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  1. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  2. Studies of central interactions of Si ions at 14.5 x A GeV/c in Au and Cu

    NASA Astrophysics Data System (ADS)

    Eiseman, S. E.; Etkin, A.; Foley, K. J.; Hackenburg, R. W.; Longacre, R. S.; Love, W. A.; Morris, T. W.; Platner, E. D.; Saulys, A. C.; Lindenbaum, S. J.

    Understanding the growth and saturation of parametric instabilities in laser-produced plasmas requires knowledge of the nonlinear properties of the instabilities and their interaction with each other. Nonlinear behavior of parametric instabilities, which are usually associated with unique optical features, were evidenced in numerous experiments on a variety of laser facilities. Four examples of nonlinear behavior in laser-produced plasmas are discussed: nonlinear stimulated Brillouin scattering spectra, suppression of stimulated Raman scattering by stimulated Brillouin scattering, the parametric decay instability and the onset of turbulence, and the transition to bursting behavior of the two-plasmon decay instability. Experiments are discussed that demonstrate the nonlinear effects which occur as a consequence.

  3. Left-Right Non-Linear Dynamical Higgs

    NASA Astrophysics Data System (ADS)

    Jing, Shu; Juan, Yepes

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  4. Reactive flow model development for PBXW-126 using modern nonlinear optimization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.; Simpson, R.L.; Urtiew, P.A.

    1996-05-01

    The initiation and detonation behavior of PBXW-126 has been characterized and is described. PBXW-126 is a composite explosive consisting of approximately equal amounts of RDX, AP, AL, and NTO with a polyurethane binder. The three term ignition and growth of reaction model parameters (ignition+two growth terms) have been found using nonlinear optimization methods to determine the {open_quotes}best{close_quotes} set of model parameters. The ignition term treats the initiation of up to 0.5{percent} of the RDX. The first growth term in the model treats the RDX growth of reaction up to 20{percent} reacted. The second growth term treats the subsequent growth ofmore » reaction of the remaining AP/AL/NTO. The unreacted equation of state (EOS) was determined from the wave profiles of embedded gauge tests while the JWL product EOS was determined from cylinder expansion test results. The nonlinear optimization code, NLQPEB/GLO, was used to determine the {open_quotes}best{close_quotes} set of coefficients for the three term Lee-Tarver ignition and growth of reaction model. {copyright} {ital 1996 American Institute of Physics.}« less

  5. The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with q-nonextensive distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai

    2013-07-15

    We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less

  6. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  7. Phenomenology of left-right symmetric dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Cely, Camilo; Heeck, Julian, E-mail: Camilo.Alfredo.Garcia.Cely@ulb.ac.be, E-mail: Julian.Heeck@ulb.ac.be

    We present a detailed study of dark matter phenomenology in low-scale left-right symmetric models. Stability of new fermion or scalar multiplets is ensured by an accidental matter parity that survives the spontaneous symmetry breaking of the gauge group by scalar triplets. The relic abundance of these particles is set by gauge interactions and gives rise to dark matter candidates with masses above the electroweak scale. Dark matter annihilations are thus modified by the Sommerfeld effect, not only in the early Universe, but also today, for instance, in the Center of the Galaxy. Majorana candidates—triplet, quintuplet, bi-doublet, and bi-triplet—bring only onemore » new parameter to the model, their mass, and are hence highly testable at colliders and through astrophysical observations. Scalar candidates—doublet and 7-plet, the latter being only stable at the renormalizable level—have additional scalar-scalar interactions that give rise to rich phenomenology. The particles under discussion share many features with the well-known candidates wino, Higgsino, inert doublet scalar, sneutrino, and Minimal Dark Matter. In particular, they all predict a large gamma-ray flux from dark matter annihilations, which can be searched for with Cherenkov telescopes. We furthermore discuss models with unequal left-right gauge couplings, g{sub R} ≠ g{sub L}, taking the recent experimental hints for a charged gauge boson with 2 TeV mass as a benchmark point. In this case, the dark matter mass is determined by the observed relic density.« less

  8. Quantifying Precipitation Undercatch in a Semi-arid Watershed in Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Keefer, T.; Goodrich, D. C.; Heilman, P.; Smith, J. R.; Radford, C. D.; Kautz, M. A.

    2017-12-01

    The observed difference in precipitation measured at above ground level (AGL) and ground-surface (PIT) rain gauges is referred to as wind-induced undercatch (U). Quantification of U is important to accurately assess the water balance and eco-hydrologic response of watersheds and for the modeling of precipitation driven processes. U is a well-known phenomenon having been documented for over one hundred years. Neff (1977), among many others, provides historical perspective on the "Jevons" effect, the increase in U with increasing height of the rain gauge above the earth's surface. U is primarily an effect of wind on precipitation whereby wind and precipitation particles interact such that U increases with increasing wind velocity and increases with smaller and lighter particles, liquid and solid. In recent decades much research on U has been undertaken in field, laboratory, and numeric modeling studies in the U.S. and Europe (e.g. Sieck et al. 2007). Much variability of U is exhibited by years, seasons and storm events. The Walnut Gulch Experimental Watershed and Long Term Agro-ecosystem Research (LTAR) site located in southeastern Arizona has been measuring precipitation at a AGL and PIT rain gauge, wind profiles, and drop size distribution for the period 2010-2015. Our results show that the cumulative precipitation difference between AGL and PIT average 6% for the six year period, but vary from 1% to 12% annually and more so seasonally. Although winter (Nov 1 - Mar 31) has greater U expressed as percentage, more than 2/3 of the total U amount occurs in summer (Jun 15-Oct 15), in the same proportion as seasonal precipitation. Regression estimated event U is greater than daily and cumulative, but may be much greater for individual storm events. The undercatch amount is linearly related to storm event intensity, increasing with increasing intensity, but the U percentage is non-linearly related and increases with decreasing intensity. In agreement with previous studies, U percentage is greater for shorter intervals, greater in winter during non-convective events than summer convective events at low intensities, and greater for faster wind speeds. Similar results are found for U amount for winter events and for wind speeds, but U amount is greater for longer intervals.

  9. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE PAGES

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...

    2018-02-07

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  10. Higgs boson decays to neutralinos in low-scale gauge mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John D.; Poland, David; Morrissey, David E.

    2009-12-01

    We study the decays of a standard model-like minimal supersymmetric standard model Higgs boson to pairs of neutralinos, each of which subsequently decays promptly to a photon and a gravitino. Such decays can arise in supersymmetric scenarios where supersymmetry breaking is mediated to us by gauge interactions with a relatively light gauge messenger sector (M{sub mess} < or approx. 100 TeV). This process gives rise to a collider signal consisting of a pair of photons and missing energy. In the present work we investigate the bounds on this scenario within the minimal supersymmetric standard model from existing collider data. Wemore » also study the prospects for discovering the Higgs boson through this decay mode with upcoming data from the Tevatron and the LHC.« less

  11. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  12. Search for light gauge bosons of the dark sector at the Mainz Microtron.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Debenjak, L; Denig, A; Distler, M O; Esser, A; Fonvieille, H; Friščić, I; Middleton, D G; Müller, U; Nungesser, L; Pochodzalla, J; Rohrbeck, M; Sánchez Majos, S; Schlimme, B S; Schoth, M; Sirca, S; Weinriefer, M

    2011-06-24

    A new exclusion limit for the electromagnetic production of a light U(1) gauge boson γ' decaying to e + e- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e + e- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c2}

  13. Synthesis of 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3, 5-dioxohepta-1, 6-dienyl)-2-methoxyphenyl 4-fluorobenzoate, a novel monoester derivative of curcumin, its experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap

    2016-04-01

    Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.

  14. Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica; Williams, Ciaran

    2016-08-01

    We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework.

  15. Transfer of dipolar gas through the discrete localized mode.

    PubMed

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  16. Controlling modal interactions in lasers for frequency selection and power enhancement

    NASA Astrophysics Data System (ADS)

    Ge, Li

    2015-03-01

    The laser is an out-of-equilibrium non-linear wave system where the interplay of the cavity geometry and non-linear wave interactions determines the self-organized oscillation frequencies and the associated spatial field patterns. Using the correspondence between nonlinear and linear systems, we propose a simple and systematic method to achieve selective excitation of lasing modes that would have been dwarfed by more dominant ones. The key idea is incorporating the control of modal interaction into the spatial pump profile. Our proposal is most valuable in the regime of spatially and spectrally overlapping modes, which can lead to a significant enhancement of laser power as well.

  17. A Web Tool for Research in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.

    2016-02-01

    This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.

  18. Features of the Paired Soliton Interactions Within the Framework of the Gardner Equation

    NASA Astrophysics Data System (ADS)

    Shurgalina, E. G.

    2018-02-01

    We study the dynamics of the two-soliton interaction within the framework of a completely integrable model, namely, the Gardner equation with negative cubic nonlinearity, which admits the existence of a limiting soliton. The features of the soliton interaction with participation of a thick soliton are demonstrated. Special attention is paid to the nonlinear-interaction influence on the wave-field moments, which determine the skewness and the kurtosis in the theory of turbulence.

  19. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  20. Nonlinear Internal Wave Interaction in the China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.

    1998-01-01

    This project researched the nonlinear wave interactions in the East China Sea, and the South China Sea, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave interactions in the East China Sea, the area of the China Sea northeast of Taiwan, and the Yellow Sea is included.

  1. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  2. Using Low-Tech Interactions in the Chemistry Classroom to Engage Students in Active Learning

    ERIC Educational Resources Information Center

    Shaver, Michael P.

    2010-01-01

    Two complementary techniques to gauge student understanding and inspire interactive learning in the chemistry classroom are presented. Specifically, this article explores the use of student responses with their thumbs as an alternative to electronic-response systems and complementing these experiences with longer, task-based questions in an…

  3. An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning

    ERIC Educational Resources Information Center

    Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio

    2017-01-01

    Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…

  4. Role of magnetic and diamagnetic interactions in molecular optics and scattering

    NASA Astrophysics Data System (ADS)

    Forbes, Kayn A.

    2018-05-01

    This paper aims to explicitly clarify the role and interpretation of diamagnetic interactions between molecules and light in quantum electrodynamics. In contrast to their electric and magnetic counterparts, the diamagnetic couplings between light and matter have received relatively little interest in the field of molecular optics. This intriguing disregard of an interaction term is puzzling. The diamagnetic couplings possess unique physical properties that warrant their inclusion in any multiphoton process, and the lack of gauge invariance for paramagnetic and diamagnetic susceptibilities necessitates their inclusion. Their role and importance within nonrelativistic molecular quantum electrodynamics in the Coulomb gauge is illuminated, and it is highlighted how for any multiphoton process their inclusion should be implicit. As an indicative example of the theory presented, the diamagnetic contributions to both forward and nonforward Rayleigh scattering are derived and put into context alongside the electric and magnetic molecular responses. The work represents clarification of diamagnetic couplings in molecular quantum electrodynamics, which subsequently should proffer the study of diamagnetic interactions in molecular optics due to their unique physical attributes and necessary inclusion in multiphoton processes.

  5. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  6. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    NASA Astrophysics Data System (ADS)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  7. Growth or decay of cosmological inhomogeneities as a function of their equation of state

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Deruelle, Nathalie; Langlois, David; Parry, Joe

    1994-03-01

    We expand Einstein's equations in the synchronous gauge in terms of a purely space-dependent, ``seed,'' metric. The (nonlinear) solution accurately describes a universe inhomogeneous at scales larger than the Hubble radius. We show that the inhomogeneities grow or decay, as time increases, depending on the equation of state for the matter (supposed to be a perfect fluid). We then consider the case when matter is a scalar field with an arbitrary potential. Finally we discuss the generality of the model and show that it is an attractor for a class of generic solutions of Einstein's equations.

  8. Quantum gravity model with fundamental spinor fields

    NASA Astrophysics Data System (ADS)

    Obukhov, Yu. N.; Hehl, F. W.

    2014-01-01

    We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.

  9. Top quark decays with flavor violation in the B-LSSM

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Lei; Feng, Tai-Fu; Zhang, Hai-Bin; Ning, Guo-Zhu; Yang, Xiu-Yi

    2018-06-01

    The decays of top quark t→ cγ ,t→ cg,t→ cZ,t→ ch are extremely rare processes in the standard model (SM). The predictions on the corresponding branching ratios in the SM are too small to be detected in the future, hence any measurable signal for the processes at the LHC is a smoking gun for new physics. In the extension of minimal supersymmetric standard model with an additional local U(1)_B {-}L gauge symmetry (B-LSSM), new gauge interaction and new flavor changing interaction affect the theoretical evaluations on corresponding branching ratios of those processes. In this work, we analyze those processes in the B-LSSM, under a minimal flavor violating assumption for the soft breaking terms. Considering the constraints from updated experimental data, the numerical results imply Br(t→ cγ )˜ 5× 10^{-7}, Br(t→ cg)˜ 2× 10^{-6}, Br(t→ cZ)˜ 4× 10^{-7} and Br(t→ ch)˜ 3× 10^{-9} in our chosen parameter space. Simultaneously, new gauge coupling constants g_{_B},g_{_{YB}} in the B-LSSM can also affect the numerical results of Br(t→ cγ ,cg,cZ,ch).

  10. Rainbow valley of colored (anti) de Sitter gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong

    2016-04-01

    We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.

  11. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  12. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  13. Bright-dark and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations in a twin-core nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Chai, Han-Peng

    2017-11-01

    In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations, which can describe the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in a twin-core nonlinear optical fiber. Through the Kadomtsev-Petviashvili hierarchy reduction, we present the bright-dark and dark-dark soliton solutions in terms of the Grammian for such equations. With the help of analytic and graphic analysis, head-on and overtaking elastic interactions between the two solitons are presented, as well as the bound-state solitons. Particularly, we find the inelastic interaction between the bright-dark two solitons. One of the electromagnetic fields presents the V-shape profile, while the other one presents the Y-shape profile.

  14. Current interactions from the one-form sector of nonlinear higher-spin equations

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  15. Leaderless consensus for the fractional-order nonlinear multi-agent systems under directed interaction topology

    NASA Astrophysics Data System (ADS)

    Bai, Jing; Wen, Guoguang; Rahmani, Ahmed

    2018-04-01

    Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.

  16. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.

    2017-12-01

    Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.

  17. Threshold effect under nonlinear limitation of the intensity of high-power light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, S A; Podgaetskii, V M; Gerasimenko, A Yu

    2015-04-30

    A model is proposed to describe the properties of limiters of high-power laser radiation, which takes into account the threshold character of nonlinear interaction of radiation with the working medium of the limiter. The generally accepted non-threshold model is a particular case of the threshold model if the threshold radiation intensity is zero. Experimental z-scan data are used to determine the nonlinear optical characteristics of media with carbon nanotubes, polymethine and pyran dyes, zinc selenide, porphyrin-graphene and fullerene-graphene. A threshold effect of nonlinear interaction between laser radiation and some of investigated working media of limiters is revealed. It is shownmore » that the threshold model more adequately describes experimental z-scan data. (nonlinear optical phenomena)« less

  18. On the tidal interaction between protoplanets and the primordial solar nebula. II - Self-consistent nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Papaloizou, J.

    1986-01-01

    A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.

  19. Dark matter and weak signals of quantum spacetime

    NASA Astrophysics Data System (ADS)

    Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola

    2017-03-01

    In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.

  20. Observation of three-photon bound states in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan

    2018-02-01

    Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.

  1. Polarized deep inelastic scattering off the neutron from gauge/string duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100

    2010-05-01

    We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<

  2. Enhancement of laser power-efficiency by control of spatial hole burning interactions

    NASA Astrophysics Data System (ADS)

    Ge, Li; Malik, Omer; Türeci, Hakan E.

    2014-11-01

    The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.

  3. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.

    2018-02-01

    Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.

  4. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  5. Dynamical symmetry enhancement near N = 2, D = 4 gauged supergravity horizons

    NASA Astrophysics Data System (ADS)

    Gutowski, J.; Mohaupt, T.; Papadopoulos, G.

    2017-03-01

    We show that all smooth Killing horizons with compact horizon sections of 4-dimensional gauged N = 2 supergravity coupled to any number of vector multiplets preserve 2{c}_1(K)+4ℓ supersymmetries, where K is a pull-back of the Hodge bundle of the special Kähler manifold on the horizon spatial section. We also demonstrate that all such horizons with {c}_1(K)=0 exhibit an sl(2,R) symmetry and preserve either 4 or 8 supersymmetries. If the orbits of the sl(2,R) symmetry are 2-dimensional, the horizons are warped products of AdS2 with the horizon spatial section. Otherwise, the horizon section admits an isometry which preserves all the fields. The proof of these results is centered on the use of index theorem in conjunction with an appropriate generalization of the Lichnerowicz theorem for horizons that preserve at least one supersymmetry. In all {c}_1(K)=0 cases, we specify the local geometry of spatial horizon sections and demonstrate that the solutions are determined by first order non-linear ordinary differential equations on some of the fields.

  6. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Mangano, Gianpiero; Mirizzi, Alessandro; Natoli, Paolo; Saviano, Ninetta

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with MX ll MW), and characterized by a gauge coupling gX, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) ms < 0.82 eV or ms < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength GX to be < 2.8 (2.0) × 1010 GF from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with MX ~ 0.1 MeV and relatively large coupling gX~ 10-1, previously indicated as a possible solution to the small scale dark matter problem.

  7. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Dinges, David F.

    2003-01-01

    The two-process model of sleep regulation has been applied successfully to describe, predict, and understand sleep-wake regulation in a variety of experimental protocols such as sleep deprivation and forced desynchrony. A non-linear interaction between the homeostatic and circadian processes was reported when the model was applied to describe alertness and performance data obtained during forced desynchrony. This non-linear interaction could also be due to intrinsic non-linearity in the metrics used to measure alertness and performance, however. Distinguishing these possibilities would be of theoretical interest, but could also have important implications for the design and interpretation of experiments placing sleep at different circadian phases or varying the duration of sleep and/or wakefulness. Although to date no resolution to this controversy has been found, here we show that the issue can be addressed with existing data sets. The interaction between the homeostatic and circadian processes of sleep-wake regulation was investigated using neurobehavioural performance data from a laboratory experiment involving total sleep deprivation. The results provided evidence of an actual non-linear interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.

  8. Numerical investigation of nonlinear fluid-structure interaction dynamic behaviors under a general Immersed Boundary-Lattice Boltzmann-Finite Element method

    NASA Astrophysics Data System (ADS)

    Gong, Chun-Lin; Fang, Zhe; Chen, Gang

    A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.

  9. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105 (2013). [2] A.I. Dyachenko, V.E. Zakharov, On the formation of freak waves on the surface of deep water. JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676 (2009).

  10. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  11. Nonlinear interactions and their scaling in the logarithmic region of turbulent channels

    NASA Astrophysics Data System (ADS)

    Moarref, Rashad; Sharma, Ati S.; Tropp, Joel A.; McKeon, Beverley J.

    2014-11-01

    The nonlinear interactions in wall turbulence redistribute the turbulent kinetic energy across different scales and different wall-normal locations. To better understand these interactions in the logarithmic region of turbulent channels, we decompose the velocity into a weighted sum of resolvent modes (McKeon & Sharma, J. Fluid Mech., 2010). The resolvent modes represent the linear amplification mechanisms in the Navier-Stokes equations (NSE) and the weights represent the scaling influence of the nonlinearity. An explicit equation for the unknown weights is obtained by projecting the NSE onto the known resolvent modes (McKeon et al., Phys. Fluids, 2013). The weights of triad modes -the modes that directly interact via the quadratic nonlinearity in the NSE- are coupled via interaction coefficients that depend solely on the resolvent modes. We use the hierarchies of self-similar modes in the logarithmic region (Moarref et al., J. Fluid Mech., 2013) to extend the notion of triad modes to triad hierarchies. It is shown that the interaction coefficients for the triad modes that belong to a triad hierarchy follow an exponential function. These scalings can be used to better understand the interaction of flow structures in the logarithmic region and develop analytical results therein. The support of Air Force Office of Scientific Research under Grants FA 9550-09-1-0701 (P.M. Rengasamy Ponnappan) and FA 9550-12-1-0469 (P.M. Doug Smith) is gratefully acknowledged.

  12. Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC

    DOE PAGES

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing

    2015-12-07

    Here, we present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3σ significance withmore » a 3000 fb -1 run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider.« less

  13. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  14. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  15. Electromagnetic-continuum-induced nonlinearity

    NASA Astrophysics Data System (ADS)

    Matsko, Andrey B.; Vyatchanin, Sergey P.

    2018-05-01

    A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.

  16. Strongly interacting photons in asymmetric quantum well via resonant tunneling.

    PubMed

    Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H

    2012-04-09

    We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

  17. Hidden symmetry and nonlinear paraxial atom optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impens, Francois

    2009-12-15

    A hidden symmetry of the nonlinear wave equation is exploited to analyze the propagation of paraxial and uniform atom-laser beams in time-independent and quadratic transverse potentials with cylindrical symmetry. The quality factor and the paraxial ABCD formalism are generalized to account exactly for mean-field interaction effects in such beams. Using an approach based on moments, these theoretical tools provide a simple yet exact picture of the interacting beam profile evolution. Guided atom laser experiments are discussed. This treatment addresses simultaneously optical and atomic beams in a unified manner, exploiting the formal analogy between nonlinear optics, nonlinear paraxial atom optics, andmore » the physics of two-dimensional Bose-Einstein condensates.« less

  18. Lattice Gauge Theories Within and Beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelzer, Zechariah John

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \

  19. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  20. Geometric interpretation of four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ott, J. R.; Steffensen, H.; Rottwitt, K.; McKinstrie, C. J.

    2013-10-01

    The nonlinear phenomenon of four-wave mixing (FWM) is investigated using a method, where, without the need of calculus, both phase and amplitudes of the mixing fields are visualized simultaneously, giving a complete overview of the FWM dynamics. This is done by introducing a set of Stokes-like coordinates of the electric fields, which reduce the FWM dynamics to a closed two-dimensional surface, similar to the Bloch sphere of quantum electrodynamics or the Pointcaré sphere in polarization dynamics. The coordinates are chosen so as to use the gauge invariance symmetries of the FWM equations which also give the conservation of action flux known as the Manley-Rowe relations. This reduces the dynamics of FWM to the one-dimensional intersection between the closed two-dimensional surface and the phase-plane given by the conserved Hamiltonian. The analysis is advantageous for visualizing phase-dependent FWM phenomena which are found in a large variety of nonlinear systems and even in various optical communication schemes.

  1. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  2. Predicting radiotherapy outcomes using statistical learning techniques

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Bradley, Jeffrey D.; Lindsay, Patricia E.; Hope, Andrew J.; Deasy, Joseph O.

    2009-09-01

    Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model variables. These models have the capacity to predict on unseen data. Part of this work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.

  3. Nonlinear Decay of Alfvén Waves Driven by Interplaying Two- and Three-dimensional Nonlinear Interactions

    NASA Astrophysics Data System (ADS)

    Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.

    2018-04-01

    We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.

  4. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  5. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    PubMed

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.

    2007-11-01

    From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.

  7. The influence of surface roughness on the contact stiffness and the contact filter effect in nonlinear wheel-track interaction

    NASA Astrophysics Data System (ADS)

    Lundberg, Oskar E.; Nordborg, Anders; Lopez Arteaga, Ines

    2016-03-01

    A state-dependent contact model including nonlinear contact stiffness and nonlinear contact filtering is used to calculate contact forces and rail vibrations with a time-domain wheel-track interaction model. In the proposed method, the full three-dimensional contact geometry is reduced to a point contact in order to lower the computational cost and to reduce the amount of required input roughness-data. Green's functions including the linear dynamics of the wheel and the track are coupled with a point contact model, leading to a numerically efficient model for the wheel-track interaction. Nonlinear effects due to the shape and roughness of the wheel and the rail surfaces are included in the point contact model by pre-calculation of functions for the contact stiffness and contact filters. Numerical results are compared to field measurements of rail vibrations for passenger trains running at 200 kph on a ballast track. Moreover, the influence of vehicle pre-load and different degrees of roughness excitation on the resulting wheel-track interaction is studied by means of numerical predictions.

  8. Fierz bilinear formulation of the Maxwell-Dirac equations and symmetry reductions

    NASA Astrophysics Data System (ADS)

    Inglis, Shaun; Jarvis, Peter

    2014-09-01

    We study the Maxwell-Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell-Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell-Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form.

  9. Study and Analyses on the Structural Performance of a Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.; Hope, D. J.

    2004-01-01

    Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.

  10. Explicit blow-up solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Qing

    2009-10-15

    In this article, we prove that the equation of the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} is SU(1,1)-gauge equivalent to the following 1+2 dimensional nonlinear Schroedinger-type system of three unknown complex functions p, q, r, and a real function u: iq{sub t}+q{sub zz}-2uq+2(pq){sub z}-2pq{sub z}-4|p|{sup 2}q=0, ir{sub t}-r{sub zz}+2ur+2(pr){sub z}-2pr{sub z}+4|p|{sup 2}r=0, ip{sub t}+(qr){sub z}-u{sub z}=0, p{sub z}+p{sub z}=-|q|{sup 2}+|r|{sup 2}, -r{sub z}+q{sub z}=-2(pr+pq), where z is a complex coordinate of the plane R{sup 2} and z is the complex conjugate of z. Although this nonlinear Schroedinger-type system looks complicated, it admits a class ofmore » explicit blow-up smooth solutions: p=0, q=(e{sup i(bzz/2(a+bt))}/a+bt){alpha}z, r=e{sup -i(bzz/2(a+bt))}/(a+bt){alpha}z, u=2{alpha}{sup 2}zz/(a+bt){sup 2}, where a and b are real numbers with ab<0 and {alpha} satisfies {alpha}{sup 2}=b{sup 2}/16. From these facts, we explicitly construct smooth solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} by using the gauge transformations such that the absolute values of their gradients blow up in finite time. This reveals some blow-up phenomenon of Schroedinger maps.« less

  11. Physics Division annual report, 1 January-31 December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-10-01

    A brief overview of each of the several areas of research is given with a list of resulting publications. Areas of research include electron-positron annihilation, neutrino interactions, neutrinoless double beta decay of /sup 100/Mo, double beta decay of /sup 76/Ge, antiproton-proton interactions, right-handed gauge boson effects, muon decay asymmetry parameter measurements, supernovae detection, Nemesis search, and detector development. Areas of theoretical research include electroweak interactions, strong interactions, nonperturbative dynamics, supersymmetry, and cosmology and particle physics. 34 figs. (WRF)

  12. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liu

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novelmore » findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.« less

  13. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  14. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PILAT,F.; CAMERON,P.; PTITSYN,V.

    2002-06-02

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less

  15. A Nonlinear Interactions Approximation Model for Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Haliloglu, Mehmet U.; Akhavan, Rayhaneh

    2003-11-01

    A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aimsmore » we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or astrophysically inferred photon mass, are far beyond its upper bound, positively testing the viability of our tachyonic braneworld. Moreover, the 5D parameters that define these corrections possess the same order, providing naturalness to our model, however, a fine-tuning between them is needed in order to fit the corresponding upper bound on the photon mass.« less

  17. The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flows

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1987-01-01

    It is known that a viscous fluid flow with curved streamlines can support both Tollmien-Schlichting and Taylor-Goertler instabilities. In a situation where both modes are possible on the basis of linear theory a nonlinear theory must be used to determine the effect of the interaction of the instabilities. The details of this interaction are of practical importance because of its possible catastrophic effects on mechanisms used for laminar flow control. This interaction is studied in the context of fully developed flows in curved channels. A part form technical differences associated with boundary layer growth the structures of the instabilities in this flow are very similar to those in the practically more important external boundary layer situation. The interaction is shown to have two distinct phases depending on the size of the disturbances. At very low amplitudes two oblique Tollmein-Schlichting waves interact with a Goertler vortex in such a manner that the amplitudes become infinite at a finite time. This type of interaction is described by ordinary differential amplitude equations with quadratic nonlinearities.

  18. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  19. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond.

    PubMed

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-26

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  20. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    PubMed Central

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  1. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  2. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  3. Concepts on tracking the impact of tropical cyclones through the coastal zone

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Hannon, M. T.; Kettner, A. J.; Bachman, S.

    2009-12-01

    WAVEWATCH III™ (Tolman, 2009) models the evolution of wind wave spectra under influence of wind, breaking, nonlinear interactions, bottom interaction (including shoaling and refraction), currents, water level changes and ice concentrations. The NOAA/NCEP data system offers global estimates every 3 hr at 1° x 1.25° for wind speed and direction at 10m asl, wave direction, height, and period. These and other derived parameters are useful in characterizing wave conditions as tropical cyclones approach landfall. The Tropical Rainfall Measuring Mission or TRMM based precipitation estimates a global 0.25° x 0.25° grid between 50° N-S produced within ≈7 hours of observation time. Estimates are derived from the Passive Microwave Radiometer, Precipitation Radar, and Visible-Infrared Scanner), plus data from: i) SSM/I ii) low-orbit GOES IR and TIROS Operational Vertical Sounder, iii) AMSR-E, iv) AMSU-B, and v) rain gauge data run through algorithm 3B-43. Data are served by the Goddard Distributed Active Archive Center. Evapotranspiration estimates are from the MODIS ET (MOD16) algorithm developed by Mu et al. (2007), based on the Penman-Monteith equation, modified with satellite information that uses: (1) vapor pressure deficit and minimum air temperature constraints on stomatal conductance; (2) leaf area index as a scalar for estimating canopy conductance; (3) the Enhanced Vegetation Index; and (4) a calculation of soil evaporation. TopoFlow is a spatially distributed hydrologic model able to ingest the TRMM and EV data through a suite of hydrologic processes (e.g. snowmelt, precipitation, evapotranspiration, infiltration, channel and overland flow, shallow subsurface flow, and flow diversions) to evolve in time in response to climatic forcings. Modeled or gauged discharge can then be coupled to sediment flux models to provide factor of 2 estimates of sediment flux (Syvitski et al. 2007, Kettner et al. 2008, Syvitski and Milliman 2007). The MODIS satellite constellation can track storm fronts and tropical cyclones and sense sediment discharged, resuspension of shoreline sediment, and be used to observe the dimensions and dynamics of delta flooding and delta-plain aggradation (Syvitski et al. 2009). An integrated workflow involving these models and data system will be presented outlining their use in characterizing sediment flux within the coastal zone.

  4. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  5. Using Recursive Regression to Explore Nonlinear Relationships and Interactions: A Tutorial Applied to a Multicultural Education Study

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2009-01-01

    This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…

  6. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  7. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  8. Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo

    2011-03-15

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, wemore » derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.« less

  9. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).

  10. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  11. Search for Muonic Dark Forces at BABAR

    NASA Astrophysics Data System (ADS)

    Godang, Romulus

    2017-04-01

    Many models of physics beyond Standard Model predict the existence of light Higgs states, dark photons, and new gauge bosons mediating interactions between dark sectors and the Standard Model. Using a full data sample collected with the BABAR detector at the PEP-II e+e- collider, we report searches for a light non-Standard Model Higgs boson, dark photon, and a new muonic dark force mediated by a gauge boson (Z') coupling only to the second and third lepton families. Our results significantly improve upon the current bounds and further constrain the remaining region of the allowed parameter space.

  12. Chiral gravitational waves and baryon superfluid dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  13. Minimal non-abelian supersymmetric Twin Higgs

    DOE PAGES

    Badziak, Marcin; Harigaya, Keisuke

    2017-10-17

    We propose a minimal supersymmetric Twin Higgs model that can accommodate tuning of the electroweak scale for heavy stops better than 10% with high mediation scales of supersymmetry breaking. A crucial ingredient of this model is a new SU(2) X gauge symmetry which provides a D-term potential that generates a large SU(4) invariant coupling for the Higgs sector and only small set of particles charged under SU(2) X , which allows the model to be perturbative around the Planck scale. The new gauge interaction drives the top yukawa coupling small at higher energy scales, which also reduces the tuning.

  14. Nonlinear evolution of Mack modes in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Chokani, Ndaona

    2005-01-01

    In hypersonic boundary layer flows the nonlinear disturbance evolution occurs relatively slowly over a very long length scale and has a profound effect on boundary layer transition. In the case of low-level freestream disturbances and negligible surface roughness, the transition is due to the modal growth of exponentially growing Mack modes that are destabilized by wall cooling. Cross-bicoherence measurements, derived from hot-wire data acquired in a quiet hypersonic tunnel, are used to identify and quantify phase-locked, quadratic sum and difference interactions involving the Mack modes. In the early stages of the nonlinear disturbance evolution, cross-bicoherence measurements indicate that the energy exchange between the Mack mode and the mean flow first occurs to broaden the sidebands; this is immediately followed by a sum interaction of the Mack mode to generate the first harmonic. In the next stages of the nonlinear disturbance evolution, there is a difference interaction of the first harmonic, which is also thought to contribute to the mean flow distortion. This difference interaction, in the latter stages, is also accompanied by a difference interaction between Mack mode and first harmonic, and a sum interaction, which forces the second harmonic. Analysis using the digital complex demodulation technique, shows that the low-frequency, phase-locked interaction that is identified in the cross bicoherence when the Mack mode and first harmonic have large amplitudes, arises due to the amplitude modulation of Mack mode and first harmonic.

  15. Multiboson interactions at the LHC

    DOE PAGES

    Green, D. R.; Meade, P.; Pleier, M. -A.

    2017-09-20

    This paper covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center of mass energy of 7 and 8 TeV. The data were taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which have both reported limits on aTGCs and aQGCs which aremore » herein summarized. Finally, the interpretation of these limits in terms of an effective field theory is reviewed, and recommendations are made for testing other types of new physics using multigauge boson production.« less

  16. Flavored gauge mediation with discrete non-Abelian symmetries

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in SU(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadronmore » spectrum, including dynamical chiral symmetry breaking. In conclusion, the hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly-interacting constituent quarks.« less

  18. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  19. Leptophilic dark matter in gauged U(1)_{L{_e}-L_{μ }} model in light of DAMPE cosmic ray {e{^+}} + {e{^-}} excess

    NASA Astrophysics Data System (ADS)

    Duan, Guang Hua; He, Xiao-Gang; Wu, Lei; Yang, Jin Min

    2018-04-01

    Motivated by the very recent cosmic-ray electron+positron excess observed by DAMPE collaboration, we investigate a Dirac fermion dark matter (DM) in the gauged {{L_e} - {L_μ }} model. DM interacts with the electron and muon via the U(1)_{e-μ } gauge boson Z^' . The model can explain the DAMPE data well. Although a non-zero DM-nucleon cross section is only generated at one loop level and there is a partial cancellation between Z^' }ee and Z^' }μ μ couplings, we find that a large portion of Z' mass is ruled out from direct DM detection limit leaving the allowed Z^' } mass to be close to two times of the DM mass. Implications for pp → Z^' } → 2ℓ and pp → 2ℓ + Z^' }, and muon g-2 anomaly are also studied.

  20. Centre vortex removal restores chiral symmetry

    NASA Astrophysics Data System (ADS)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-12-01

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  1. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2017-12-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  2. Local gauge symmetry on optical lattices?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuzhi; Meurice, Yannick; Tsai, Shan-Wen

    2012-11-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model andmore » SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.« less

  3. Centre vortex removal restores chiral symmetry

    DOE PAGES

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-11-15

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in SU(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadronmore » spectrum, including dynamical chiral symmetry breaking. In conclusion, the hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly-interacting constituent quarks.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wackerbarth, David

    Sandia National Laboratories has developed a computer program to review, reduce and manipulate waveform data. PlotData is designed for post-acquisition waveform data analysis. PlotData is both a post-acquisition and an advanced interactive data analysis environment. PlotData requires unidirectional waveform data with both uniform and discrete time-series measurements. PlotData operates on a National Instruments' LabVIEW™ software platform. Using PlotData, the user can capture waveform data from digitizing oscilloscopes over a GPIB, USB and Ethernet interface from Tektronix, Lecroy or Agilent scopes. PlotData can both import and export several types of binary waveform files including, but not limited to, Tektronix .wmf files,more » Lecroy.trc files and xy pair ASCIIfiles. Waveform manipulation includes numerous math functions, integration, differentiation, smoothing, truncation, and other specialized data reduction routines such as VISAR, POV, PVDF (Bauer) piezoelectric gauges, and piezoresistive gauges such as carbon manganin pressure gauges.« less

  5. Falsifying leptogenesis for a TeV scale WR± at the LHC

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Hati, Chandan; Rangarajan, Raghavan; Sarkar, Utpal

    2015-08-01

    We point out that the discovery of a right-handed charged gauge boson WR± with mass of around a few TeV, for example through a signal of two leptons and two jets that has been reported by CMS to have a 2.8 σ local excess or through a signal of a resonance decaying into a pair of standard model (SM) gauge bosons showing a local excess of 3.4 σ (2.5 σ global) reported by ATLAS search, will rule out all possibilities of leptogenesis in all classes of the left-right symmetric extensions of the Standard Model (LRSM) with both triplet and doublet Higgs scalars due to the unavoidable fast gauge mediated B -L violating interactions eR±WR∓→eR∓WR± . Our conclusions are very general in the sense that they do not necessarily demand for a lepton number violating detection signal of WR± .

  6. Anisotropic Bispectrum of Curvature Perturbations from Primordial Non-Abelian Vector Fields

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2009-10-01

    We consider a primordial SU(2) vector multiplet during inflation in models where quantum fluctuations of vector fields are involved in producing the curvature perturbation. Recently, a lot of attention has been paid to models populated by vector fields, given the interesting possibility of generating some level of statistical anisotropy in the cosmological perturbations. The scenario we propose is strongly motivated by the fact that, for non-Abelian gauge fields, self-interactions are responsible for generating extra terms in the cosmological correlation functions, which are naturally absent in the Abelian case. We compute these extra contributions to the bispectrum of the curvature perturbation, using the δN formula and the Schwinger-Keldysh formalism. The primordial violation of rotational invariance (due to the introduction of the SU(2) gauge multiplet) leaves its imprint on the correlation functions introducing, as expected, some degree of statistical anisotropy in our results. We calculate the non-Gaussianity parameter fNL, proving that the new contributions derived from gauge bosons self-interactions can be important, and in some cases the dominat ones. We study the shape of the bispectrum and we find that it turns out to peak in the local configuration, with an amplitude that is modulated by the preferred directions that break statistical isotropy.

  7. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  8. Numerical investigation of nonlinear interactions between multimodal guided waves and delamination in composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng

    2017-04-01

    This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.

  9. Cases Study of Nonlinear Interaction Between Near-Inertial Waves Induced by Typhoon and Diurnal Tides Near the Xisha Islands

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan

    2018-04-01

    Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.

  10. Many-body effects in nonlinear optical responses of 2D layered semiconductors

    DOE PAGES

    Aivazian, Grant; Yu, Hongyi; Wu, Sanfeng; ...

    2017-01-05

    We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility ts well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, themore » exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.« less

  11. Many-body effects in nonlinear optical responses of 2D layered semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aivazian, Grant; Yu, Hongyi; Wu, Sanfeng

    We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility ts well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, themore » exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.« less

  12. Departures from the Friedmann-Lemaitre-Robertston-Walker Cosmological Model in an Inhomogeneous Universe: A Numerical Examination.

    PubMed

    Giblin, John T; Mertens, James B; Starkman, Glenn D

    2016-06-24

    While the use of numerical general relativity for modeling astrophysical phenomena and compact objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura formalism of numerical relativity in synchronous gauge. This work represents the first numerical cosmological study that is fully relativistic, nonlinear, and without symmetry. The universe that emerges exhibits an average Friedmann-Lemaître-Robertson-Walker (FLRW) behavior; however, this universe also exhibits locally inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background.

  13. Towards Lagrangian formulations of mixed-symmetry higher spin fields on AdS-space within BFV-BRST formalism

    NASA Astrophysics Data System (ADS)

    Reshetnyak, A. A.

    2010-11-01

    The spectrum of superstring theory on the AdS 5 × S 5 Ramond-Ramond background in tensionless limit contains integer and half-integer higher-spin fields subject at most to two-rows Young tableaux Y( s 1, s 2). We review the details of a gauge-invariant Lagrangian description of such massive and massless higher-spin fields in anti-de-Sitter spaces with arbitrary dimensions. The procedure is based on the construction of Verma modules, its oscillator realizations and of a BFV-BRST operator for non-linear algebras encoding unitary irreducible representations of AdS group.

  14. Lagrangian Form of the Self-Dual Equations for SU(N) Gauge Fields on Four-Dimensional Euclidean Space

    NASA Astrophysics Data System (ADS)

    Hou, Boyu; Song, Xingchang

    1998-04-01

    By compactifying the four-dimensional Euclidean space into S2 × S2 manifold and introducing two topological relevant Wess-Zumino terms to Hn ≡ SL(n,c)/SU(n) nonlinear sigma model, we construct a Lagrangian form for SU(n) self-dual Yang-Mills field, from which the self-dual equations follow as the Euler-Lagrange equations. The project supported in part by the NSF Contract No. PHY-81-09110-A-01. One of the authors (X.C. SONG) was supported by a Fung King-Hey Fellowship through the Committee for Educational Exchange with China

  15. Light chiral dark sector

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Nomura, Yasunori

    2016-08-01

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U (1 ) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, S U (N ) , and a U (1 ) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g -2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e+e- collision into a photon and a "dark rho meson." Observation of two processes in e+e- collision—the mode into the dark photon and that into the dark rho meson—would provide strong evidence for the model.

  16. Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field

    NASA Astrophysics Data System (ADS)

    Kochurin, E. A.; Zubarev, N. M.

    2018-01-01

    Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.

  17. Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow

    NASA Astrophysics Data System (ADS)

    Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas

    2017-11-01

    While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.

  18. Mastodon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Veeraraghavan, Swetha; Bolisetti, Chandrakanth

    MASTODON has the capability to model stochastic nonlinear soil-structure interaction (NLSSI) in a dynamic probabilistic risk assessment framework. The NLSSI simulations include structural dynamics, time integration, dynamic porous media flow, nonlinear hysteretic soil constitutive models, geometric nonlinearities (gapping, sliding, and uplift). MASTODON is also the MOOSE based master application for dynamic PRA of external hazards.

  19. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  20. Flavor gauge models below the Fermi scale

    DOE PAGES

    Babu, K. S.; Friedland, A.; Machado, P. A. N.; ...

    2017-12-18

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less

  1. Flavor gauge models below the Fermi scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, K. S.; Friedland, A.; Machado, P. A. N.

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less

  2. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  3. Quantum Chromodynamics and Color Confinement (confinement 2000) - Proceedings of the International Symposium

    NASA Astrophysics Data System (ADS)

    Suganuma, H.; Fukushima, M.; Toki, H.

    The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants

  4. Route to thermalization in the α-Fermi–Pasta–Ulam system

    PubMed Central

    Onorato, Miguel; Vozella, Lara; Lvov, Yuri V.

    2015-01-01

    We study the original α-Fermi–Pasta–Ulam (FPU) system with N = 16, 32, and 64 masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave–wave interaction theory; i.e., we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the α-FPU equation of motion, we find that the first nontrivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that, for small-amplitude random waves, the timescale of such interactions is extremely large and it is of the order of 1/ϵ8, where ϵ is the small parameter in the system. The wave–wave interaction theory is not based on any threshold: Equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the Umklapp (flip-over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed. PMID:25805822

  5. Fierz bilinear formulation of the Maxwell–Dirac equations and symmetry reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, Shaun, E-mail: sminglis@utas.edu.au; Jarvis, Peter, E-mail: Peter.Jarvis@utas.edu.au

    We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We showmore » how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form. - Highlights: • Maxwell–Dirac equations derived in manifestly gauge invariant tensor form. • Invariant scalar and four vector fields for four Poincaré subgroups derived, including two unusual cases. • Symmetry reduction imposed on Maxwell–Dirac equations under example subgroups. • Magnetic monopole arises for spherically symmetric case, consistent with charge quantization condition.« less

  6. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  7. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  8. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  9. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  10. Solitonic and chaotic behaviors of a (3+1)-dimensional nonlinear Schrödinger equation in a magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Chai, Jun

    2015-05-01

    In a magnetized e-p-i plasma with two-electron temperatures, the (3+1)-dimensional nonlinear Schrödinger equation for the ion-acoustic envelope solitons is hereby investigated. Bright and dark soliton solutions are both obtained. It is found that the soliton amplitude is inversely related to P, Q and R, with P, Q and R respectively as the coefficients of the dispersive term, nonlinear term and combined effect of the transverse perturbation and magnetic field. Head-on interactions are displayed, and with Q and R decreasing, can be transferred into the overtaking ones. Bright bound-state solitons are obtained, and the interaction period decreases with Q increasing. Both the head-on and overtaking interactions between the two dark solitons are displayed, and such a head-on interaction can be transformed into the overtaking one with R increasing. Upon the introduction of the external perturbation, the developed and weak chaos are observed. Phase projections and power spectra are presented. Difference between the two chaotic motions roots in the inequality between the nonlinear and perturbed terms. Developed chaos can be weakened with Q decreasing, or with the frequency of external perturbation increasing.

  11. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  12. Non-linear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.

  13. Response of jammed packings to thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Wu, Qikai; Bertrand, Thibault; Shattuck, Mark D.; O'Hern, Corey S.

    2017-12-01

    We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. In contrast, numerous prior studies characterized the structural and mechanical properties of MS packings of frictionless spherical particles at zero temperature. Packings of disks with purely repulsive contact interactions possess two main types of nonlinearities, one from the form of the interaction potential (e.g., either linear or Hertzian spring interactions) and one from the breaking (or forming) of interparticle contacts. To identify the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated the minimum temperatures Tc b required to break a single contact in the MS packing for both single- and multiple-eigenmode perturbations of the T =0 MS packing. We find that the temperature required to break a single contact for equal velocity-amplitude perturbations involving all eigenmodes approaches the minimum value obtained for a perturbation in the direction connecting disk pairs with the smallest overlap. We then studied deviations in the constant volume specific heat C¯V and deviations of the average disk positions Δ r from their T =0 values in the temperature regime TC ¯V100 for linear spring interactions is independent of system size. This result emphasizes that contact-breaking nonlinearities are dominant over form nonlinearities in the low-temperature range Tc b

  14. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.

  15. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  16. Pair production processes and flavor in gauge-invariant perturbation theory

    NASA Astrophysics Data System (ADS)

    Egger, Larissa; Maas, Axel; Sondenheimer, René

    2017-12-01

    Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.

  17. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  18. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of terahertz radiation upon filtration of a supercontinuum produced during the propagation of a femtosecond laser pulse in a GaAs crystal

    NASA Astrophysics Data System (ADS)

    Vardanyan, Aleksandr O.; Oganesyan, David L.

    2008-11-01

    The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.

  20. Modeling of Nonlinear Optical Response in Gaseous Media and Its Comparison with Experiment

    NASA Astrophysics Data System (ADS)

    Xia, Yi

    This thesis demonstrates the model and application of nonlinear optical response with Metastable Electronic State Approach (MESA) in ultrashort laser propagation and verifies accuracy of MESA through extensive comparison with experimental data. The MESA is developed from quantum mechanics to describe the nonlinear off-resonant optical response together with strong-field ionization in gaseous medium. The conventional light-matter interaction models are based on a piece-wise approach where Kerr effect and multi-photon ionization are treated as independent nonlinear responses. In contrast, MESA is self-consistent as the response from freed electrons and bound electrons are microscopically linked. It also can be easily coupled to the Unidirectional Pulse Propagation Equations (UPPE) for large scale simulation of experiments. This work tests the implementation of MESA model in simulation of nonlinear phase transients of ultrashort pulse propagation in a gaseous medium. The phase transient has been measured through Single-Shot Supercontinuum Spectral Interferometry. This technique can achieve high temporal resolution (10 fs) and spatial resolution (5 mum). Our comparison between simulation and experiment gives a quantitive test of MESA model including post-adiabatic corrections. This is the first time such a comparison was achieved for a theory suitable for large scale numerical simulation of modern nonlinear-optics experiments. In more than one respect, ours is a first-of-a-kind achievement. In particular, • Large amount of data are compared. We compare the data of nonlinear response induced by different pump intensity in Ar and Nitrogen. The data sets are three dimensions including two transverse spacial dimensions and one axial temporal dimension which reflect the whole structure of nonlinear response including the interplay between Kerr and plasma-induced effects. The resolutions of spatial and temporal dimension are about a few micrometer and several femtosecond. • The regime of light-matter interaction investigated here is between the strong and perturbative, where the pulse intensity can induce nonlinear refractive index change and partial ionization of dielectric medium. Obviously, such regimes are difficult to study both experimentally and theoretically. • MESA is a quantum based model, but it retains the same computation complexity as conventional light-matter interaction model. MESA contains the response from both bound and continuum states in a single self-consistent "Package". So, it is fair to say that this experiment-theory comparison sets a new standard for nonlinear light-matter interaction models and their verification in the area of extreme nonlinear optics.

Top