Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.
2006-10-01
The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).
Nonlinear gyrokinetic equations
Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.
1983-03-01
Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.
Nonlinear gyrokinetic equations for tokamak microturbulence
Hahm, T.S.
1988-05-01
A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.
Gyrokinetic particle simulation model
Lee, W.W.
1986-07-01
A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.
Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.
2009-07-15
In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.
Electromagnetic nonlinear gyrokinetics with polarization drift
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Partially linearized algorithms in gyrokinetic particle simulation
Dimits, A.M.; Lee, W.W.
1990-10-01
In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas.
Nonlinear canonical gyrokinetic Vlasov equation and computation of the gyrocenter motion in tokamaks
Xu Yingfeng; Wang Shaojie
2013-01-15
The nonlinear canonical gyrokinetic Vlasov equation is obtained from the nonlinear noncanonical gyrokinetic theory using the property of the coordinate transform. In the linear approximation, it exactly recovers the previous linear canonical gyrokinetic equations derived by the Lie-transform perturbation method. The computation of the test particle gyrocenter motion in tokamaks with a large magnetic perturbation is presented and discussed. The numerical results indicate that the second-order gyrocenter Hamiltonian is important for the gyrocenter motion of the trapped electron in tokamaks with a large magnetic perturbation.
Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas
Artun, M.; Tang, W.M.
1994-03-01
The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.
Gyrokinetic particle simulation of ion temperature gradient drift instabilities
Lee, W.W.; Tang, W.M.
1987-04-01
Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle simulation techniques for the purpose of identifying the mechanisms responsible for their nonlinear saturation as well as the associated anomalous transport. For simplicity, the simulation has been carried out in a shear-free slab geometry, where the background pressure gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It is found that the nonlinearly generated zero-frequency responses for the ion parallel momentum and pressure are the dominant mechanisms giving rise to saturation. This is supported by the excellent agreement between the simulation results and those obtained from mode coupling calculations.
Gyro-water-bag approach in nonlinear gyrokinetic turbulence
Besse, Nicolas Bertrand, Pierre
2009-06-20
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (MHD, gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge computer resource request. An unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically-confined plasmas. The present paper addresses the derivation of the nonlinear gyro-water-bag model, its quasilinear approximation and their numerical approximations by Runge-Kutta semi-Lagrangian methods and Runge-Kutta discontinuous Galerkin schemes respectively.
Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence
Hahm, T. S.; Wang, Lu; Madsen, J.
2008-08-01
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ_{i}<< ρ_{θ¡} ~ L_{E} ~ L_{p} << R (here ρ_{i} is the thermal ion Larmor radius and ρ_{θ¡} = B/B_{θ}] ρ_{i}), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρ_{i} ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τ_{i} ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.
Transport and discrete particle noise in gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Lee, W. W.
2006-10-01
We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.
Gyrokinetic particle simulation of neoclassical transport
Lin, Z.; Tang, W.M.; Lee, W.W.
1995-08-01
A time varying weighting ({delta}{ital f} ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Gyrokinetic particle simulation of neoclassical transport
Lin, Z.; Tang, W.M.; Lee, W.W.
1995-02-01
A time varying weighting ({delta} f) scheme for gyrokinetic particle simulation is applied to a steady state, multi-species simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated in these multispecies simulations that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the introduction of toroidal sheared flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory of Hinton and Wong. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.
Second order gyrokinetic theory for particle-in-cell codes
NASA Astrophysics Data System (ADS)
Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric
2016-08-01
The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.
Nonlinear Gyrokinetic Theory With Polarization Drift
L. Wang and T.S. Hahm
2010-03-25
A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .
Full f gyrokinetic method for particle simulation of tokamak transport
Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.
2008-05-10
A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.
Gyrokinetic Particle Simulation of Alfven Eigenmodes with Zonal Fields
NASA Astrophysics Data System (ADS)
Wang, Zhixuan
2012-03-01
Effects of collective Shear Alfven wave instabilities on the energetic particle confinement in tokamak depend ultimately on the nonlinear evolution of the turbulence with spontaneously generated zonal fields (zonal flows and zonal currents). In this work, we study nonlinear interaction of Alfv'en eigenmodes with zonal fields using global gyrokinetic toroidal code GTC. We choose to start from the simplest case, linear electrostatic eigenmodes in cylindrical geometry, and then gradually extend our study into electromagnetic eigenmode in toroidal geometry. We have verified GTC for linear simulation in cylindrical geometry with the ExB flow shear. Ion temperature gradient instability is observed to be suppressed when ExB flow shear is strong enough. A good agreement has also been achieved between our simulation result of kinetic Alfv'en wave and LAPD experimental result. Now we are doing TAE (torodicity-induced Alfv'en eigenmodes) simulation using the DIII-D equilibrium data. Linear simulation result agrees well with DIII-D data. Our next step is to include nonlinear effects to study the interaction between zonal fields and TAEs. Work supported by DOE SciDAC GSEP Center and Plasma Science Center.
Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.; Holland, C.; Howard, N. T.
2014-11-15
The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.
Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra
NASA Astrophysics Data System (ADS)
Hatch, D. R.; Jenko, F.; Bañón Navarro, A.; Bratanov, V.; Terry, P. W.; Pueschel, M. J.
2016-07-01
A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest in the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.
Gyrokinetic particle simulation of a field reversed configuration
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Holod, I.; Lin, Z.; Dettrick, S.
2016-01-01
Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.
White, A. E. Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; and others
2015-05-15
For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.
NASA Astrophysics Data System (ADS)
White, A. E.; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; Theiler, C.
2015-05-01
For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.
Advanced methods in global gyrokinetic full f particle simulation of tokamak transport
Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.
2006-11-30
A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.
John A. Krommes
2007-10-09
The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.
Nonlinear Full-f Edge Gyrokinetic Turbulence Simulations
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Dimits, A. M.; Umansky, M. V.
2008-11-01
TEMPEST is a nonlinear full-f 5D electrostatic gyrokinetic code for simulations of neoclassical and turbulent transport for tokamak plasmas. Given an initial density perturbation, 4D TEMPEST simulations show that the kinetic GAM exists in the edge in the form of outgoing waves [1], its radial scale is set by plasma profiles, and the ion temperature inhomogeneity is necessary for GAM radial propagation. From an initial Maxwellian distribution with uniform poloidal profiles on flux surfaces, the 5D TEMPEST simulations in a flux coordinates with Boltzmann electron model in a circular geometry show the development of neoclassical equilibrium, the generation of the neoclassical electric field due to neoclassical polarization, and followed by a growth of instability due to the spatial gradients. 5D TEMPEST simulations of kinetic GAM turbulent generation, radial propagation, and its impact on transport will be reported. [1] X. Q. Xu, Phys. Rev. E., 78 (2008).
Nonlinear Gyrokinetic Simulation of Electron-Driven Turbulence in HSX
NASA Astrophysics Data System (ADS)
Faber, Benjamin; Pueschel, M. J.; Weir, Gavin; Likin, Konstatin; Talmadge, Joseph; Anderson, Simon; Anderson, David
2014-10-01
The first nonlinear gyrokinetic simulations of plasmas in the Helically Symmetric eXperiment (HSX) are presented. Due to large electron cyclotron resonance heating (ECRH) and little ion heating, microtubulence in HSX is driven by electron dynamics and thus the simulations performed require two kinetic species. Linear growth rate calculations of plasmas at experimental parameters indicate HSX is unstable at low kyρs to the Trapped Electron Mode (TEM) and the Electron Temperature Gradient (ETG) mode at high kyρs , especially in the core region where the normalized temperature gradient is significantly larger than the normalized density gradient. Nonlinear flux tube simulations show heat fluxes shift to smaller scales than for ion-driven turbulence, with the flux spectrum peaking at kyρs ~ 0 . 9 for TEM turbulence. Nonlinear simulations also show the evolution of zonal flows, which are a possible candidate for the nonlinear saturation mechanism. Calculation of the dependence of the saturated heat flux on the normalized electron temperature gradient provides a computational comparison with the stiffness measurements obtained in heat pulse propagation experiments. Work supported by U.S. DOE Contract No. DE-FG02-93ER54222.
Kinetic electrons in global electromagnetic gyrokinetic particle simulations
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Wang, W.
2005-10-01
Employing an electromagnetic gyrokinetic simulation model,ootnotetextZ. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001). kinetic electron dynamics in global tokamak geometry is investigated. The massless fluid electron model is developed as a base. We further evolve gyrokinetic equations for non-adiabatic kinetic electrons. To obtain the magnetic perturbation, the fluid-kinetic hybrid electron model^1 employs the inverse of the Faraday's law. Instead, the Ampere's law is used as a closure relation to avoid uncertainties in estimating ue|, the moment of the electron velocities. The physics goal is to investigate the finite beta effects on the turbulent transport, as well as α particle driven turbulence.ootnotetextI. Holod, Z. Lin, et al., this conference. This work is supported by Department of Energy (DOE) Cooperative Agreement No. DE-FC02-03ER54695 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL).
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
E. A. Belli; Hammett, G. W.; Dorland, W.
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Howard, N. T.; Greenwald, M.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Mikkelsen, D. R.; Candy, J.
2012-05-15
Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Candy, J.
2012-05-01
Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.
Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes
Cole, Michael Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias
2014-07-15
The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.
Linear and nonlinear verification of gyrokinetic microstability codes
Bravenec, R. V.; Candy, J.; Barnes, M.
2011-12-15
Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2[W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of
Linear and nonlinear verification of gyrokinetic microstability codes
NASA Astrophysics Data System (ADS)
Bravenec, R. V.; Candy, J.; Barnes, M.; Holland, C.
2011-12-01
Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2 [W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of
Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas
John E. Krommes
2010-09-27
Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.
Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.
2009-06-15
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.
White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.
2008-05-15
For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-15
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-01
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Hager, Robert; Chang, C. S.
2016-04-08
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
NASA Astrophysics Data System (ADS)
Hager, Robert; Chang, C. S.
2016-04-01
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.
Xiao, Yong; Holod, Ihor; Wang, Zhixuan; Lin, Zhihong; Zhang, Taige
2015-02-15
Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a critical step in the code–experiment validation process. These new developments include numerical equilibrium representation using B-splines, a new Poisson solver based on finite difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for general geometry, and improvements on the conventional four-point gyroaverage with nonuniform background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly developed nonuniform loading method provides a modified radial transport profile to that of the conventional uniform loading method.
Fully nonlinear δf gyrokinetics for scrape-off layer parallel transport
NASA Astrophysics Data System (ADS)
Pan, Q.; Told, D.; Jenko, F.
2016-10-01
Edge plasmas present a few challenges for gyrokinetic simulations that are absent in tokamak cores. Among them are large fluctuation amplitudes and plasma-wall interactions in the open field line region. In this paper, the widely used core turbulence code GENE, which employs a δf-splitting technique, is extended to simulate open systems with large electrostatic fluctuations. With inclusion and proper discretization of the parallel nonlinear term, it becomes equivalent to a full-f code and the δf-splitting causes no fundamental difficulty in handling large fluctuations. The loss of particles to the wall is accounted for by using a logical sheath boundary, which is implemented in the context of a finite-volume method. The extended GENE code is benchmarked for the well-established one-dimensional parallel transport problem in the scrape-off layer during edge-localized modes. The parallel heat flux deposited onto the divertor target is compared with previous simulation results and shows good agreement.
Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas
Candy, J.; Waltz, R. E.; Parker, S. E.; Chen, Y.
2006-07-15
The influence of the parallel nonlinearity on transport in gyrokinetic simulations is assessed for values of {rho}{sub *} which are typical of current experiments. Here, {rho}{sub *}={rho}{sub s}/a is the ratio of gyroradius, {rho}{sub s}, to plasma minor radius, a. The conclusion, derived from simulations with both GYRO [J. Candy and R. E. Waltz, J. Comput. Phys., 186, 585 (2003)] and GEM [Y. Chen and S. E. Parker J. Comput. Phys., 189, 463 (2003)] is that no measurable effect of the parallel nonlinearity is apparent for {rho}{sub *}<0.012. This result is consistent with scaling arguments, which suggest that the parallel nonlinearity should be O({rho}{sub *}) smaller than the ExB nonlinearity. Indeed, for the plasma parameters under consideration, the magnitude of the parallel nonlinearity is a factor of 8{rho}{sub *} smaller (for 0.000 75<{rho}{sub *}<0.012) than the other retained terms in the nonlinear gyrokinetic equation.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-30
Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Gyrokinetic study of the role of {beta} on electron particle transport in tokamaks
Hein, T.; Angioni, C.; Fable, E.; Candy, J.
2010-10-15
Electromagnetic effects on the radial transport of electrons in the core of tokamak plasmas are studied by means of linear and nonlinear gyrokinetic simulations with the code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and by an analytical derivation. The impact of a finite {beta}, that is, a finite ratio of the plasma pressure to the magnetic pressure, is considered on the fluctuations of the magnetic field through Ampere's law, as well as on the geometrical modification of the vertical drift produced by the Shafranov shift in the magnetic equilibrium, which, for realistic descriptions, has to be included in both electrostatic and electromagnetic modeling. The condition of turbulent particle flux at the null, which allows the determination of stationary logarithmic density gradients when neoclassical transport and particle sources are negligible, is investigated for increasing values of {beta}, in regimes of ion temperature gradient and trapped electron mode turbulence. The loss of adiabaticity of passing electrons produced by fluctuations in the magnetic vector potential produces an outward convection. When the magnetic equilibrium geometry is kept fixed, this induces a strong reduction of the stationary logarithmic density gradient with increasing {beta}. This effect is partly compensated by the geometrical effect on the vertical drift. This compensation effect, however, is significantly weaker in nonlinear simulations as compared to quasilinear calculations. A detailed comparison between quasilinear and nonlinear results reveals that the predicted value of the logarithmic density gradient is highly sensitive on the assumptions on the wave number spectrum applied in the quasilinear model. The qualitative consistency of the theoretical predictions with the experimental results obtained so far on the dependence of density peaking on {beta} is discussed by considering the additional impact, with increasing {beta}, of a particle source delivered
Gyrokinetics Simulation of Energetic Particle Turbulence and Transport
Diamond, Patrick H.
2011-09-21
Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas
Lin, Zhihong
2014-03-13
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
Bernstein, I.B.; Catto, P.J.
1984-05-01
A nonlinear gyrokinetic formalism is developed which permits mean velocities comparable to thermal speeds in arbitrary magnetic field geometry. The theory is fully electromagnetic and does not employ an eikonal ansatz. The freedom in the theory is exploited to display simply the connection with ideal magnetohydrodynamics.
3D hybrid simulations with gyrokinetic particle ions and fluid electrons
Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.
1998-12-31
The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.
Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows
Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V
2008-09-18
We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.
Nonlinear Gyrokinetic Turbulence Simulations of the NSTX Spherical Torus
NASA Astrophysics Data System (ADS)
Peterson, J. Luc; Hammett, G. W.; Mikkelsen, D.; Kaye, S.; Mazzucato, E.; Bell, R.; Leblanc, B.; Yuh, H.; Smith, D.; Candy, J.; Waltz, R. E.; Belli, E. A.; Staebler, G. M.; Kinsey, J.
2010-11-01
The National Spherical Torus Experiment provides a unique environment for the study of electron turbulence and transport. We present nonlinear GYROootnotetextJ. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003). simulations of microturbulence in NSTX discharges and make comparisons between numerically simulated and experimentally measured levels of electron-scale turbulence. In particular we examine the effects of magnetic shear, ExB shearing and collisionality on turbulence driven by the Electron Temperature Gradient (ETG) mode, while paying attention to the roles of electromagnetic fluctuations, kinetic ions and realistic experimental NSTX parameters. We also investigate the interplay between electron turbulence and transport using the TGYROootnotetextJ. Candy et al., Phys. Plasmas 16, 060704 (2009). simulation suite. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of the National Center for Computational Sciences at ORNL, under DOE Contract DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Holod, I.; Lin, Z.
2013-03-01
The fluid-kinetic hybrid electron model is verified in global gyrokinetic particle simulation of linear electromagnetic drift-Alfvénic instabilities in tokamak. In particular, we have recovered the β-stabilization of the ion temperature gradient mode, transition to collisionless trapped electron mode, and the onset of kinetic ballooning mode as βe (ratio of electron kinetic pressure to magnetic pressure) increases.
Fable, E.; Sauter, O.; Angioni, C.
2008-11-01
Peaked density profiles are observed in the core of Tokamak plasmas in regimes where the core particle sources and neoclassical transport are negligible. Gyrokinetic theory predicts that microinstabilities can produce a net inward particle convection balancing outward diffusion and thus explaining the experimental observations. In this work we present a general methodology that allows to calculate the particle pinch coefficients, i.e. the off-diagonal elements of the transport matrix. We adopt this procedure to perform a systematic study of the parametric dependence of these coefficients for electron particle transport in different plasma conditions. Once the coefficients are computed, one can reconstruct the predicted gradient and compare with the experimental observations in regimes with parameters similar to the ones employed in these calculations. The procedure can predict the density logarithmic gradient at zero particle flux in a self-consistent way, based on first principles. The results can be helpful in understanding the possible range of variation of the predicted gradients as a function of the main plasma parameters and in clarifying the relevant dependencies for electrons. Finally, as instructive example, we discuss how this procedure can effectively help to interpret measurements of peaked density profiles in TCV electron Internal Transport Barriers and the significant thermodiffusive inward convection that is observed.
NASA Astrophysics Data System (ADS)
Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.
2015-05-01
Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.
Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.
2015-05-15
Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; Reinke, M. L.; White, A. E.; Ernst, D.; Podpaly, Y.; Candy, J.
2012-06-01
Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 ⩽ r/a ⩽ 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.
Comparison of Measurements of Profile Stiffness in HSX to Nonlinear Gyrokinetic Calculations
NASA Astrophysics Data System (ADS)
Weir, Gavin
2014-10-01
Tokamaks and stellarators have observed significant differences in profile stiffness, defined as the ratio of the transient thermal diffusivity obtained from heat pulse propagation to the diffusivity obtained from steady-state power balance. Typically, stellarators have measured stiffness values below 2 and tokamaks have observed stiffness greater than 4. In this paper we present the first results on stiffness measurements in the quasihelically symmetric experiment HSX in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron Cyclotron Emission (ECE) is used to measure the local electron temperature perturbation from modulating the ECRH system on HSX. Spectral analysis of the ECE data yields a profile of the perturbed amplitude and a resulting transient electron thermal diffusivity that is close to the steady-state diffusivity. This evidence of a lack of stiffness in HSX agrees with the scaling of the steady-state heat flux with temperature gradient. The experimental data is compared to gyrokinetic calculations using the GENE code with two kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability with growth rates that scale linearly with electron temperature gradient. Nonlinear gyrokinetic flux tube simulations indicate that the TEM contributes significantly to the saturated heat fluxes in HSX, shifting the transport-carrying wavenumbers to larger values than in typical Ion Temperature Gradient (ITG) turbulence. A set of nonlinear simulations are being executed, examining the saturated nonlinear heat flux as a function of the electron temperature gradient, to obtain a stiffness value from the simulations to compare with experimental results. This work is supported by DOE Grant DE-FG02-93ER54222.
NASA Astrophysics Data System (ADS)
White, A. E.; Howard, N. T.; Mikkelsen, D. R.; Greenwald, M.; Candy, J.; Waltz, R. E.
2011-11-01
This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (kθρs < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod.
Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas
Scott, Parker
2011-05-02
This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of
Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection
NASA Astrophysics Data System (ADS)
Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank
2016-07-01
Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report
Chame, Jacqueline
2011-05-27
The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.
Simulation of 3-D Magnetic Reconnection by Gyrokinetic Electron and Fully Kinetic Ion Particle Model
NASA Astrophysics Data System (ADS)
Wang, X.; Lin, Y.; Chen, L.
2015-12-01
3-D collisionless magnetic reconnection is investigated using the gyrokinetic electron and fully-kinetic ion (GeFi) particle simulation model. The simulation is carried out for cases with various finite guide field BG in a current sheet as occurring in space and laboratory plasmas. Turbulence power spectrum of magenetic field is found in the reconnection current sheet, with a clear k-5/3 dependence. The wave properties are analyzed. The anomalous resistivity in the electron diffusion region is estimated. The Dependence of the reconnection physics on the ion-to-electron mass ratio mi/me, beta values, and the half-width of the current sheet are also investigated.
NASA Astrophysics Data System (ADS)
Hornsby, W. A.; Migliano, P.; Buchholz, R.; Grosshauser, S.; Weikl, A.; Zarzoso, D.; Casson, F. J.; Poli, E.; Peeters, A. G.
2016-01-01
The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable {{Δ }\\prime}>0 current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as opposed to the electron diamagnetic direction in which it rotates when no turbulence is present. In addition, it is found that the mode rotation slows as the island grows in size.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Ma, Kwan-Liu
2011-12-21
In this project, we have developed techniques for visualizing large-scale time-varying multivariate particle and field data produced by the GPS_TTBP team. Our basic approach to particle data visualization is to provide the user with an intuitive interactive interface for exploring the data. We have designed a multivariate filtering interface for scientists to effortlessly isolate those particles of interest for revealing structures in densely packed particles as well as the temporal behaviors of selected particles. With such a visualization system, scientists on the GPS-TTBP project can validate known relationships and temporal trends, and possibly gain new insights in their simulations. We have tested the system using over several millions of particles on a single PC. We will also need to address the scalability of the system to handle billions of particles using a cluster of PCs. To visualize the field data, we choose to use direct volume rendering. Because the data provided by PPPL is on a curvilinear mesh, several processing steps have to be taken. The mesh is curvilinear in nature, following the shape of a deformed torus. Additionally, in order to properly interpolate between the given slices we cannot use simple linear interpolation in Cartesian space but instead have to interpolate along the magnetic field lines given to us by the scientists. With these limitations, building a system that can provide an accurate visualization of the dataset is quite a challenge to overcome. In the end we use a combination of deformation methods such as deformation textures in order to fit a normal torus into their deformed torus, allowing us to store the data in toroidal coordinates in order to take advantage of modern GPUs to perform the interpolation along the field lines for us. The resulting new rendering capability produces visualizations at a quality and detail level previously not available to the scientists at the PPPL. In summary, in this project we have
NASA Astrophysics Data System (ADS)
Zhang, Wenlu; Holod, Ihor; Lin, Zhihong; Xiao, Yong
2012-02-01
Linear properties of toroidal Alfvén eigenmode (TAE) is studied in global gyrokinetic particle simulations using both fast ion and antenna excitations. A synthetic antenna provides a precise measurement of the Alfvén continuum gap width and the TAE eigenmode frequency, damping rate, and mode structures. The measured gap width exhibits a linear dependence on the aspect ratio, in agreement to a local analytic theory. The TAE frequency and mode structure excited by fast ions show a significant radial symmetry breaking relative to the ideal magnetohydrodynamic theory due to the non-perturbative contributions from the fast ions. The electromagnetic capability of the global gyrokinetic toroidal code (GTC) is verified through these global gyrokinetic simulations of Alfvén eigenmode in cylindrical and toroidal geometries.
Accuracy of momentum and gyrodensity transport in global gyrokinetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
McMillan, B. F.; Villard, L.
2014-05-01
Gyrokinetic Particle-In-Cell (PIC) simulations based on conservative Lagrangian formalisms admit transport equations for conserved quantities such as gyrodensity and toroidal momentum, and these can be derived for arbitrary wavelength, even though previous applications have used the long-wavelength approximation. In control-variate PIC simulations, a consequence of the different treatment of the background (f0) and perturbed parts (δf), when a splitting f = f0 + δf is performed, is that analytical transport relations for the relevant fluxes and moments are only reproduced in the large marker number limit. The transport equations for f can be used to write the inconsistency in the perturbed quantities explicitly in terms of the sampling of the background distribution f0. This immediately allows estimates of the error in consistency of momentum transport in control-variate PIC simulations. This inconsistency tends to accumulate secularly and is not directly affected by the sources and noise control in the system. Although physical tokamaks often rotate quite strongly, the standard gyrokinetic formalism assumes weak perpendicular flows, comparable to the drift speed. For systems with such weak flows, maintaining acceptably small relative errors requires that a number of markers scale with the fourth power of the linear system size to consistently resolve long-wavelength evolution. To avoid this unfavourable scaling, an algorithm for exact gyrodensity transport has been developed, and this is shown to allow accurate simulations with an order of magnitude fewer markers.
Accuracy of momentum and gyrodensity transport in global gyrokinetic particle-in-cell simulations
McMillan, B. F.; Villard, L.
2014-05-15
Gyrokinetic Particle-In-Cell (PIC) simulations based on conservative Lagrangian formalisms admit transport equations for conserved quantities such as gyrodensity and toroidal momentum, and these can be derived for arbitrary wavelength, even though previous applications have used the long-wavelength approximation. In control-variate PIC simulations, a consequence of the different treatment of the background (f{sub 0}) and perturbed parts (δf), when a splitting f = f{sub 0} + δf is performed, is that analytical transport relations for the relevant fluxes and moments are only reproduced in the large marker number limit. The transport equations for f can be used to write the inconsistency in the perturbed quantities explicitly in terms of the sampling of the background distribution f{sub 0}. This immediately allows estimates of the error in consistency of momentum transport in control-variate PIC simulations. This inconsistency tends to accumulate secularly and is not directly affected by the sources and noise control in the system. Although physical tokamaks often rotate quite strongly, the standard gyrokinetic formalism assumes weak perpendicular flows, comparable to the drift speed. For systems with such weak flows, maintaining acceptably small relative errors requires that a number of markers scale with the fourth power of the linear system size to consistently resolve long-wavelength evolution. To avoid this unfavourable scaling, an algorithm for exact gyrodensity transport has been developed, and this is shown to allow accurate simulations with an order of magnitude fewer markers.
Chen, Yang
2012-03-07
At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects
Particle Pinch in Gyrokinetic Simulations of Closed Field-Line Systems
Kobayashi, Sumire; Rogers, Barrett N.; Dorland, William
2010-12-03
Gyrokinetic simulations of small-scale turbulent transport in a closed magnetic field-line plasma geometry are presented. The simulations are potentially applicable to dipolar systems such as the levitated dipole experiment (LDX) [J. Kesner et al., Plasma Phys. Rep. 23, 742 (1997)] and planetary magnetospheres, as well as simpler systems such as the Z pinch. We report here for the first time the existence of a robust particle (and weaker temperature) pinch regime, in which the particles are transported up the density gradient. The particle pinch is driven by non-MHD entropy-mode turbulence at k{sub perpendicular{rho}i}{approx}1 and particle pinch appears at larger {eta}{identical_to}L{sub n}/L{sub T} > or approx. 0.7, consistent with quasilinear theory. Our results suggest that entropy-mode transport will drive the LDX plasma profiles toward a state with {eta}{approx}0.7 and pressure gradients that are near marginal ideal MHD interchange-mode stability.
Gyrokinetic particle-in-cell simulations of Alfvén eigenmodes in presence of continuum effects
Mishchenko, Alexey Könies, Axel; Hatzky, Roman
2014-05-15
First-principle gyrokinetic particle-in-cell simulations of a global Toroidal Alfvén Eigenmode (TAE) are undertaken in the presence of a strong coupling with the continuum. Effects of the bulk plasma temperature on the interplay between the TAE and Kinetic Alfvén Waves (KAWs) are investigated. A global TAE-KAW structure is identified which appears to be more unstable with respect to the fast ions than a simple (fluid-like) TAE mode.
Nonlinear particle simulation of ion cyclotron waves in toroidal geometry
Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.
2015-12-10
Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.
Particle-in-cell δf gyrokinetic simulations of the microtearing mode
NASA Astrophysics Data System (ADS)
Chowdhury, J.; Chen, Yang; Wan, Weigang; Parker, Scott E.; Guttenfelder, W.; Canik, J. M.
2016-01-01
The linear stability properties of the microtearing mode are investigated in the edge and core regimes of the National Spherical Torus Experiment (NSTX) using the particle-in-cell method based gyrokinetic code GEM. The dependence of the mode on various equilibrium quantities in both regions is compared. While the microtearing mode in the core depends upon the electron-ion collisions, in the edge region, it is found to be weakly dependent on the collisions and exists even when the collision frequency is zero. The electrostatic potential is non-negligible in each of the cases. It plays opposite roles in the core and edge of NSTX. While the microtearing mode is partially stabilized by the electrostatic potential in the core, it has substantial destabilizing effect in the edge. In addition to the spherical tokamak, we also study the microtearing mode for parameters relevant to the core of a standard tokamak. The fundamental characteristics of the mode remain the same; however, the electrostatic potential in this case is destabilizing as opposed to the core of NSTX. The velocity dependence of the collision frequency, which is crucial for the mode to grow in slab calculations, is not required to destabilize the mode in toroidal devices.
SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Lin, Zhihong
2013-12-18
During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.
Xu, Yingfeng Dai, Zongliang; Wang, Shaojie
2014-04-15
The nonlinear gyrokinetic theory in the tokamak configuration based on the two-step transform is developed; in the first step, we transform the magnetic potential perturbation to the Hamiltonian part, and in the second step, we transform away the gyroangle-dependent part of the perturbed Hamiltonian. Then the I-transform method is used to decoupled the perturbation part of the motion from the unperturbed motion. The application of the I-transform method to the computation of the guiding-center orbit and the guiding-center distribution function in tokamaks is presented. It is demonstrated that the I-transform method of the orbit computation which involves integrating only along the unperturbed orbit agrees with the conventional method which integrates along the full orbit. A numerical code based on the I-transform method is developed and two numerical examples are given to verify the new method.
White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.; Holland, C.; Tynan, G. R.; Austin, M. E.; McKee, G. R.; Shafer, M. W.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.
2008-10-15
A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w{sub o}{approx}1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k{sub {theta}}{<=}1.8 cm{sup -1} and k{sub r}{<=}4 cm{sup -1}, relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5
White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A
2008-10-01
A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.
Continuum Edge Gyrokinetic Theory and Simulations
Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V
2007-01-09
The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.
Generalized Covariant Gyrokinetic Dynamics of Magnetoplasmas
Cremaschini, C.; Tessarotto, M.; Nicolini, P.; Beklemishev, A.
2008-12-31
A basic prerequisite for the investigation of relativistic astrophysical magnetoplasmas, occurring typically in the vicinity of massive stellar objects (black holes, neutron stars, active galactic nuclei, etc.), is the accurate description of single-particle covariant dynamics, based on gyrokinetic theory (Beklemishev et al., 1999-2005). Provided radiation-reaction effects are negligible, this is usually based on the assumption that both the space-time metric and the EM fields (in particular the magnetic field) are suitably prescribed and are considered independent of single-particle dynamics, while allowing for the possible presence of gravitational/EM perturbations driven by plasma collective interactions which may naturally arise in such systems. The purpose of this work is the formulation of a generalized gyrokinetic theory based on the synchronous variational principle recently pointed out (Tessarotto et al., 2007) which permits to satisfy exactly the physical realizability condition for the four-velocity. The theory here developed includes the treatment of nonlinear perturbations (gravitational and/or EM) characterized locally, i.e., in the rest frame of a test particle, by short wavelength and high frequency. Basic feature of the approach is to ensure the validity of the theory both for large and vanishing parallel electric field. It is shown that the correct treatment of EM perturbations occurring in the presence of an intense background magnetic field generally implies the appearance of appropriate four-velocity corrections, which are essential for the description of single-particle gyrokinetic dynamics.
NASA Astrophysics Data System (ADS)
Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.
2016-04-01
Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2013-10-01
The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.
Kinsey, J. E.; Waltz, R. E.; Candy, J.
2007-10-15
Nonlinear gyrokinetic simulations with kinetic electron dynamics are used to study the effects of plasma shaping on turbulent transport and ExB shear in toroidal geometry including the presence of kinetic electrons using the GYRO code. Over 120 simulations comprised of systematic scans were performed around several reference cases in the local, electrostatic, collisionless limit. Using a parameterized local equilibrium model for shaped geometry, the GYRO simulations show that elongation {kappa} (and its gradient) stabilizes the energy transport from ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities at fixed midplane minor radius. For scans around a reference set of parameters, the GYRO ion energy diffusivity, in gyro-Bohm units, approximately follows a {kappa}{sup -1} scaling which is qualitatively similar to recent experimental energy confinement scalings. Most of the {kappa} scaling is due to the shear in the elongation rather than the local {kappa} itself. The {kappa} scaling for the electrons is found to vary and can be stronger or weaker than {kappa}{sup -1} depending on the wavenumber where the transport peaks. The {kappa} scaling is weaker when the energy diffusivity peaks at low wavenumbers and is stronger when the peak occurs at high wavenumbers. The simulations also demonstrate a nonlinear upshift in the critical temperature gradient as the elongation increases due to an increase in the residual zonal flow amplitude. Triangularity is found to be slightly destabilizing and its effect is strongest for highly elongated plasmas. Finally, we find less ExB shear is needed to quench the transport at high elongation and low aspect ratio. A new linear ExB shear quench rule, valid for shaped tokamak geometry, is presented.
Nonlinear mechanisms for drift wave saturation and induced particle transport
Dimits, A.M. . Lab. for Plasma Research); Lee, W.W. . Plasma Physics Lab.)
1989-12-01
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.
Bass, E. M.; Waltz, R. E.
2013-01-15
The unstable spectrum of Alfven eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfven eigenmode (RSAE) at toroidal mode number n=3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfven eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E Multiplication-Sign B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfven eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.
New variables for gyrokinetic electromagnetic simulations
Mishchenko, Alexey Cole, Michael; Kleiber, Ralf; Könies, Axel
2014-05-15
A new approach to electromagnetic gyrokinetic simulations based on modified gyrokinetic theory is described. The method is validated using a particle-in-cell code. The Toroidal Alfvén Eigenmode at low perpendicular mode numbers, the so-called “magnetohydrodynamical limit,” has been successfully simulated using this method.
Lauber, Ph. Guenter, S.; Koenies, A.; Pinches, S.D.
2007-09-10
In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfven physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU Muenchen, 2003; Ph. Lauber, S. Guenter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfven regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfven
NASA Astrophysics Data System (ADS)
Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.
2007-09-01
In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfv
Improvements in the gyrokinetic simulation method
Matsuda, Y.; Cohen, B.I.; Williams, T.J.
1991-01-01
Gyrokinetic particle-in-cell (PIC) simulations have been proven to be an important and useful tool for studying low frequency waves and instabilities below ion cyclotron frequency. The gyrokinetic formalism eliminates the cyclotron motion by analytically averaging the equation of motion in time, while keeping finite-Larmor radius effects, and therefore allows a time step of integration to be significantly longer than the cyclotron period. At the same time the thermal fluctuation level is reduced well below that of a conventional PIC simulation code. Recent simulations have been performed over a number of wave periods to study nonlinear evolution of drift waves and ion-temperature-gradient modes and the associated transport. With about a quarter million particles and a 64 {times} 128 {times} 32 grid in three dimensions, it takes about 100 hours on the Cray-2 single processor to follow the modes to a nonlinear quasi-steady state for relatively strong gradients and strong growth rates. Much more efficient simulations are needed in order to understand these low-frequency waves and the transport associated with them by the use of this tool, and to facilitate the simulation of more weakly unstable plasmas with parameters more relevant to experimental conditions. We have set a goal of achieving an efficiency gain of a factor of 100 on a present-day computer over what has been achieved on the Cray-2 for gyrokinetic simulations. To reach this goal we have begun a project with two components; one is the use of new PIC techniques such as subcycling, orbit-averaging, and semi-implicit algorithms, and the other is the use of massively parallel computers such as the BBN TC200 and the Thinking Machines CM-2. 6 refs.
Gyrokinetic simulation of internal kink modes
Naitou, Hiroshi; Tsuda, Kenji; Lee, W.W.; Sydora, R.D.
1995-05-01
Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode ({delta}f code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the {delta}f code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection.
Gyrokinetic simulations of ion and impurity transport
Estrada-Mila, C.; Candy, J.; Waltz, R.E.
2005-02-01
A systematic study of turbulent particle and energy transport in both pure and multicomponent plasmas is presented. In this study, gyrokinetic results from the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are supplemented with those from the GLF23 [R. E. Waltz, G. M. Staebler, W. Dorland et al., Phys. Plasmas 4, 2482 (1997)] transport model, as well as from quasilinear theory. Various results are obtained. The production of a particle pinch driven by temperature gradients (a thermal pinch) is demonstrated, and further shown to be weakened by finite electron collisionality. Helium transport and the effects of helium density gradient and concentration in a deuterium plasma are examined. Interestingly, it is found that the simple D-v (diffusion versus convective velocity) model of impurity flow is consistent with results obtained from nonlinear gyrokinetic simulations. Also studied is the transport in a 50-50 deuterium-tritium plasma, where a symmetry breaking is observed indicating the potential for fuel separation in a burning plasma. Quasilinear theory together with linear simulations shows that the symmetry breaking which enhances the tritium confinement arises largely from finite-Larmor-radius effects. To justify the numerical methods used in the paper, a variety of linear benchmarks and nonlinear grid refinement studies are detailed.
Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.
2013-01-25
The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less
Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.
2013-01-25
The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.
McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z.
2014-12-15
The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.
Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.
2015-08-15
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)
Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.
1994-04-27
One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 {times} speedup over our starting-point Cray2 simulation code`s performance.
Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations
Brizard, Alain J.; Tronko, Natalia
2011-08-15
The exact momentum conservation laws for the nonlinear gyrokinetic Vlasov-Poisson equations are derived by applying the Noether method on the gyrokinetic variational principle [A. J. Brizard, Phys. Plasmas 7, 4816 (2000)]. From the gyrokinetic Noether canonical-momentum equation derived by the Noether method, the gyrokinetic parallel momentum equation and other gyrokinetic Vlasov-moment equations are obtained. In addition, an exact gyrokinetic toroidal angular-momentum conservation law is derived in axisymmetric tokamak geometry, where the transport of parallel-toroidal momentum is related to the radial gyrocenter polarization, which includes contributions from the guiding-center and gyrocenter transformations.
A new hybrid kinetic electron model for full-f gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Idomura, Y.
2016-05-01
A new hybrid kinetic electron model is developed for electrostatic full-f gyrokinetic simulations of the ion temperature gradient driven trapped electron mode (ITG-TEM) turbulence at the ion scale. In the model, a full kinetic electron model is applied to the full-f gyrokinetic equation, the multi-species linear Fokker-Planck collision operator, and an axisymmetric part of the gyrokinetic Poisson equation, while in a non-axisymmetric part of the gyrokinetic Poisson equation, turbulent fluctuations are determined only by kinetic trapped electrons responses. By using this approach, the so-called ωH mode is avoided with keeping important physics such as the ITG-TEM, the neoclassical transport, the ambipolar condition, and particle trapping and detrapping processes. The model enables full-f gyrokinetic simulations of ITG-TEM turbulence with a reasonable computational cost. Comparisons between flux driven ITG turbulence simulations with kinetic and adiabatic electrons are presented. Although the similar ion temperature gradients with nonlinear upshift from linear critical gradients are sustained in quasi-steady states, parallel flows and radial electric fields are qualitatively different with kinetic electrons.
Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence
NASA Astrophysics Data System (ADS)
Belli, Emily Ann
Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the
Gyrokinetic Transport Stiffness Calculations on Stellarator Geometries
NASA Astrophysics Data System (ADS)
Faber, B. J.; Mynick, H.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.
2012-10-01
A significant, unanswered question in plasma physics is the difference in transport ``stiffness'' between tokamaks and stellarators. In an effort to shed light on this issue, presented are nonlinear gyrokinetic calculations on various machine geometries: the Helically Symmetric Experiment, the National Compact Stellarator Experiment and an equivalent tokamak configuration. Nonlinear gyrokinetic fluxes have been compared directly to experimental fluxes observed in HSX power modulation experiments. Linear calculations on HSX reveal large growth rates due to both ion temperature gradient and trapped electron turbulence, necessitating a kinetic treatment of electrons; one of the first calculations of its kind for stellarators. A comparison of transport stiffness profiles computed through nonlinear gyrokinetic calculations of ion temperature gradient turbulence for the different machine configurations will be presented.
Micah Beck
2008-09-14
This project focused on the use of Logistical Networking technology to address the challenges involved in rapid sharing of data from the the Center's gyrokinetic particle simulations, which can be on the order of terabytes per time step, among researchers at a number of geographically distributed locations. There is a great need to manage data on this scale in a flexible manner, with simulation code, file system, database and visualization functions requiring access. The project used distributed data management infrastructure based on Logistical Networking technology to address these issues in a way that maximized interoperability and achieved the levels of performance the required by the Center's application community. The work focused on the development and deployment of software tools and infrastructure for the storage and distribution of terascale datasets generated by simulations running at the National Center for Computational Science at Oak Ridge National Laboratory.
A Short Introduction to General Gyrokinetic Theory
H. Qin
2005-02-14
Interesting plasmas in the laboratory and space are magnetized. General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-Maxwell system for magnetized plasmas. The most general gyrokinetic theory can be geometrically formulated. First, the coordinate-free, geometric Vlasov-Maxwell equations are developed in the 7-D phase space, which is defined as a fiber bundle over the space-time. The Poincar{copyright}-Cartan-Einstein 1-form pullbacked onto the 7-D phase space determines particles' worldlines in the phase space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinite small generator of the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyrocenter coordinate system. This is accomplished by applying the Lie coordinate perturbation method to the Poincar{copyright}-Cartan-Einstein 1-form, which also generates the most relaxed condition under which the gyro-symmetry still exists. General gyrokinetic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Since the general gyrokinetic system-developed is geometrically the same as the Vlasov-Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy conservation, momentum conservation, and Liouville volume conservation, are automatically carried over to the general gyrokinetic system. The pullback transformation associated with the coordinate transformation is shown to be an indispensable part of the general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered. Three examples of applications of the general gyrokinetic theory developed in the areas of plasma equilibrium and plasma waves are
Nonlinear energetic particle transport in the presence of multiple Alfvénic waves in ITER
NASA Astrophysics Data System (ADS)
Schneller, M.; Lauber, Ph; Briguglio, S.
2016-01-01
This work presents the results of a multi-mode iter study on toroidal Alfvén eigenmodes (TAEs), using the nonlinear hybrid Hagis-Ligka model. It is found that main conclusions from earlier studies of Asdex Upgrade discharges can be transferred to the iter scenario: global, nonlinear effects are crucial for the evolution of the multi-mode scenario. This work focuses on the iter 15 MA baseline scenario with a safety factor at the magnetic axis of q 0 = 0.986. The least damped eigenmodes of the system are identified with the gyrokinetic, non-perturbative Ligka solver, concerning the mode structure, frequency and damping. Taking into account all weakly damped modes that can be identified linearly, nonlinear simulations with Hagis reveal strong multi-mode behaviour: while in some parameter ranges, quasilinear estimates turn out to be reasonable approximations for the nonlinearly relaxed energetic particle (EP) profile, under certain conditions low-n TAE branches can be excited. As a consequence, not only grow amplitudes of all modes to (up to orders of magnitude) higher values compared to the single mode cases but also, strong redistribution is triggered in the outer radial area between \\sqrt{{{{\\hatρ}}\\text{pol}}}=0.6 and 0.85, far above quasilinear estimates.
A gyrokinetic approach to modeling mirror and firehose instabilites in the solar wind
NASA Astrophysics Data System (ADS)
Johnson, J.; Porazik, P.
2015-12-01
Observational surveys of temperature anisotropy in the solar wind indicate that anisotropy is bounded over a wide range of plasma beta and the anisotropy bounds appear to be predominately controlled by wave-particle interactions associated with mirror and oblique firehose instabilities. We present a reduced kinetic description that exploits gyrosymmetry (a symmetry associated with the gyromotion), providing an efficient, self-consistent approach that can be utilized in global models of the solar wind. We discuss the underlying physics of the mirror and firehose instabilities that allow for a reduced gyrokinetic description, and we verify the approach through comparisons of theory and simulations using gyrokinetic, hybrid, and fully kinetic descriptions. We present simulations showing the nonlinear development and saturation of the mirror instability and explain the amplitude and structure of the nonlinear state in terms of particle trapping. Finally, we present new insights into the nature of the parallel and oblique firehose instability by considering how the topology of the dispersion surfaces change as an anisotropic population is added to an isotropic plasma. We discuss the role of resonant and nonresonant particles in the instability and show that a gyrokinetic description is in good agreement with a fully kinetic description.
NASA Astrophysics Data System (ADS)
Ku, S.; Chang, C.-S.; Adams, M.; Cummings, J.; Hinton, F.; Keyes, D.; Klasky, S.; Lee, W.; Lin, Z.; Parker, S.; CPES Team
2006-09-01
A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.
Adams, Mark; Chang, C. S.; Cummings, J.; Hinton, F.; Keyes, David E; Klasky, Scott A; Ku, S.; Lee, W. W.; Lin, Z.; Parker, Scott; CPES Team, the
2006-01-01
A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.
Shear-Alfven Waves in Gyrokinetic Plasmas
W.W.Lee; J.L.V.Lewandowski; T.S. Hahm; Z. Lin
2000-10-18
It is found that the thermal fluctuation level of the shear-Alfven waves in a gyrokinetic plasma decreases with plasma b(* cs2/uA2), where cs is the ion acoustic speed and uA is the Alfven velocity. This unique thermodynamic property based on the fluctuation-dissipation theorem is verified in this paper using a new gyrokinetic particle simulation scheme, which splits the particle distribution function into the equilibrium part as well as the adiabatic and nonadiabatic parts.
Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments
Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.
2006-01-01
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.
Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics
NASA Astrophysics Data System (ADS)
Candy, J.
2009-11-01
In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a <=0.8. Moreover, we use recently developed synthetic diagnostic algorithms [2] to show that TGYRO also predicts density and electron temperature fluctuation levels in close agreement with experimental measurements across the simulated plasma volume. 8pt [1] J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).
Parallel filtering in global gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jolliet, S.; McMillan, B. F.; Villard, L.; Vernay, T.; Angelino, P.; Tran, T. M.; Brunner, S.; Bottino, A.; Idomura, Y.
2012-02-01
In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L. Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys. Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k∥ spectrum is independent of plasma size at fixed normalized poloidal wave number.
Intercode comparison of gyrokinetic global electromagnetic modes
NASA Astrophysics Data System (ADS)
Görler, T.; Tronko, N.; Hornsby, W. A.; Bottino, A.; Kleiber, R.; Norscini, C.; Grandgirard, V.; Jenko, F.; Sonnendrücker, E.
2016-07-01
Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.
NASA Astrophysics Data System (ADS)
Ishizawa, Akihiro; Watanabe, Tomo-Hiko; Sugama, Hideo; Maeyama, Shinya; Nunami, Masanori; Nakajima, Noriyoshi
2014-10-01
Turbulent transport in a high ion temperature discharge of Large Helical Device (LHD) is investigated by means of electromagnetic gyrokinetic simulations including kinetic electrons. A new electromagnetic gyrokinetic simulation code GKV+enables us to examine electron heat and particle fluxes as well as ion heat flux in finite beta heliotron/stellarator plasmas. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The turbulent fluxes, which are evaluated through a nonlinear simulation carried out in the K-super computer system, will be reported. This research uses computational resources of K at RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140044).
Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks
Skyman, A. Tegnered, D. Nordman, H. Strand, P.
2014-09-15
Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma β, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.
Particle systems and nonlinear Landau damping
Villani, Cédric
2014-03-15
Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.
Edge gyrokinetic theory and continuum simulations
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Dorr, M. R.; Hittinger, J. A.; Bodi, K.; Candy, J.; Cohen, B. I.; Cohen, R. H.; Colella, P.; Kerbel, G. D.; Krasheninnikov, S.; Nevins, W. M.; Qin, H.; Rognlien, T. D.; Snyder, P. B.; Umansky, M. V.
2007-08-01
The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang
2004-12-21
An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.
Free energy balance in gyrokinetic turbulence
Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.
2011-09-15
Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the
Kinetic equation for nonlinear resonant wave-particle interaction
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Beyond linear gyrocenter polarization in gyrokinetic theory
Brizard, Alain J.
2013-09-15
The concept of polarization in gyrokinetic theory is clarified and generalized to include contributions from the guiding-center (zeroth-order) polarization as well as the nonlinear (second-order) gyrocenter polarization. The guiding-center polarization, which appears as the antecedent (zeroth-order) of the standard linear (first-order) gyrocenter polarization, is obtained from a modified guiding-center transformation. The nonlinear gyrocenter polarization is derived either variationally from the third-order gyrocenter Hamiltonian or directly by gyrocenter push-forward method.
Status of Continuum Edge Gyrokinetic Code Physics Development
Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Kerbel, G D; Nevins, W M; Cohen, B I; Cohen, R H
2005-05-31
We are developing an edge gyro-kinetic continuum simulation code to study the boundary plasma over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. A 4-D ({psi}, {theta}, {epsilon}, {mu}) version of this code is presently being implemented, en route to a full 5-D version. A set of gyrokinetic equations[1] are discretized on computational grid which incorporates X-point divertor geometry. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. A fourth order upwinding algorithm is used for particle cross-field drifts, parallel streaming, and acceleration. Boundary conditions at conducting material surfaces are implemented on the plasma side of the sheath. The Poisson-like equation is solved using GMRES with multi-grid preconditioner from HYPRE. A nonlinear Fokker-Planck collision operator from STELLA[2] in ({nu}{sub {parallel}},{nu}{sub {perpendicular}}) has been streamlined and integrated into the gyro-kinetic package using the same implicit Newton-Krylov solver and interpolating F and dF/dt|{sub coll} to/from ({epsilon}, {mu}) space. With our 4D code we compute the ion thermal flux, ion parallel velocity, self-consistent electric field, and geo-acoustic oscillations, which we compare with standard neoclassical theory for core plasma parameters; and we study the transition from collisional to collisionless end-loss. In the real X-point geometry, we find that the particles are trapped near outside midplane and in the X-point regions due to the magnetic configurations. The sizes of banana orbits are comparable to the pedestal width and/or the SOL width for energetic trapped particles. The effect of the real X-point geometry and edge plasma conditions on standard neoclassical theory will be evaluated, including a comparison of our 4D code with other kinetic
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Dispersion of sound in dilute suspensions with nonlinear particle relaxation.
Kandula, Max
2010-03-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of omegatau(d), where omega is the circular frequency and tau(d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction. PMID:20329811
Comparisons of gyrofluid and gyrokinetic simulations
Parker, S.E.; Dorland, W.; Santoro, R.A.; Beer, M.A.; Liu, Q.P.; Lee, W.W.; Hammett, G.W.
1994-03-01
The gyrokinetic and gyrofluid models show the most promise for large scale simulations of tokamak microturbulence. This paper discusses detailed comparisons of these two complementary approaches. Past comparisons with linear theory have been fairly good, therefore the emphasis here is on nonlinear comparisons. Simulations include simple two dimensional slab test cases, turbulent three dimensional slab cases, and toroidal cases, each modeling the nonlinear evolution of the ion temperature gradient instability. There is good agreement in both turbulent and coherent nonlinear slab comparisons in terms of the ion heat flux, both in magnitude and scaling with magnetic shear. However, the nonlinear saturation level for {vert_bar}{Phi}{vert_bar} in the slab comparisons show differences of approximately 40%. Preliminary toroidal comparisons show agreement within 50%, in terms of ion heat flux and saturation level.
Particle flow for nonlinear filters with log-homotopy
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2008-04-01
We describe a new nonlinear filter that is vastly superior to the classic particle filter. In particular, the computational complexity of the new filter is many orders of magnitude less than the classic particle filter with optimal estimation accuracy for problems with dimension greater than 2 or 3. We consider nonlinear estimation problems with dimensions varying from 1 to 20 that are smooth and fully coupled (i.e. dense not sparse). The new filter implements Bayes' rule using particle flow rather than with a pointwise multiplication of two functions; this avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to derive the ODE that describes particle flow. This paper was written for normal engineers, who do not have homotopy for breakfast.
Gyrokinetic calculations of ITG turbulence in general toroidal geometry within the Summit Framework
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Dimits, Andris; Shumaker, Dan
2003-10-01
The Summit Framework is a gyrokinetic particle-in-cell turbulence simulation environment written in Fortran90 providing a unified object-based facility for sharing common components in a massively parallel setting [http://www.nersc.gov/scidac/summit/]. The Summit Framework is part of the US Department of Energy SciDAC Plasma Microturbulence Project. Work is under way to include kinetic electron models and electromagnetic effects, realistic magnetic geometry and global effects under one software environment. General geometry, realistic equilibria capabilities are being incorporated in the Summit Framework through the pg3eq_nc module, itself an extension of the circular geometry pg3eq module [Dimits et al. Phys. Rev. Letts 77, 71 (1996)]. These modules use quasi-ballooning coordinates to solve the three-dimensional, toroidal, delta-f, gyrokinetic equations for ions in order to model ITG turbulence. Realistic geometry is introduced through an interface to data from the EFIT equilibrium code[ http://fusion.gat.com/efit/]. Massively parallel implementation has been effected using MPI. Successful nonlinear comparisons for a sample shaped and finite beta equilibrium have yielded equivalent results between serial, one-processor and multi-processor parallel implementations. Linear and nonlinear tests are currently under way between the general geometry and circular geometry modules with a circular equilibrium which can be accommodated in both modules. Results from all of these tests will be reported, along with strategies for the global extension of both the circular and general geometry modules.
SUMMIT Framework: Gyrokinetic calculations of ITG turbulence in general toroidal geometry
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Dimits, Andris; Shumaker, Dan
2004-11-01
The SUMMIT Framework [http://www.nersc.gov/scidac/summit/] is a gyrokinetic particle-in-cell turbulence simulation environment written in Fortran90 providing a unified object-based facility for sharing common components in a massively parallel setting. The SUMMIT Framework was part of the US Department of Energy SciDAC Plasma Microturbulence Project. General geometry, realistic equilibria capabilities are being incorporated in the SUMMIT Framework through the pg3eq_nc module, itself an extension of the circular geometry pg3eq module [Dimits et al., Phys. Rev. Letts 77, 71 (1996)]. These modules use quasi-ballooning coordinates to solve the three-dimensional, toroidal, delta-f, gyrokinetic equations for ions in order to model ITG turbulence. Realistic geometry is introduced through an interface to data from the EFIT equilibrium code [http://fusion.gat.com/efit/] which is currently being upgraded. Massively parallel implementation of the pg3eq_nc module has been effected using MPI. Successful nonlinear comparisons for a sample shaped and finite beta equilibrium have yielded equivalent results between serial, one-processor and multi-processor parallel implementations. Linear and nonlinear tests have also been successfully performed between the general geometry and circular geometry modules with a circular equilibrium which can be accommodated in both modules. Results from all of these upgrades and tests will be reported.
NASA Astrophysics Data System (ADS)
Bao, Jian; Lin, Zhihong; Kuley, Animesh; Wang, Zhixuan
2015-11-01
An electromagnetic fluid-kinetic model is developed to study the lower hybrid (LH) waves in tokamaks with low numerical noise, in which electron density is pushed forward by the continuity equation, and the kinetic markers are introduced for closure. A generalized weight-based particle-in-cell scheme is also applied to the simulation for the local high resolution in phase space. This new model has been successfully implemented into the global gyro-kinetic toroidal code (GTC), and the electromagnetic particle simulations of the LH waves have been carried out with a realistic electron-to-ion mass ratio. The simulation shows that toroidal effects induce an upshift of the parallel reflective index when LH waves propagate from the tokamak edge toward the core, which modifies the radial position for the mode conversion between slow and fast LH waves. The broadening of the poloidal spectrum of the wave-packet due to the wave diffraction is also observed in the simulation of LH wave propagation, and both the toroidal upshift and broadening effects of the wave-packet spectrum modify the parallel phase velocity and thus the linear absorption of LH waves by electrons through Landau resonance. In the nonlinear simulation, the LH wave can drive a net current during the propagation when its phase velocity gets closed to the local electron thermal speed. Finally, the parametric decay instability is observed when we increase the power of LH waves, in which a LH sideband and a low frequency ion plasma waves are generated.
A reanalysis of a strong-flow gyrokinetic formalism
Sharma, A. Y.; McMillan, B. F.
2015-03-15
We reanalyse an arbitrary-wavelength gyrokinetic formalism [A. M. Dimits, Phys. Plasmas 17, 055901 (2010)], which orders only the vorticity to be small and allows strong, time-varying flows on medium and long wavelengths. We obtain a simpler gyrocentre Lagrangian up to second order. In addition, the gyrokinetic Poisson equation, derived either via variation of the system Lagrangian or explicit density calculation, is consistent with that of the weak-flow gyrokinetic formalism [T. S. Hahm, Phys. Fluids 31, 2670 (1988)] at all wavelengths in the weak flow limit. The reanalysed formalism has been numerically implemented as a particle-in-cell code. An iterative scheme is described which allows for numerical solution of this system of equations, given the implicit dependence of the Euler-Lagrange equations on the time derivative of the potential.
Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas
NASA Astrophysics Data System (ADS)
Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.
2014-10-01
We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.
On the Existence of Canonical Gyrokinetic Variables for Chaotic Magnetic Fields
Nicolini, Piero; Tessarotto, Massimo
2008-12-31
The gyrokinetic description of particle dynamics faces a basic difficulty when a special type of canonical variables is sought, i.e., the so-called gyrokinetic canonical variables. These are defined in such a way that two of them are respectively identified with the gyrophase-angle, describing the fast particle gyration motion around magnetic field lines, and its canonically conjugate momentum. In this paper we intend to discuss the conditions of existence for these variables.
Generalized nonlinear Proca equation and its free-particle solutions
NASA Astrophysics Data System (ADS)
Nobre, F. D.; Plastino, A. R.
2016-06-01
We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
Gyrokinetic Simulations of ETG and ITG Turbulence
Dimits, A; Nevins, W; Shumaker, D; Hammett, G; Dannert, T; Jenko, F; Dorland, W; Leboeuf, J; Rhodes, T; Candy, J; Estrada-Mila, C
2006-10-03
Published gyrokinetic continuum-code simulations indicated levels of the electron thermal conductivity {chi}{sub e} due to electron-temperature-gradient (ETG) turbulence large enough to be significant in some tokamaks, while subsequent global particle-in-cell (PIC) simulations gave significantly lower values. We have carried out an investigation of this discrepancy. We have reproduced the key features of the aforementioned PIC simulations using the flux-tube gyrokinetic PIC code, PG3EQ, thereby eliminating global effects and as the cause of the discrepancy. We show that the late-time low-transport state in both of these sets of PIC simulations is a result of discrete particle noise, which is a numerical artifact. Thus, the low value of {chi}{sub e} along with conclusions about anomalous transport drawn from these particular PIC simulations are unjustified. In our attempts to benchmark PIC and continuum codes for ETG turbulence at the plasma parameters used above, both produce very large intermittent transport. We have therefore undertaken benchmarks at an alternate reference point, magnetic shear s=0.1 instead of s=0.796, and have found that PIC and continuum codes reproduce the same transport levels. Scans in the magnetic shear show an abrupt transition to a high-{chi}{sub e} state as the shear is increased above s=0.4. When nonadiabatic ions are used, this abrupt transition is absent, and {chi}{sub e} increases gradually reaching values consistent with transport analyses of DIII-D, JET, and JT60-U discharges. New results on the balances of zonal-flow driving and damping terms in late-time quasi-steady ITG turbulence and on real-geometry gyrokinetic simulations of shaped DIII-D discharges are also reported.
Stochastic acceleration of charged particle in nonlinear wave field
NASA Astrophysics Data System (ADS)
He, Kaifen
2003-04-01
Possibility of stochastic acceleration of charged particle by nonlinear waves is investigated. Spatially regular (SR) and spatiotemporal chaotic (STC) wave solutions evolving from saddle steady wave are tested as the fields. In the non-steady SR field the particle is finally trapped by the wave and averagely gains its group velocity, while in the STC field the particle motion displays trapped-free phases with its averaged velocity larger or smaller than the group velocity depending on the charge sign. A simplified model is established to investigate the acceleration mechanism. By analogy with motor protein, it is found that the virtual pattern of saddle steady wave plays a role of asymmetric potential, which and the nonlinear varying perturbation wave are the two sufficient ingredients for the acceleration in our case.
The theory of gyrokinetic turbulence: A multiple-scales approach
NASA Astrophysics Data System (ADS)
Plunk, Gabriel Galad
Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature
Testing gyrokinetic simulations of electron turbulence
NASA Astrophysics Data System (ADS)
Holland, C.; DeBoo, J. C.; Rhodes, T. L.; Schmitz, L.; Hillesheim, J. C.; Wang, G.; White, A. E.; Austin, M. E.; Doyle, E. J.; Peebles, W. A.; Petty, C. C.; Zeng, L.; Candy, J.
2012-06-01
An extensive set of tests comparing gyrokinetic predictions of temperature-gradient driven electron turbulence to power balance transport analyses and fluctuation measurements are presented. These tests use data from an L-mode validation study on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614) in which the local value of a/L_{T_e } =-(a/T_e )(dT_e /dr) is varied by modulated electron cyclotron heating; the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) is used to make the gyrokinetic predictions. Using a variety of novel measures, both local and global nonlinear simulations are shown to predict key characteristics of the electron energy flux Qe and long-wavelength (low-k) Te fluctuations, but systematically underpredict (by roughly a factor of two) the ion energy flux Qi. A new synthetic diagnostic for comparison to intermediate wavelength Doppler backscattering measurements is presented, and used to compare simulation predictions against experiment. In contrast to the agreement observed in the low-k Te fluctuation comparisons, little agreement is found between the predicted and measured intermediate-k density fluctuation responses. The results presented in this paper significantly expand upon those previously reported in DeBoo et al (2010 Phys. Plasmas 17 056105), comparing transport and multiple turbulence predictions from numerically converged local and global simulations for all four experimental heating configurations (instead of only fluxes and low-k Te fluctuations for one condition) to measurements and power balance analyses.
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J.
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2
Bravenec, R. V.; Chen, Y.; Wan, W.; Parker, S.; Candy, J.
2013-10-15
A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys. 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.
Benchmarking of the Gyrokinetic Microstability Codes GYRO, GS2, and GEM
NASA Astrophysics Data System (ADS)
Bravenec, Ronald; Chen, Yang; Wan, Weigang; Parker, Scott; Candy, Jeff; Barnes, Michael; Howard, Nathan; Holland, Christopher; Wang, Eric
2012-10-01
The physics capabilities of modern gyrokinetic microstability codes are now so extensive that they cannot be verified fully for realistic tokamak plasmas using purely analytic approaches. Instead, verification (demonstrating that the codes correctly solve the gyrokinetic-Maxwell equations) must rely on benchmarking (comparing code results for identical plasmas and physics). Benchmarking exercises for a low-power DIII-D discharge at the mid-radius have been presented recently for the Eulerian codes GYRO and GS2 [R.V. Bravenec, J. Candy, M. Barnes, C. Holland, Phys. Plasmas 18, 122505 (2011)]. This work omitted ExB flow shear, but we include it here. We also present GYRO/GS2 comparisons for a high-power Alcator C-Mod discharge. To add further confidence to the verification exercises, we have recently added the particle-in-cell (PIC) code GEM to the efforts. We find good agreement of linear frequencies between GEM and GYRO/GS2 for the DIII-D plasma. We also present preliminary nonlinear comparisons. This benchmarking includes electromagnetic effects, plasma shaping, kinetic electrons and one impurity. In addition, we compare linear results among the three codes for the steep-gradient edge region of a DIII-D plasma between edge-localized modes.
A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2
NASA Astrophysics Data System (ADS)
Bravenec, R. V.; Chen, Y.; Candy, J.; Wan, W.; Parker, S.
2013-10-01
A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem [Y. Chen and S. Parker, J. Comput. Phys. 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.
A very general electromagnetic gyrokinetic formalism
NASA Astrophysics Data System (ADS)
McMillan, B. F.; Sharma, A.
2016-09-01
We derive a gyrokinetic formalism which is very generally valid: the ordering allows both large inhomogeneities in plasma flow and magnetic field at long wavelength, such as typical drift-kinetic theories, as well as fluctuations at the gyro-scale. The underlying approach is to order the vorticity to be small, and to assert that the timescales in the local plasma frame are long compared to the gyrofrequency. Unlike most other derivations, we do not treat the long and short wavelength components of the fluctuating fields separately; the single-field description defines the particle motion and their interaction with the electromagnetic field at small-scale, the system-scale, and intermediate length scales in a unified fashion. As in earlier literature, the work consists of identifying a coordinate system where the gyroangle-dependent terms are small, and using a near-unity transform to systematically find a set of coordinates where the gyroangle dependence vanishes. We derive a gyrokinetic Lagrangian which is valid where the vorticity | ∇ × ( E × B / B ) | is small compared to the gyrofrequency Ω, and the magnetic field scale length is long compared to the gyroradius; we also require that time variation be slow in an appropriately chosen reference frame. This appears to be a minimum set of constraints on a gyrokinetic theory and is substantially more general than earlier approaches. It is the general-geometry electromagnetic extension of Dimits, Phys. Plasmas 17, 055901 (2010) (which is an electrostatic formalism with a homogeneous background magnetic field). This approach also does not require a separate treatment of fluctuating and background components of the magnetic field, unlike much of the previous literature. As a consequence, the "cross terms" due to a combination of long- and short-wavelength variation, which were ignored in the earlier work (but derived in a more restrictive ordering in Parra and Calvo, Plasma Phys. Controlled Fusion 53, 045001 (2011
Nonlinear Particle Pinch in Collisionless Trapped Electron Mode Turbulence
NASA Astrophysics Data System (ADS)
Terry, P. W.; Gatto, R.
2005-10-01
Collisionless trapped electron mode turbulence is shown to have an anomalous particle pinch fundamentally unlike pinches identified previously. It arises from a nonlinear fluctuation eigenmode, placing it outside the purview of quasilinear theory. The nonlinear eigenmode develops because the nonlinearity excites a damped linear eigenmode, changing the density- potential correlation. The flux is solved from spectrum balance equations in a complete basis spanning the fluctuation space under a joint expansion in collision frequency and instability threshold parameter. The solution accounts for saturation by anisotropic energy transfer to zonal wavenumbers of the damped eigenmode. To lowest order the pinch is a convective-like flux driven by temperature gradient. It arises from the damped eigenmode energy and the real part of the correlation between damped and growing eigenmodes. The pinch is slightly smaller than the outwardly directed flux associated with the growing eigenmode, making the flux a small fraction of the quasilinear value. Work supported by US DOE.
Intrinsic rotation with gyrokinetic models
Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Ivan
2012-05-15
The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.
Particle swarm optimization for complex nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Alexandridis, Alex; Famelis, Ioannis Th.; Tsitouras, Charalambos
2016-06-01
This work presents the application of a technique belonging to evolutionary computation, namely particle swarm optimization (PSO), to complex nonlinear optimization problems. To be more specific, a PSO optimizer is setup and applied to the derivation of Runge-Kutta pairs for the numerical solution of initial value problems. The effect of critical PSO operational parameters on the performance of the proposed scheme is thoroughly investigated.
Weakly nonlinear electrophoresis of a highly charged colloidal particle
NASA Astrophysics Data System (ADS)
Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud
2013-05-01
At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.
Nonlinear Statistical Signal Processing: A Particle Filtering Approach
Candy, J
2007-09-19
A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations.
Nonlinear interactions in electrophoresis of ideally polarizable particles
NASA Astrophysics Data System (ADS)
Saintillan, David
2008-06-01
In the classical analysis of electrophoresis, particle motion is a consequence of the interfacial fluid slip that arises inside the ionic charge cloud (or Debye screening layer) surrounding the particle surface when an external field is applied. Under the assumptions of thin Debye layers, weak applied fields, and zero polarizability, it can be shown that the electrophoretic velocity of a collection of particles with identical zeta potential is the same as that of an isolated particle, unchanged by interactions [L. D. Reed and F. A. Morrison, "Hydrodynamic interaction in electrophoresis," J. Colloid Interface Sci. 54, 117 (1976)]. When some of these assumptions are relaxed, nonlinear effects may also arise and result in relative motions. First, the perturbation of the external field around the particles creates field gradients, which may result in nonzero dielectrophoretic forces due to Maxwell stresses in the fluid. In addition, if the particles are able to polarize, they can acquire a nonuniform surface charge, and the action of the field on the dipolar charge clouds surrounding them drives disturbance flows in the fluid, causing relative motions by induced-charge electrophoresis. These two nonlinear effects are analyzed in detail in the prototypical case of two equal-sized ideally polarizable spheres carrying no net charge, using accurate boundary-element simulations, along with asymptotic calculations by the method of twin multipole expansions and the method of reflections. It is found that both types of interactions result in significant relative motions and can be either attractive or repulsive depending on the configuration of the spheres.
Effect of dynamical friction on nonlinear energetic particle modes
Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.
2010-09-15
A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.
The energetic coupling of scales in gyrokinetic plasma turbulence
Teaca, Bogdan; Jenko, Frank
2014-07-15
In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.
Discoveries from the exploration of gyrokinetic momentum transport
Staebler, G.M.; Waltz, R. E.; Kinsey, J. E.
2011-05-15
The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.
Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST
NASA Astrophysics Data System (ADS)
Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao
2006-10-01
The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.
Discoveries from the exploration of gyrokinetic momentum transporta)
NASA Astrophysics Data System (ADS)
Staebler, G. M.; Waltz, R. E.; Kinsey, J. E.
2011-05-01
The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.
Nonlinear wave particle interaction in the Earth's foreshock
NASA Technical Reports Server (NTRS)
Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.
1997-01-01
The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.
The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code
NASA Astrophysics Data System (ADS)
Jiang, Peng; Lin, Zhihong; Ihor, Holod; Xiao, Chijie
2016-02-01
The implementation of magnetic islands in gyrokinetic simulation has been verified in the gyrokinetic toroidal code (GTC). The ion and electron density profiles become partially flattened inside the islands. The density profile at the low field side is less flattened than that at the high field side due to toroidally trapped particles in the low field side, which do not move along the perturbed magnetic field lines. When the fraction of trapped particles decreases, the density profile at the low field becomes more flattened. supported by National Special Research Program of China for ITER (Nos. 2013GB111000 and 2014GB107004), China Scholarship Council (No. 2011601098), U.S. DOE Grants DE-SC0010416 and DE-FG02-07ER54916
Linear and nonlinear kinetic-stability studies in tokamaks
Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.
1982-09-01
This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Gyrokinetic simulations of the tearing instability
Numata, Ryusuke; Dorland, William; Howes, Gregory G.; Loureiro, Nuno F.; Tatsuno, Tomoya
2011-11-15
Linear gyrokinetic simulations covering the collisional-collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode
NASA Astrophysics Data System (ADS)
Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.
2004-11-01
It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).
Testing Gyrokinetics on C-Mod and NSTX
M.H. Redi; W. Dorland; C.L. Fiore; D. Stutman; J.A. Baumgaertel; B. Davis; S.M. Kaye; D.C. McCune; J. Menard; G. Rewoldt
2005-06-20
Quantitative benchmarks of computational physics codes against experiment are essential for the credible application of such codes. Fluctuation measurements can provide necessary critical tests of nonlinear gyrokinetic simulations, but such require extraordinary computational resources. Linear micro-stability calculations with the GS2 [1] gyrokinetic code have been carried out for tokamak and ST experiments which exhibit internal transport barriers (ITB) and good plasma confinement. Qualitative correlation is found for improved confinement before and during ITB plasmas on Alcator C-Mod [2] and NSTX [3], with weaker long wavelength micro-instabilities in the plasma core regions. Mixing length transport models are discussed. The NSTX L-mode is found to be near marginal stability for kinetic ballooning modes. Fully electromagnetic, linear, gyrokinetic calculations of the Alcator C-Mod ITB during off-axis rf heating, following four plasma species and including the complete electron response show ITG/TEM microturbulence is suppressed in the plasma core and in the barrier region before barrier formation, without recourse to the usual requirements of velocity shear or reversed magnetic shear [4-5]. No strongly growing long or short wavelength drift modes are found in the plasma core but strong ITG/TEM and ETG drift wave turbulence is found outside the barrier region. Linear microstability analysis is qualitatively consistent with the experimental transport analysis, showing low transport inside and high transport outside the ITB region before barrier formation, without consideration of ExB shear stabilization.
Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence
NASA Astrophysics Data System (ADS)
Heusen, M.; Shalchi, A.
2016-09-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.
A Numerical Instability in an ADI Algorithm for Gyrokinetics
E.A. Belli; G.W. Hammett
2004-12-17
We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.
Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
Candy, Jeff; Holland, Chris; Waltz, R. E.; Fahey, Mark R; Belli, E
2009-01-01
okamak transport modeling scenarios, including ITER ITER Physics Basis Editors, Nucl. Fusion 39, 2137 1999 performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles . Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D J. L. Luxon, Nucl. Fusion 42, 614 2002 plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 2003 code, for turbulent transport, and the NEO E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 2008 code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8.
Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
Candy, J.; Waltz, R. E.; Belli, E.; Holland, C.; Fahey, M. R.
2009-06-15
Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO[E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0{<=}r/a{<=}0.8.
Effects of collisions on conservation laws in gyrokinetic field theory
Sugama, H.; Nunami, M.; Watanabe, T.-H.
2015-08-15
Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.
On push-forward representations in the standard gyrokinetic model
Miyato, N. Yagi, M.; Scott, B. D.
2015-01-15
Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.
Petascale Parallelization of the Gyrokinetic Toroidal Code
Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid
2010-05-01
The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.
Applications of large eddy simulation methods to gyrokinetic turbulence
Bañón Navarro, A. Happel, T.; Teaca, B. [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB; Max-Planck für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau; Max-Planck Jenko, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching; Max-Planck Hammett, G. W. [Max-Planck Collaboration: ASDEX Upgrade Team
2014-03-15
The large eddy simulation (LES) approach—solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model—is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.
A multi-species collisional operator for full-F gyrokinetics
Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C.
2015-12-15
A linearized multi-species collision operator has been developed for an efficient implementation in gyrokinetic codes. This operator satisfies the main expected properties: particle, momentum, and energy conservation, and existence of an H-theorem. A gyrokinetic version is then calculated, which involves derivatives with respect to the gyrocenter position, parallel velocity, and magnetic momentum. An isotropic version in the velocity space can be constructed for the specific problem of trace impurities colliding with a main species. A simpler version that involves derivatives with parallel velocity only has been developed. This reduced version has been implemented in the GYSELA gyrokinetic code, and is shown to comply with particle, momentum, and energy conservation laws. Moreover, the interspecies relaxation rates for momentum and energy agree very well with the theoretical values.
Gyrokinetic simulation of the tearing mode instability
NASA Astrophysics Data System (ADS)
Startsev, Edward; Wang, Weixing; Lee, Wei-Li
2014-10-01
A recently developed split-weight perturbative particle simulation scheme for finite- β plasmas in the presence of background inhomogeneities which analytically separates the additional adiabatic response of the particles associated with the quasi-static bending of the magnetic field lines has been generalized to the sheared magnetic field geometry. The new scheme has been implemented in a 2D particle-in-cell code in slab geometry with drift-kinetic electrons and gyrokinetic ions. The electrons pitch-scattering collision operator has also been implemented to study collisionless as well as collisional tearing, and drift-tearing instabilities. In this paper the results of linear simulations of tearing and drift-tearing modes for realistic mass ratio mi /me = 1837 and different values of plasma β, electron-ion collision frequency, density and temperature gradients are presented and compared to the solution of the eigenvalue equation. We will also present preliminary results of collisionless tearing mode simulations in cylindrical geometry using tokamak turbulence code GTS. Research supported by the U.S. Department of Energy.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models
Scott Parker
2009-04-09
We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.
GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations
Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Besse, N.; Bertrand, P.
2006-11-30
This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.
Deng, Zhao; Waltz, R. E.
2015-05-15
This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup }< 100 where Ω*{sup }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of
S. Ethier; Z. Lin
2003-09-15
Several years of optimization on the super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the CRAY/NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. Early performance results are shown and compared to the same test done on the IBM SP Power 3 and Power 4 machines.
Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod
M.H. Redi; C. Fiore; P. Bonoli; C. Bourdelle; R. Budny; W.D. Dorland; D. Ernst; G. Hammett; D. Mikkelsen; J. Rice; S. Wukitch
2002-06-18
Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic.
Experimentally Relevant Benchmarks for Gyrokinetic Codes
NASA Astrophysics Data System (ADS)
Bravenec, Ronald
2010-11-01
Although benchmarking of gyrokinetic codes has been performed in the past, e.g., The Numerical Tokamak, The Cyclone Project, The Plasma Microturbulence Project, and various informal activities, these efforts have typically employed simple plasma models. For example, the Cyclone ``base case'' assumed shifted-circle flux surfaces, no magnetic transport, adiabatic electrons, no collisions nor impurities, ρi << a (ρi the ion gyroradius and a the minor radius), and no ExB flow shear. This work presents comparisons of linear frequencies and nonlinear fluxes from GYRO and GS2 with none of the above approximations except ρi << a and no ExB flow shear. The comparisons are performed at two radii of a DIII-D plasma, one in the confinement region (r/a = 0.5) and the other closer to the edge (r/a = 0.7). Many of the plasma parameters differ by a factor of two between these two locations. Good agreement between GYRO and GS2 is found when neglecting collisions. However, differences are found when including e-i collisions (Lorentz model). The sources of the discrepancy are unknown as of yet. Nevertheless, two collisionless benchmarks have been formulated with considerably different plasma parameters. Acknowledgements to J. Candy, E. Belli, and M. Barnes.
Electromagnetic Gyrokinetic Simulations
Wan, W
2003-11-19
A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.
Equilibrium fluctuation energy of gyrokinetic plasma
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result
Neoclassical equilibrium in gyrokinetic simulations
Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.
2009-06-15
This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.
Nonlinear Gyroviscous Force in a Collisionless Plasma
Belova, E.V.
2001-05-23
Nonlinear gyroviscous forces in a collisionless plasma with temperature variations are calculated from the gyrofluid moments of the gyrokinetic Vlasov equation. The low-frequency gyrokinetic ordering and electrostatic perturbations are assumed, and an additional finite Larmor radius (FLR) expansion is performed. This approach leads naturally to an expression for the gyroviscous force in terms of the gyrocenter distribution function, thus including all resonant effects, and represents a systematic FLR expansion in a general form (no assumption of any closure is made). The expression for the gyroviscous force is also calculated in terms of the particle-fluid moments by making the transformation from the gyrocenter to particle coordinates. The calculated expression represents a modification of the Braginskii gyroviscosity for a collisionless plasma with nonuniform temperature. It is compared with previous calculations based on the traditional fluid approach. As a byproduct of the gyroviscosity calculations, we derive a set of nonlinear reduced gyrofluid (and a corresponding set of particle-fluid) moment equations with FLR corrections, which exhibit a generalized form of the ''gyroviscous cancellation.''
Transport equations for subdiffusion with nonlinear particle interaction.
Straka, P; Fedotov, S
2015-02-01
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas
NASA Astrophysics Data System (ADS)
Howard, N. T.; White, A. E.; Reinke, M. L.; Greenwald, M.; Holland, C.; Candy, J.; Walk, J. R.
2013-12-01
A rigorous validation of the gyrokinetic model was performed in both ion temperature gradient (ITG) and trapped electron mode (TEM) dominated Alcator C-Mod plasmas at (normalized midplane minor radius) r/a = 0.5 and 0.8. Analysis focuses on two L-mode discharges operated with 1.2 and 3.5 MW of ion cyclotron resonance heating. In depth investigation into the experimental uncertainties and simulation sensitivities in these discharges allows for a stringent test of the gyrokinetic model implemented by the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) in both the centre of the stiff gradient region (r/a = 0.5) and the middle of the region often associated with the transport ‘shortfall’(r/a = 0.8). To identify the nature of the plasma turbulence and to ensure a robust evaluation of the model's ability to reproduce experiment, the sensitivity of the simulation results to experimental uncertainty in turbulence drive and suppression terms were determined at both radial locations. When significant TEM activity is present, nonlinear gyrokinetic simulations are found to reproduce both electron and ion experimental heat fluxes within their diagnosed uncertainties. In contrast, in the absence of TEM, electron heat fluxes are robustly under predicted by low-k, gyrokinetic simulation.
Direct identification of predator-prey dynamics in gyrokinetic simulations
Kobayashi, Sumire Gürcan, Özgür D; Diamond, Patrick H.
2015-09-15
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.
Direct identification of predator-prey dynamics in gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Kobayashi, Sumire; Gürcan, Özgür D.; Diamond, Patrick H.
2015-09-01
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.
Multi-code benchmark of global gyrokinetic electromagnetic instabilities
NASA Astrophysics Data System (ADS)
Goerler, Tobias; Bottino, Alberto; Hornsby, William A.; Kleiber, Ralf; Tronko, Natalia; Grandgirard, Virginie; Norscini, Claudia; Sonnendruecker, Eric
2015-11-01
Considering the recent major extensions of global gyrokinetic codes towards a comprehensive and self-consistent treatment of electromagnetic (EM) effects, corresponding verification tests are obvious and necessary steps to be taken. While a number of (semi-)analytic test cases and benchmarks exist in the axisymmetric limit, microinstabilities and particularly EM turbulence are rarely addressed. In order to remedy this problem, a hierarchical linear gyrokinetic benchmark study is presented starting with electrostatic ion temperature gradient microinstabilities with adiabatic electron response and progressing finally to the characterization of fully EM instabilities as a function of β. The inter-code comparison involves contributions from Eulerian Vlasov, Lagrangian PIC, and Semi-Lagrange codes at least in one level of this verification exercise, thus confirming a high degree of reliability for the implementations that has rarely been achieved before in this context. Additionally, possible extensions of this benchmark into the physically more relevant nonlinear turbulence regime will be discussed, e.g., relaxation problems or gradient-driven setups. This work has been carried out within the framework of the EUROfusion Consortium.
Zacharias, O.; Kleiber, R.; Borchardt, M.; Comisso, L.; Grasso, D.; Hatzky, R.
2014-06-15
The first detailed comparison between gyrokinetic and gyrofluid simulations of collisionless magnetic reconnection has been carried out. Both the linear and nonlinear evolution of the collisionless tearing mode have been analyzed. In the linear regime, we have found a good agreement between the two approaches over the whole spectrum of linearly unstable wave numbers, both in the drift kinetic limit and for finite ion temperature. Nonlinearly, focusing on the small-Δ′ regime, with Δ′ indicating the standard tearing stability parameter, we have compared relevant observables such as the evolution and saturation of the island width, as well as the island oscillation frequency in the saturated phase. The results are basically the same, with small discrepancies only in the value of the saturated island width for moderately high values of Δ′. Therefore, in the regimes investigated here, the gyrofluid approach can describe the collisionless reconnection process as well as the more complete gyrokinetic model.
A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations
NASA Astrophysics Data System (ADS)
Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.
2016-10-01
This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.
Gyrokinetic Vlasov-Poisson simulation in slab geometry using the conservative IDO scheme
NASA Astrophysics Data System (ADS)
Imadera, Kenji; Kishimoto, Yasuaki; Li, Jiquan; Saito, Daisuke; Utsumi, Takayuki
2008-11-01
We have introduced the IDO-CF (Conservative Form of Interpolated Differential Operator) scheme [1], which is one of the multi-moment schemes and has been applied to various CFD problems, in solving a Vlasov-Poisson system. The IDO scheme is found to be efficient in capturing a sharp domain interface like shock propagation, and in introducing dissipations like particle collision and also external source/sink terms. Furthermore, the IDO-CF scheme has exact mass conservation properties, so that we can apply it to the problems that need long time scale simulations. We first apply the scheme in studying the nonlinear Landau damping and two-stream instability. We have investigated the conservation property of the total mass, energy and entropy, and found that the IDO-CF scheme allows stable simulation over many bounce periods keeping higher accuracy than other multi-moment schemes. We have also developed a gyrokinetic full-f Vlasov code with the IDO-CF scheme in studying the slab ITG driven turbulence. [1] Y.Imai et al., J. Comput. Phys. 227, 2263(2008).
Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Chen, Yang; Parker, Scott
2004-11-01
The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.
Bounce-Averaged Gyrokinetic Simulation of Current-Collection Feedback in a Laboratory Magnetosphere
NASA Astrophysics Data System (ADS)
Roberts, T. M.; Garnier, D.; Kesner, J.; Mauel, M. E.
2014-10-01
A self-consistent, nonlinear simulation of interchange dynamics including the bounce-averaged gyro-kinetics of trapped electrons was previously used to understand frequency sweeping and the turbulent cascades observed in dipole-confined plasmas. Through adjustment of the particle and heat sources this code reproduces dynamics that resemble the turbulence measured experimentally, both in spectral power-law trends and in the onset of a steepened density profile. Time stepping is performed in an explicit leap-frog manner and a flux-corrected transport algorithm is implemented. In this presentation, we discuss the physics and numerical methods of the simulations as well as plans for including the effects of a biasing electrode which can collect or inject electrons. By varying this source/sink of electrons at the electrode location based on the potential fluctuations occurring elsewhere, we study the effects of current-collection feedback to compare to recent experiments observed to regulate interchange turbulence. Supported by NSF-DOE Partnership for Plasma Science and DOE Grant DE-FG02-00ER54585 and NSF Award PHY-1201896.
NASA Astrophysics Data System (ADS)
Chen, Yang
2000-10-01
The physics of kinetic electrons and electromagnetic fluctuations are key challenges in microturbulence simulation research. Recently, we have made progress in this area by developing a drift-kinetic electron model using both the ``split-weight scheme"(I. Manuilskiy and W. W. Lee, Phys. Plasmas 7 1381 (2000)) and the canonical parallel momemtum formulation of gyrokinetics(T. S. Hahm, W. W. Lee and A. Brizard, Phys. Fluids 31(1988) 1940) in a fully nonlinear three-dimensional toroidal field-line-following simulation. This model includes magnetic field perturbations perpendicular to the equilibrium magnetic field. Numerical issues arising from the resolution of the magnetic skin depth(J. Cummings, Ph.D. Thesis, Princeton Univ. (1994)) currently limit these simulations to small <≈ β, β m_i/me <≈ O(1) and progress in this area will be reported. A complementary hybrid simulation with fully gyrokinetic ions and a zero-inertia electron fluid has been developed as well. The electron fluid equations are derived from moments of the drift kinetic equation and a predictor-corrector scheme for the fluid-hybrid model has been implemented in three-dimensional toroidal field-line-following geometry. This is a much simpler electron model and works well at high β. We are currently using both models to study the effects of electron dynamics on turbulence, including particle transport (which is zero in simulations using adiabatic response), kinetic Alfvén modes and modification to zonal flows due to kinetic electrons and the generation of zonal fields through including A_allel(A. Das and P. H. Diamond, "Kinetic theory of the zonal flow instability in electromagnetic drift-wave turbulence", to appear in Phys. Plasmas). Both hybrid and the fully kinetic simulations have been carefully benchmarked with linear theory in the slab limit. Simulation results for turbulence with both trapped-electron drive and ion-temperature-gradient drive will be presented. We will report results
Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves
Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin
2008-09-07
The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.
Gyrokinetic stability theory of electron-positron plasmas
NASA Astrophysics Data System (ADS)
Helander, P.; Connor, J. W.
2016-06-01
> The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, Phys. Rev. Lett., vol. 113, 2014a, 135003) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal magnetohydrodynamics. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.
Properties of Discontinuous Galerkin Algorithms and Implications for Edge Gyrokinetics
NASA Astrophysics Data System (ADS)
Hammett, G. W.; Hakim, A.; Shi, E. L.; Abel, I. G.; Stoltzfus-Dueck, T.
2015-11-01
The continuum gyrokinetic code Gkeyll uses Discontinuous Galerkin (DG) algorithms, which have a lot of flexibility in the choice of basis functions and inner product norm that can be useful in designing algorithms for particular problems. Rather than use regular polynomial basis functions, we consider here Maxwellian-weighted basis functions (which have similarities to Gaussian radial basis functions). The standard Galerkin approach loses particle and energy conservation, but this can be restored with a particular weight for the inner product (this is equivalent to a Petrov-Galerkin method). This allows a full- F code to have some benefits similar to the Gaussian quadrature used in gyrokinetic δf codes to integrate Gaussians times some polynomials exactly. In tests of Gkeyll for electromagnetic fluctuations, we found it is important to use consistent basis functions where the potential is in a higher-order continuity subspace of the space for the vector potential A| |. A regular projection method to this subspace is a non-local operation, while we show a self-adjoint averaging operator that can preserve locality and energy conservation. This does not introduce damping, but like gyro-averaging involves only the reactive part of the dynamics. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.
Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2008-01-01
Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with (omega(tau))(sub d) (where omega is the circular frequency and (tau)(sub d) the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value of(omega(tau))(sub d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes.
Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, M.; Lonegran, M.
2008-01-01
Theoretical studies on the dissipation and dispersion of sound in two-phase suspensions have been briefly reviewed. Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with Omega Tau(sub d) (where Omega is the circular frequency and Tau(sub d) the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value Omega Tau (sub d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes.
Gyrokinetic simulation of the collisional micro-tearing mode instability
NASA Astrophysics Data System (ADS)
Startsev, Edward; Lee, Wei-Li; Wang, Weixing
2015-11-01
An application of recently developed perturbative particle simulation scheme for finite- β plasmas in the presence of background inhomogeneities is presented. Originally, using similar scheme, we were able to simulate shear-Alfven waves, finite- β modified drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. Recently, we have successfully used the scheme for simulation of linear tearing and drift-tearing modes, in both collisionless semi-collisional regimes in slab geometry with sheared magnetic field. Here, we present further development of this scheme for the simulation of linear semi-collisional micro-tearing mode driven by electron temperature gradient in high-aspect ratio cylindrical cross-section tokamak using the modified turbulence code GTS. Research supported by the U. S. Department of Energy.
A frozen matrix hybrid optical nonlinear system enhanced by a particle lens
NASA Astrophysics Data System (ADS)
Chen, Lianwei; Zheng, Xiaorui; Du, Zheren; Jia, Baohua; Gu, Min; Hong, Minghui
2015-09-01
In this work, a Graphene Oxide (GO) nano-sheet and SiO2 micro-bead hybrid system based on a frozen matrix was investigated for its enhanced optical nonlinear performance. A frozen matrix is a novel approach that hosts the optical nonlinear nano-particles, which combines the strengths from both liquid and solid phase systems for high performance photonic applications. SiO2 micro-beads were used to induce a local field enhancement effect that improved the optical nonlinearity of GO nano-sheets. The nonlinear performance of the hybrid system is several orders higher than the existing GO nano-sheet liquid dispersion. In addition, this frozen matrix and the local field enhancement effect are two facile and versatile methods that can be applied to many types of nano-particle dispersions.In this work, a Graphene Oxide (GO) nano-sheet and SiO2 micro-bead hybrid system based on a frozen matrix was investigated for its enhanced optical nonlinear performance. A frozen matrix is a novel approach that hosts the optical nonlinear nano-particles, which combines the strengths from both liquid and solid phase systems for high performance photonic applications. SiO2 micro-beads were used to induce a local field enhancement effect that improved the optical nonlinearity of GO nano-sheets. The nonlinear performance of the hybrid system is several orders higher than the existing GO nano-sheet liquid dispersion. In addition, this frozen matrix and the local field enhancement effect are two facile and versatile methods that can be applied to many types of nano-particle dispersions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03304g
PID controller design of nonlinear systems using an improved particle swarm optimization approach
NASA Astrophysics Data System (ADS)
Chang, Wei-Der; Shih, Shun-Peng
2010-11-01
In this paper, an improved particle swarm optimization is presented to search for the optimal PID controller gains for a class of nonlinear systems. The proposed algorithm is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency. In the improved PSO-based nonlinear PID control system design, three PID control gains, i.e., the proportional gain Kp, integral gain Ki, and derivative gain Kd are required to form a parameter vector which is called a particle. It is the basic component of PSO systems and many such particles further constitute a population. To derive the optimal PID gains for nonlinear systems, two principle equations, the modified velocity updating and position updating equations, are employed to move the positions of all particles in the population. In the meanwhile, an objective function defined for PID controller optimization problems may be minimized. To validate the control performance of the proposed method, a typical nonlinear system control, the inverted pendulum tracking control, is illustrated. The results testify that the improved PSO algorithm can perform well in the nonlinear PID control system design.
Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations
White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod; Candy, J.; and others
2013-05-15
Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.
Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)
NASA Astrophysics Data System (ADS)
White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod
2013-05-01
Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T˜e/Te)/(n ˜e/ne), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.
Jiménez-Aquino, J I; Romero-Bastida, M
2011-07-01
The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
NASA Astrophysics Data System (ADS)
Staebler, G. M.; Candy, J.; Howard, N. T.; Holland, C.
2016-06-01
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.
NASA Astrophysics Data System (ADS)
Qi, Lei; Kwon, Jaemin; Hahm, T. S.; Jo, Gahyung
2016-06-01
Nonlinear bounce-averaged kinetic theory [B. H. Fong and T. S. Hahm, Phys. Plasmas 6, 188 (1999)] is used for magnetically trapped electron dynamics for the purpose of achieving efficient gyrokinetic simulations of Trapped Electron Mode (TEM) and Ion Temperature Gradient mode with trapped electrons (ITG-TEM) in shaped tokamak plasmas. The bounce-averaged kinetic equations are explicitly extended to shaped plasma equilibria from the previous ones for concentric circular plasmas, and implemented to a global nonlinear gyrokinetic code, Gyro-Kinetic Plasma Simulation Program (gKPSP) [J. M. Kwon et al., Nucl. Fusion 52, 013004 (2012)]. Verification of gKPSP with the bounce-averaged kinetic trapped electrons in shaped plasmas is successfully carried out for linear properties of the ITG-TEM mode and Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)]. Physics responsible for stabilizing effects of elongation on both ITG mode and TEM is identified using global gKPSP simulations. These can be understood in terms of magnetic flux expansion, leading to the effective temperature gradient R / L T ( 1 - E ') [P. Angelino et al., Phys. Rev. Lett. 102, 195002 (2009)] and poloidal wave length contraction at low field side, resulting in the effective poloidal wave number kθρi/κ.
Gyrokinetic simulation of edge blobs and divertor heat-load footprint
NASA Astrophysics Data System (ADS)
Chang, C. S.; Ku, S.; Hager, R.; Churchill, M.; D'Azevedo, E.; Worley, P.
2015-11-01
Gyrokinetic study of divertor heat-load width Lq has been performed using the edge gyrokinetic code XGC1. Both neoclassical and electrostatic turbulence physics are self-consistently included in the simulation with fully nonlinear Fokker-Planck collision operation and neutral recycling. Gyrokinetic ions and drift kinetic electrons constitute the plasma in realistic magnetic separatrix geometry. The electron density fluctuations from nonlinear turbulence form blobs, as similarly seen in the experiments. DIII-D and NSTX geometries have been used to represent today's conventional and tight aspect ratio tokamaks. XGC1 shows that the ion neoclassical orbit dynamics dominates over the blob physics in setting Lq in the sample DIII-D and NSTX plasmas, re-discovering the experimentally observed 1/Ip type scaling. Magnitude of Lq is in the right ballpark, too, in comparison with experimental data. However, in an ITER standard plasma, XGC1 shows that the negligible neoclassical orbit excursion effect makes the blob dynamics to dominate Lq. Differently from Lq 1mm (when mapped back to outboard midplane) as was predicted by simple-minded extrapolation from the present-day data, XGC1 shows that Lq in ITER is about 1 cm that is somewhat smaller than the average blob size. Supported by US DOE and the INCITE program.
Simulating the effects of stellarator geometry on gyrokinetic drift-wave turbulence
NASA Astrophysics Data System (ADS)
Baumgaertel, Jessica Ann
Nuclear fusion is a clean, safe form of energy with abundant fuel. In magnetic fusion energy (MFE) experiments, the plasma fuel is confined by magnetic fields at very high temperatures and densities. One fusion reactor design is the non-axisymmetric, torus-shaped stellarator. Its fully-3D fields have advantages over the simpler, better-understood axisymmetric tokamak, including the ability to optimize magnetic configurations for desired properties, such as lower transport (longer confinement time). Turbulence in the plasma can break MFE confinement. While turbulent transport is known to cause a significant amount of heat loss in tokamaks, it is a new area of research in stellarators. Gyrokinetics is a good mathematical model of the drift-wave instabilities that cause turbulence. Multiple gyrokinetic turbulence codes that had great success comparing to tokamak experiments are being converted for use with stellarator geometry. This thesis describes such adaptations of the gyrokinetic turbulence code, GS2. Herein a new computational grid generator and upgrades to GS2 itself are described, tested, and benchmarked against three other gyrokinetic codes. Using GS2, detailed linear studies using the National Compact Stellarator Experiment (NCSX) geometry were conducted. The first compares stability in two equilibria with different β=(plasma pressure)/(magnetic pressure). Overall, the higher β case was more stable than the lower β case. As high β is important for MFE experiments, this is encouraging. The second compares NCSX linear stability to a tokamak case. NCSX was more stable with a 20% higher critical temperature gradient normalized by the minor radius, suggesting that the fusion power might be enhanced by ˜ 50%. In addition, the first nonlinear, non-axisymmetric GS2 simulations are presented. Finally, linear stability of two locations in a W7-AS plasma were compared. The experimentally-measured parameters used were from a W7-AS shot in which measured heat fluxes
Complex statistics and diffusion in nonlinear disordered particle chains.
Antonopoulos, Ch G; Bountis, T; Skokos, Ch; Drossos, L
2014-06-01
We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 10(9), our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times.
Complex statistics and diffusion in nonlinear disordered particle chains
Antonopoulos, Ch. G.; Bountis, T.; Skokos, Ch.; Drossos, L.
2014-06-15
We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 10{sup 9}, our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times.
Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas
Navarro, A. Bañón Told, D.; Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H.; Jenko, F.
2015-04-15
Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.
Multiscale Nature of the Dissipation Range in Gyrokinetic Simulations of Alfvénic Turbulence.
Told, D; Jenko, F; TenBarge, J M; Howes, G G; Hammett, G W
2015-07-10
Nonlinear energy transfer and dissipation in Alfvén wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range k(⊥)ρ(I)≳1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfvénic turbulence. PMID:26207474
A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
Shi, E. L.; Hakim, A. H.; Hammett, G. W.
2015-02-03
An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less
A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
Shi, E. L.; Hakim, A. H.; Hammett, G. W.
2015-02-03
An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustrate some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.
NASA Astrophysics Data System (ADS)
Trisnanto, Suko Bagus; Kitamoto, Yoshitaka
2016-02-01
The magnetization induced by oscillatory magnetic-field in a polydispersive superparamagnetic-suspension shows a nonlinearity which strongly depends on the applied frequency. Referring to the initially-measured complex magnetic-susceptibility in function of field-strength, the highly-nonlinear curve of dynamic magnetization at low frequency tends to be linear at higher frequency. Likewise, the dynamic susceptibility appears to be less field-strength dependent at higher frequency, emphasizing a frequency-dependence of magnetically-induced particle-dynamics. This finding is attributable to the imaginary part of magnetization which saturates at lower field-strength of low-frequency magnetic-field. Hence, Brownian relaxation losses should be constant after the saturation due to a confinement of particle rotations.
Mukamel, Shaul
2016-07-28
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
NASA Astrophysics Data System (ADS)
Mukamel, Shaul
2016-07-01
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams
Nikolas C. Logan and Ronald C. Davidson
2012-07-18
This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.
Thermodynamic bounds on nonlinear electrostatic perturbations in intense charged particle beams
Logan, Nikolas C.; Davidson, Ronald C.
2012-07-15
This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (T{sub Parallel-To }/T{sub Up-Tack }<1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry, and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.
Summary report of the group on single-particle nonlinear dynamics
Axinescu, S.; Bartolini, R.; Bazzani, A.
1996-10-01
This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects.
A nonlinear auxetic structural vibration damper with metal rubber particles
NASA Astrophysics Data System (ADS)
Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie
2013-08-01
The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.
Overview of gyrokinetic studies of finite-β microturbulence
NASA Astrophysics Data System (ADS)
Terry, P. W.; Carmody, D.; Doerk, H.; Guttenfelder, W.; Hatch, D. R.; Hegna, C. C.; Ishizawa, A.; Jenko, F.; Nevins, W. M.; Predebon, I.; Pueschel, M. J.; Sarff, J. S.; Whelan, G. G.
2015-10-01
Recent results on electromagnetic turbulence from gyrokinetic studies in different magnetic configurations are overviewed, detailing the physics of electromagnetic turbulence and transport, and the effect of equilibrium magnetic field scale lengths. Ion temperature gradient (ITG) turbulence is shown to produce magnetic stochasticity through nonlinear excitation of linearly stable tearing-parity modes. The excitation, which is catalyzed by the zonal flow, produces an electron heat flux proportional to β2 that deviates markedly from quasilinear theory. Above a critical beta known as the non-zonal transition (NZT), the magnetic fluctuations disable zonal flows by allowing electron streaming that shorts zonal potential between flux surfaces. This leads to a regime of very high transport levels. Kinetic ballooning mode (KBM) saturation is described. For tokamaks saturation involves twisted structures arising from magnetic shear; for helical plasmas oppositely inclined convection cells interact by mutual shearing. Microtearing modes are unstable in the magnetic geometry of tokamaks and the reversed field pinch (RFP). In NSTX instability requires finite collisionality, large beta, and is favored by increasing magnetic shear and decreasing safety factor. In the RFP, a new branch of microtearing with finite growth rate at vanishing collisionality is shown from analytic theory to require the electron grad-B/curvature drift resonance. However, gyrokinetic modeling of experimental MST RFP discharges at finite beta reveals turbulence that is electrostatic, has large zonal flows, and a large Dimits shift. Analysis shows that the shorter equilibrium magnetic field scale lengths increase the critical gradients associated with the instability of trapped electron modes, ITG and microtearing, while increasing beta thresholds for KBM instability and the NZT.
Nonlinear simulations of particle source effects on edge localized mode
Huang, J.; Tang, C. J.; Chen, S. Y.; Wang, Z. H.
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.
NASA Astrophysics Data System (ADS)
Shen, Zheqi; Tang, Youmin
2016-04-01
The ensemble Kalman particle filter (EnKPF) is a combination of two Bayesian-based algorithms, namely, the ensemble Kalman filter (EnKF) and the sequential importance resampling particle filter(SIR-PF). It was recently introduced to address non-Gaussian features in data assimilation for highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-PF analysis schemes. In this paper, we first extend the EnKPF algorithm by modifying the formula for the computation of the covariancematrix, making it suitable for nonlinear measurement functions (we will call this extended algorithm nEnKPF). Further, a general form of the Kalman gain is introduced to the EnKPF to improve the performance of the nEnKPF when the measurement function is highly nonlinear (this improved algorithm is called mEnKPF). The Lorenz '63 model and Lorenz '96 model are used to test the two modified EnKPF algorithms. The experiments show that the mEnKPF and nEnKPF, given an affordable ensemble size, can perform better than the EnKF for the nonlinear systems with nonlinear observations. These results suggest a promising opportunity to develop a non-Gaussian scheme for realistic numerical models.
Verification of nonlinear particle simulation of radio frequency waves in tokamak
Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.; Zhang, W.; Sun, G. Y.; Fisch, N. J.
2015-10-15
Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-15
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
NASA Astrophysics Data System (ADS)
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-01
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can "surf" a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
Jian-Zhou Zhu and Gregory W. Hammett
2011-01-10
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Candy, J.; Waltz, R.E.
2006-03-15
Equations which describe the evolution of volume-averaged gyrokinetic entropy are derived and added to GYRO [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)], a Eulerian gyrokinetic turbulence simulation code. In particular, the creation of entropy through spatial upwind dissipation (there is zero velocity-space dissipation in GYRO) and the reduction of entropy via the production of fluctuations are monitored in detail. This new diagnostic has yielded several key confirmations of the validity of the GYRO simulations. First, fluctuations balance dissipation in the ensemble-averaged sense, thus demonstrating that turbulent GYRO simulations achieve a true statistical steady state. Second, at the standard spatial grid size, neither entropy nor energy flux is significantly changed by a 16-fold increase (from 32 to 512 grid points per cell) in the number of grid points in the two-dimensional velocity space. Third, the measured flux is invariant to an eightfold increase in the upwind dissipation coefficients. A notable conclusion is that the lack of change in entropy with grid refinement refutes the familiar but incorrect notion that Eulerian gyrokinetic codes miss important velocity-space structure. The issues of density and energy conservation and their relation to negligible second-order effects such as the parallel nonlinearity are also discussed.
A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence
Görler, T. Told, D.; White, A. E.; Jenko, F.; Holland, C.; Rhodes, T. L.
2014-12-15
Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called shortfall issue has been subject to various speculations on possible reasons and furthermore motivation for a number of dedicated comparisons for L-mode plasmas in comparable machines. However, only a rather limited number of simulations and gyrokinetic codes has been applied to the original scenario, thus calling for further dedicated investigations in order to broaden the scientific basis. The present work contributes along these lines by employing another well-established gyrokinetic code in a numerically and physically comprehensive manner. Contrary to the previous studies, only a mild underprediction is observed at the outer radial positions which can furthermore be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations are demonstrated by benchmarks, numerical convergence tests, and furthermore by extensive validation studies. The latter involve cross-phase and cross-power spectra analyses of various fluctuating quantities and confirm a high degree of realism. The code discrepancies come as a surprise since the involved software packages had been benchmarked repeatedly and very successfully in the past. Further collaborative effort in identifying the underlying difference is hence required.
NASA Astrophysics Data System (ADS)
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-06-01
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker-Planck-Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker-Planck-Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-04-04
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
Electromagnetic gyrokinetic turbulence in finite-beta helical plasmasa)
NASA Astrophysics Data System (ADS)
Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Maeyama, S.; Nakajima, N.
2014-05-01
A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.
Electromagnetic gyrokinetic turbulence in finite-beta helical plasmas
Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.; Maeyama, S.
2014-05-15
A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.
Nonlinear Wave-particle Interaction and Particle Trapping in Large Amplitude Dust Acoustic Waves
Chang, Mei-Chu; Teng, Lee-Wen; Lin, I.
2011-11-29
Large amplitude dust acoustic wave can be self-excited by the strong downward ion flow in a dusty plasma liquid formed by negatively charged dusts suspended in a weakly ionized low pressure discharge. In this work, we investigate experimentally the wave-particle phase space dynamics of the large amplitude dust acoustic wave by connecting the Lagrangian and Eulerian views, through directly tracking particle motion and measuring local dust density fluctuations. The microscopic pictures of wave steepening and breaking, resonant particle-wave crest trapping, and the absence of trough trapping observed in our experiment are constructed.
Role of convective cell in nonlinear interaction of kinetic Alfvén waves
NASA Astrophysics Data System (ADS)
Luk, O. O.; Lin, Z.
2016-10-01
Gyrokinetic particle simulations show that electrostatic convective cell (CC) can be generated by kinetic Alfvén waves and plays a dominant role in the nonlinear interactions underlying perpendicular spectral cascade. The CC growth rate increases linearly with the field amplitude of the pump waves and has a small but finite threshold, and decreases with the parallel wavevector. The CC growth is proportional to the perpendicular wavevector when there are two pump waves, but proportional to the square of the perpendicular wavevector when there is a single pump wave.
Electromagnetic gyrokinetic simulation of turbulence in torus plasmas
NASA Astrophysics Data System (ADS)
Ishizawa, A.; Maeyama, S.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.
2015-04-01
Gyrokinetic simulations of electromagnetic turbulence in magnetically confined torus plasmas including tokamak and heliotron/stellarator are reviewed. Numerical simulation of turbulence in finite beta plasmas is an important task for predicting the performance of fusion reactors and a great challenge in computational science due to multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The simulation becomes further challenging in non-axisymmetric plasmas. In finite beta plasmas, magnetic perturbation appears and influences some key mechanisms of turbulent transport, which include linear instability and zonal flow production. Linear analysis shows that the ion-temperature gradient (ITG) instability, which is essentially an electrostatic instability, is unstable at low beta and its growth rate is reduced by magnetic field line bending at finite beta. On the other hand, the kinetic ballooning mode (KBM), which is an electromagnetic instability, is destabilized at high beta. In addition, trapped electron modes (TEMs), electron temperature gradient (ETG) modes, and micro-tearing modes (MTMs) can be destabilized. These instabilities are classified into two categories: ballooning parity and tearing parity modes. These parities are mixed by nonlinear interactions, so that, for instance, the ITG mode excites tearing parity modes. In the nonlinear evolution, the zonal flow shear acts to regulate the ITG driven turbulence at low beta. On the other hand, at finite beta, interplay between the turbulence and zonal flows becomes complicated because the production of zonal flow is influenced by the finite beta effects. When the zonal flows are too weak, turbulence continues to grow beyond a physically relevant level of saturation in finite-beta tokamaks. Nonlinear mode coupling to stable modes can play a role in the saturation of finite beta ITG mode and KBM. Since there is a quadratic conserved quantity, evaluating nonlinear transfer of the
Nonlinear light scattering and spectroscopy of particles and droplets in liquids.
Roke, Sylvie; Gonella, Grazia
2012-01-01
Nano- and microparticles have optical, structural, and chemical properties that differ from both their building blocks and the bulk materials themselves. These different physical and chemical properties are induced by the high surface-to-volume ratio. As a logical consequence, to understand the properties of nano- and microparticles, it is of fundamental importance to characterize the particle surfaces and their interactions with the surrounding medium. Recent developments of nonlinear light scattering techniques have resulted in a deeper insight of the underlying light-matter interactions. They have shed new light on the molecular mechanism of surface kinetics in solution, properties of interfacial water in contact with hydrophilic and hydrophobic particles and droplets, molecular orientation distribution of molecules at particle surfaces in solution, interfacial structure of surfactants at droplet interfaces, acid-base chemistry on particles in solution, and vesicle structure and transport properties.
Non-linear interactions of plasma waves in the context of solar particle acceleration
NASA Astrophysics Data System (ADS)
Gallegos-Cruz, A.; Perez-Peraza, J.
2001-08-01
Stochastic particle acceleration in plasmas by means of MHD turbulence in-volves a wide range of alternatives according to, the specific wave mode, the frequency regime of the turbulence, the kind of particles to be accelerated, the assumed plasma model and so on. At present most of the alternatives have been studied with relatively deepness, though some features are not yet com-pletely understood. One of them is the delimitation of the real importance of non-lineal effects of turbulence waves in the process of particle acceleration. In this work we analyse such effects taking into account the temporal evolution of the turbulence. For illustration we exemplify our analysis with the fast MHD mode. Our results show that in some specific stages of the turbulence evolu-tion, non-linear interactions have important effects in the process of particle acceleration.
Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams
Hong Qin
2003-01-21
A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.
2016-05-11
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less
Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
NASA Astrophysics Data System (ADS)
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.
2016-05-01
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-01
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro
2007-11-01
Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.
Shalchi, A.
2012-10-15
Pitch-angle scattering, parallel spatial diffusion, and stochastic acceleration of cosmic rays are investigated analytically. Based on a second-order quasilinear theory, we derive analytical expressions for the aforementioned transport parameters for all possible magnetic field strengths and particle energies. This work complements previous work where only parallel diffusion for low energetic particles was considered. Furthermore, we compute the first time the momentum diffusion coefficient. It is also shown that the relation between the momentum diffusion coefficient and the parallel spatial diffusion coefficient is more complicated than assumed in previous work.
On the definition of a kinetic equilibrium in global gyrokinetic simulations
Angelino, P.; Bottino, A.; Hatzky, R.; Jolliet, S.; Sauter, O.; Tran, T.M.; Villard, L.
2006-05-15
Nonlinear electrostatic global gyrokinetic simulations of collisionless ion temperature gradient (ITG) turbulence and ExB zonal flows in axisymmetric toroidal plasmas are examined for different choices of the initial distribution function. Using a local Maxwellian leads to the generation of axisymmetric ExB flows that can be so strong as to prevent ITG mode growth. A method using a canonical Maxwellian is shown to avoid this spurious generation of ExB flows. In addition, a revised {delta}f scheme is introduced and compared to the standard {delta}f method.
Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode
NASA Astrophysics Data System (ADS)
Qiu, Z.; Chen, L.; Zonca, F.
2016-09-01
Generation of zonal flow (ZF) by energetic particle (EP) driven toroidal Alfvén eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that nonlinear resonant EP contribution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro-scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.
THE LOCAL LIMIT OF GLOBAL GYROKINETIC SIMULATIONS
CANDY J; WALTZ RE; DORLAND W
2003-10-01
OAK-B135 Global gyrokinetic simulations of turbulence include physical effects that are not retained in local flux-tube simulations. nevertheless, in the limit of sufficiently small {rho}* (gyroradius compared to system size) it is expected that a local simulation should agree with a global one (at the local simulation radius) since all effects that are dropped in the local simulations are expected to vanish as {rho}* {yields} 0. In this note, global simulations of a well-established test case are indeed shown to recover the flux-tube limit at each radius.
NASA Astrophysics Data System (ADS)
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2016-03-01
We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.
Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence
NASA Astrophysics Data System (ADS)
Hatch, D. R.; Jenko, F.; Bratanov, V.; Navarro, A. Bañón; Navarro
2014-08-01
A reduced four-dimensional (integrated over perpendicular velocity) gyrokinetic model of slab ion temperature gradient-driven turbulence is used to study the phase-space scales of free energy dissipation in a turbulent kinetic system over a broad range of background gradients and collision frequencies. Parallel velocity is expressed in terms of Hermite polynomials, allowing for a detailed study of the scales of free energy dynamics over the four-dimensional phase space. A fully spectral code - the DNA code - that solves this system is described. Hermite free energy spectra are significantly steeper than would be expected linearly, causing collisional dissipation to peak at large scales in velocity space even for arbitrarily small collisionality. A key cause of the steep Hermite spectra is a critical balance - an equilibration of the parallel streaming time and the nonlinear correlation time - that extends to high Hermite number n. Although dissipation always peaks at large scales in all phase space dimensions, small-scale dissipation becomes important in an integrated sense when collisionality is low enough and/or nonlinear energy transfer is strong enough. Toroidal full-gyrokinetic simulations using the Gene code are used to verify results from the reduced model. Collision frequencies typically found in present-day experiments correspond to turbulence regimes slightly favoring large-scale dissipation, while turbulence in low-collisionality systems like ITER and space and astrophysical plasmas is expected to rely increasingly on small-scale dissipation mechanisms. This work is expected to inform gyrokinetic reduced modeling efforts like Large Eddy Simulation and gyrofluid techniques.
Freely decaying turbulence in two-dimensional electrostatic gyrokinetics
Tatsuno, T.; Plunk, G. G.; Barnes, M.; Dorland, W.; Howes, G. G.; Numata, R.
2012-12-15
In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal Larmor radius ('sub-Larmor scales') [Tatsuno et al., Phys. Rev. Lett. 103, 015003 (2009)]. When the turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field, two independent cascades may take place simultaneously because of the presence of two collisionless invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations. A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants. We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we study falls into one of three regimes (weakly collisional, marginal, and strongly collisional), determined by a dimensionless number D{sub *}, a quantity analogous to the Reynolds number. The marginal state is marked by a critical number D{sub *}=D{sub 0} that is preserved in time. Turbulence initialized above this value become increasingly inertial in time, evolving toward larger and larger D{sub *}; turbulence initialized below D{sub 0} become more and more collisional, decaying to progressively smaller D{sub *}.
Gyrokinetic Study of L-H Transition with Profile Evolution
NASA Astrophysics Data System (ADS)
Xie, Hua-Sheng; GTC Team
2015-11-01
Recent simulations based on gyrokinetic toroidal code (GTC) and theory based on model eigen equation (H. S. Xie and Y. Xiao, arXiv:1503.04440) have found that the eigenstates of mirco-instabilities (trapped electron mode TEM or ion temperature gradient mode ITG) under strong and weak gradients are not the same. Under weak gradient, the most unstable mode is on the ground state, with conventional ballooning mode structure. When the gradient exceed a critical value, the most unstable mode jump to non-ground state. The mode structures of non-ground state are rich and unconventional, and thus can reduced the transport level, which can provide a explanation to the H-mode in the mirco-scale aspect. Nonlinear simulations (H. S. Xie, Y. Xiao and Z. Lin, 9th West Lake International Symposium on Plasma Simulation, May. 18-21, 2015, Hangzhou, China) verified this and have also found a turning point of the gradient. The turbulent transport coefficient would decrease with the gradient increasing when the gradient exceed a critical value. This provide a new route for the L to H transition without invoking shear flow or zonal flow. In the above works, the profiles are fixed. In this work, we will give some preliminary results on self-consistent simulations of L-H transition including the evolution of the radial plasma profiles. Collaboration with GTC team.
Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold
Zalesny, Jaroslaw; Marczynski, Slawomir; Berczynski, Pawel; Berczynski, Stefan; Galant, Grzegorz; Lisak, Mietek; Galkowski, Andrzej
2011-06-15
A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes.
NASA Astrophysics Data System (ADS)
Barnes, Michael
2009-11-01
To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolution of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles simulations of the full core volume over the confinement time are very challenging using conventional (brute force) techniques. In order to address this problem, we have developed a new approach in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using gyrokinetic transport equations to obtain self-consistent equilibrium profiles and corresponding turbulent fluxes. This multi-scale approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional direct numerical simulations. Key components in the cost reduction are the extreme parallelism enabled by the use of coupled flux tubes and the use of a nonlinear implicit algorithm to take large time steps when evolving the equilibrium. In this talk, we describe the multi-scale model employed in Trinity and present simulation results using nonlinear fluxes calculated with the gyrokinetic turbulence codes GS2 and GENE. We compare the numerical predictions from Trinity simulations with experimental results from a number of fusion devices, including JET and MAST.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Horioka, Kazuhiko
2016-06-01
A procedure to obtain a ratio of beam radii at final and initial states in arbitrary particle distributions is proposed, and is applied to the estimation of possible emittance growth for Gaussian and thermal equilibrium distributions. The ratios are estimated for Gaussian and thermal equilibrium distributions as a function of tune depression. The possible emittance growth as a function of tune depression and nonlinear field energy factor is also estimated with and without a constant radius ratio approximation. It is confirmed that the possible emittance growths are almost the same in comparison to the cases with and without the constant radius ratio approximation at each distribution.
Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles.
Derec, Caroline; Ducouret, Guylaine; Ajdari, Armand; Lequeux, François
2003-06-01
In an attempt to establish connections between classical rheology and aging in paste colloidal suspensions, we report in this paper a large set of experimental results on a given system. We have studied suspensions of polyethylene oxide-protected silica particles and performed classical rheology experiments that exhibit a very nonlinear behavior. We have then evidenced aging through stress relaxation as observed in various glassy systems, and finally show other manifestations of aging through various rheological experiments. Qualitative agreement between these experimental results and the predictions of a simple model suggests that the behavior observed experimentally is governed by the competition between aging and mechanically induced rejuvenation.
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
Angioni, C.
2015-10-15
A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.
Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics
NASA Astrophysics Data System (ADS)
Mocz, Philip; Succi, Sauro
2015-05-01
We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrödinger equation in the Madelung formulation. The probability density of the wave function is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.
Electromagnetic gyrokinetic turbulence in high-beta helical plasmas
NASA Astrophysics Data System (ADS)
Ishizawa, Akihiro
2013-10-01
Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.
J. Squire, H. Qin and W.M. Tang
2012-09-25
We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________
A gyrokinetic continuum code based on the numerical Lie transform (NLT) method
NASA Astrophysics Data System (ADS)
Ye, Lei; Xu, Yingfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie
2016-07-01
In this work, we report a novel gyrokinetic simulation method named numerical Lie transform (NLT), which depends on a new physical model derived from the I-transform theory. In this model, the perturbed motion of a particle is decoupled from the unperturbed motion. Due to this property, the unperturbed orbit can be computed in advance and saved as numerical tables for real-time computation. A 4D tensor B-spline interpolation module is developed and applied with the semi-Lagrangian scheme to avoid operator splitting. The NLT code is verified by the Rosenbluth-Hinton test and the linear ITG Cyclone test.
Gyrokinetic Studies of Microturbulence in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Williams, Zachary; Duff, James; Pueschel, M. J.; Terry, Paul
2015-11-01
Reversed-field pinches operating with Pulsed Poloidal Current Drive (PPCD) exhibit microturbulence that contributes to heat and particle transport. This work focuses on the analysis of high-frequency fluctuations in a recent 200 kA PPCD discharge in the Madison Symmetric Torus, for which strong experimental evidence of microturbulence exists. Local gyrokinetic simulations were performed at multiple radial positions outside the reversal surface using the
Benchmarking gyrokinetic simulations in a toroidal flux-tube
NASA Astrophysics Data System (ADS)
Chen, Y.; Parker, S. E.; Wan, W.; Bravenec, R.
2013-09-01
A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v||-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence
NASA Astrophysics Data System (ADS)
Wang, Eric
2010-11-01
One of the fundamental components of a steady state tokamak or stellerator fusion reactor is the structural integrity of nested magnetic surfaces. The consequences of losing this integrity can have very serious implications, ranging from sawtooth crashes to disruptions. In the present work, we use GYRO to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as β is varied from .1% to .7%, as first investigated in [J. Candy, Phys. Plasmas 12, 072307 (2005)]. By integrating the self-consistent magnetic field lines to produce Poincare surface of section plots, we demonstrate destruction of magnetic surfaces for all nonzero values of β. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. We can quantify the stochastic electron heat transport by using test particles to estimate the magnetic diffusion coefficient Dst [A.B. Rechester and M.N. Rosenbluth, PRL 40, 38 (1978)] for hundreds of time slices in each simulation and find the time-history of Dst to be highly correlated with the electron heat transport due to ``magnetic-flutter'' computed in the simulations. The mechanism that couples electromagnetic turbulence to the linearly damped high-n tearing modes that are responsible for reconnection will be discussed.
Benchmarking gyrokinetic simulations in a toroidal flux-tube
Chen, Y.; Parker, S. E.; Wan, W.; Bravenec, R.
2013-09-15
A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.
Gyrokinetic simulations of solar wind turbulence from ion to electron scales.
Howes, G G; TenBarge, J M; Dorland, W; Quataert, E; Schekochihin, A A; Numata, R; Tatsuno, T
2011-07-15
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k(-2.8) as observed in in situ spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfvén wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
An energy- and charge-conserving, nonlinearly implicit, electromagnetic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis; Knoll, Dana; Daughton, William; CoCoMans (LANL) Team
2013-10-01
A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension. The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations. An implicit, orbit-averaged central finite difference scheme is applied to both the Darwin field equations and the particle orbit equations to produce a discrete system that remains exactly charge-and energy-conserving. Furthermore, the canonical momentum in any ignorable direction is exactly conserved per particle by appropriate interpolations of the magnetic field. A fluid preconditioner targeting the stiffest electron waves has been developed to accelerate the linear GMRES solver of JFNK. We present 1D numerical experiments (e.g. the Weibel instability, kinetic Alfven wave ion-ion streaming instability, etc.) to demonstrate the accuracy and efficiency of the implicit Darwin PIC algorithm, and the performance of the fluid preconditioner.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun.
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles
NASA Astrophysics Data System (ADS)
Idiart, Martín; Ponte Castañeda, Pedro
2005-02-01
The 'second-order' nonlinear homogenization method (Ponte Castañeda, J. Mech. Phys. Solids 50 (2002) 737-757) is used to generate estimates of the Hashin-Shtrikman-type for the effective behavior of viscoplastic materials with isotropically distributed spherical pores or rigid particles. In the limiting case of an ideally plastic matrix with a dilute concentration of pores, the resulting estimates were found to exhibit a linear dependence on the porosity when the material is subjected to axisymmetric shear, but this dependence becomes singular for simple shear. In the process of this work, an alternative prescription for certain reference tensors used in the method is proposed, and shown to lead to more consistent estimates for the effective behavior than the earlier prescription. To cite this article: M. Idiart, P. Ponte Castañeda, C. R. Mecanique 333 (2005).
NASA Astrophysics Data System (ADS)
Mukin, R. V.; Alipchenkov, V. M.; Zaichik, L. I.; Mukina, L. S.; Strizhov, V. F.
2011-12-01
The purpose of the study is to present an explicit algebraic Reynolds stress (nonlinear turbulent viscosity) model combined with modified k - ɛ turbulence model taking into account particles effect on turbulence for calculating the main turbulent characteristics of two-phase flows. For calculating particles distribution in space we used diffusion-inertia model (DIM). The turbulence attenuating in the presence of particles is clearly observed, investigated and compared with the experimental data. The developed model adequately described turbulence anisotropy and the influence of particles inertia and concentration on the turbulence intensity.
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Korabel, Nickolay
2015-12-01
We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.
In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves
NASA Astrophysics Data System (ADS)
Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.
2014-12-01
Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.
Fahey, Mark R.; Candy, Jeff
2013-11-07
This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two
Gyrokinetic simulations of reverse shear Alfven eigenmodes in DIII-D plasmas
Chen, Y.; Munsat, T.; Parker, S. E.; Heidbrink, W. W.; Van Zeeland, M. A.; Tobias, B. J.; Domier, C. W.
2013-01-15
A gyrokinetic ion/mass-less fluid electron hybrid model as implemented in the GEM code [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 837 (2007)] is used to study the reverse shear Alfven eigenmodes (RSAE) observed in DIII-D, discharge no. 142111. This is a well diagnosed case with measurement of the core-localized RSAE mode structures and the mode frequency, which can be used to compare with simulations. Simulations reproduce many features of the observation, including the mode frequency up-sweeping in time and the sweeping range. A new algorithmic feature is added to the GEM code for this study. Instead of the gyrokinetic Poisson equation itself, its time derivative, or the vorticity equation, is solved to obtain the electric potential. This permits a numerical scheme that ensures the E Multiplication-Sign B convection of the equilibrium density profiles of each species cancel each other in the absence of any finite-Larmor-radius effects. These nonlinear simulations generally result in an electron temperature fluctuation level that is comparable to measurements, and a mode frequency spectrum broader than the experimental spectrum. The spectral width from simulations can be reduced if less steep beam density profiles are used, but then the experimental fluctuation level can be reproduced only if a collision rate above the classical level is assumed.
Gyrokinetic simulations of reverse shear Alfvén eigenmodes in DIII-D plasmas
NASA Astrophysics Data System (ADS)
Chen, Y.; Munsat, T.; Parker, S. E.; Heidbrink, W. W.; Van Zeeland, M. A.; Tobias, B. J.; Domier, C. W.
2013-01-01
A gyrokinetic ion/mass-less fluid electron hybrid model as implemented in the GEM code [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 837 (2007)] is used to study the reverse shear Alfvén eigenmodes (RSAE) observed in DIII-D, discharge #142111. This is a well diagnosed case with measurement of the core-localized RSAE mode structures and the mode frequency, which can be used to compare with simulations. Simulations reproduce many features of the observation, including the mode frequency up-sweeping in time and the sweeping range. A new algorithmic feature is added to the GEM code for this study. Instead of the gyrokinetic Poisson equation itself, its time derivative, or the vorticity equation, is solved to obtain the electric potential. This permits a numerical scheme that ensures the E × B convection of the equilibrium density profiles of each species cancel each other in the absence of any finite-Larmor-radius effects. These nonlinear simulations generally result in an electron temperature fluctuation level that is comparable to measurements, and a mode frequency spectrum broader than the experimental spectrum. The spectral width from simulations can be reduced if less steep beam density profiles are used, but then the experimental fluctuation level can be reproduced only if a collision rate above the classical level is assumed.
Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student's t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods. PMID:27187405
Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student’s t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods. PMID:27187405
M3D Simulations of Energetic Particle-driven MHD Mode with Unstructured Mesh
NASA Astrophysics Data System (ADS)
Fu, G. Y.; Park, W.; Strauss, H. R.
2001-10-01
The energetic particle-driven MHD modes are studied using a multi-level extended MHD code M3D(W. Park et al., Phys. Plasmas 6, 1796 (1999)). In a Extended-MHD model, the plasma is divided into the bulk part and the energetic particle component. The bulk plasma is treated as either a single fluid or two fluids. The energetic particles are described by gyrokinetic particles following the self-consistent electromagnetic field. The model is self-consistent, including nonlinear effects of hot particles on the MHD dynamics and the nonlinear MHD mode coupling. Previously we had shown the results of nonlinear saturation of TAEfootnote G.Y. Fu and W. Park, Phys. Rev. Lett. 74, 1594 (1995), energetic particle stabilization of an internal kink and excitation of fishbone^2, and nonlinear saturation of fishbone in circular tokamaks (G.Y. Fu et al, 2000 Sherwood Meeting, Paper 2C2.). In this work, we extend the simulations to general geometry using unstructured mesh(H.R. Strauss and W. Park, Phys. Plasmas 5, 2676 (1998). We also use a gyrofluid model for fishbone in order to study the role of MHD nonlinearity in saturation near the marginal stability. Results of applications to tokamaks and spherical tokamaks will be presented.
Gyrokinetic theory and simulation of turbulent energy exchange
Waltz, R. E.; Staebler, G. M.
2008-01-15
A previous gyrokinetic theory of turbulent heating [F. L. Hinton and R. E. Waltz, Phys. Plasma 13, 102301 (2006)] is simplified and extended to show that the local radial average of terms in the gyrokinetic turbulent heating (which survive in the drift kinetic limit) are actually closer to a turbulent energy exchange between electrons and ions. The integrated flow for the local exchange is simulated with the GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] delta-f gyrokinetic code and found to be small in a well studied DIII-D [M. A. Mahdavi and J. L. Luxon, ''DIII-D Tokamak Special Issue'' Fusion Sci. Technol. 48, 2 (2005)] L-mode discharge.
Benchmarking Nonlinear Turbulence Simulations on Alcator C-Mod
M.H. Redi; C.L. Fiore; W. Dorland; M.J. Greenwald; G.W. Hammett; K. Hill; D. McCune; D.R. Mikkelsen; G. Rewoldt; J.E. Rice
2004-06-22
Linear simulations of plasma microturbulence are used with recent radial profiles of toroidal velocity from similar plasmas to consider nonlinear microturbulence simulations and observed transport analysis on Alcator C-Mod. We focus on internal transport barrier (ITB) formation in fully equilibrated H-mode plasmas with nearly flat velocity profiles. Velocity profile data, transport analysis and linear growth rates are combined to integrate data and simulation, and explore the effects of toroidal velocity on benchmarking simulations. Areas of interest for future nonlinear simulations are identified. A good gyrokinetic benchmark is found in the plasma core, without extensive nonlinear simulations. RF-heated C-Mod H-mode experiments, which exhibit an ITB, have been studied with the massively parallel code GS2 towards validation of gyrokinetic microturbulence models. New, linear, gyrokinetic calculations are reported and discussed in connection with transport analysis near the ITB trigger time of shot No.1001220016.
Camporeale, Enrico; Zimbardo, Gaetano
2015-09-15
We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.
Matsumoto, Taro; Naitou, Hiroshi; Tokuda, Shinji; Kishimoto, Yasuaki
2005-09-15
The behavior of the collisionless magnetohydrodynamics modes is investigated by the gyrokinetic particle simulation in a cylindrical tokamak plasma in the parameter region where the effects of electron inertia and electron parallel compressibility are competitive for magnetic reconnection. Although the linear growth of the m=1 internal kink-tearing mode is dominated by the electron inertia, it is found that the growth rate can be nonlinearly accelerated due to the electron parallel compressibility proportional to the ion sound Larmor radius {rho}{sub s}. It is also found that, as decreasing the electron skin depth {delta}{sub e}, the maximum growth rate before the internal collapse saturates independently of the microscopic scales such as {delta}{sub e} and {rho}{sub s}. The acceleration of growth rate is also observed in the nonlinear phase of the m=2 double tearing mode.
Krommes, J. A.
2013-12-15
Some physical interpretations are given of the well-known second-order gyrokinetic Hamiltonian in the magnetohydrodynamic limit. Its relations to the conservation of the true (Galilean-invariant) magnetic moment and fluid nonlinearities are described. Subtleties about its derivation as a cold-ion limit are explained; it is important to take that limit in the frame moving with the E×B velocity. The discussion also provides some geometric understanding of certain well-known Lie generating functions, and it makes contact with general discussions of ponderomotive potentials and the thermodynamics of dielectric media.
Gyrokinetic turbulence cascade via predator-prey interactions between different scales
Kobayashi, Sumire Gurcan, Ozgur D.
2015-05-15
Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.
Search for gyrokinetic dependencies in helium transport at Alcator C-Mod
NASA Astrophysics Data System (ADS)
Liao, Kenneth; Rowan, William; Hatch, David; Bespamyatnov, Igor; Horton, Wendell
2013-10-01
Helium-3 and helium-4 impurity transport measurements and density profile measurements have been obtained on Alcator C-Mod in a variety of discharge conditions, using the core Charge Exchange Recombination Spectroscopy (CXRS) diagnostic. The helium concentrations range from trace (< 2 %) to large minority (~ 20 %). L-mode, H-mode, and I-mode results are included, with Ohmic heated, ICRF heated, and LH heated plasmas. Helium profiles are observed to vary with plasma current, and also change in time during ICRF shots. Linear and nonlinear gyrokinetic simulations are performed for some shots using the GENE code. Sensitivity scans are done for magnetic shear, impurity density, and other plasma parameters and transport scalings are compared with experimental results. Simulated transport flux is compared with experimentally derived D and v parameters. Supported by USDoE awards DE-FG03-96ER-54373 and DE-FC02-99ER54512.
Collision-dependent power law scalings in two dimensional gyrokinetic turbulence
Cerri, S. S. Bañón Navarro, A.; Told, D.; Jenko, F.
2014-08-15
Nonlinear gyrokinetics provides a suitable framework to describe short-wavelength turbulence in magnetized laboratory and astrophysical plasmas. In the electrostatic limit, this system is known to exhibit a free energy cascade towards small scales in (perpendicular) real and/or velocity space. The dissipation of free energy is always due to collisions (no matter how weak the collisionality), but may be spread out across a wide range of scales. Here, we focus on freely decaying two dimensional electrostatic turbulence on sub-ion-gyroradius scales. An existing scaling theory for the turbulent cascade in the weakly collisional limit is generalized to the moderately collisional regime. In this context, non-universal power law scalings due to multiscale dissipation are predicted, and this prediction is confirmed by means of direct numerical simulations.
Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Proll, J. H. E.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.
2015-07-15
Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.
Gyrokinetic turbulence cascade via predator-prey interactions between different scales
NASA Astrophysics Data System (ADS)
Kobayashi, Sumire; Gurcan, Ozgur D.
2015-05-01
Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate "predator-prey" dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation |ϕ˜ k | 2˜|n˜ k | 2∝k-3/(1+k2 ) 2 , with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.
NASA Astrophysics Data System (ADS)
Faber, B. J.; Pueschel, M. J.; Proll, J. H. E.; Xanthopoulos, P.; Terry, P. W.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.
2015-07-01
Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.
Nonlinear Evolution of a 3D Inertial Alfvén Wave and Its Implication in Particle Acceleration
NASA Astrophysics Data System (ADS)
Sharma, Prachi; Yadav, Nitin; Sharma, R. P.
2016-03-01
A simulation based on a pseudo-spectral method has been performed in order to study particle acceleration. A model for the acceleration of charged particles by field localization is developed for the low-β plasma. For this purpose, a fractional diffusion approach has been employed. The nonlinear interaction between a 3D inertial Alfvén wave and a slow magnetosonic wave has been examined, and the dynamical equations of these two waves in the presence of ponderomotive nonlinearity have been solved numerically. The nonlinear evolution of the inertial Alfvén wave in the presence of slow magnetosonic wave undergoes a filamentation instability and results in field intensity localization. The results obtained show the localization and power spectrum of inertial Alfvén wave due to nonlinear coupling. The scaling obtained after the first break point of the magnetic power spectrum has been used to calculate the formation of the thermal tail of energetic particles in the solar corona.
W.M. Tang
2005-01-03
The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.
In-situ imaging of reacting single-particle zeolites by non-linear optical microscopy
NASA Astrophysics Data System (ADS)
Wrzesinski, Paul J.; Slipchenko, Mikhail N.; Zaman, Taslima A.; Rioux, Robert M.; Gord, James R.; Roy, Sukesh
2015-03-01
Zeolite catalysis has been exploited by the petrochemical industry since the 1940's for catalytic cracking reactions of long chain hydrocarbons. The selectivity of zeolites strongly depends on a pore size, which is controlled by the chosen structure-directing agent (SDA) and by the SDA decomposition/removal process. Although zeolites are composed of micron-sized crystals, studies of zeolite materials typically focus on bulk (i.e., ensemble) measurements to elucidate structure-function information or to optimize catalysts and/or process parameters. To examine these phenomena on the microscale, non-linear optical microscopy is used to provide real-time imaging of chemical reactions in zeolites at temperatures exceeding 400°C. The template decomposition mechanism is studied, as elucidation of the mechanism is critical to understanding the relationship between the decomposition chemistry and the nanoscale features of the zeolite (topology, Si/Al ratio, added dopants). Forward stimulated Raman scattering (SRS), forward coherent anti-Stokes Raman scattering (CARS) and epi two-photon fluorescence (TPF) modalities are acquired simultaneously providing video-rate structural and chemical information. A high-temperature cell with gas inlet system is used for the study of reactions under various temperatures and gas environments. Examining the decomposition process with single-particle resolution enables access to ensemble-level and spatially-resolved behavior. Parallel experiments on bulk zeolite powders are conducted to enable comparison of ensemble and single-particle behavior during template decomposition. Our multi-technique approach has high potential for gaining insight into the link between nanoscale structure and catalytic activity and selectivity of zeolitic materials.
Li, Tao; Yuan, Gannan; Li, Wang
2016-03-15
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
Li, Tao; Yuan, Gannan; Li, Wang
2016-01-01
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130
Li, Tao; Yuan, Gannan; Li, Wang
2016-01-01
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
NASA Astrophysics Data System (ADS)
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
NASA Astrophysics Data System (ADS)
Khaki, Mehdi; Forootan, Ehsan; Kuhn, Michael; Awange, Joseph; Pattiaratchi, Charitha
2016-04-01
Quantifying large-scale (basin/global) water storage changes is essential to understand the Earth's hydrological water cycle. Hydrological models have usually been used to simulate variations in storage compartments resulting from changes in water fluxes (i.e., precipitation, evapotranspiration and runoff) considering physical or conceptual frameworks. Models however represent limited skills in accurately simulating the storage compartments that could be the result of e.g., the uncertainty of forcing parameters, model structure, etc. In this regards, data assimilation provides a great chance to combine observational data with a prior forecast state to improve both the accuracy of model parameters and to improve the estimation of model states at the same time. Various methods exist that can be used to perform data assimilation into hydrological models. The one more frequently used particle-based algorithms suitable for non-linear systems high-dimensional systems is the Ensemble Kalman Filtering (EnKF). Despite efficiency and simplicity (especially in EnKF), this method indicate some drawbacks. To implement EnKF, one should use the sample covariance of observations and model state variables to update a priori estimates of the state variables. The sample covariance can be suboptimal as a result of small ensemble size, model errors, model nonlinearity, and other factors. Small ensemble can also lead to the development of correlations between state components that are at a significant distance from one another where there is no physical relation. To investigate the under-sampling issue raise by EnKF, covariance inflation technique in conjunction with localization was implemented. In this study, a comparison between latest methods used in the data assimilation framework, to overcome the mentioned problem, is performed. For this, in addition to implementing EnKF, we introduce and apply the Local Ensemble Kalman Filter (LEnKF) utilizing covariance localization to remove
NASA Astrophysics Data System (ADS)
Lin, Cheng-Jian; Lee, Chi-Yung
2010-04-01
This article introduces a recurrent fuzzy neural network based on improved particle swarm optimisation (IPSO) for non-linear system control. An IPSO method which consists of the modified evolutionary direction operator (MEDO) and the Particle Swarm Optimisation (PSO) is proposed in this article. A MEDO combining the evolutionary direction operator and the migration operation is also proposed. The MEDO will improve the global search solution. Experimental results have shown that the proposed IPSO method controls the magnetic levitation system and the planetary train type inverted pendulum system better than the traditional PSO and the genetic algorithm methods.
GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS
Horton, Claude Wendell
2014-06-10
The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-09-21
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Huang, Cheng-Hsuan; Cheng, Wen-Li; He, Yan-Ying; Lee, Eric
2010-08-12
Electrophoresis of a soft particle along the centerline of a cylindrical pore is investigated theoretically in this study. The soft particle consists of an inner hard sphere covered by a concentric porous layer with fixed charge uniformly distributed in it. The polarization effect, the deformation of ion clouds surrounding the particle due to convection flow, is taken into account properly by adopting the full nonlinear Poisson-Boltzmann equation. The study reveals that recent investigation in the literature without consideration of the polarization effect could severely overestimate the particle mobility up to nearly two times if the fixed charge in the porous layer is high. The boundary effect in terms of the reduction of particle mobility is very significant when the double layer is thick and diminishes as it gets very thin. The effect of the highly charged cylindrical wall is analyzed, in particular, among other factors of electrokinetic interest. The presence of the cylindrical wall retards the particle motion in general, as compared with an isolated particle. With the generation of an electroosmotic flow, however, the charged wall can either enhance the particle motion or deter it, depending on the surface potential on the wall and the double-layer thickness. The thinner the double layer, the more significant the influence of the osmotic flow on the particle motion in general. The direction of particle motion may even change twice as the reciprocal of the double-layer thickness increases when both the wall and the particle are highly charged. This is due to the competition between the electric driving force of the charged particle and the hydrodynamic retarding force from the background electroosmotic flow. This has direct impact in practical applications of nanofluidics when a weak electric field is applied. Conducting operations near these critical double-layer thicknesses should be avoided in practice.
NASA Astrophysics Data System (ADS)
Siade, A. J.; Prommer, H.; Welter, D.
2014-12-01
Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site
NASA Astrophysics Data System (ADS)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-03-01
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.
Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code
S. Klasky; S. Ethier; Z. Lin; K. Martins; D. McCune; R. Samtaney
2003-09-15
We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory.
Squire, J.; Tang, W. M.; Qin, H.; Chandre, C.
2013-02-15
We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in H. Cendra et al., [J. Math. Phys. 39, 3138 (1998)]. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models, and Casimir type stability methods.
Extended gyrokinetic field theory for time-dependent magnetic confinement fields
Sugama, H.; Watanabe, T.-H.; Nunami, M.
2014-01-15
A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.
Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges
Howard, N. T. White, A. E.; Greenwald, M.; Holland, C.; Candy, J.
2014-03-15
Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (m{sub D}/m{sub e}){sup .5} = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al., Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron (k{sub θ}ρ{sub e}∼O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (k{sub θ}ρ{sub s} < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.
Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges
NASA Astrophysics Data System (ADS)
Howard, N. T.; White, A. E.; Greenwald, M.; Holland, C.; Candy, J.
2014-03-01
Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (mD/me).5 = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al., Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (kθρs˜O(1.0)) and electron (kθρe˜O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (kθρs < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.
From charge motion in general magnetic fields to the non perturbative gyrokinetic equation
Di Troia, C.
2015-04-15
The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.
NASA Astrophysics Data System (ADS)
Bravenec, Ronald; Citrin, Jonathan; Mantica, Paola; Garcia, Jeronimo; Pueschel, M. J.; Goerler, Tobias; Barnes, Michael; Candy, Jeff; Belli, Emily; Staebler, Gary; JET contributors Team
2015-11-01
Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree over a wide range of plasma conditions. Otherwise, agreement may simply be fortuitous. We present here linear and nonlinear comparisons of the Eulerian codes GENE, GS2, and GYRO for a variety of JET discharges. The discharges include a simplified, 2-species, circular geometry case based on an actual JET discharge, an L-mode discharge with a significant fast ion pressure fraction, and a carbon-wall low triangularity hybrid discharge. All discharges were studied at rho=0.33 where significant ion temperature peaking is observed. The benchmarking is carried out to verify the GENE predictions that fast-ion-enhanced electromagnetic stabilization is the main contributor to the low ion heat flux. Supported by U.S. Dept. of Energy through grant DE-FG02-08ER54978 and EUROfusion No. 633053.
NASA Astrophysics Data System (ADS)
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2016-09-01
In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.
Quasilinear model for energetic particle diffusion in radial and velocity space
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Bass, E. M.; Staebler, G. M.
2013-04-01
A quasilinear model for passive energetic particle (EP) turbulent diffusion in radial and velocity space is fitted and tested against nonlinear gyrokinetic tokamak simulations with the GYRO code [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)]. Off diagonal elements of a symmetric positive definite 2×2 EP diffusion matrix account for fluxes up radial (energy) gradients driven by energy (radial) gradients of the EP velocity space distribution function. The quasilinear ratio kernel of the model is provided by a simple analytic formula for the EP radial and velocity space EP diffusivity relative to radial thermal ion energy diffusivity at each linear mode of the turbulence driven by the thermal plasma. The TGLF [G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 0055909 (2007); ibid. 15, 0055908 (2008)] tokamak transport model provides the linear mode frequency and growth rates to the kernel as well as the nonlinear spectral weight for each mode.
Quasilinear model for energetic particle diffusion in radial and velocity space
Waltz, R. E.; Staebler, G. M.; Bass, E. M.
2013-04-15
A quasilinear model for passive energetic particle (EP) turbulent diffusion in radial and velocity space is fitted and tested against nonlinear gyrokinetic tokamak simulations with the GYRO code [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)]. Off diagonal elements of a symmetric positive definite 2 Multiplication-Sign 2 EP diffusion matrix account for fluxes up radial (energy) gradients driven by energy (radial) gradients of the EP velocity space distribution function. The quasilinear ratio kernel of the model is provided by a simple analytic formula for the EP radial and velocity space EP diffusivity relative to radial thermal ion energy diffusivity at each linear mode of the turbulence driven by the thermal plasma. The TGLF [G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 0055909 (2007); ibid. 15, 0055908 (2008)] tokamak transport model provides the linear mode frequency and growth rates to the kernel as well as the nonlinear spectral weight for each mode.
A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
NASA Astrophysics Data System (ADS)
Candy, J.; Belli, E. A.; Bravenec, R. V.
2016-11-01
We describe a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker-Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k⊥ → 0. To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.
NASA Astrophysics Data System (ADS)
Zank, G. P.
2015-09-01
The 14th Annual International Astrophysics Conference was held at the Sheraton Tampa Riverwalk Hotel, Tampa, Florida, USA, during the week of 19-24 April 2015. The meeting drew some 75 participants from all over the world, representing a wide range of interests and expertise in the energization of particles from the perspectives of theory, modelling and simulations, and observations. The theme of the meeting was "Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond." Energetic particles are ubiquitous to plasma environments, whether collisionless such as the supersonic solar wind, the magnetospheres of planets, the exospheres of nonmagnetized planets and comets, the heliospheric-local interstellar boundary regions, interstellar space and supernova remnant shocks, and stellar wind boundaries. Energetic particles are found too in more collisional regions such as in the solar corona, dense regions of the interstellar medium, accretion flows around stellar objects, to name a few. Particle acceleration occurs wherever plasma boundaries, magnetic and electric fields, and turbulence are present. The meeting addressed the linear and nonlinear physical processes underlying the variety of particle acceleration mechanisms, the role of particle acceleration in shaping different environments, and acceleration processes common to different regions. Both theory and observations were addressed with a view to encouraging crossdisciplinary fertilization of ideas, concepts, and techniques. The meeting addressed all aspects of particle acceleration in regions ranging from the Sun to the interplanetary medium to magnetospheres, exospheres, and comets, the boundaries of the heliosphere, and beyond to supernova remnant shocks, galactic jets, stellar winds, accretion flows, and more. The format of the meeting included 25-minute presentations punctuated by two 40-minute talks, one by Len Fisk that provided an historical overview of particle acceleration in the
Gyrokinetic analysis of shear flow instability in torodial geometry
NASA Astrophysics Data System (ADS)
Yoon, Eisung; Hahm, T. S.
2008-11-01
Motivated by recent observation of intrinsic rotation in tokamak plasmas, we study linear stability of ion gyroradius scale short wavelength fluctuations in the presence of sheared parallel flow, ion temperature gradient, and toroidal mode coupling. Our gyrokinetic approach in toroidal geometry is an extension of previous studies including those by Catto et al., [Phys. Fluids 16 1719 (1973)] Mattor and Diamond [Phys. Fluids 31 1180 (1988)], and Artun and Tang [Phys. Fluids B 4 1102 (1992)].
Verification of gyrokinetic microstability codes with an LHD configuration
Mikkelsen, D. R.; Nunami, M.; Sugama, H.; Tanaka, K.; Watanabe, T.-H.
2014-11-15
We extend previous benchmarks of the GS2 and GKV-X codes to verify their algorithms for solving the gyrokinetic Vlasov-Poisson equations for plasma microturbulence. Code benchmarks are the most complete way of verifying the correctness of implementations for the solution of mathematical models for complex physical processes such as those studied here. The linear stability calculations reported here are based on the plasma conditions of an ion-ITB plasma in the LHD configuration. The plasma parameters and the magnetic geometry differ from previous benchmarks involving these codes. We find excellent agreement between the independently written pre-processors that calculate the geometrical coefficients used in the gyrokinetic equations. Grid convergence tests are used to establish the resolution and domain size needed to obtain converged linear stability results. The agreement of the frequencies, growth rates, and eigenfunctions in the benchmarks reported here provides additional verification that the algorithms used by the GS2 and GKV-X codes are correctly finding the linear eigenvalues and eigenfunctions of the gyrokinetic Vlasov-Poisson equations.
Verification of gyrokinetic microstability codes with an LHD configuration
Mikkelsen, D. R.; Nunami, M.; Watanabe, T. -H.; Sugama, H.; Tanaka, K.
2014-11-01
We extend previous benchmarks of the GS2 and GKV-X codes to verify their algorithms for solving the gyrokinetic Vlasov-Poisson equations for plasma microturbulence. Code benchmarks are the most complete way of verifying the correctness of implementations for the solution of mathematical models for complex physical processes such as those studied here. The linear stability calculations reported here are based on the plasma conditions of an ion-ITB plasma in the LHD configuration. The plasma parameters and the magnetic geometry differ from previous benchmarks involving these codes. We find excellent agreement between the independently written pre-processors that calculate the geometrical coefficients used in the gyrokinetic equations. Grid convergence tests are used to establish the resolution and domain size needed to obtain converged linear stability results. The agreement of the frequencies, growth rates and eigenfunctions in the benchmarks reported here provides additional verification that the algorithms used by the GS2 and GKV-X codes are correctly finding the linear eigenvalues and eigenfunctions of the gyrokinetic Vlasov-Poisson equations.
COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS
WALTZ,RE; CANDY,J; ROSENBLUTH,MN
2002-09-01
OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D {rho}*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm.
NASA Astrophysics Data System (ADS)
Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander
2015-04-01
The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.
Russell, Steven J.; Carlsten, Bruce E.
2012-06-26
We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.
NASA Astrophysics Data System (ADS)
Ala-Luhtala, Juha; Whiteley, Nick; Heine, Kari; Piche, Robert
2016-09-01
Twisted particle filters are a class of sequential Monte Carlo methods recently introduced by Whiteley and Lee to improve the efficiency of marginal likelihood estimation in state-space models. The purpose of this article is to extend the twisted particle filtering methodology, establish accessible theoretical results which convey its rationale, and provide a demonstration of its practical performance within particle Markov chain Monte Carlo for estimating static model parameters. We derive twisted particle filters that incorporate systematic or multinomial resampling and information from historical particle states, and a transparent proof which identifies the optimal algorithm for marginal likelihood estimation. We demonstrate how to approximate the optimal algorithm for nonlinear state-space models with Gaussian noise and we apply such approximations to two examples: a range and bearing tracking problem and an indoor positioning problem with Bluetooth signal strength measurements. We demonstrate improvements over standard algorithms in terms of variance of marginal likelihood estimates and Markov chain autocorrelation for given CPU time, and improved tracking performance using estimated parameters.
Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks
Wang, W. X.; Diamond, P. H.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.
2010-07-07
Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by “intrinsic” torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a “flow pinch” in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
NASA Astrophysics Data System (ADS)
Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
Verification of particle simulation of radio frequency waves in fusion plasmas
NASA Astrophysics Data System (ADS)
Kuley, Animesh; Wang, Z. X.; Lin, Z.; Wessel, F.
2013-10-01
Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.
Verification of particle simulation of radio frequency waves in fusion plasmas
Kuley, Animesh; Lin, Z.; Wang, Z. X.; Wessel, F.
2013-10-15
Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.
Linear and Nonlinear Study of Fast Particle Excitation of Alfvén Eigemodes
Berk, H.L.; Chen, Y.; Cheng, C.Z.; Fu, G.Y.; Gorelenkov, N.N; Gorelenkova, M.V.; Nazikian, R.; White, R.B.
1998-11-01
Recent new results concerning toroidicity-induced Alfvén eigenmode (TAE) linear stability and nonlinear amplitude saturation and associated fast ion transport are presented for tokamaks, such as the National Spherical Torus Experiment (NSTX) and the International Thermonuclear Experimental Reactor (ITER), using the numerical codes HINST, NOVA-K, and ORBIT.
NASA Technical Reports Server (NTRS)
Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek
1995-01-01
High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.
Nonlinear acoustic-gravity waves and dust particle redistribution in earth's atmosphere
NASA Astrophysics Data System (ADS)
Izvekova, Yu. N.; Popel, S. I.; Chen, B. B.
2015-11-01
A continuously stratified model of nonadiabatic terrestrial atmosphere with taking into account the temperature profile is developed to study a possibility of instability development of acoustic-gravity (AG-) waves. It is shown that the existence of the regions in the atmosphere where the instability conditions are satisfied is due to the cooperation of thermal flow of solar radiation, infrared emission of the atmosphere, water vapor condensation, as well as thermal conductivity. Large-amplitude vortices in Earth's troposphere and ionosphere and their possible structure as well as redistribution of dust particles in the ionosphere as a result of vortical motions are discussed. The following possibilities for the dust particle redistribution are studied: capture and evolution of dust particles in AG-vortices, formation of dust vortices as a result of involving a great number of dust particles into vortex motions, and formation of vertical and horizontal dust flows (streamers and zonal flows). It is shown that excitation of AG-vortices at the ionospheric altitudes as a result of development of AG-wave instability leads to a substantial transportation of dust particles and their mixing. Layers of dust particles with a thickness of about a kilometer, forming at the altitudes less than 120 km, distribute within the region of the existence of AG-vortical structures. As a result, at altitudes of 110-120 km, dust vortices can appear, and transportation of particles up to altitudes of 130 km becomes possible. One of the ways of transportation of dust particles in the ionosphere is dust flows, which are generated by dust vortices as a result of development of parametric instability.
Global Gyrokinetic Simulation of Tokamak Edge Pedestal Instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Parker, Scott E.; Chen, Yang; Yan, Zheng; Groebner, Richard J.; Snyder, Philip B.
2012-11-01
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBM’s critical β and increase the growth rate.
NASA Astrophysics Data System (ADS)
Chen, Xi; Kramer, G. J.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Petty, C. C.; Podesta, M.; Van Zeeland, M. A.
2014-08-01
A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE—a change in wave-particle phase k · r by one mode alters the force exerted by the next. The loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ion transport.
Flight of a heavy particle nonlinearly coupled to a quantum bath
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Krüger, Matthias; Kardar, Mehran
2016-01-01
Fluctuation and dissipation are byproducts of coupling to the "environment." The Caldeira-Leggett model, a successful paradigm of quantum Brownian motion, views the environment as a collection of harmonic oscillators linearly coupled to the system. However, symmetry considerations may forbid a linear coupling, e.g., for a neutral particle in quantum electrodynamics. We argue that the absence of linear couplings can lead to a fundamentally different behavior. Specifically, we consider a heavy particle quadratically coupled to quantum fluctuations of the bath. In one dimension the particle undergoes anomalous diffusion, unfolding as a power-law distribution in space, reminiscent of Lévy flights. We suggest condensed matter analogs where similar effects may arise.
NASA Astrophysics Data System (ADS)
Ptuskin, V. S.; Zirakashvili, V. N.
The instability in the cosmic-ray precursor of a supernova shock is studied. The level of turbulence in this region determines the maximum energy of accelerated particles. The consideration is not limited by the case of weak turbulence. It is assumed that the Kolmogorov type nonlinear wave interactions together with the ion-neutral collisions restrict the amplitude of random magnetic field. As a result, the maximum energy of accelerated particles strongly depends on the age of a SNR. The average spectrum of cosmic rays injected in the interstellar medium in the course of adiabatic SNR evolution takes the approximate form E-2 at energies larger than 10 30 GeV/nucleon with the maximum energy that is close to the position of the knee in cosmic-ray spectrum at 4 × 1015 eV. At an earlier stage of SNR evolution the ejecta-dominated stage, the particles are accelerated to higher energies and have a rather steep power-law distribution. These results suggest that the knee may mark the transition from the ejecta-dominated to the adiabatic evolution of SNR shocks which accelerate cosmic rays.
Wen, S L; Liu, Y; Zhao, X C; Cheng, J W; Li, H
2014-09-14
In this paper, we report the synthesis of three kinds of novel nanosheet hierarchical cobalt particles by adjusting the [C4H4O6](2-)/Co(2+) ratio through a liquid reduction method. We investigated the electromagnetic properties of the cobalt particles in detail over the microwave frequency range of 1-18 GHz. The results show that the real part of the permittivity decreases and the imaginary part of the permeability increases with an increase in the [C4H4O6](2-)/Co(2+) ratio. The permeability displays two resonance peaks over the frequency range. The cobalt particles with [C4H4O6](2-)/Co(2+) = 6 have a maximum reflection loss of -48.03 dB at 13.61 GHz, and the effective absorption bandwidth (RL ≤ -10 dB) is 6.76 GHz corresponding to a thickness of 1.7 mm. Considering the impedance matching and attenuation based on the electromagnetic parameters, we designed a way to obtain cobalt particles with excellent microwave absorption properties by decreasing the real part of permittivity and increasing the imaginary part of permeability.
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.
2014-10-15
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.
Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma
NASA Astrophysics Data System (ADS)
Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim
2016-04-01
We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.
Gyrokinetic Transport Database and Comparisons to the TGLF Theory-Based Transport Model
NASA Astrophysics Data System (ADS)
Kinsey, J. E.; Staebler, G. M.; Waltz, R. E.; Candy, J.
2006-10-01
A database with over 300 nonlinear gyrokinetic simulations has been created using the GYRO code [1,2]. Using a parameterized equilibrium model for shaped geometry, simulations show that the GYRO normalized ITG/TEM diffusivities exhibit an inverse linear dependence on elongation at fixed midplane minor radius. Kinetic electron simulations show the ExB shear quench rule is robust in shifted circle geometry. With real geometry, the quench point varies systematically with elongation and aspect ratio. Using the results, a new version of the quench rule is found that captures the variation of the quench point with these two geometric quantities. Finally, we compare the results from the TGLF driftwave model [3] with the GYRO simulations. Using the TGLF eigenmodes, we compute quasilinear fluxes using a turbulence saturation model and assess the quality of the fit to the GYRO transport database. 4pt[1] J. Candy, R.E. Waltz, Phys. Rev. Lett. 91, 45001 (2003). [2] http://fusion.gat.com/comp/parallel [3] G.M. Staebler, J.E. Kinsey, R.E. Waltz, Phys. Plasmas 12, 102508 (2005).
Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results. PMID:26071703
NASA Astrophysics Data System (ADS)
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-01
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
NASA Astrophysics Data System (ADS)
Wu, Sheldon S. Q.; Hartemann, F. V.; Barty, C. P. J.
2010-03-01
A study of thermally-induced vacuum polarization stemming from the Euler-Heisenberg nonlinear radiation correction to Maxwell equations is conducted. While nonlinear effects associated with photon-photon scattering in the photon gas had been previously calculated, we present an analysis in the framework of stochastic electrodynamics. To lowest order of approximation, it is shown that the phase velocity of light is reduced in the presence of intense ambient electromagnetic radiation. Therefore Cherenkov radiation can be generated when charged particles traverse a region of intense blackbody radiation. Suitable conditions may be found in astrophysical environments. Cosmic ray electrons and positrons in the GeV to TeV range meet the energy requirement for this process to occur. We present calculations of the emission characteristics and conditions under which Cherenkov radiation may be observed. This effect combined with synchrotron and inverse Compton processes may lead to a more complete understanding of cosmic ray propagation. Also of interest, the question of the linearity of the relic cosmic microwave background is under investigation using this formalism and will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Gyrokinetic theory and simulation of angular momentum transport
Waltz, R. E.; Staebler, G. M.; Candy, J.; Hinton, F. L.
2007-12-15
A gyrokinetic theory of turbulent toroidal angular momentum transport as well as modifications to neoclassical poloidal rotation from turbulence is formulated starting from the fundamental six-dimensional kinetic equation. The gyro-Bohm scaled transport is evaluated from toroidal delta-f gyrokinetic simulations using the GYRO code [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. The simulations recover two pinch mechanisms in the radial transport of toroidal angular momentum: The slab geometry ExB shear pinch [Dominguez and Staebler, Phys. Fluids B 5, 387 (1993)] and the toroidal geometry 'Coriolis' pinch [Peeters, Angioni, and Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. The pinches allow the steady state null stress (or angular momentum transport flow) condition required to understand intrinsic (or spontaneous) toroidal rotation in heated tokamak without an internal source of torque [Staebler, Kinsey, and Waltz, Bull. Am. Phys. Soc. 46, 221 (2001)]. A predicted turbulent shift in the neoclassical poloidal rotation [Staebler, Phys. Plasmas 11, 1064 (2004)] appears to be small at the finite relative gyroradius (rho-star) of current experiments.
Gyrokinetic Simulation of Residual Stress from Diamagnetic Velocity Shears
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2010-11-01
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the parallel velocity (and parallel velocity itself) vanishes. Previously [1] we demonstrated with gyrokinetic (GYRO) simulations that TAM pinching from the diamagnetic level shear in the ExB velocity could provide the residual stress needed for spontaneous toroidal rotation. Here we show that the shear in the diamagnetic velocities themselves provide comparable residual stress (and level of stabilization). The sign of the residual stress, quantified by the ratio of TAM flow to ion power flow (M/P), depends on the signs of the various velocity shears as well as ion (ITG) versus electron (TEM) mode directed turbulence. The residual stress from these temperature and density gradient diamagnetic velocity shears is demonstrated in global gyrokinetic simulation of ``null'' rotation DIIID discharges by matching M/P profiles within experimental error. 8pt [1] R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009).
Search for the Missing L-mode Edge Transport and Possible Breakdown of Gyrokinetics
NASA Astrophysics Data System (ADS)
Waltz, R. E.
2012-10-01
While GYRO simulations of typical core (0 < r/a < 0.7) DIII-D L-modes seems to be in good agreement with experiment, simulated low-k (kθρs< 1) transport and turbulence intensity is more than 5-fold lower than experimentally inferred levels in the near edge L-mode (r/a=0.7-0.95) DIII-D shot 128913 [1]. Global edge slice GYRO simulations of this and the well-studied discharge 101391 [2] are presented here to document the shortfall. TGLF transport code simulations over a large L-mode database indicate this short fall is not atypical so that L-mode edges transit to H-like pedestal profiles contrary to experiment. High edge e-i collisionality stabilizes the TEM modes so that diffusivities (χ) decrease like T^7/2/n to the cold edge. The very high magnetic shear and density gradients stabilize the ITG despite the very high temperature gradient drive and high q. High-k ETG can make-up for the shortfall in the electron but increases ion transport very little. Near L-edge transport is highly local. Focusing on local simulations at r/a=0.9, the ion channel short fall can exceed 10-fold. An artificial 10-fold increase in collisionality is needed to reach the expected resistive g-mode scaling with χ increasing like nT-1/2. Identical GYRO drift kinetic ion simulations (suppressing the gyroaverage) are close to experiment levels suggesting a possible breakdown of low-frequency gyrokinetics. Formulation of a nonlinear theory of 6D drift-cyclotron kinetics following the fast time scale of the gyrophase to test the breakdown of 5D gyrokinetics with reduced model simulations is presented. 6pt [1] C. Holland, A.E. White, et al., Phys. Plasmas 16, 052301 (2009). [2] R.E. Waltz, J. Candy, C.C. Petty, Phys. Plasmas 13, 072304 (2006).
NASA Astrophysics Data System (ADS)
Fogaccia, G.; Vlad, G.; Briguglio, S.
2016-11-01
Resonant interaction between energetic particles (EPs), produced by fusion reactions and/or additional heating systems, and shear Alfvén modes can destabilize global Alfvénic modes enhancing the EP transport. In order to investigate the EP transport in present and next generation fusion devices, numerical simulations are recognized as a very important tool. Among the various numerical models, the hybrid MHD gyrokinetic one has shown to be a valid compromise between a sufficiently accurate wave-particle interaction description and affordable computational resource requirements. This paper presents a linear benchmark between the hybrid codes HYMAGYC and HMGC. The HYMAGYC code solves the full, linear MHD equations in general curvilinear geometry for the bulk plasma and describes the EP population by the nonlinear gyrokinetic Vlasov equation. On the other side, HMGC solves the nonlinear, reduced O≤ft(ε 03\\right) , pressureless MHD equations ({ε0} being the inverse aspect ratio) for the bulk plasma and the drift kinetic Vlasov equation for the EPs. The results of the HYMAGYC and HMGC codes have been compared both in the MHD limit and in a wide range of the EP parameter space for two test cases (one of which being the so-called TAE n = 6 ITPA Energetic Particle Group test case), both characterized by {ε0}\\ll 1 . In the first test case (test case A), good qualitative agreement is found w.r.t. real frequencies, growth rates and spatial structures of the most unstable modes, with some quantitative differences for the growth rates. For the so-called ITPA test case (test case B), at the nominal energetic particle density value, the disagreement between the two codes is, on the contrary, also qualitative, as a different mode is found as the most unstable one.
On the dynamics of nonlinear, unsteady landslide flow within the smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Khvostova, O.; Averbukh, E.
2012-04-01
In the present study the idea of landslide modeling by particle method is described. Smoothed particle hydrodynamics was invented in 1977 by Leon Lucy and independently by Bob Gingold and Joe Monaghan [1]. It was used for astrophysics phenomena's simulation. Later it was adapted for hydrodynamics, gas dynamics and solid body problems. Landslides can be caused by the influence of different factors. Landslides occur when the angle of inclination of the slope of the slope or if the slope is burdened with loose material. A landslide flow is a thin homogeneous layer of nearly incompressible fluid. It is considered that at the initial moment shifted part of a ground mass is splitting and turning into liquid of several layers which then is streaming down along the slope. The landslide flow motion is described with the Navie-Stocks set of equations: D→u-= - 1\\upsidedownBigTriangle P + μ \\upsidedownBigTriangle →u + g Dt ρ (1) D-ρ = 0, Dt (2) where u is velocity vector, t is time, ρ is a flow density, P is a pressure, μ is a viscosity coefficient, g is gravity. Continuum discretization by finite number of lagrangian particles is the main idea of SPH [2,3]. Particles moves with the flow and arbitrary connectivity is allowed. Therefore, SPH does not need a grid to calculate spatial derivatives. For any field A(r), involved in equation (1), e.g. pressure, density, viscosity etc., we consider an approximation with a finite function: A(r) = ∫ω A (r')W (r- r',h)dr' (3) where A is a desired field, r is a radius-vector, W is an interpolating kernel. The free boundary condition problem is discussed. Finding the particles on a free surface is described. Also the surface tension force defining is shown. Described method is implemented and mathematical modeling of landslide flows motion along slope is simulated. Different types of slopes are considered: with constant and variable steepness, long and wide. Wave-breaking effects near the wall are shown. Findings are analyzed
Edward A. Startsev; Ronald C. Davidson
2004-04-09
To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.
Bell, Iris R.; Ives, John A.; Jonas, Wayne B.
2014-01-01
Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles. PMID:24910581
Cummings, Julian C.
2013-05-15
This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.
Higher Harmonics In Vacuum From Nonlinear QED Effects without Low-Mass Intermediate Particles
Tito Mendonca, J.; Dias de Deus, J.; Castelo Ferreira, P.
2006-09-08
We show that in the presence of a slowly rotating strong transverse magnetic field there is an infinite spectrum of harmonic wave functions A{sub n} due to the first order QED correction (in {alpha}{sup 2}) given by the Euler-Heisenberg Lagrangian. The frequency shifts are integer multiples {+-}{omega}{sub 0}n of the magnetic field angular frequency rotation {omega}{sub 0}=2{pi}{nu}{sub m}, and the several modes n are coupled to the nearest harmonics n{+-}1. This is a new effect due to QED vacuum fluctuations, not exploited before, that can explain, both qualitatively and quantitatively, the recent experimental results of the PVLAS collaboration without the need of a low-mass intermediate particle, hence may dismiss the recent claim of the discovery of the axion.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
Conservation equations and calculation of mean flows in gyrokinetics
Abiteboul, J.; Garbet, X.; Grandgirard, V.; Allfrey, S. J.; Ghendrih, Ph.; Latu, G.; Sarazin, Y.; Strugarek, A.
2011-08-15
Conservation equations are derived for the gyrocenter toroidal momentum density and the polarization field. These equations are derived from the gyrokinetic model as it is implemented in simulation codes. In view of predicting the toroidal rotation in future fusion devices such as ITER, where external momentum input will be small, accurate simulations of momentum transport are crucial. The evolution equation for gyrocenter toroidal momentum density involves the divergence of the off-diagonal components of the Reynolds and generalized Maxwell stress, while the source term is the radial current of gyrocenters. The time evolution of the polarization field is the opposite of the gyrocenter current. Hence, an evolution equation for the total momentum density, i.e., the sum of gyrocenter and polarization field toroidal momentum density can be written. The force balance equation and the toroidal momentum conservation equations have been numerically tested with the gysela code. They are satisfied with a high level of accuracy.
Electron heat transport from stochastic fields in gyrokinetic simulations
Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.
2011-05-15
GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as {beta}{sub e} is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of {beta}{sub e}. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, d{sub m}[A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.
Gyrokinetic modeling: A multi-water-bag approach
Morel, P.; Gravier, E.; Besse, N.; Klein, R.; Ghizzo, A.; Bertrand, P.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; Sarazin, Y.
2007-11-15
Predicting turbulent transport in nearly collisionless fusion plasmas requires one to solve kinetic (or, more precisely, gyrokinetic) equations. In spite of considerable progress, several pending issues remain; although more accurate, the kinetic calculation of turbulent transport is much more demanding in computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations while keeping its kinetic character. The main result for the water-bag model is a lower cost in the parallel velocity direction since no differential operator associated with some approximate numerical scheme has to be carried out on this variable v{sub parallel}. Indeed, a small bag number is sufficient to correctly describe the ion temperature gradient instability.
Electron heat transport from stochastic fields in gyrokinetic simulationsa)
NASA Astrophysics Data System (ADS)
Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.
2011-05-01
GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as βe is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of βe. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, dm [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.
Discoveries From the Exploration of Gyrokinetic Momentum Transport
NASA Astrophysics Data System (ADS)
Staebler, G. M.
2010-11-01
Gyrokinetic momentum transport can be driven by a variety of mechanisms that break the parity along the magnetic field: parallel and ExB velocity shear, parallel velocity, up/down flux surface asymmetry. In this work, the discovery of interesting properties of these mechanisms and a new mechanism will be reported. The first result is that the Kelvin Helmholtz (KH) mode driven by parallel velocity shear can drive a net negative energy flux when the temperature and density gradients are below the threshold for drift-wave instabilities. The signature of a negative ion energy flow from turbulence would be a power balance effective diffusivity that is below the neoclassical ion thermal diffusivity. The second result is the prediction that the effective momentum transport should depend on the relative sign between the toroidal magnetic field and the toroidal rotation. This follows from the relative sign between the ExB velocity shear in the Doppler shift of the gyro-kinetic equation and the parallel velocity shear term. This is a corollary effect to the property that the toroidal viscous stress can be zero (e.g. for no external torque) even when both the velocity shears are not zero. The two terms try and break the linear mode parity and can cancel each other out giving a net zero stress. A practical solution to the longstanding problem of including ExB velocity shear in linear driftwave eigenmodes in toroidal geometry has recently been developed for the TGLF gyro-fluid transport model. Simulations of momentum transport with TGLF will be compared with DIII-D data. Finally, when the ExB velocity is balance by the ion diamagnetic velocity, as in the H-mode edge, it has been discovered that the net stabilizing effect of the ExB shear is far stronger. The shear in the diamagnetic velocity is yet another symmetry breaking mechanism driving momentum transport.
Collisional tests and an extension of the TEMPEST continuum gyrokinetic code
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.
2006-04-01
An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).
Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament
Sydora, R. D.; Morales, G. J.; Maggs, J. E.; Van Compernolle, B.
2015-10-15
An electromagnetic, 3D gyrokinetic particle code is used to study the relaxation of a magnetized electron temperature filament embedded in a large, uniform plasma of lower temperature. The study provides insight into the role played by unstable drift-Alfvén waves observed in a basic electron heat transport experiment [D. C. Pace et al., Phys. Plasmas 15, 122304 (2008)] in which anomalous cross-field transport has been documented. The simulation exhibits the early growth of temperature-gradient-driven, drift-Alfvén fluctuations that closely match the eigenmodes predicted by linear theory. At the onset of saturation, the unstable fluctuations display a spiral spatial pattern, similar to that observed in the laboratory, which causes the rearrangement of the temperature profile. After saturation of the linear instability, the system exhibits a markedly different behavior depending on the inclusion in the computation of modes without variation along the magnetic field, i.e., k{sub z} = 0. In their absence, the initial filament evolves into a broadened temperature profile, self-consistent with undamped, finite amplitude drift-Alfvén waves. But the inclusion of k{sub z} = 0 modes causes the destruction of the filament and damping of the drift-Alfvén modes leading to a final state consisting of undamped convective cells and multiple, smaller-scale filaments.
Schroer, Carsten F. E.; Heuer, Andreas
2015-12-14
In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.
NASA Astrophysics Data System (ADS)
Schroer, Carsten F. E.; Heuer, Andreas
2015-12-01
In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.
Linear and nonlinear wave-particle interactions. Ph.D. Thesis
Ho, A.Y.
1994-12-31
In part 1, a quasi-particle approach is adopted to examine the effect of ionospheric irregularities on the propagation of beacon satellite signals through the ionosphere. The experimental data corresponding to the Bottomside Sinusoidal (BSS) irregularity is used to validate the approach. Good agreement in the scintillation index S4 is found. It is demonstrated that a traveling BSS irregularity can indeed cause a scintillation in the transionospheric signal in agreement with the experimental measurements. The theory is then used to make a prediction for future experimental observations. In part 2, the authors show that when an energetic proton originally trapped by the geomagnetic mirror field near the equator interacts with a Kinetic Alfven Wave (KAW), its trajectory may become chaotic. As a result of this chaotic motion, the proton will escape from its confines and either precipitate into the polar region or drift downward into the lower altitude region. A cyclotron average is first used to reduce the number of degrees of freedom of the system from 2.5 to 1.5 so that the chaoticity of the system can be revealed by Poincare surface of section method. Next, a Lyapunov exponent analysis for limited cases of initial conditions provides a quantitative measure of chaos. In the chaotic region, the longitudinal motion of the proton is shown to involve irregular oscillation in excursion amplitude leading to proton diffusion into the loss cone. The proton also drifts radially via a nonzero average E x B drift velocity acquired in the interaction with the wave. In part 3, an experiment is performed to study the electromagnetic wave absorption and scattering properties of the structured and lossy plasma for use in a radar cloaking device. Measurements of microwave attenuation and scattering by a hollow cathode produced plasma column show greater than 20 dB attenuation in transmission for wave frequency range of 3.5 to 11 GHz.
NASA Astrophysics Data System (ADS)
Suwa, T.; Imamura, F.; Sugawara, D.; Ogasawara, K.; Watanabe, M.; Hirahara, T.
2014-12-01
A tsunami simulator integrating a 3-D fluid simulation technology that runs on large-scale parallel computers using smoothed-particle hydrodynamics (SPH) method has been developed together with a 2-D tsunami propagation simulation technique using a nonlinear shallow water wave model. We use the 2-D simulation to calculate tsunami propagation of scale of about 1000km from epicenter to near shore. The 3-D SPH method can be used to calculate the water surface and hydraulic force that a tsunami can exert on a building, and to simulate flooding patterns at urban area of at most km scale. With our simulator we can also see three dimensional fluid feature such as complex changes a tsunami undergoes as it interacts with coastal topography or structures. As a result it is hoped that, e.g. , effect of the structures to dissipate waves energy passing over it can be elucidated. The authors utilize the simulator in the third of five fields of the Strategic Programs for Innovative Research, "Advanced Prediction Researches for Natural Disaster Prevention and Reduction," or the theme "Improvement of the tsunami forecasting system on the HPCI computer." The results of tsunami simulation using the K computer will be reported. We are going to apply it to a real problem of the disaster prevention in future.
Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric
2007-10-07
The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.
NASA Astrophysics Data System (ADS)
Majles Ara, M. H.; Naderi, H.; Mobasheri, A.; Rajabi, M. H.; Malekfar, R.; Koushki, E.
2013-02-01
We synthesized PVP/TiO2 nano-fibers doping with Ag colloid nano-particles by electro-spinning method. These nano-fibers were characterized by UV/visible/NIR spectroscopy, SEM and XRD. The image of SEM showed that the synthesized nano-fibers were monotonous and without knot and had a diameter about 150 nm. We also measured the nonlinear refractive and absorption indexes of the sample in three different intensities using the single beam Z-scan method by a continuous wave (CW) He-Ne laser at 632.8 nm wavelength. The nonlinear refraction indexes of these nano-fibers were measured in order of 10-7 (cm2/W) with negative sign and the nonlinear absorption coefficient was obtained in order of 10-3 (cm/W).
Baumgaertel, J. A.; Redi, M. H.; Budny, R. V.; Rewoldt, G.; Dorland, W.
2005-10-19
Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER.
NASA Astrophysics Data System (ADS)
Fitzgerald, M.; Sharapov, S. E.; Rodrigues, P.; Borba, D.
2016-11-01
We use the HAGIS code to compute the nonlinear stability of the Q = 10 ITER baseline scenario to toroidal Alfvén eigenmodes (TAE) and the subsequent effects of these modes on fusion alpha-particle redistribution. Our calculations build upon an earlier linear stability survey (Rodrigues et al 2015 Nucl. Fusion 55 083003) which provides accurate values of bulk ion, impurity ion and electron thermal Landau damping for our HAGIS calculations. Nonlinear calculations of up to 129 coupled TAEs with toroidal mode numbers in the range n = 1-35 have been performed. The effects of frequency sweeping were also included to examine possible phase space hole and clump convective transport. We find that even parity core localised modes are dominant (expected from linear theory), and that linearly stable global modes are destabilised nonlinearly. Landau damping is found to be important in reducing saturation amplitudes of coupled modes to below δ {{B}r}/{{B}0}˜ 3× {{10}-4} . For these amplitudes, stochastic transport of alpha-particles occurs in a narrow region where predominantly core localised modes are found, implying the formation of a transport barrier at r/a≈ 0.5 , beyond which, the weakly driven global modes are found. We find that for flat q profiles in this baseline scenario, alpha particle transport losses and redistribution by TAEs is minimal.
Nonlinear evolution of drift instabilities in the presence of collisions
Federici, J.F.; Lee, W.W.; Tang, W.M.
1986-07-01
Nonlinear evolution of drift instabilities in the presence of electron-ion collisions in a shear-free slab has been studied by using gyrokinetic particle simulation techniques as well as by solving, both numerically and analytically, model mode-coupling equations. The purpose of the investigation is to determine the mechanisms responsible for the nonlinear saturation of the instability and for the ensuing steady-state transport. Such an insight is very valuable for understanding drift wave problems in more complicated geometries. The results indicate that the electron E x B convection is the dominant mechanism for saturation. It is also found that the saturation amplitude and the associated quasilinear diffusion are greatly enhanced over their collisionless values as a result of weak collisions. In the highly collisional (fluid) limit, there is an upper bound for saturation with ephi/T/sub e/ approx. = (..omega../sub l//..cap omega../sub i/)/(k/sub perpendicular/rho/sub s/)/sup 2/. The associated quasilinear diffusion, which increases with collisionality, takes the form of D/sub ql/ approx. = ..gamma../sub l//k/sub perpendicular//sup 2/, where ..omega../sub l/ and ..gamma../sub l/ are the linear frequency and growth rate, respectively. In the steady state, the diffusion process becomes stochastic in nature. The relevant mechanisms here are related to the velocity-space nonlinearities and background fluctuations. The magnitude of the diffusion at this stage can be comparable to that of quasilinear diffusion in the presence of collisions, and it remains finite even in the collisionless limit.
Gyrokinetic simulation of driftwave instability in field-reversed configuration
NASA Astrophysics Data System (ADS)
Fulton, Daniel
2015-11-01
Following the recent remarkable progress in MHD stability control in the C-2U advanced beam driven field-reversed configuration (FRC)[M. Binderbauer et al 2015], turbulent transport has become the foremost obstacle on the path towards an FRC-based fusion reactor. Significant effort has been put into expanding kinetic simulation capabilities in FRC magnetic geometry. The Gyrokinetic Toroidal Code (GTC) has been upgraded to accommodate realistic magnetic geometry from the C-2U experiment and to optimize the field solver for the FRC's field line orientation. Initial linear electrostatic GTC simulations find ion-scale instabilities are not present in the FRC core due to the large gyroradius of thermal ions, while electron drift-interchange modes are driven by the electron temperature gradient and bad magnetic curvature. Simulation in the FRC scrape-off layer finds density gradient driven ion scale fluctuations. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, a new kinetic code has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately provide boundary conditions for the plasma confinement. Initial results and future development targets are discussed.
The next-generation ESL continuum gyrokinetic edge code
NASA Astrophysics Data System (ADS)
Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T.; Collela, P.; Martin, D.
2009-05-01
The Edge Simulation Laboratory (ESL) project is developing continuum-based approaches to kinetic simulation of edge plasmas. A new code is being developed, based on a conservative formulation and fourth-order discretization of full-f gyrokinetic equations in parallel-velocity, magnetic-moment coordinates. The code exploits mapped multiblock grids to deal with the geometric complexities of the edge region, and utilizes a new flux limiter [P. Colella and M.D. Sekora, JCP 227, 7069 (2008)] to suppress unphysical oscillations about discontinuities while maintaining high-order accuracy elsewhere. The code is just becoming operational; we will report initial tests for neoclassical orbit calculations in closed-flux surface and limiter (closed plus open flux surfaces) geometry. It is anticipated that the algorithmic refinements in the new code will address the slow numerical instability that was observed in some long simulations with the existing TEMPEST code. We will also discuss the status and plans for physics enhancements to the new code.
Full-f gyrokinetic simulation over a confinement time
Idomura, Yasuhiro
2014-02-15
A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations.
Web Interface Connecting Gyrokinetic Turbulence Simulations with Tokamak Fusion Data
NASA Astrophysics Data System (ADS)
Suarez, A.; Ernst, D. R.
2005-10-01
We are developing a comprehensive interface to connect plasma microturbulence simulation codes with experimental data in the U.S. and abroad. This website automates the preparation and launch of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data. The functionality of existing standalone interfaces, such as GS2/PREP [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)], in use for several years for the GS2 code [W. Dorland et al., Phys. Rev. Lett. 85(26) 5579 (2000)], will be extended to other codes, including GYRO [J. Candy / R.E. Waltz, J. Comput. Phys.186, (2003) 545]. Data is read from mdsplus and TRANSP [\\underline {http://w3.pppl.gov/transp}] and can be viewed using a java plotter, Webgraph, developed for this project by previous students Geoffrey Catto and Bo Feng. User sessions are tracked and saved to allow users to access their previous simulations, which can be used as templates for future work.
Gyrokinetic simulation of driftwave instability in field-reversed configuration
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.
2016-05-01
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.
Hatch, David R.; Del-Castillo-Negrete, Diego B; Terry, P.W.
2012-01-01
Higher order singular value decomposition (HOSVD) is explored as a tool for analyzing and compressing gyrokinetic data. An efficient numerical implementation of an HOSVD algorithm is described. HOSVD is used to analyze the full six-dimensional (three spatial, two velocity space, and time dimensions) gyrocenter distribution function from gyrokinetic simulations of ion temperature gradient, electron temperature gradient, and trapped electron mode driven turbulence. The HOSVD eigenvalues for the velocity space coordinates decay very rapidly, indicating that only a few structures in velocity space can capture the most important dynamics. In almost all of the cases studied, HOSVD extracts parallel velocity space structures which are very similar to orthogonal polynomials. HOSVD is also used to compress gyrokinetic datasets, an application in which it is shown to significantly outperform the more commonly used singular value decomposition. It is shown that the effectiveness of the HOSVD compression improves as the dimensionality of the dataset increases. (C) 2012 Elsevier Inc. All rights reserved.
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-15
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L; Emelko, Monica B
2015-12-11
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or "sag effect" was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-01-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159
NASA Astrophysics Data System (ADS)
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones
Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin
2016-01-15
Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods.
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Szepesi, G.; Hawkes, N.; Lerche, E.; Migliano, P.; Peeters, A.; Sozzi, C.; Tsalas, M.; Van Eester, D.; Contributors, JET
2015-09-01
The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and Te modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of |\
NASA Astrophysics Data System (ADS)
Nakata, Motoki; Honda, Mitsuru; Yoshida, Maiko; Urano, Hajime; Nunami, Masanori; Maeyama, Shinya; Watanabe, Tomo-Hiko; Sugama, Hideo
2016-08-01
Quantitative validation studies of flux-tube gyrokinetic Vlasov simulations on ion and electron heat transport are carried out for the JT-60U tokamak experiment. The ion temperature gradient (ITG) and/or trapped electron modes (TEM) driven turbulent transport and zonal flow generations are investigated for an L-mode plasma in the local turbulence limit with a sufficiently small normalized ion thermal gyroradius and weak mean radial electric fields. Nonlinear turbulence simulations by the GKV code successfully reproduce radial profiles of the ion and electron energy fluxes in the core region. The numerical results show that the TEM-driven zonal flow generation in the outer region is more significant than that in the core region with ITG- and ITG–TEM-dominated turbulence, leading to moderate transport shortfall of the ion energy flux. Error levels in the prediction of the ion and electron temperature gradient profiles in the core region are estimated as less than +/- 30% , based on a multiple flux matching technique, where the simulated ion and electron energy fluxes are simultaneously matched to the experimental values.
NASA Astrophysics Data System (ADS)
Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.
2016-04-01
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
NASA Astrophysics Data System (ADS)
Nakata, Motoki; Honda, Mitsuru; Yoshida, Maiko; Urano, Hajime; Nunami, Masanori; Maeyama, Shinya; Watanabe, Tomo-Hiko; Sugama, Hideo
2016-08-01
Quantitative validation studies of flux-tube gyrokinetic Vlasov simulations on ion and electron heat transport are carried out for the JT-60U tokamak experiment. The ion temperature gradient (ITG) and/or trapped electron modes (TEM) driven turbulent transport and zonal flow generations are investigated for an L-mode plasma in the local turbulence limit with a sufficiently small normalized ion thermal gyroradius and weak mean radial electric fields. Nonlinear turbulence simulations by the GKV code successfully reproduce radial profiles of the ion and electron energy fluxes in the core region. The numerical results show that the TEM-driven zonal flow generation in the outer region is more significant than that in the core region with ITG- and ITG-TEM-dominated turbulence, leading to moderate transport shortfall of the ion energy flux. Error levels in the prediction of the ion and electron temperature gradient profiles in the core region are estimated as less than +/- 30% , based on a multiple flux matching technique, where the simulated ion and electron energy fluxes are simultaneously matched to the experimental values.
Linear dispersion relation for the mirror instability in context of the gyrokinetic theory
Porazik, Peter; Johnson, Jay R.
2013-10-15
The linear dispersion relation for the mirror instability is discussed in context of the gyrokinetic theory. The objective is to provide a coherent view of different kinetic approaches used to derive the dispersion relation. The method based on gyrocenter phase space transformations is adopted in order to display the origin and ordering of various terms.
Verification of Gyrokinetic (delta)f Simulations of Electron Temperature Gradient Turbulence
Nevins, W M; Parker, S E; Chen, Y; Candy, J; Dimits, A; Dorland, W; Hammett, G W; Jenko, F
2007-05-07
The GEM gyrokinetic {delta}f simulation code [Chen, 2003] [Chen, 2007] is shown to reproduce electron temperature gradient turbulence at the benchmark operating point established in previous work [Nevins, 2006]. The electron thermal transport is within 10% of the expected value, while the turbulent fluctuation spectrum is shown to have the expected intensity and two-point correlation function.
NASA Astrophysics Data System (ADS)
Bass, E. M.; Waltz, R. E.
2012-10-01
In ITER, convection of fusion-produced alpha particles by energetic particle (EP)-driven Alfv'en eigenmodes (AEs) risks wall damage and loss of alpha heating needed for ignition. We examine beam-excited AEs and induced quasilinear transport in a DIII-D AE experiment using the gyrokinetic code GYRO [1]. Global, linear eigenvalue simulations show reverse-shear AEs (RSAEs), toroidal AEs, and beta-induced AEs interacting over one (equilibrium time scale) RSAE frequency sweep. Eigenfunction modifications over MHD, including a poloidal twist and broad AE footprint observed in electron cyclotron emission imaging [2], show the value of a kinetic approach. Under a simple quasilinear saturation assumption, a sequence of comparatively inexpensive local simulations quantitatively recreates some global features, notably the quasilinear transport footprint. Accordingly, we present here a stiff EP transport model where AEs limit the EP density gradient to the local stability threshold, and a TGLF-driven quasilinear model elsewhere. The model gives some``worst case'' predictions of the AE-limited alpha profile in ITER.[4pt] [1] J. Candy and R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003). [2] B.J. Tobias, et al., Phys. Rev. Lett. 106, 075003 (2011).
Nonlinear Turbulence Simulations for NSTX H-modes
M. H. Redi; S. Kaye; W. Dorland; R. Bell; C. Bourdelle; S. Ethier; D. Gates; G. Hammett; K. Hill; B. LeBlanc; D. McCune; J. Menard; D. Mikkelsen; G. Rewoldt; E. Synakowski
2004-06-22
Present evidence points to remarkably resilient electron temperature profiles in high-density H-mode plasmas on the National Spherical Torus Experiment (NSTX), suggesting that the underlying electron thermal transport mechanisms respond in a highly nonlinear fashion to changes in the gradients. This paper uses measured plasma profiles as input to linear gyrokinetic analysis to identify candidate micro-instabilities that may be responsible for the electron thermal transport. The criteria for useful nonlinear micro-stability analyses are discussed along with necessary approximations and computational issues.
NASA Astrophysics Data System (ADS)
Lin, Z.
2014-10-01
-ion density relaxes to similar profiles for all injection angles. Further verification and validation of these reduced models by existing tokamak experiments and nonlinear simulations are needed. Impressive progress in first-principles simulations of Alfvén eigenmodes and energetic particle transport was prominently featured at the meeting. Rigorous verification and validation have been successfully carried out for global gyrokinetic simulations of Alfvén eigenmodes with kinetic effects of thermal plasmas and non-perturbative contributions by energetic particles. The gyrokinetic turbulence simulation provides an indispensable new capability for studying the nonlinear physics of energetic particles and Alfvén eigenmodes by incorporating important physics of radial variations and toroidal mode coupling. For example, gyrokinetic simulations have found nonlinear oscillations of Alfvén eigenmode amplitude and frequency consistent with experimental observations. With better understanding of linear and nonlinear properties of Alfvén eigenmodes, a fruitful future direction is the self-consistent simulation of energetic particle transport, which requires long time simulations of nonlinear interactions between multiple Alfvén eigenmodes. A significant step in this direction has been taken by MHD-gyrokinetic hybrid simulations, which have demonstrated that fast ion profile is flattened by enhanced transport due to resonance overlaps in multiple interacting Alfvén eigenmodes with realistic amplitudes. A very interesting physics here is that the re-distribution of the energetic particle profile by an initially dominant Alfvén eigenmode leads to the excitation of other Alfvén eigenmodes. The broaden phase space volume for the extraction of free energy can then drive large fluctuation amplitudes and enhanced energetic particle transport. Some experimental evidences of such indirect interaction of multiple modes through energetic particles were observed in JT-60U and ASDEX
Chen, Guangye; Chacon, Luis; Barnes, Daniel C
2012-01-01
Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been developed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230, 18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver and is capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle orbit integrations from the field solver, while remaining fully self-consistent. This provides great flexibility, and dramatically improves the solver efficiency by reducing the degrees of freedom of the associated nonlinear system. However, it requires a particle push per nonlinear residual evaluation, which makes the particle push the most time-consuming operation in the algorithm. This paper describes a very efficient mixed-precision, hybrid CPU-GPU implementation of the implicit PIC algorithm. The JFNK solver is kept on the CPU (in double precision), while the inherent data parallelism of the particle mover is exploited by implementing it in single-precision on a graphics processing unit (GPU) using CUDA. Performance-oriented optimizations, with the aid of an analytical performance model, the roofline model, are employed. Despite being highly dynamic, the adaptive, charge-conserving particle mover algorithm achieves up to 300 400 GOp/s (including single-precision floating-point, integer, and logic operations) on a Nvidia GeForce GTX580, corresponding to 20 25% absolute GPU efficiency (against the peak theoretical performance) and 50-70% intrinsic efficiency (against the algorithm s maximum operational throughput, which neglects all latencies). This is about 200-300 times faster than an equivalent serial CPU implementation. When the single-precision GPU particle mover is combined with a double-precision CPU JFNK field solver, overall performance gains 100 vs. the double-precision CPU-only serial version are obtained, with no apparent loss of
Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.
2008-09-15
The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.
NASA Astrophysics Data System (ADS)
Tsai, Jun-Yi; Tsai, Ya-Yi; I, Lin
2015-01-01
The wave-particle dynamics for the evolutions of defects and surrounding pitchfork type waveforms of a weakly disordered self-excited dust acoustic wave is experimentally investigated in an rf dusty plasma system. Particle trajectories are tracked and correlated with waveform evolution to construct an Eulerian-Lagrangian wave-particle dynamical picture. It is found that the local accumulation and depletion of particles in the wave crest and rear, respectively, determines the local crest speed, and the growth and decay of the local crest height, which in turn determine the waveform evolution. The local crest height and the focusing and defocusing of particle trajectories due to the transverse force fields from the tilted wave crest and the non-uniform crest height along the wave crest are the key factors to determine the above particle accumulation and depletion. It explains the observations such as the lower speed of smaller crests, the straightening of the leading front of the pitchfork waveform associated with the transverse motion of defect to the open side, and the vertical defect gliding in the wave frame through the detachment of the strongly kinked pitchfork branch followed by its reconnection with the trailing crest.
Tsai, Jun-Yi; Tsai, Ya-Yi; I, Lin
2015-01-15
The wave-particle dynamics for the evolutions of defects and surrounding pitchfork type waveforms of a weakly disordered self-excited dust acoustic wave is experimentally investigated in an rf dusty plasma system. Particle trajectories are tracked and correlated with waveform evolution to construct an Eulerian-Lagrangian wave-particle dynamical picture. It is found that the local accumulation and depletion of particles in the wave crest and rear, respectively, determines the local crest speed, and the growth and decay of the local crest height, which in turn determine the waveform evolution. The local crest height and the focusing and defocusing of particle trajectories due to the transverse force fields from the tilted wave crest and the non-uniform crest height along the wave crest are the key factors to determine the above particle accumulation and depletion. It explains the observations such as the lower speed of smaller crests, the straightening of the leading front of the pitchfork waveform associated with the transverse motion of defect to the open side, and the vertical defect gliding in the wave frame through the detachment of the strongly kinked pitchfork branch followed by its reconnection with the trailing crest.
NASA Astrophysics Data System (ADS)
Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu
2016-01-01
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.
Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu
2016-07-07
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu
2016-07-01
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-01
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E ×B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E ×B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E ×B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and
Global gyrokinetic simulations of trapped-electron mode and trapped-ion mode microturbulence
NASA Astrophysics Data System (ADS)
Drouot, T.; Gravier, E.; Reveille, T.; Sarrat, M.; Collard, M.; Bertrand, P.; Cartier-Michaud, T.; Ghendrih, P.; Sarazin, Y.; Garbet, X.
2015-08-01
This paper presents a reduced kinetic model, which describes simultaneously trapped-ion (TIM) and trapped-electron (TEM) driven modes. Interestingly, the model enables the study of a full f problem for ion and electron trapped particles at very low numerical cost. The linear growth rate obtained with the full f nonlinear code Trapped Element REduction in Semi Lagrangian Approach is successfully compared with analytical predictions. Moreover, nonlinear results show some basic properties of collisionless TEM and TIM turbulence in tokamaks. A competition between streamer-like structures and zonal flows is observed for TEM and TIM turbulence. Zonal flows are shown to play an important role in suppressing the nonlinear transport and strongly depend on the temperature ratio Te/Ti .
Mehdian, H. Kargarian, A.; Hajisharifi, K.
2015-06-15
In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.
Geodesic acoustic mode in anisotropic plasmas using double adiabatic model and gyro-kinetic equation
Ren, Haijun; Cao, Jintao
2014-12-15
Geodesic acoustic mode in anisotropic tokamak plasmas is theoretically analyzed by using double adiabatic model and gyro-kinetic equation. The bi-Maxwellian distribution function for guiding-center ions is assumed to obtain a self-consistent form, yielding pressures satisfying the magnetohydrodynamic (MHD) anisotropic equilibrium condition. The double adiabatic model gives the dispersion relation of geodesic acoustic mode (GAM), which agrees well with the one derived from gyro-kinetic equation. The GAM frequency increases with the ratio of pressures, p{sub ⊥}/p{sub ∥}, and the Landau damping rate is dramatically decreased by p{sub ⊥}/p{sub ∥}. MHD result shows a low-frequency zonal flow existing for all p{sub ⊥}/p{sub ∥}, while according to the kinetic dispersion relation, no low-frequency branch exists for p{sub ⊥}/p{sub ∥}≳ 2.
Gyrokinetic study of electromagnetic effects on toroidal momentum transport in tokamak plasmas
Hein, T.; Angioni, C.; Fable, E.; Candy, J.; Peeters, A. G.
2011-07-15
The effect of a finite {beta}{sub e} = 8{pi}n{sub e}T{sub e}/B{sup 2} on the turbulent transport of toroidal momentum in tokamak plasmas is discussed. From an analytical gyrokinetic model as well as local linear gyrokinetic simulations, it is shown that the modification of the parallel mode structure due to the nonadiabatic response of passing electrons, which changes the parallel wave vector k{sub ||} with increasing {beta}{sub e}, leads to a decrease in size of both the diagonal momentum transport as well as the Coriolis pinch under ion temperature gradient turbulence conditions, while for trapped electron modes, practically no modification is found. The decrease is particularly strong close to the onset of the kinetic ballooning modes. There, the Coriolis pinch even reverses its direction.
NASA Astrophysics Data System (ADS)
Imadera, K.; Kishimoto, Y.; Sen, S.; Vahala, G.
2016-02-01
The ion-temperature-driven modes are studied in the presence of radio frequency waves by the use of the Gyro-Kinetic simulation Code. It is shown that the radio frequency waves through the ponderomotive force can stabilise the ion-temperature-gradient instabilities and contrary to the usual belief no radio frequency wave-induced flow generation hypothesis is required. This might be a major way to create a transport barrier in the fusion energy generation.
Walker, D.; Bowles, J.; Holland, D.; Chen, J.; Siefring, C.
1995-09-25
The authors have performed the initial stages of an experiment designed to investigate particle dynamics in the magnetotail. The results of this experiment lend support to the idea that particle scattering from the magnetotail neutral sheet is not random but that there exist resonances in the number and direction of scattered particles as a function of energy. The effort began with construction and testing of the magnetic field configuration necessary to simulate the quitetime magnetotail field: a neutral sheet magnetic field profile B0(z)x with a superimposed normal field B(2)z. Once complete, electrons of variable energy were injected into the field region created and the scattered current collected by back-scattered and forward-scattered collection plates was analyzed as a function of electron energy. The experiment was used to test the hypothesis that single particle scattering from a neutral sheet type profile as described can be coherent and can, at times, demonstrate resonance effects as a function of energy.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-09-15
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Albacete, Javier L
2007-12-31
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.
NASA Astrophysics Data System (ADS)
Tukmakov, A. L.; Bayanov, R. I.; Tukmakov, D. A.
2015-05-01
Numerical simulation of the flow of an aerosol of polydisperse composition in a plane duct, where the resonance acoustic oscillations are generated, which are directed across the flow, has been carried out. The peculiarities of the flow, which is followed by coagulation and alteration of the distribution of particles over their sizes, have been described. The carrying medium has been modeled with the aid of the system of Navier-Stokes equations for compressible heat-conducting gas. The polydisperse phase dynamics is described by the systems of equations involving the equations of continuity, conservation of the momentum and internal energy. Equations of the motion of carrying medium and disperse fractions are written with allowance for interphase exchange by the momentum and energy. A Lagrangian model has been used to describe the coagulation process. The dispersion alteration in the gas-particle flow under the action of acoustic oscillations, which are resonant for the duct cross section, is analyzed.
Chen, G.; Chacón, L.
2015-08-11
For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less
NASA Astrophysics Data System (ADS)
Avesani, Diego; Herrera, Paulo; Chiogna, Gabriele; Bellin, Alberto; Dumbser, Michael
2015-06-01
Most numerical schemes applied to solve the advection-diffusion equation are affected by numerical diffusion. Moreover, unphysical results, such as oscillations and negative concentrations, may emerge when an anisotropic dispersion tensor is used, which induces even more severe errors in the solution of multispecies reactive transport. To cope with this long standing problem we propose a modified version of the standard Smoothed Particle Hydrodynamics (SPH) method based on a Moving-Least-Squares-Weighted-Essentially-Non-Oscillatory (MLS-WENO) reconstruction of concentrations. This scheme formulation (called MWSPH) approximates the diffusive fluxes with a Rusanov-type Riemann solver based on high order WENO scheme. We compare the standard SPH with the MWSPH for different a few test cases, considering both homogeneous and heterogeneous flow fields and different anisotropic ratios of the dispersion tensor. We show that, MWSPH is stable and accurate and that it reduces the occurrence of negative concentrations compared to standard SPH. When negative concentrations are observed, their absolute values are several orders of magnitude smaller compared to standard SPH. In addition, MWSPH limits spurious oscillations in the numerical solution more effectively than classical SPH. Convergence analysis shows that MWSPH is computationally more demanding than SPH, but with the payoff a more accurate solution, which in addition is less sensitive to particles position. The latter property simplifies the time consuming and often user dependent procedure to define the initial dislocation of the particles.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2015-12-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.
Chen, G.; Chacón, L.
2015-08-11
For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.
NASA Astrophysics Data System (ADS)
Merlo, G.; Brunner, S.; Sauter, O.; Camenen, Y.; Görler, T.; Jenko, F.; Marinoni, A.; Told, D.; Villard, L.
2015-05-01
The experimental observation made on the TCV tokamak of a significant confinement improvement in plasmas with negative triangularity (δ < 0) compared to those with standard positive triangularity has been interpreted in terms of different degrees of profile stiffness (Sauter et al 2014 Phys. Plasmas 21 055906) and/or different critical gradients. Employing the Eulerian gyrokinetic code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), profile stiffness and critical gradients are studied under TCV relevant conditions. For the considered experimental discharges, trapped electron modes (TEMs) and electron temperature gradient (ETG) modes are the dominant microinstabilities, with the latter providing a significant contribution to the non-linear electron heat fluxes near the plasma edge. Two series of simulations with different levels of realism are performed, addressing the question of profile stiffness at various radial locations. Retaining finite collisionality, impurities and electromagnetic effects, as well as the physical electron-to-ion mass ratio are all necessary in order to approach the experimental flux measurements. However, flux-tube simulations are unable to fully reproduce the TCV results, pointing towards the need to carry out radially nonlocal (global) simulations, i.e. retaining finite machine size effects, in a future study. Some conclusions about the effect of triangularity can nevertheless be drawn based on the flux-tube results. In particular, the importance of considering the sensitivity to both temperature and density gradient is shown. The flux tube results show an increase of the critical gradients towards the edge, further enhanced when δ < 0, and they also appear to indicate a reduction of profile stiffness towards plasma edge.
The Split-weight Particle Simulation Scheme for Plasmas
Igor Manuilskiy; W.W. Lee
1999-11-01
An efficient numerical method for treating electrons in magnetized plasmas has been developed. The scheme, which is based on the perturbative (delta f) gyrokinetic particle simulation, splits the particle electron responses into adiabatic and non-adiabatic parts. The former is incorporated into the gyrokinetic Poisson's equation, while the latter is calculated dynamically with the aid of the charge conservation equation. The new scheme affords us the possibility of suppressing unwanted high frequency oscillations and, in the meantime, relaxing the Courant condition for the thermal particles moving in the parallel direction. It is most useful for studying low-frequency phenomena in plasmas. As an example, one-dimensional drift wave simulation has been carried out using the scheme and the results are presented in the paper. This methodology can easily be generalized to problems in three-dimensional toroidal geometry as well as those in unmagnetized plasmas.
Investigation of tearing instability using GeFi particle simulation model
Wang, X. Y.; Lin, Y.; Lu, X.; Kong, W.; Chen, L.
2011-12-15
The gyrokinetic (GK) electron and fully kinetic ion (GeFi) simulation model of Lin et al.[Plasmas Phys. Controlled Fusion 53, 054013 (2011)] has been thoroughly benchmarked and validated for a two-dimensional (2D) Harris current sheet with a finite guide field. First, a gyrokinetic eigenmode theory for the collisionless tearing mode in the small Larmor radius limit is presented. The linear eigenmode structure and growth rate of the tearing mode obtained from the GeFi simulation are benchmarked against those from the GK eigenmode analysis in the limit of L>>{rho}{sub i}>{rho}{sub e}, where L is the current sheet half-width, {rho}{sub i} is ion Larmor radius, and {rho}{sub e} is electron Larmor radius. Second, to valid the GeFi model, both the linear and nonlinear tearing instabilities obtained from the GeFi simulations are compared with the Darwin particle-in-cell (PIC) simulation. The validation of the GeFi model for laboratory and space plasmas is also discussed. Meanwhile, the GeFi simulation is carried out to investigate both the linear and nonlinear tearing instabilities for cases with a broad range of L and guide magnetic field B{sub G}. It is found that in a wide current sheet with L > 4.5{rho}{sub eK}, the nonlinear saturation level of the island half-width is w{sub s}{approx_equal} 3{rho}{sub eK}, where {rho}{sub eK} = {rho}{sub e}B{sub 0}/B{sub x0}, B{sub 0} is the strength of the asymptotic magnetic field, and B{sub x0} is the antiparallel field. On the other hand, in a thin current sheet with L < 2.5{rho}{sub eK}, w{sub s}{approx_equal} 2.2 L. In addition, a high frequency electrostatic drift mode is found to coexist with the tearing mode.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
Skjaeraasen, Olaf; Melatos, A.; Spitkovsky, A.; /KIPAC, Menlo Park
2005-08-15
A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over {approx}> 10{sup 2} skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale ({approx}> 0.05''?) might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.
NASA Astrophysics Data System (ADS)
Parker, Scott
2012-10-01
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions, for both a high-n Kinetic Ballooning Mode (KBM) and an intermediate-n kinetic version of Peeling-Ballooning Mode (PBM). The KBM and the PBM have been used to constrain the EPED model [1]. Global gyrokinetic simulations show that the H-mode pedestal, just prior to the onset of the Edge Localized Mode (ELM), is very near the KBM threshold. Two DIII-D experimental discharges are studied, one reporting KBM features in fluctuation measurements [2]. Simulations find that in addition to the high-n KBM, an intermediate-n electromagnetic mode is unstable. This kinetic version of the PBM has phase velocity in the electron diamagnetic direction, but otherwise has features similar to the MHD PBM. When the magnetic shear is reduced in a narrow region near the steep pressure gradient, the intermediate-n ``kinetic PBM'' is stabilized, while the high-n KBM becomes the most unstable mode. Global simulation results of the KBM compare favorably with flux tube simulations. The KBM transitions to an unstable electrostatic ion mode as the plasma beta is reduced. The intermediate-n ``kinetic peeling ballooning mode'' is sensitive to the q-profile and only seen in global electromagnetic simulations. Collisions increase the KBM critical beta and growth rate. These results indicate that an improved pedestal model should include, in detail, any corrections to the bootstrap current, and any other equilibrium effects that might reduce the local magnetic shear. It is known that the bootstrap current may flatten the q-profile in the steep gradient region [3]. Simulations are carried out using the global electromagnetic GEM code, including kinetic electrons, electron-ion collisions and the effects of realistic magnetic geometry. In addition to global linear analysis, nonlinear simulations will be reported showing that, while the equilibrium radial electric field has a weak effect on the linear growth
A gyrokinetic collision operator for magnetized Lorentz plasmas
NASA Astrophysics Data System (ADS)
Liu, Chang; Qin, Hong; Ma, Chenhao; Yu, Xiongjie
2011-03-01
A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field. The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.
Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al
2015-01-30
An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less
Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.
2015-01-30
An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.
Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-01-01
Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ∼15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ∼100 μm in tumour spheroids. PMID:26219252
Gyrokinetic and global fluid simulations of tokamak microturbulence and transport
Dimits, A.M.; Byers, J.A.; Williams, T.J.; Cohen, B.I.; Xu, W.Q.; Cohen, R.H.; Crotinger, J.A.; Shestakov, A.I.
1994-08-30
Results are presented from the first systematic nonlinear kinetic simulation study of the swings and parameter dependences of toroidal ion-temperature-gradient (ITG) turbulence and transport, and from the first such study that includes sheared toroidal flows. Key results include the observation of clear gyroBohm scaling of the turbulent transport and of a surprisingly weak dependence of the transport on toroidal flow shear. Based on the simulation results, a parameterization of the transport is given that includes the dependence on all of the relevant physical parameters. The transition from local to nonlocal transport as a function of the profile scale length has been investigated using two-dimensional global fluid simulations of dissipative drift-wave turbulence. Local gyroBohm scaling is observed, except at very short profile scale lengths.
Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped plasmas
Belli, E. A.; Candy, J.
2010-11-15
A new, more efficient method to compute unstable linear gyrokinetic eigenvalues and eigenvectors has been developed for drift-wave analysis of plasmas with arbitrary flux-surface shape, including both transverse and compressional magnetic perturbations. In high-beta, strongly shaped plasmas like in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)], numerous branches of closely spaced unstable eigenmodes exist. These modes are difficult and time-consuming to adequately resolve with the existing linear initial-value solvers, which are further limited to the most unstable eigenmode. The new method is based on an eigenvalue approach and is an extension of the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], reusing the existing discretization schemes in both real and velocity-space. Unlike recent methods, which use an iterative solver to compute eigenvalues of the relatively large gyrokinetic response matrix, the present scheme computes the zeros of the much smaller Maxwell dispersion matrix using a direct method. In the present work, the new eigensolver is applied to gyrokinetic stability analysis of a high-beta, NSTX-like plasma. We illustrate the smooth transformation from ion-temperature-gradient (ITG)-like to kinetic-ballooning (KBM)-like modes, and the formation of hybrid ITG/KBM modes, and further demonstrate the existence of high-k Alfvenic drift-wave 'cascades' for which the most unstable mode is a higher excited state along the field line. A new compressional electron drift wave, which is driven by a combination of strong beta and pressure gradient, is also identified for the first time. Overall, we find that accurate calculation of stability boundaries and growth rates cannot, in general, ignore the compressional component {delta}B{sub ||} of the perturbation.
Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped plasmas
NASA Astrophysics Data System (ADS)
Belli, E. A.; Candy, J.
2010-11-01
A new, more efficient method to compute unstable linear gyrokinetic eigenvalues and eigenvectors has been developed for drift-wave analysis of plasmas with arbitrary flux-surface shape, including both transverse and compressional magnetic perturbations. In high-beta, strongly shaped plasmas like in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)], numerous branches of closely spaced unstable eigenmodes exist. These modes are difficult and time-consuming to adequately resolve with the existing linear initial-value solvers, which are further limited to the most unstable eigenmode. The new method is based on an eigenvalue approach and is an extension of the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], reusing the existing discretization schemes in both real and velocity-space. Unlike recent methods, which use an iterative solver to compute eigenvalues of the relatively large gyrokinetic response matrix, the present scheme computes the zeros of the much smaller Maxwell dispersion matrix using a direct method. In the present work, the new eigensolver is applied to gyrokinetic stability analysis of a high-beta, NSTX-like plasma. We illustrate the smooth transformation from ion-temperature-gradient (ITG)-like to kinetic-ballooning (KBM)-like modes, and the formation of hybrid ITG/KBM modes, and further demonstrate the existence of high-k Alfvénic drift-wave "cascades" for which the most unstable mode is a higher excited state along the field line. A new compressional electron drift wave, which is driven by a combination of strong beta and pressure gradient, is also identified for the first time. Overall, we find that accurate calculation of stability boundaries and growth rates cannot, in general, ignore the compressional component δB∥ of the perturbation.
Verification of gyrokinetic {delta}f simulations of electron temperature gradient turbulence
Nevins, W. M.; Parker, S. E.; Chen, Y.; Candy, J.; Dimits, A.; Dorland, W.; Hammett, G. W.; Jenko, F.
2007-08-15
The GEM gyrokinetic {delta}f simulation code [Y. Chen and S. Parker, J. Comput. Phys. 189, 463 (2003); and ibid.220, 839 (2007)] is shown to reproduce electron temperature gradient turbulence at the benchmark operating point established in previous work [W. M. Nevins, J. Candy, S. Cowley, T. Dannert, A. Dimits, W. Dorland, C. Estrada-Mila, G. W. Hammett, F. Jenko, M. J. Pueschel, and D. E. Shumaker, Phys. Plasmas 13, 122306 (2006)]. The electron thermal transport is within 10% of the expected value, while the turbulent fluctuation spectrum is shown to have the expected intensity and two-point correlation function.
Gyrokinetic simulations of off-axis minimum-q profile corrugations
Waltz, R.E.; Austin, M.E.; Burrell, K.H.; Candy, J.
2006-05-15
Quasiequilibrium radial 'profile corrugations' in the electron temperature gradient are found at lowest-order singular surfaces in global gyrokinetic code simulations of both monotonic-q and off-axis minimum-q discharges. The profile corrugations in the temperature and density gradients are time-averaged components of zonal flows. The m/n=2/1 electron temperature gradient corrugation is measurably large and appears to trigger an internal transport barrier as the off-axis minimum-q=2 surfaces enter the plasma.
Verification of a magnetic island in gyro-kinetics by comparison with analytic theory
Zarzoso, D. Casson, F. J.; Poli, E.; Hornsby, W. A.; Peeters, A. G.
2015-02-15
A rotating magnetic island is imposed in the gyrokinetic code GKW, when finite differences are used for the radial direction, in order to develop the predictions of analytic tearing mode theory and understand its limitations. The implementation is verified against analytics in sheared slab geometry with three numerical tests that are suggested as benchmark cases for every code that imposes a magnetic island. The convergence requirements to properly resolve physics around the island separatrix are investigated. In the slab geometry, at low magnetic shear, binormal flows inside the island can drive Kelvin-Helmholtz instabilities which prevent the formation of the steady state for which the analytic theory is formulated.
Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities
Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.
2015-06-15
The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a ≤ 0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability.
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Coulette, David
2016-08-01
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic
Turbulence in the TORE SUPRA Tokamak: Measurements and Validation of Nonlinear Simulations
Casati, A.; Bourdelle, C.; Clairet, F.; Garbet, X.; Grandgirard, V.; Hoang, G. T.; Imbeaux, F.; Sabot, R.; Sarazin, Y.; Gerbaud, T.; Hennequin, P.; Guercan, Oe. D.; Honore, C.; Vermare, L.; Candy, J.; Waltz, R. E.; Heuraux, S.
2009-04-24
Turbulence measurements in TORE SUPRA tokamak plasmas have been quantitatively compared to predictions by nonlinear gyrokinetic simulations. For the first time, numerical results simultaneously match within experimental uncertainty (a) the magnitude of effective heat diffusivity, (b) rms values of density fluctuations, and (c) wave-number spectra in both the directions perpendicular to the magnetic field. Moreover, the nonlinear simulations help to revise as an instrumental effect the apparent experimental evidence of strong turbulence anisotropy at spatial scales of the order of ion-sound Larmor radius.
Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.
2011-05-11
The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
Hornsby, W. A. Migliano, P.; Buchholz, R.; Kroenert, L.; Weikl, A.; Peeters, A. G.; Zarzoso, D.; Poli, E.; Casson, F. J.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.
White, A. E.; Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; Wang, G.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; DeBoo, J. C.; Petty, C. C.; Burrell, K. H.
2010-05-15
This paper presents new measurements of the cross-phase angle, alpha{sub n{sub eT{sub e}}}, between long-wavelength (k{sub t}hetarho{sub s}<0.5) density, n-tilde{sub e}, and electron temperature, T-tilde{sub e}, fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between n-tilde{sub e} and T-tilde{sub e} are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in alpha{sub n{sub eT{sub e}}} given experimentally realizable increases in the electron temperature, T{sub e}. In the experiment the cross-phase angle was measured at three radial locations (rho=0.55, 0.65, and 0.75) in both a 'Base' case and a 'High T{sub e}' case. The measured cross-phase angle is in good qualitative agreement with the pre-experiment simulations, which predicted that n-tilde{sub e} and T-tilde{sub e} would be out of phase. The pre-experiment simulations also predicted a decrease in cross-phase angle as T{sub e} is increased. Experimentally, this trend is observed at the inner two radial locations only. The second set of simulations, the postexperiment simulations, is carried out using local parameters taken from measured experimental profiles as input to GYRO. These postexperiment simulation results are in good quantitative agreement with the measured cross-phase angle, despite disagreements with transport fluxes. Directions for future modeling and experimental work are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Shi-Chang; Liu, Yaowu
2001-02-01
By making use of the gyrokinetics of free-electron masers, the efficiency formula of a cylindrical-cavity gyrotron oscillator is presented, where the misalignment of the electron-beam axis to the cavity axis has been taken into account. Comparison with a recent experimental report [Int. J. Infrared and Millimeter Waves 19, 1303 (1998)] is made, which confirms the creditability of the gyrokinetic theory.
Martin, G; McGarel, S
2001-01-01
A mill is a mechanical device that grinds mined or processed material into small particles. The process is known to display significant deadtime, and, more notably, severe nonlinear behavior. Over the past 25 years attempts at continuous mill control have met varying degrees of failure, mainly due to model mismatch caused by changes in the mill process gains. This paper describes an on-line control application on a closed-circuit cement mill that uses nonlinear model predictive control technology. The nonlinear gains for the control model are calculated on-line from a neural network model of the process.
Singh, Rameswar; Brunner, S.; Ganesh, R.; Jenko, F.
2014-03-15
This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ⊥}ρ{sub i} > 1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.
Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.
2006-10-01
Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.
Gyrokinetic determination of the electrostatic potential of rotating magnetic islands in tokamaks
Siccinio, M.; Poli, E.; Casson, F. J.; Hornsby, W. A.; Peeters, A. G.
2011-12-15
The electrostatic potential related to a magnetic island structure with imposed width and rotation frequency is studied by means of gyrokinetic simulations, which allow its self-consistent determination via the Poisson equation. An adiabatic response of the trapped ions at the island separatrix leads to a significant smoothing of the potential with respect to analytic calculations based on a complete flattening of the pressure profile inside the island. As a consequence, the magnitude of the polarization current is drastically reduced. When the island size is comparable to the ion banana width, the adiabatic response covers the whole island region, leading to a reduced density flattening for islands rotating in the electron diamagnetic direction. This confirms previous results based on drift-kinetic simulations.
NASA Astrophysics Data System (ADS)
Storelli, A.; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Görler, T.; Singh, Rameswar; Morel, P.; Grandgirard, V.; Ghendrih, P.
2015-06-01
In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.
Storelli, A. Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Singh, Rameswar; Morel, P.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Ghendrih, P.; Görler, T.
2015-06-15
In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.
Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence
Goerler, Tobias; Jenko, Frank; Marcus, Patrick; Merz, Florian; Told, Daniel; Lapillonne, Xavier; Brunner, Stephan; Aghdam, Sohrab Khosh; McMillan, Ben F.; Sauter, Olivier; Villard, Laurent; Dannert, Tilman
2011-05-15
The Eulerian gyrokinetic turbulence code gene has recently been extended to a full torus code. Moreover, it now provides Krook-type sources for gradient-driven simulations where the profiles are maintained on average as well as localized heat sources for a flux-driven type of operation. Careful verification studies and benchmarks are performed successfully. This setup is applied to address three related transport issues concerning nonlocal effects. First, it is confirmed that in gradient-driven simulations, the local limit can be reproduced--provided that finite aspect ratio effects in the geometry are treated carefully. In this context, it also becomes clear that the profile widths (not the device width) may constitute a more appropriate measure for finite-size effects. Second, the nature and role of heat flux avalanches are discussed in the framework of both local and global, flux- and gradient-driven simulations. Third, simulations dedicated to discharges with electron internal barriers are addressed.
Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes
M.H. Redi; W. Dorland; R. Bell; P. Bonoli; C. Bourdelle; J. Candy; D. Ernst; C. Fiore; D. Gates; G. Hammett; K. Hill; S. Kaye; B. LeBlanc; J. Menard; D. Mikkelsen; G. Rewoldt; J. Rice; R. Waltz; S. Wukitch
2003-07-08
Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core.
NASA Astrophysics Data System (ADS)
Ernst, Darin; Long, A.; Basse, N.; Lin, L.; Porkolab, M.; Dorland, W.
2006-04-01
We have developed a synthetic diagnostic^1 for the GS2 gyrokinetic code for direct comparisons with phase contrast imaging (PCI) measurements of density fluctuations in Alcator C-Mod. The gyrokinetic simulation is carried out in a local, field line following flux-tube, while PCI measures density fluctuations along 32 chords passing vertically through the plasma cross-section.^2 Transforming from Clebsch to cartesian coordinates, and integrating appropriately over portions of the flux tube viewed by the diagnostic, yields a density fluctuation spectrum versus wavenumber kR in the major radius direction. To achieve vertical localization, we examine an ITB case in which the spectrum is dominated by a strong trapped electron mode, localized near the half-radius. The wavelength spectrum from the simulations, using the synthetic diagnostic, closely reproduces the PCI spectrum. Contributions from kψ, where B=∇αx∇ψ, downshift the GS2 kα spectrum to improve upon our previous raw comparison with the PCI kR spectrum.^3 ^1A. Long, D. R. Ernst et al., Bull. Am. Phys. Soc. 50(8) p. 153, GP1.48, also p. 235, LP1.37 http://www.psfc.mit.edu/research/alcator/pubs/APS/APS2005/ernst.pdf. ^2N. P. Basse et al., Phys. Plasmas 12, 052512 (2005). ^3D. R. Ernst et al., 2004 IAEA Fusion Energy Conference, IAEA-CN116/TH/4-1 http://www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/TH4-1.html, see also Phys. Plasmas 11 (2004) 2637.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2015-06-01
It is shown that a nonlinear reformulation of time-dependent and time-independent quantum mechanics in terms of Riccati equations not only provides additional information about the physical system, but also allows for formal comparison with other nonlinear theories. This is demonstrated for the nonlinear Burgers and Korteweg-de Vries equations with soliton solutions. As Riccati equations can be linearized to corresponding Schrödinger equations, this also applies to the Riccati equations that can be obtained by integrating the nonlinear soliton equations, resulting in a time-independent Schrödinger equation with Rosen-Morse potential and its supersymmetric partner. Because both soliton equations lead to the same Riccati equation, relations between the Burgers and Korteweg-de Vries equations can be established. Finally, a connection with the inverse scattering method is mentioned.
Kluy, N.; Angioni, C.; Camenen, Y.; Peeters, A. G.
2009-12-15
The toroidal momentum transport in the presence of trapped electron mode microinstabilities in tokamak plasmas is studied by means of quasilinear gyrokinetic calculations. In particular, the role of the Coriolis drift in producing an inward convection of toroidal momentum is investigated. The Coriolis drift term has been implemented in the gyrokinetic code GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] specifically for the completion of this work. A benchmark between the GS2 implementation of the Coriolis drift and the implementations included in two other gyrokinetic codes is presented. The numerical calculations show that in the presence of trapped electron modes, despite of a weaker symmetry breaking of the eigenfunctions with respect to the case of ion temperature gradient modes, a pinch of toroidal momentum is produced in most conditions. The toroidal momentum viscosity is also computed, and found to be small as compared with the electron heat conductivity, but significantly larger than the ion heat conductivity. In addition, interesting differences are found in the dependence of the toroidal momentum pinch as a function of collisionality between trapped electron modes and ion temperature gradient modes. The results identify also parameter domains in which the pinch is predicted to be small, which are also of interest for comparisons with the experiments.
Universal nonlinear entanglement witnesses
Kotowski, Marcin; Kotowski, Michal
2010-06-15
We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.
Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.
Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A
2013-11-01
This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
NASA Astrophysics Data System (ADS)
Luk, Onnie
The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-01-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935
NASA Astrophysics Data System (ADS)
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-07-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface.
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-01-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-01-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface.
Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes
Hatch, D. R.; Jenko, F.; Doerk, H.; Pueschel, M. J.; Terry, P. W.; Nevins, W. M.
2013-01-15
Subdominant, linearly stable microtearing modes are identified as the main mechanism for the development of magnetic stochasticity and transport in gyrokinetic simulations of electromagnetic ion temperature gradient driven plasma microturbulence. The linear eigenmode spectrum is examined in order to identify and characterize modes with tearing parity. Connections are demonstrated between microtearing modes and the nonlinear fluctuations that are responsible for the magnetic stochasticity and electromagnetic transport, and nonlinear coupling with zonal modes is identified as the salient nonlinear excitation mechanism. A simple model is presented, which relates the electromagnetic transport to the electrostatic transport. These results may provide a paradigm for the mechanisms responsible for electromagnetic stochasticity and transport, which can be examined in a broader range of scenarios and parameter regimes.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J.
2016-05-01
To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1/2 = 60.0), simultaneously capture turbulence at the ion ( kθρs˜O (1.0 ) ) and electron-scales ( kθρe˜O (1.0 ) ). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a "rule of thumb" based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.
NASA Astrophysics Data System (ADS)
Ernst, D. R.; Bergerson, W.; Ennever, P.; Greenwald, M.; Hubbard, A.; Irby, J.; Phillips, P.; Porkolab, M.; Rowan, W.; Terry, J. L.; Xu, P.; Alcator C-Mod Team
2013-10-01
Three new synthetic turbulence diagnostics are implemented in GS2 and compared with measurements: phase contrast imaging, polarimetry, and electron-cyclotron (ECE) emission. Our new synthetic diagnostic framework is based on transforming to a real-space annulus in Cartesian coordinates. This allows straightforward convolution with diagnostic point-spread functions, or integration over viewing chords. Wavenumber spectra and fluctuation amplitudes, as well as transport fluxes, are compared with measurements. Both phase contrast imaging and newly observed ECE electron temperature fluctuations, closely follow the electron temperature in an internal transport barrier during on-axis heating pulses, consistent with the role of TEM turbulence. New C-Mod polarimetry measurements, showing strong broadband core magnetic fluctuations, will also be examined against gyrokinetic simulations. The new framework is readily extended to other fluctuation measurements such as two-color interferometry, beam emission spectroscopy, Doppler back-scattering, ECE imaging, and microwave imaging reflectometry. Supported by U.S. DoE awards DE-FC02-08ER54966, DE-FC02-99ER54512, DE-FG03-96ER54373.
Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2005-10-01
We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.
Joiner, N.; Hirose, A.
2008-08-15
The kinetic ballooning mode (KBM) has been shown in previous work to be unstable within the magnetohydrodynamic (MHD) region (in s-{alpha} space) of second stability [Hirose et al., Phys. Rev. Lett. 72, 3993 (2004)]. In this work we verify this result using the gyrokinetic code GS2 [Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] treating both ions and electrons as kinetic species and retaining the magnetosonic perturbation B{sub parallel}. Growth rates calculated using GS2 differ significantly from the previous differential/shooting code analysis. Calculations without B{sub parallel} find the stability region is preserved, while the addition of B{sub parallel} causes the mode to be more unstable than previously calculated within the region of MHD second stability. The inclusion of parallel ion current and B{sub parallel} into the shooting code does not account for the GS2 results. The evidence presented in this paper leads us to the conclusion that the adiabatic electron approximation employed in previous studies is found to be unsuitable for this type of instability. Based on the findings of this work, the KBM becomes an interesting instability in the context of internal transport barriers, where {alpha} is often large and magnetic shear is small (positive or negative)
Spong, D. A.; Bass, E. M.; Deng, W.; Heidbrink, W. W.; Lin, Z.; Tobias, B.; Van Zeeland, M. A.; Austin, M. E.; Domier, C. W.; Luhmann, N. C. Jr.
2012-08-15
A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.
Turbulent transport of alpha particles in reactor plasmas
Estrada-Mila, C.; Candy, J.; Waltz, R. E.
2006-11-15
A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)
Plunk, G. G.
2015-04-15
We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient driven turbulence. A proof is given for the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear E × B advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced (∞×∞→1) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits.
NASA Astrophysics Data System (ADS)
Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Esipov, L. A.; Irzak, M. A.; Kantor, M. Yu; Kouprienko, D. V.; Lashkul, S. I.; Leerink, S.; Niskala, P.; Stepanov, A. Yu; Teplova, N. V.
2016-11-01
The poloidal dependence of the drift-wave turbulence characteristics is investigated at the FT-2 tokamak by radial correlation Doppler reflectometry (RCDR) technique and using the full distribution function global gyrokinetic modelling by ELMFIRE code. The poloidal variation of the turbulence radial correlation length from 0.2-0.55 cm is demonstrated both by measurement and computation. The turbulence correlation length rapidly decreases from the top of the poloidal cross-section to the high field side and then steadily grows in the poloidal direction. A well-pronounced excess of the turbulence radial correlation length in deuterium over its value in hydrogen discharges is demonstrated.
Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment
NASA Astrophysics Data System (ADS)
Ernst, D. R.
2012-10-01
A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Markova, M. A.
2007-03-01
In general line with our first work [Yu.A. Markov, M.A. Markova, Nucl. Phys. A 770 (2006) 162] within the framework of semiclassical approximation a general theory for the scattering processes of soft (anti)quark excitations off hard thermal particles in hot QCD-medium is thoroughly considered. The dynamical equations describing evolution for the usual classical color charge Q(t) and Grassmann color charges θ(t),θ(t) of hard particle taking into account the soft fermion degree of freedom of the system are suggested. On the basis of these equations and the Blaizot-Iancu equations iterative procedure of calculation of effective currents and sources generating the scattering processes under consideration is defined and their form up to third order in powers of free soft quark field, soft gluon one, and initial values of the color charges of hard particle is explicitly calculated. With use of the generalized Tsytovich principle a connection between matrix elements of the scattering processes and the effective currents and sources is established. In the context of the effective theory suggested for soft and hard fermion excitations new mechanisms of energy losses of high-energy parton propagating through QCD-medium are considered.
Tangri, Varun; Terry, P. W.; Waltz, R. E.
2011-05-15
A simple large-aspect-ratio (R{sub 0}/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-{alpha} model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F,{Theta}]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.
Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; Canik, J. M.; Canal, G. P.; Diallo, A.; Kaye, S.; Kramer, G. J.; Maingi, R.
2016-06-30
Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates formore » the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less
Peeters, A.G.; Angioni, C.
2005-07-15
It is shown from a symmetry in the gyrokinetic equation that for up-down symmetric tokamak equilibria and for u{sub {phi}}>>{rho}{upsilon}{sub thi}/r (where u{sub {phi}} is the toroidal velocity, {upsilon}{sub thi} is the thermal ion velocity, {rho} is the Larmor radius, and r is the radius of the flux surface), the transport of parallel momentum can be written as the sum of a diffusive and a pinch contribution with no off-diagonal terms due to temperature and pressure gradients. The measured parallel velocity gradient in ASDEX Upgrade [O. Gruber, H.-S. Bosch, S. Guenter et al., Nucl. Fusion 39, 1321 (1999)] is insufficient to drive the parallel velocity shear instability. The parallel velocity is then transported by the ion temperature gradient mode. The diffusive contribution to the transport flux is investigated using a linear gyrokinetic approach, and it is found that the diffusion coefficient for parallel velocity transport divided by the ion heat conductivity coefficient is close to 1, and only weakly dependent on plasma parameters.
NASA Astrophysics Data System (ADS)
Tangri, Varun; Terry, P. W.; Waltz, R. E.
2011-05-01
A simple large-aspect-ratio (R0/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-α model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F ,Θ]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.
Studies of Nonlinear Problems. I
DOE R&D Accomplishments Database
Fermi, E.; Pasta, J.; Ulam, S.
1955-05-01
A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.
Nonlinear optics and nonlinear dynamics
NASA Astrophysics Data System (ADS)
Chen, C. H.
1990-08-01
The author was invited by the Institute of Atomic and Molecular Sciences, Academia Sinica, in Taiwan to give six lectures on nonlinear optics. The participants included graduate students, postdoctoral fellows, research staff, and professors from several research organizations and universities. Extensive discussion followed each lecture. Since both the Photophysics Group at Oak Ridge National Laboratory (ORNL) and Institute of Atomic and Molecular Sciences in Taiwan have been actively participating in nonlinear optics research, the discussions are very beneficial to ORNL programs. The author also visited several laboratories at IAMS to exchange research ideas on nonlinear optics.
Nonlinear theory of kinetic instabilities near threshold
Berk, H.L.; Pekker, M.S.; Breizman, B.N. |
1997-05-01
A new nonlinear equation has been derived and solved for the evolution of an unstable collective mode in a kinetic system close to the threshold of linear instability. The resonant particle response produces the dominant nonlinearity, which can be calculated iteratively in the near-threshold regime as long as the mode doe snot trap resonant particles. With sources and classical relaxation processes included, the theory describes both soft nonlinear regimes, where the mode saturation level is proportional to an increment above threshold, and explosive nonlinear regimes, where the mode grows to a level that is independent of the closeness to threshold. The explosive solutions exhibit mode frequency shifting. For modes that exist in the absence of energetic particles, the frequency shift is both upward and downward. For modes that require energetic particles for their existence, there is a preferred direction of the frequency shift. The frequency shift continues even after the mode traps resonant particles.
NASA Astrophysics Data System (ADS)
Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna
2016-09-01
Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Highcock, E. G.; Cowley, S. C.
2012-05-01
Differential rotation is known to suppress linear instabilities in fusion plasmas. However, numerical experiments show that even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence, limiting the ability of the velocity shear to suppress anomalous transport. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular (E × B) velocity shear is considered. The maximally simplified (but, as numerical simulations suggest, most promising for transport reduction) case of zero magnetic shear is treated in the framework of a local shearing box approximation. In this case there are no linearly growing eigenmodes, so all excitations are transient. In the PVG-dominated regime, the maximum amplification factor is found to be eN with N ∝ q/ɛ (safety factor/inverse aspect ratio), the maximally amplified wavenumbers perpendicular and parallel to the magnetic field are related by kyρi ≈ (ɛ/q)1/3k∥vthi/S, where ρi is the ion Larmor radius, vthi the ion thermal speed and S the E × B shear. In the ITG-dominated regime, N is independent of wavenumber and N ∝ vthi/(LTS), where LT is the ion-temperature scale length. Intermediate ITG-PVG regimes are also analysed and N is calculated as a function of q/ɛ, LT and S. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. Regimes with N ≲ 1 for all wavenumbers are possible for sufficiently low values of q/ɛ (≲7 in our model); ion-scale turbulence is expected to be fully suppressed in such regimes. For cases when it is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, ɛ, S and LT is proposed; it is argued that the transport is much less ‘stiff’ than in the ITG regime.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
NASA Astrophysics Data System (ADS)
Heidbrink, W. W.; Persico, E. A. D.; Chen, Xi; Pace, D. C.; van Zeeland, M. A.; Fu, G. Y.
2015-11-01
Some neutral-beam ions are deflected onto loss orbits by Alfvén eigenmodes on their first bounce orbit and detected by a fast-ion loss detector (FILD). The resonance condition for these ions differs from the usual resonance condition for a confined fast ion. Estimates indicate that particles on single-pass loss orbits transfer enough energy to the wave to alter mode stability. When these ions interact with more than one mode, oscillations in the FILD signal often appear at the sum and difference frequencies of the independent modes. A wide variety of FILD spectra are observed. Work supported by the US DOE under SC-G903402, DE-FC02-04ER54698 and DE-AC02-09CH11466.
Chang, C S; Ku, Seung-Hoe; Adams, Mark; D'Azevedo, Eduardo; Chen, Yang; Cummings, Julian; Ethier, Stephane; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Keyes, David E; Klasky, Scott A; Lee, Wei-Li; Lin, Zhihong; Nishimura, Yasutaro; Parker, Scott; Samtaney, Ravi; Stotler, D.; Weitzner, Harold; Worley, Patrick H; Zorin, Denis
2007-01-01
An integrated gyrokinetic particle simulation with turbulence and neoclassical physics in a diverted tokamak edge plasma has been performed. Neoclassical equilibrium gyrokinetic solutions in the whole edge plasma have been separated from the turbulence activities for the first time, using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The equilibrium solutions in an H-mode-like edge plasma condition show strongly sheared global ExB and parallel flows in the entire edge plasma including the pedestal and scrape-off regions. In an L-mode-like edge plasma condition, the sheared flows in the pedestal layer are much weaker, supporting the conjecture that the neoclassical flow-shear may play a significant role in the H-mode physics.
ERIC Educational Resources Information Center
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Waltz, R. E.; Candy, J.; Petty, C. C.
2006-07-15
Global gyrokinetic simulations of DIII-D [M. A. Mahdavi and J. L. Luxon, in 'DIII-D Tokamak Special Issue', Fusion Sci. Technol. 48, 2 (2005)] L- and H-mode dimensionally similar discharge pairs are treated in detail. The simulations confirm the Bohm scaling of the well-matched L-mode pair. The paradoxical but experimentally apparent gyro-Bohm scaling of the H-mode pair at larger relative gyroradius (rho-star) and lower transport levels is due to poor profile similarity. Simulations of projected experimental plasma profiles with perfect similarity show both the L- and H-mode pairs to have Bohm scaling. A {rho}{sub *} stabilization rule for predicting the breakdown of gyro-Bohm scaling from simulations of a single discharge is presented.
NASA Astrophysics Data System (ADS)
Kim, Kyuho; Chang, C. S.; Ku, Seunghoe; Hager, Robert
2015-11-01
The edge gyrokinetic code XGC1 has been used to study impurity transport from combined neoclassical and turbulent mechanisms in and across a steep H-mode pedestal, in realistic magnetic separatrix geometry. Both low-Z and high-Z impurity transport are studied.. The effect on the turbulence and transport is found to be different whether the impurity radial profile gradient is in the same or opposite direction to the main ion profile gradient. Co-existence of the low- and high-Z impurities also makes difference in the transport of each species. Edge impurity behavior in NSTX, JET, and DIII-D tokamak plasma will be discussed. Work funded by National Research Foundation of Korea and US DOE. Computing time was supported by NERSC.
NASA Astrophysics Data System (ADS)
Burckel, A.; Sauter, O.; Angioni, C.; Candy, J.; Fable, E.; Lapillonne, X.
2010-11-01
In order to better identify the role of the magnetic topology on ITG and TEM instabilities, different MHD equilibria with increasing complexity are calculated using the CHEASE code [1]. We start from the geometry of the s-α cyclone benchmark case [2], consider the corresponding circular numerical equilibrium, and then successively add a non zero value of a consistent with the kinetic profiles, an elongation of 1.68, a triangularity of 0.15, and finally an up-down asymmetry corresponding to a single-null diverted geometry. This gives the opportunity to study separately the effect of each main characteristics of the equilibrium on microinstabilities in core plasmas. Linear local electrostatic gyrokinetic simulations of these different numerical equilibria and of their corresponding analytical descriptions (Miller-type representations [3]) are performed using the codes GS2 [4, 5] and GYRO[6]. It is observed that each modification of the equilibrium has an influence on the results of gyrokinetic simulations. The effect of the α parameter can compensate the stabilizing effect of an increase in the elongation. A comparison between the up-down symmetric shaped equilibrium and its corresponding diverted configuration show a non negligible effect on the growth rate of ITG and TEM turbulence. The comparison between the local Miller model and using a full equilibrium shows that it is mainly the indirect change of elongation in the plasma core which influences the results. The global aim is to provide well defined benchmark cases including real geometry and kinetic electrons physics, since this is not analyzed by the cyclone case. In addition, the goal is to define a procedure for testing of local simulations inspired by experimental constraints and results.
NASA Astrophysics Data System (ADS)
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. The profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements are used as the initial conditions for the simulations. A flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient {αj} , free streaming model with {αj}=1 , sheath-limit with {αj}=0.05 , and one value in between. The studies show that a 20 times increase in {αj} leads to ∼6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of {{n}\\text{e}} are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. The heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures near the X-point at LFS are both broadened and elongated due
Bowen; Sharif
1997-03-15
A Galerkin finite-element approach combined with an error estimator and automatic mesh refinement has been used to provide a flexible numerical solution of the Poisson-Boltzmann equation. A Newton sequence technique was used to solve the nonlinear equations arising from the finite-element discretization procedure. Errors arising from the finite-element solution due to mesh refinement were calculated using the Zienkiewicz-Zhu error estimator, and an automatic remeshing strategy was adopted to achieve a solution satisfying a preset quality. Examples of the performance of the error estimator in adaptive mesh refinement are presented. The adaptive finite-element scheme presented in this study has proved to be an effective technique in minimizing errors in finite-element solutions for a given problem, in particular those of complex geometries. As an example, numerical solutions are presented for the case of a charged spherical particle at various distances from a charged cylindrical pore in a charged planar surface. Such a scheme provides a quantification of the significance of electrostatic interactions for an important industrial technology-membrane separation processes.
Nonlinear integrable ion traps
Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge
2011-10-01
Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficientmore » $${{\\alpha}_{j}}$$ , free streaming model with $${{\\alpha}_{j}}=1$$ , sheath-limit with $${{\\alpha}_{j}}=0.05$$ , and one value in between. The studies show that a 20 times increase in $${{\\alpha}_{j}}$$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of $${{n}_{\\text{e}}}$$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient ${{\\alpha}_{j}}$ , free streaming model with ${{\\alpha}_{j}}=1$ , sheath-limit with ${{\\alpha}_{j}}=0.05$ , and one value in between. The studies show that a 20 times increase in ${{\\alpha}_{j}}$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of ${{n}_{\\text{e}}}$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures
Dark energy simulacrum in nonlinear electrodynamics
Labun, Lance; Rafelski, Johann
2010-03-15
Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.
Optical mechanical analogy and nonlinear nonholonomic constraints
NASA Astrophysics Data System (ADS)
Bloch, Anthony M.; Rojo, Alberto G.
2016-02-01
In this paper we establish a connection between particle trajectories subject to a nonholonomic constraint and light ray trajectories in a variable index of refraction. In particular, we extend the analysis of systems with linear nonholonomic constraints to the dynamics of particles in a potential subject to nonlinear velocity constraints. We contrast the long time behavior of particles subject to a constant kinetic energy constraint (a thermostat) to particles with the constraint of parallel velocities. We show that, while in the former case the velocities of each particle equalize in the limit, in the latter case all the kinetic energies of each particle remain the same.
Nonlinear dynamics aspects of modern storage rings
Helleman, R.H.G.; Kheifets, S.A.
1986-01-01
It is argued that the nonlinearity of storage rings becomes an essential problem as the design parameters of each new machine are pushed further and further. Yet the familiar methods of classical mechanics do not allow determination of single particle orbits over reasonable lengths of time. It is also argued that the single particle dynamics of a storage ring is possibly one of the cleanest and simplest nonlinear dynamical systems available with very few degrees of freedom. Hence, reasons are found for accelerator physicists to be interested in nonlinear dynamics and for researchers in nonlinear dynamics to be interested in modern storage rings. The more familiar methods of treating nonlinear systems routinely used in acclerator theory are discussed, pointing out some of their limitations and pitfalls. 39 refs., 1 fig. (LEW)
Nonlinear scattering in gold nanospheres
NASA Astrophysics Data System (ADS)
Shen, Po-Ting; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chu, Shi-Wei
2016-03-01
Nonlinearity enhanced by noble metallic nanoparticles provide novel light manipulation capabilities and innovative applications. Recently, we discovered a new nonlinear phenomenon on the scattering of metallic nanoparticles by continuous-wave (CW) lasers at the intensity around MW/cm2 and applied to super-resolution microscopy that allowed spatial resolution of plasmonic nanostructures down to λ/8. However, its mechanism is still unknown. In this work, we elaborate the mechanism behind the nonlinear scattering of gold nanospheres. There are four possible candidates: intraband transition, interband transition, hot electron, and hot lattice. Each of them has a corresponding nonlinear refractive index (n2), which is related to temporal dependence of its light-matter interaction. We first measure the intensity dependence of nonlinear scattering to extract the effective n2 value. We find out it has the closest n2 value to hot lattice, which causes either the shift or weakening of the surface plasmon resonance (SPR). To further verify the mechanism, the nanospheres are heated up with both a hot plate and a CW laser, and the variation of single-particle SPR scattering spectra are measured. In both cases, more than 50% reduction of scattering is observed, when temperature rises a few tens of degrees or when illumination intensity reaches the order of 1MW/cm2. Thus, we conclude the spectra variation by the two different heating source, as well as the nonlinear scattering are all due to hot lattice, and subsequent permittivity change with temperature. The innovative concept of hot lattice plasmonics not only opens up a new dimension for nonlinear plasmonics, but also predicts the potential of similar nonlinearity in other materials as long as their permittivity changes with temperature.