Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo
2014-11-01
Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.
2017-08-01
A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacón, L.; Cappello, S.
2010-08-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna
2010-01-01
With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less
NASA Astrophysics Data System (ADS)
Cavaglieri, Daniele; Bewley, Thomas
2015-04-01
Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.
Lappala, E.G.; Healy, R.W.; Weeks, E.P.
1987-01-01
This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)
Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.
2010-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
State-of-charge estimation in lithium-ion batteries: A particle filter approach
NASA Astrophysics Data System (ADS)
Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.
2016-11-01
The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
NASA Astrophysics Data System (ADS)
Quan, Wei-cai; Zhang, Zhu-ying; Zhang, Ai-qun; Zhang, Qi-feng; Tian, Yu
2015-04-01
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- α implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section
NASA Astrophysics Data System (ADS)
Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli
2017-12-01
Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.
Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.
2011-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1993-01-01
An efficient implicit method for the computation of steady, three-dimensional, compressible Navier-Stokes flowfields is presented. A nonlinear iteration strategy based on planar Gauss-Seidel sweeps is used to drive the solution toward a steady state, with approximate factorization errors within a crossflow plane reduced by the application of a quasi-Newton technique. A hybrid discretization approach is employed, with flux-vector splitting utilized in the streamwise direction and central differences with artificial dissipation used for the transverse fluxes. Convergence histories and comparisons with experimental data are presented for several 3-D shock-boundary layer interactions. Both laminar and turbulent cases are considered, with turbulent closure provided by a modification of the Baldwin-Barth one-equation model. For the problems considered (175,000-325,000 mesh points), the algorithm provides steady-state convergence in 900-2000 CPU seconds on a single processor of a Cray Y-MP.
Spillover, nonlinearity, and flexible structures
NASA Technical Reports Server (NTRS)
Bass, Robert W.; Zes, Dean
1991-01-01
Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.
An exponential time-integrator scheme for steady and unsteady inviscid flows
NASA Astrophysics Data System (ADS)
Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili
2018-07-01
An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
Jing, Yun; Tao, Molei; Clement, Greg T.
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Warming, R. F.; Harten, A.
1983-01-01
The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
NASA Astrophysics Data System (ADS)
Caughey, David A.; Jameson, Antony
2003-10-01
New versions of implicit algorithms are developed for the efficient solution of the Euler and Navier-Stokes equations of compressible flow. The methods are based on a preconditioned, lower-upper (LU) implementation of a non-linear, symmetric Gauss-Seidel (SGS) algorithm for use as a smoothing algorithm in a multigrid method. Previously, this method had been implemented for flows in quasi-one-dimensional ducts and for two-dimensional flows past airfoils on boundary-conforming O-type grids for a variety of symmetric limited positive (SLIP) spatial approximations, including the scalar dissipation and convective upwind split pressure (CUSP) schemes. Here results are presented for both inviscid and viscous (laminar) flows past airfoils on boundary-conforming C-type grids. The method is significantly faster than earlier explicit or implicit methods for inviscid problems, allowing solution of these problems to the level of truncation error in three to five multigrid cycles. Viscous solutions still require as many as twenty multigrid cycles.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Warming, R. F.; Harten, A.
1985-01-01
First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin Whiting; Crane, Nathan K.; Heinstein, Martin W.
2011-03-01
Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.; Barnes, D. C.
2011-08-01
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.
2016-06-01
A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.
Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure
Hill, Mary C.
1990-01-01
The performance of the preconditioned conjugate-gradient method with three preconditioners is compared with the strongly implicit procedure (SIP) using a scalar computer. The preconditioners considered are the incomplete Cholesky (ICCG) and the modified incomplete Cholesky (MICCG), which require the same computer storage as SIP as programmed for a problem with a symmetric matrix, and a polynomial preconditioner (POLCG), which requires less computer storage than SIP. Although POLCG is usually used on vector computers, it is included here because of its small storage requirements. In this paper, published comparisons of the solvers are evaluated, all four solvers are compared for the first time, and new test cases are presented to provide a more complete basis by which the solvers can be judged for typical groundwater flow problems. Based on nine test cases, the following conclusions are reached: (1) SIP is actually as efficient as ICCG for some of the published, linear, two-dimensional test cases that were reportedly solved much more efficiently by ICCG; (2) SIP is more efficient than other published comparisons would indicate when common convergence criteria are used; and (3) for problems that are three-dimensional, nonlinear, or both, and for which common convergence criteria are used, SIP is often more efficient than ICCG, and is sometimes more efficient than MICCG.
Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacon, L.; Cappello, S.
2008-11-01
Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.
TRUST84. Sat-Unsat Flow in Deformable Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasimhan, T.N.
1984-11-01
TRUST84 solves for transient and steady-state flow in variably saturated deformable media in one, two, or three dimensions. It can handle porous media, fractured media, or fractured-porous media. Boundary conditions may be an arbitrary function of time. Sources or sinks may be a function of time or of potential. The theoretical model considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical deformation field. The governing equation expresses the conservation of fluid mass in an elemental volume that has a constant volume of solids. Deformation of the porous medium may be nonelastic. Permeability and the compressibility coefficientsmore » may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may be characterized by hysteresis. The relation between pore pressure change and effective stress change may be a function of saturation. The basic calculational model of the conductive heat transfer code TRUMP is applied in TRUST84 to the flow of fluids in porous media. The model combines an integrated finite difference algorithm for numerically solving the governing equation with a mixed explicit-implicit iterative scheme in which the explicit changes in potential are first computed for all elements in the system, after which implicit corrections are made only for those elements for which the stable time-step is less than the time-step being used. Time-step sizes are automatically controlled to optimize the number of iterations, to control maximum change to potential during a time-step, and to obtain desired output information. Time derivatives, estimated on the basis of system behavior during the two previous time-steps, are used to start the iteration process and to evaluate nonlinear coefficients. Both heterogeneity and anisotropy can be handled.« less
Exact charge and energy conservation in implicit PIC with mapped computational meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Barnes, D. C.
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less
The assessment of nanofluid in a Von Karman flow with temperature relied viscosity
NASA Astrophysics Data System (ADS)
Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.
2018-06-01
This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
On a model of three-dimensional bursting and its parallel implementation
NASA Astrophysics Data System (ADS)
Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.
2008-04-01
A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
Photochemical numerics for global-scale modeling: Fidelity and GCM testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, S.; Jim Kao, Chih-Yue; Zhao, X.
1995-03-01
Atmospheric photochemistry lies at the heart of global-scale pollution problems, but it is a nonlinear system embedded in nonlinear transport and so must be modeled in three dimensions. Total earth grids are massive and kinetics require dozens of interacting tracers, taxing supercomputers to their limits in global calculations. A matrix-free and noniterative family scheme is described that permits chemical step sizes an order of magnitude or more larger than time constants for molecular groupings, in the 1-h range used for transport. Families are partitioned through linearized implicit integrations that produce stabilizing species concentrations for a mass-conserving forward solver. The kineticsmore » are also parallelized by moving geographic loops innermost and changes in the continuity equations are automated through list reading. The combination of speed, parallelization and automation renders the programs naturally modular. Accuracy lies within 1% for all species in week-long fidelity tests. A 50-species, 150-reaction stratospheric module tested in a spectral GCM benchmarks at 10 min CPU time per day and agrees with lower-dimensionality simulations. Tropospheric nonmethane hydrocarbon chemistry will soon be added, and inherently three-dimensional phenomena will be investigated both decoupled from dynamics and in a complete chemical GCM. 225 refs., 11 figs., 2 tabs.« less
High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
NASA Technical Reports Server (NTRS)
Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.
2014-01-01
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
Three dimensional PNS solutions of hypersonic internal flows with equilibrium chemistry
NASA Technical Reports Server (NTRS)
Liou, May-Fun
1989-01-01
An implicit procedure for solving parabolized Navier-Stokes equations under the assumption of a general equation of state for a gas in chemical equilibrium is given. A general and consistent approach for the evaluation of Jacobian matrices in the implicit operator avoids the use of unnecessary auxiliary quantities and approximations, and leads to a simple expression. Applications to two- and three-dimensional flow problems show efficiency in computer time and economy in storage.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
Butterfly, Recurrence, and Predictability in Lorenz Models
NASA Astrophysics Data System (ADS)
Shen, B. W.
2017-12-01
Over the span of 50 years, the original three-dimensional Lorenz model (3DLM; Lorenz,1963) and its high-dimensional versions (e.g., Shen 2014a and references therein) have been used for improving our understanding of the predictability of weather and climate with a focus on chaotic responses. Although the Lorenz studies focus on nonlinear processes and chaotic dynamics, people often apply a "linear" conceptual model to understand the nonlinear processes in the 3DLM. In this talk, we present examples to illustrate the common misunderstandings regarding butterfly effect and discuss the importance of solutions' recurrence and boundedness in the 3DLM and high-dimensional LMs. The first example is discussed with the following folklore that has been widely used as an analogy of the butterfly effect: "For want of a nail, the shoe was lost.For want of a shoe, the horse was lost.For want of a horse, the rider was lost.For want of a rider, the battle was lost.For want of a battle, the kingdom was lost.And all for the want of a horseshoe nail."However, in 2008, Prof. Lorenz stated that he did not feel that this verse described true chaos but that it better illustrated the simpler phenomenon of instability; and that the verse implicitly suggests that subsequent small events will not reverse the outcome (Lorenz, 2008). Lorenz's comments suggest that the verse neither describes negative (nonlinear) feedback nor indicates recurrence, the latter of which is required for the appearance of a butterfly pattern. The second example is to illustrate that the divergence of two nearby trajectories should be bounded and recurrent, as shown in Figure 1. Furthermore, we will discuss how high-dimensional LMs were derived to illustrate (1) negative nonlinear feedback that stabilizes the system within the five- and seven-dimensional LMs (5D and 7D LMs; Shen 2014a; 2015a; 2016); (2) positive nonlinear feedback that destabilizes the system within the 6D and 8D LMs (Shen 2015b; 2017); and (3) recurrence (e.g., quasi-periodic solutions) within non-dissipative LMs (Faghih-Naini and Shen, 2017; Shen and Faghih-Naini, 2017). http://bwshen.sdsu.edu/shen_agu17.html
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
NASA Technical Reports Server (NTRS)
Quek, Kok How Francis
1990-01-01
A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
NASA Astrophysics Data System (ADS)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis
2015-11-01
We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).
Nonlinear analysis of solar cycles
NASA Astrophysics Data System (ADS)
Serre, T.; Nesme-Ribes, E.
2000-08-01
In this paper, the recent improvement of the Wolf sunspot time-series by Hoyt and co-workers has been analysed with the Global Flow Reconstruction (GFR) method (Serre et al. 1996a and b). A nonlinear 4-dimensional chaotic model has been extracted from the data which captures the principal characteristic features of the sunspot group time-series. The hypothesis of interactions between magnetic modes is implicitly tested; presumably, this is the cause of the irregular variations of solar cycle amplitudes recorded since the year 1610. The present results indicate that interactions are occurring between few global magnetic modes.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1994-01-01
The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.
Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team
2017-11-01
Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
Three dimensional modelling of earthquake rupture cycles on frictional faults
NASA Astrophysics Data System (ADS)
Simpson, Guy; May, Dave
2017-04-01
We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.
NASA Astrophysics Data System (ADS)
Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.
2002-11-01
A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.
An O(Nm(sup 2)) Plane Solver for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Thomas, J. L.; Bonhaus, D. L.; Anderson, W. K.; Rumsey, C. L.; Biedron, R. T.
1999-01-01
A hierarchical multigrid algorithm for efficient steady solutions to the two-dimensional compressible Navier-Stokes equations is developed and demonstrated. The algorithm applies multigrid in two ways: a Full Approximation Scheme (FAS) for a nonlinear residual equation and a Correction Scheme (CS) for a linearized defect correction implicit equation. Multigrid analyses which include the effect of boundary conditions in one direction are used to estimate the convergence rate of the algorithm for a model convection equation. Three alternating-line- implicit algorithms are compared in terms of efficiency. The analyses indicate that full multigrid efficiency is not attained in the general case; the number of cycles to attain convergence is dependent on the mesh density for high-frequency cross-stream variations. However, the dependence is reasonably small and fast convergence is eventually attained for any given frequency with either the FAS or the CS scheme alone. The paper summarizes numerical computations for which convergence has been attained to within truncation error in a few multigrid cycles for both inviscid and viscous ow simulations on highly stretched meshes.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
NASA Astrophysics Data System (ADS)
Uzunoglu, B.; Hussaini, Y.
2017-12-01
Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
NASA Astrophysics Data System (ADS)
Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey
2014-01-01
The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.
NASA Astrophysics Data System (ADS)
Holmgren, Stefan J.; Pasiskevicius, Valdas; Wang, Shunhua; Laurell, Fredrik
2003-09-01
A novel technique for characterization of the second-order nonlinearity in nonlinear crystals is presented. It utilizes group-velocity walk-off between femtosecond pulses in type II SHG to achieve three-dimensional resolution of the nonlinearity. The longitudinal and transversal spatial resolution can be set independently. The technique is especially useful for characterizing quasi-phase-matched nonlinear crystals, and it is demonstrated in potassium titanyl phosphate.
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report
NASA Technical Reports Server (NTRS)
Ahmad, Shahid
1991-01-01
An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.
Modeling of shock wave propagation in large amplitude ultrasound.
Pinton, Gianmarco F; Trahey, Gregg E
2008-01-01
The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.
A simple new filter for nonlinear high-dimensional data assimilation
NASA Astrophysics Data System (ADS)
Tödter, Julian; Kirchgessner, Paul; Ahrens, Bodo
2015-04-01
The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes' theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. This work shows how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The forecast step remains as in the ETKF. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF). The properties and performance of the proposed algorithm are investigated via a set of Lorenz experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Furthermore, localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. Finally, the novel algorithm is coupled to a large-scale ocean general circulation model. The NETF is stable, behaves reasonably and shows a good performance with a realistic ensemble size. The results confirm that, in principle, it can be applied successfully and as simple as the ETKF in high-dimensional problems without further modifications of the algorithm, even though it is only based on the particle weights. This proves that the suggested method constitutes a useful filter for nonlinear, high-dimensional data assimilation, and is able to overcome the curse of dimensionality even in deterministic systems.
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PICmore » only, reduced dimensionality). The approach is free of numerical instabilities: ω peΔt >> 1, and Δx >> λ D. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N FE, leading to an optimal algorithm.« less
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
Estimation of three-dimensional radar tracking using modified extended kalman filter
NASA Astrophysics Data System (ADS)
Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar
2018-03-01
Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.
NASA Astrophysics Data System (ADS)
Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen
2016-05-01
A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.
Yan, Zhenya; Konotop, V V
2009-09-01
It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
NASA Astrophysics Data System (ADS)
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In addition, all the volume and surface integrals needed by the scheme depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessing stage. This leads to significant savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The viscous terms and the heat flux are also discretized making use of the staggered grid by defining the viscous stress tensor and the heat flux vector on the dual grid, which corresponds to the use of a lifting operator, but on the dual grid. The time step of our new numerical method is limited by a CFL condition based only on the fluid velocity and not on the sound speed. This makes the method particularly interesting for low Mach number flows. Finally, a very simple combination of artificial viscosity and the a posteriori MOOD technique allows to deal with shock waves and thus permits also to simulate high Mach number flows. We show computational results for a large set of two and three-dimensional benchmark problems, including both low and high Mach number flows and using polynomial approximation degrees up to p = 4.
A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Goldberg, Hirsh; Nasrabadi, Nasser M.
2007-04-01
In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vectors in order to exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold. Comparisons are made using receiver operating characteristics (ROC) curves.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
NASA Technical Reports Server (NTRS)
Walker, K. P.; Freed, A. D.
1991-01-01
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.
Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers
NASA Technical Reports Server (NTRS)
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2018-04-01
We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
NASA Astrophysics Data System (ADS)
Chacon, L.; Finn, J. M.; Knoll, D. A.
2000-10-01
Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
Accurate color synthesis of three-dimensional objects in an image
NASA Astrophysics Data System (ADS)
Xin, John H.; Shen, Hui-Liang
2004-05-01
Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less
NASA Astrophysics Data System (ADS)
Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F.
2017-12-01
In this paper we investigate the possibility of using the high-order accurate A (α) -stable Second Derivative (SD) schemes proposed by Enright for the implicit time integration of the Discontinuous Galerkin (DG) space-discretized Navier-Stokes equations. These multistep schemes are A-stable up to fourth-order, but their use results in a system matrix difficult to compute. Furthermore, the evaluation of the nonlinear function is computationally very demanding. We propose here a Matrix-Free (MF) implementation of Enright schemes that allows to obtain a method without the costs of forming, storing and factorizing the system matrix, which is much less computationally expensive than its matrix-explicit counterpart, and which performs competitively with other implicit schemes, such as the Modified Extended Backward Differentiation Formulae (MEBDF). The algorithm makes use of the preconditioned GMRES algorithm for solving the linear system of equations. The preconditioner is based on the ILU(0) factorization of an approximated but computationally cheaper form of the system matrix, and it has been reused for several time steps to improve the efficiency of the MF Newton-Krylov solver. We additionally employ a polynomial extrapolation technique to compute an accurate initial guess to the implicit nonlinear system. The stability properties of SD schemes have been analyzed by solving a linear model problem. For the analysis on the Navier-Stokes equations, two-dimensional inviscid and viscous test cases, both with a known analytical solution, are solved to assess the accuracy properties of the proposed time integration method for nonlinear autonomous and non-autonomous systems, respectively. The performance of the SD algorithm is compared with the ones obtained by using an MF-MEBDF solver, in order to evaluate its effectiveness, identifying its limitations and suggesting possible further improvements.
Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej
2011-01-01
A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116
Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method
NASA Technical Reports Server (NTRS)
Whitaker, David L.
1993-01-01
A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.
Xu, X Q
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-10-01
In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.
2007-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2013-08-01
We propose a 1D analytical particle mover for the recent charge- and energy-conserving electrostatic particle-in-cell (PIC) algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036]. The approach computes particle orbits exactly for a given piece-wise linear electric field. The resulting PIC algorithm maintains the exact charge and energy conservation properties of the original algorithm, but with improved performance (both in efficiency and robustness against the number of particles and timestep). We demonstrate the advantageous properties of the scheme with a challenging multiscale numerical test case, the ion acoustic wave. Using the analytical mover as a reference, we demonstrate that the choice of error estimator in the Crank-Nicolson mover has significant impact on the overall performance of the implicit PIC algorithm. The generalization of the approach to the multi-dimensional case is outlined, based on a novel and simple charge conserving interpolation scheme.
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swesty, F. Douglas; Myra, Eric S.
It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less
High order spectral volume and spectral difference methods on unstructured grids
NASA Astrophysics Data System (ADS)
Kannan, Ravishekar
The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed-up factor of up to 1500 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Navier-Stokes equations. The SV method was also extended to turbulent flows. The RANS based SA model was used to close the Reynolds stresses. The numerical results are very promising and indicate that the approaches have great potentials for 3D flow problems.
NASA Astrophysics Data System (ADS)
Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.
2006-11-01
This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.
1991-01-01
A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun
In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.
Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej
2011-08-01
A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Gattol, Valentin; Sääksjärvi, Maria; Carbon, Claus-Christian
2011-01-01
Background The authors present a procedural extension of the popular Implicit Association Test (IAT; [1]) that allows for indirect measurement of attitudes on multiple dimensions (e.g., safe–unsafe; young–old; innovative–conventional, etc.) rather than on a single evaluative dimension only (e.g., good–bad). Methodology/Principal Findings In two within-subjects studies, attitudes toward three automobile brands were measured on six attribute dimensions. Emphasis was placed on evaluating the methodological appropriateness of the new procedure, providing strong evidence for its reliability, validity, and sensitivity. Conclusions/Significance This new procedure yields detailed information on the multifaceted nature of brand associations that can add up to a more abstract overall attitude. Just as the IAT, its multi-dimensional extension/application (dubbed md-IAT) is suited for reliably measuring attitudes consumers may not be consciously aware of, able to express, or willing to share with the researcher [2], [3]. PMID:21246037
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
Macroscopic response in active nonlinear photonic crystals.
Alagappan, Gandhi; John, Sajeev; Li, Er Ping
2013-09-15
We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.
Real gas flow fields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Lombard, C. K.; Davy, W. C.
1983-01-01
Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.
NASA Astrophysics Data System (ADS)
Boubir, Badreddine
2018-06-01
In this paper, we investigate the dynamics of bright optical solitons in nonlinear metamaterials governed by a (2 + 1)-dimensional nonlinear Schrödinger equation. Three types of nonlinearities have been considered, Kerr law, power law and parabolic law. We based on the solitary wave ansatz method to find these optical soliton solutions. All necessary parametric conditions for their existence are driven.
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
Three-dimensional instability of standing waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2003-12-01
We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.
A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects
NASA Technical Reports Server (NTRS)
Korkan, K. D.
1985-01-01
Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
NASA Technical Reports Server (NTRS)
Stein, M.; Stein, P. A.
1978-01-01
Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.
Fourier-Legendre spectral methods for incompressible channel flow
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1984-01-01
An iterative collocation technique is described for modeling implicit viscosity in three-dimensional incompressible wall bounded shear flow. The viscosity can vary temporally and in the vertical direction. Channel flow is modeled with a Fourier-Legendre approximation and the mean streamwise advection is treated implicitly. Explicit terms are handled with an Adams-Bashforth method to increase the allowable time-step for calculation of the implicit terms. The algorithm is applied to low amplitude unstable waves in a plane Poiseuille flow at an Re of 7500. Comparisons are made between results using the Legendre method and with Chebyshev polynomials. Comparable accuracy is obtained for the perturbation kinetic energy predicted using both discretizations.
NASA Astrophysics Data System (ADS)
Tomaro, Robert F.
1998-07-01
The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.
NASA Astrophysics Data System (ADS)
Dey, Pinkee; Suslov, Sergey A.
2016-12-01
A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Králová, Blanka
2011-12-01
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling.
An unstructured grid, three-dimensional model based on the shallow water equations
Casulli, V.; Walters, R.A.
2000-01-01
A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Lunghino, Brent; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
From the now common idea that vegetated shores may reduce the power of a destructive storm surge, an increasing number of coastal communities around the world are extending this thinking to the design of coastal parks as a way to limit the impact of a tsunami. Tsunamis and storm surges are significantly different in nature and behavior, and it is implausible that vegetation alone could act as a tsunami mitigation tool. A more comprehensive approach relies on the installation of vegetated, scattered mitigation hills in front of the shore to deviate the incoming tsunami wave instead. The analysis of how natural obstacles affect non-linear tsunami waves is still very limited and consists mostly of one-dimensional studies (e.g., [1, 2]). To that end, this work aims to extend the analysis of the interaction of waves of different shapes (solitary wave, N-wave), sizes (amplitude and wave length), and configurations with large obstacles to two-dimensional flows. The following metrics are used for a quantification of the results: 1) tsunami run-up and run-down and 2) a measure of channelization (via the flow kinetic energy and discharge). First, preliminary results show that the configuration of the obstacles is consequential as long as the amplitude of the incoming wave is large enough relative to the obstacles. In second instance, we also observed that the channelization of the flow between two neighboring obstacles may not be greatly affected solely by the distance between obstacles, but must be analyzed in relationship to the initial wave/wave train. This study is based on the numerical solution of the viscous shallow water equations via high order discontinuous finite elements method (DG) using a quadrilateral version of the model described in [3] and with fully implicit time integration [4]. Large and relatively massive hills appear to be a better solution than any offshore concrete walls, which have shown to possibly enhance the tsunami catastrophic power rather than reducing it. Nevertheless, without a thorough understanding of the behavior of non-linear waves when they approach coastal configurations such as hills, coastal parks may still be far from a safe reality. References [1] P. Lynett (2007) "Effect of shallow water obstruction on long wave run-up and overland flow velocity" J. Waterway, Port, Coastal, Ocean Engrg. 136:455-462 [2] G. F. Carrier, T. T. Wu, H. Yeh (2003) "Tsunami run-up and draw-down on a plane beach" J. Fluid Mech. 475:79-99. [3] F. X. Giraldo and M. Restelli (2010) "High-order semi- implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model" Int. J. Numer. Methods Fluids, 63:1077-1102. [4] F X. Giraldo, J F.. Kelly, and E. Constantinescu. "Implicit-explicit formulations of a three-dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)" SIAM J. Sci. Comput., 35:1162-1194, 2013.
NASA Astrophysics Data System (ADS)
Haddad, Z. S.; Steward, J. L.; Tseng, H.-C.; Vukicevic, T.; Chen, S.-H.; Hristova-Veleva, S.
2015-06-01
Satellite microwave observations of rain, whether from radar or passive radiometers, depend in a very crucial way on the vertical distribution of the condensed water mass and on the types and sizes of the hydrometeors in the volume resolved by the instrument. This crucial dependence is nonlinear, with different types and orders of nonlinearity that are due to differences in the absorption/emission and scattering signatures at the different instrument frequencies. Because it is not monotone as a function of the underlying condensed water mass, the nonlinearity requires great care in its representation in the observation operator, as the inevitable uncertainties in the numerous precipitation variables are not directly convertible into an additive white uncertainty in the forward calculated observations. In particular, when attempting to assimilate such data into a cloud-permitting model, special care needs to be applied to describe and quantify the expected uncertainty in the observations operator in order not to turn the implicit white additive uncertainty on the input values into complicated biases in the calculated radiances. One approach would be to calculate the means and covariances of the nonlinearly calculated radiances given an a priori joint distribution for the input variables. This would be a very resource-intensive proposal if performed in real time. We propose a representation of the observation operator based on performing this moment calculation off line, with a dimensionality reduction step to allow for the effective calculation of the observation operator and the associated covariance in real time during the assimilation. The approach is applicable to other remotely sensed observations that depend nonlinearly on model variables, including wind vector fields. The approach has been successfully applied to the case of tropical cyclones, where the organization of the system helps in identifying the dimensionality-reducing variables.
Chen, G.; Chacón, L.
2015-08-11
For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less
Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air
NASA Technical Reports Server (NTRS)
Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.
2007-01-01
The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.
1992-01-01
Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
Aerodynamics of Engine-Airframe Interaction
NASA Technical Reports Server (NTRS)
Caughey, D. A.
1986-01-01
The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.
Analysis of the correlation dimension for inertial particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, Kristian; Department of Physics, Göteborg University, 41296 Gothenburg; Mehlig, Bernhard
2015-07-15
We obtain an implicit equation for the correlation dimension which describes clustering of inertial particles in a complex flow onto a fractal measure. Our general equation involves a propagator of a nonlinear stochastic process in which the velocity gradient of the fluid appears as additive noise. When the long-time limit of the propagator is considered our equation reduces to an existing large-deviation formalism from which it is difficult to extract concrete results. In the short-time limit, however, our equation reduces to a solvability condition on a partial differential equation. In the case where the inertial particles are much denser thanmore » the fluid, we show how this approach leads to a perturbative expansion of the correlation dimension, for which the coefficients can be obtained exactly and in principle to any order. We derive the perturbation series for the correlation dimension of inertial particles suspended in three-dimensional spatially smooth random flows with white-noise time correlations, obtaining the first 33 non-zero coefficients exactly.« less
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
NASA Astrophysics Data System (ADS)
Chew, J. V. L.; Sulaiman, J.
2017-09-01
Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.
Convergence Acceleration for Multistage Time-Stepping Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.
2006-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2014-10-01
A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation to Maxwell's equations, which avoids radiative noise issues by ordering out the light wave. An implicit, orbit-averaged, time-space-centered finite difference scheme is employed in both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. We have developed a simple preconditioner that targets electrostatic waves and skin currents, and allows us to employ time steps O(√{mi /me } c /veT) larger than the explicit CFL. Several 1D numerical experiments demonstrate the accuracy, performance, and conservation properties of the algorithm. In particular, the scheme is shown to be second-order accurate, and CPU speedups of more than three orders of magnitude vs. an explicit Vlasov-Maxwell solver are demonstrated in the "cold" plasma regime (where kλD ≪ 1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Chacon, Luis
2005-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.
Inter- and Intra-Dimensional Dependencies in Implicit Phonotactic Learning
ERIC Educational Resources Information Center
Moreton, Elliott
2012-01-01
Is phonological learning subject to the same inductive biases as learning in other domains? Previous studies of non-linguistic learning found that intra-dimensional dependencies (between two instances of the same feature) were learned more easily than inter-dimensional ones. This study compares implicit learning of intra- and inter-dimensional…
Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
Jing, Yuan; Cleveland, Robin O
2007-09-01
A three-dimensional model of the forward propagation of nonlinear sound beams in inhomogeneous media, a generalized Khokhlov-Zabolotskaya-Kuznetsov equation, is described. The Texas time-domain code (which accounts for paraxial diffraction, nonlinearity, thermoviscous absorption, and absorption and dispersion associated with multiple relaxation processes) was extended to solve for the propagation of nonlinear beams for the case where all medium properties vary in space. The code was validated with measurements of the nonlinear acoustic field generated by a phased array transducer operating at 2.5 MHz in water. A nonuniform layer of gel was employed to create an inhomogeneous medium. There was good agreement between the code and measurements in capturing the shift in the pressure distribution of both the fundamental and second harmonic due to the gel layer. The results indicate that the numerical tool described here is appropriate for propagation of nonlinear sound beams through weakly inhomogeneous media.
Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence
NASA Astrophysics Data System (ADS)
Belli, Emily Ann
Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.
Reconstruction of three-dimensional porous media using generative adversarial neural networks
NASA Astrophysics Data System (ADS)
Mosser, Lukas; Dubrule, Olivier; Blunt, Martin J.
2017-10-01
To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image data sets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics, and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that generative adversarial networks can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.
NASA Astrophysics Data System (ADS)
Cox, Christopher
Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. The aim of this research as it relates to cardiovascular fluid dynamics is to predict the spatial and temporal evolution of vortical structures generated by secondary flows, as well as to assess the correlation between multiple vortex pairs and wall shear stress. We use a physiologically (pulsatile) relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter being motivated by the fact that flow upstream of a curved artery may not have sufficient straight entrance length to become fully developed. Under the two pulsatile inflow conditions, we characterize the morphology and evolution of various vortex pairs and their subsequent effect on relevant haemodynamic wall shear stress metrics.
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap.
Spiwok, Vojtěch; Králová, Blanka
2011-12-14
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling. © 2011 American Institute of Physics
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.
Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1985-01-01
Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.
NASA Astrophysics Data System (ADS)
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Betti, R.; Sanz, J.
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
NASA Technical Reports Server (NTRS)
1978-01-01
A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.
The time course of explicit and implicit categorization.
Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A
2015-10-01
Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.
Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas
NASA Astrophysics Data System (ADS)
Finn, J. M.; Chacon, L.
2002-11-01
We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F
2012-11-01
An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.
On the dimensionally correct kinetic theory of turbulence for parallel propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br
2015-03-15
Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less
An efficient method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Liou, M. S.
1986-01-01
An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.
Microwave phase conjugation using artificial nonlinear microwave surfaces
NASA Astrophysics Data System (ADS)
Chang, Yian
1997-09-01
A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1986-01-01
The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.
Gkioulekas, Eleftherios
2016-09-01
Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rossow, C.-C.
2008-01-01
A three-stage Runge-Kutta (RK) scheme with multigrid and an implicit preconditioner has been shown to be an effective solver for the fluid dynamic equations. This scheme has been applied to both the compressible and essentially incompressible Reynolds-averaged Navier-Stokes (RANS) equations using the algebraic turbulence model of Baldwin and Lomax (BL). In this paper we focus on the convergence of the RK/implicit scheme when the effects of turbulence are represented by either the Spalart-Allmaras model or the Wilcox k-! model, which are frequently used models in practical fluid dynamic applications. Convergence behavior of the scheme with these turbulence models and the BL model are directly compared. For this initial investigation we solve the flow equations and the partial differential equations of the turbulence models indirectly coupled. With this approach we examine the convergence behavior of each system. Both point and line symmetric Gauss-Seidel are considered for approximating the inverse of the implicit operator of the flow solver. To solve the turbulence equations we use a diagonally dominant alternating direction implicit (DDADI) scheme. Computational results are presented for three airfoil flow cases and comparisons are made with experimental data. We demonstrate that the two-dimensional RANS equations and transport-type equations for turbulence modeling can be efficiently solved with an indirectly coupled algorithm that uses the RK/implicit scheme for the flow equations.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed
2017-09-01
The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy-Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.
The Time Course of Explicit and Implicit Categorization
Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.
2015-01-01
Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556
On implicit abstract neutral nonlinear differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie
2016-04-15
In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.
Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed
2018-03-01
Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
An efficient three-dimensional Poisson solver for SIMD high-performance-computing architectures
NASA Technical Reports Server (NTRS)
Cohl, H.
1994-01-01
We present an algorithm that solves the three-dimensional Poisson equation on a cylindrical grid. The technique uses a finite-difference scheme with operator splitting. This splitting maps the banded structure of the operator matrix into a two-dimensional set of tridiagonal matrices, which are then solved in parallel. Our algorithm couples FFT techniques with the well-known ADI (Alternating Direction Implicit) method for solving Elliptic PDE's, and the implementation is extremely well suited for a massively parallel environment like the SIMD architecture of the MasPar MP-1. Due to the highly recursive nature of our problem, we believe that our method is highly efficient, as it avoids excessive interprocessor communication.
NASA Technical Reports Server (NTRS)
Fujii, K.
1983-01-01
A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.
Task oriented nonlinear control laws for telerobotic assembly operations
NASA Technical Reports Server (NTRS)
Walker, R. A.; Ward, L. S.; Elia, C. F.
1987-01-01
The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.
Incompressible spectral-element method: Derivation of equations
NASA Technical Reports Server (NTRS)
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
User's guide to the NOZL3D and NOZLIC computer programs
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
A solution to the Navier-Stokes equations based upon the Newton Kantorovich method
NASA Technical Reports Server (NTRS)
Davis, J. E.; Gabrielsen, R. E.; Mehta, U. B.
1977-01-01
An implicit finite difference scheme based on the Newton-Kantorovich technique was developed for the numerical solution of the nonsteady, incompressible, two-dimensional Navier-Stokes equations in conservation-law form. The algorithm was second-order-time accurate, noniterative with regard to the nonlinear terms in the vorticity transport equation except at the earliest few time steps, and spatially factored. Numerical results were obtained with the technique for a circular cylinder at Reynolds number 15. Results indicate that the technique is in excellent agreement with other numerical techniques for all geometries and Reynolds numbers investigated, and indicates a potential for significant reduction in computation time over current iterative techniques.
HYDRODYNAMIC SIMULATION OF THE UPPER POTOMAC ESTUARY.
Schaffranck, Raymond W.
1986-01-01
Hydrodynamics of the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. , are simulated using a two-dimensional model. The model computes water-surface elevations and depth-averaged velocities by numerically integrating finite-difference forms of the equations of mass and momentum conservation using the alternating direction implicit method. The fundamental, non-linear, unsteady-flow equations, upon which the model is formulated, include additional terms to account for Coriolis acceleration and meteorological influences. Preliminary model/prototype data comparisons show agreement to within 9% for tidal flow volumes and phase differences within the measured-data-recording interval. Use of the model to investigate the hydrodynamics and certain aspects of transport within this Potomac Estuary reach is demonstrated. Refs.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
NASA Astrophysics Data System (ADS)
Garanzha, V. A.; Kudryavtseva, L. N.
2012-03-01
A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
Three-Dimensional Unstained Live-Cell Imaging Using Stimulated Parametric Emission Microscopy
NASA Astrophysics Data System (ADS)
Dang, Hieu M.; Kawasumi, Takehito; Omura, Gen; Umano, Toshiyuki; Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi
2009-09-01
The ability to perform high-resolution unstained live imaging is very important to in vivo study of cell structures and functions. Stimulated parametric emission (SPE) microscopy is a nonlinear-optical microscopy based on ultra-fast electronic nonlinear-optical responses. For the first time, we have successfully applied this technique to archive three-dimensional (3D) images of unstained sub-cellular structures, such as, microtubules, nuclei, nucleoli, etc. in live cells. Observation of a complete cell division confirms the ability of SPE microscopy for long time-scale imaging.
Three-dimensional calculations of rotor-airframe interaction in forward flight
NASA Technical Reports Server (NTRS)
Zori, Laith A. J.; Mathur, Sanjay R.; Rajagopalan, R. G.
1992-01-01
A method for analyzing the mutual aerodynamic interaction between a rotor and an airframe model has been developed. This technique models the rotor implicitly through the source terms of the momentum equations. A three-dimensional, incompressible, laminar, Navier-Stokes solver in cylindrical coordinates was developed for analyzing the rotor/airframe problem. The calculations are performed on a simplified model at an advance ratio of 0.1. The airframe surface pressure predictions are found to be in good agreement with wind tunnel test data. Results are presented for velocity and pressure field distributions in the wake of the rotor.
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Vectorization on the star computer of several numerical methods for a fluid flow problem
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
Development of a three dimensional numerical water quality model for continental shelf applications
NASA Technical Reports Server (NTRS)
Spaulding, M.; Hunter, D.
1975-01-01
A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro
2017-04-01
We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
NASA Technical Reports Server (NTRS)
Palmer, Grant; Venkatapathy, Ethiraj
1993-01-01
Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Implicit solution of three-dimensional internal turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.
1991-01-01
The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.
NASA Astrophysics Data System (ADS)
Tianmin, Wu; Tianjun, Wang; Xian, Chen; Bin, Fang; Ruiting, Zhang; Wei, Zhuang
2016-01-01
We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes. Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
2016-10-21
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D was developed to solve the three-dimensional, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D was developed to solve the three-dimensional, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This User's Guide describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1986-01-01
The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
Implicit flux-split schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Thomas, J. L.; Walters, R. W.; Van Leer, B.
1985-01-01
Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
NASA Technical Reports Server (NTRS)
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2005-01-01
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.
Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation
NASA Technical Reports Server (NTRS)
Chang, I. C.
1985-01-01
A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.
Development Of A Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Kwak, Dochan
1993-01-01
Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION
A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
Visions of visualization aids - Design philosophy and observations
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
1989-01-01
Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two-dimensional or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or a parsimonious description of phenomena implicit in the data. Useful visualization, in contrast to glitzy, high-tech, computer-graphics imagery, is generally based on preexisting theoretical beliefs concerning the underlying phenomena. These beliefs guide selection and formatting of the plotted variables. Visualization tools are useful for understanding naturally three-dimensional data bases such as those used by pilots or astronauts. Two examples of such aids for spatial maneuvering illustrate that informative geometric distortion may be introduced to assist visualization and that visualization of complex dynamics alone may not be adequate to provide the necessary insight into the underlying processes.
A semi-implicit level set method for multiphase flows and fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri; Maitre, Emmanuel
2016-06-01
In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
A cell-vertex multigrid method for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Radespiel, R.
1989-01-01
A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.
3-d finite element model development for biomechanics: a software demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
Seismic assessment of WSDOT bridges with prestressed hollow core piles : part II.
DOT National Transportation Integrated Search
2009-12-01
This report investigates the seismic performance of a reinforced concrete : bridge with prestressed hollow core piles. Both nonlinear static and nonlinear dynamic : analyses were carried out. A three-dimensional spine model of the bridge was : ...
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E
2013-05-01
The difference-of-Gaussians (DOG) filter is a widely used model for the receptive field of neurons in the retina and lateral geniculate nucleus (LGN) and is a potential model in general for responses modulated by an excitatory center with an inhibitory surrounding region. A DOG filter is defined by three standard parameters: the center and surround sigmas (which define the variance of the radially symmetric Gaussians) and the balance (which defines the linear combination of the two Gaussians). These parameters are not directly observable and are typically determined by nonlinear parameter estimation methods applied to the frequency response function. DOG filters show both low-pass (optimal response at zero frequency) and bandpass (optimal response at a nonzero frequency) behavior. This paper reformulates the DOG filter in terms of a directly observable parameter, the zero-crossing radius, and two new (but not directly observable) parameters. In the two-dimensional parameter space, the exact region corresponding to bandpass behavior is determined. A detailed description of the frequency response characteristics of the DOG filter is obtained. It is also found that the directly observable optimal frequency and optimal gain (the ratio of the response at optimal frequency to the response at zero frequency) provide an alternate coordinate system for the bandpass region. Altogether, the DOG filter and its three standard implicit parameters can be determined by three directly observable values. The two-dimensional bandpass region is a potential tool for the analysis of populations of DOG filters (for example, populations of neurons in the retina or LGN), because the clustering of points in this parameter space may indicate an underlying organizational principle. This paper concentrates on circular Gaussians, but the results generalize to multidimensional radially symmetric Gaussians and are given as an appendix.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Implicit approximate-factorization schemes for the low-frequency transonic equation
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Steger, J. L.
1975-01-01
Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaber, Allan B., E-mail: wollaber@lanl.go; Larsen, Edward W., E-mail: edlarsen@umich.ed
2011-02-20
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, wemore » also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.« less
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
NASA Astrophysics Data System (ADS)
Wollaber, Allan B.; Larsen, Edward W.
2011-02-01
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used “Implicit Monte Carlo” (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or “Semi-Analog Monte Carlo” (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if α, the IMC time-discretization parameter, satisfies 0.5 < α ⩽ 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.
Recognition of 3-D symmetric objects from range images in automated assembly tasks
NASA Technical Reports Server (NTRS)
Alvertos, Nicolas; Dcunha, Ivan
1990-01-01
A new technique is presented for the three dimensional recognition of symmetric objects from range images. Beginning from the implicit representation of quadrics, a set of ten coefficients is determined for symmetric objects like spheres, cones, cylinders, ellipsoids, and parallelepipeds. Instead of using these ten coefficients trying to fit them to smooth surfaces (patches) based on the traditional way of determining curvatures, a new approach based on two dimensional geometry is used. For each symmetric object, a unique set of two dimensional curves is obtained from the various angles at which the object is intersected with a plane. Using the same ten coefficients obtained earlier and based on the discriminant method, each of these curves is classified as a parabola, circle, ellipse, or hyperbola. Each symmetric object is found to possess a unique set of these two dimensional curves whereby it can be differentiated from the others. It is shown that instead of using the three dimensional discriminant which involves evaluation of the rank of its matrix, it is sufficient to use the two dimensional discriminant which only requires three arithmetic operations.
Concentration data and dimensionality in groundwater models: evaluation using inverse modelling
Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.
1998-01-01
A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.
NASA Astrophysics Data System (ADS)
Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh
2017-06-01
Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Chacon, Luis; Barnes, Daniel C
2012-01-01
Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been developed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230, 18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver and is capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle orbit integrations from the field solver, while remaining fully self-consistent. This provides great flexibility, and dramatically improves the solver efficiency by reducing the degrees of freedom of the associated nonlinear system. However, it requires a particle push per nonlinearmore » residual evaluation, which makes the particle push the most time-consuming operation in the algorithm. This paper describes a very efficient mixed-precision, hybrid CPU-GPU implementation of the implicit PIC algorithm. The JFNK solver is kept on the CPU (in double precision), while the inherent data parallelism of the particle mover is exploited by implementing it in single-precision on a graphics processing unit (GPU) using CUDA. Performance-oriented optimizations, with the aid of an analytical performance model, the roofline model, are employed. Despite being highly dynamic, the adaptive, charge-conserving particle mover algorithm achieves up to 300 400 GOp/s (including single-precision floating-point, integer, and logic operations) on a Nvidia GeForce GTX580, corresponding to 20 25% absolute GPU efficiency (against the peak theoretical performance) and 50-70% intrinsic efficiency (against the algorithm s maximum operational throughput, which neglects all latencies). This is about 200-300 times faster than an equivalent serial CPU implementation. When the single-precision GPU particle mover is combined with a double-precision CPU JFNK field solver, overall performance gains 100 vs. the double-precision CPU-only serial version are obtained, with no apparent loss of robustness or accuracy when applied to a challenging long-time scale ion acoustic wave simulation.« less
Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations
NASA Technical Reports Server (NTRS)
Kenny, Andrew; Palazzolo, Alan
2000-01-01
Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.
2015-01-01
This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857
Real-time, interactive animation of deformable two- and three-dimensional objects
Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.
2003-06-03
A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.
Viscous real gas flowfields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Davy, W. C.
1983-01-01
Laminar, real gas hypersonic flowfields over a three dimensional configuration are computed using an unsteady, factored implicit scheme. Local chemical and thermodynamic properties are evaluated by an equilibrium composition method. Transport properties are obtained from individual species properties and application of a mixture rule. Numerical solutions are presented for an ideal gas and equilibrium air for free-stream Mach numbers of 13 and 15 and at various angles of attack. The effect of real gas is to decrease the shock-layer thickness resulting from decreased shock-layer temperatures and corresponding increased density. The combined effects of viscosity and real gas are to increase the subsonic layer near the wall.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez
2015-11-01
Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.
STOL aircraft transient ground effects. Part 1: Fundamental analytical study
NASA Technical Reports Server (NTRS)
Goldhammer, M. I.; Crowder, J. P.; Smyth, D. N.
1975-01-01
The first phases of a fundamental analytical study of STOL ground effects were presented. Ground effects were studied in two dimensions to establish the importance of nonlinear effects, to examine transient aspects of ascent and descent near the ground, and to study the modelling of the jet impingement on the ground. Powered lift system effects were treated using the jet-flap analogy. The status of a three-dimensional jet-wing ground effect method was presented. It was shown, for two-dimensional unblown airfoils, that the transient effects are small and are primarily due to airfoil/freestream/ground orientation rather than to unsteady effects. The three-dimensional study showed phenomena similar to the two-dimensional results. For unblown wings, the wing/freestream/ground orientation effects were shown to be of the same order of magnitude as for unblown airfoils. This may be used to study the nonplanar, nonlinear, jet-wing ground effect.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong
2015-11-01
Energy transfer through a (2+1)-dimensional α-helical protein can be described by a (2+1)-dimensional fourth-order nonlinear Schrödinger equation. For such an equation, a Lax pair and the infinitely-many conservation laws are derived. Using an auxiliary function and a bilinear formulation, we get the one-, two-, three- and N-soliton solutions via the Hirota method. The soliton velocity is linearly related to the lattice parameter γ, while the soliton' direction and amplitude do not depend on γ. Interactions between the two solitons are elastic, while those among the three solitons are pairwise elastic. Oblique, head-on and overtaking interactions between the two solitons are displayed. Oblique interaction among the three solitons and interactions among the two parallel solitons and a single one are presented as well.
Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.
Teli, Mohammad Nayeem; Anderson, Charles
2009-01-01
Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan
2014-02-07
We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two β-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our studymore » further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.« less
Unifying different interpretations of the nonlinear response in glass-forming liquids
NASA Astrophysics Data System (ADS)
Gadige, P.; Albert, S.; Michl, M.; Bauer, Th.; Lunkenheimer, P.; Loidl, A.; Tourbot, R.; Wiertel-Gasquet, C.; Biroli, G.; Bouchaud, J.-P.; Ladieu, F.
2017-09-01
This work aims at reconsidering several interpretations coexisting in the recent literature concerning nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us [J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005), 10.1103/PhysRevB.72.064204], where the growth of nonlinear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments, which should deepen our understanding of glasses.
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Atkins, E.; Chorin, A. J.
2011-12-01
The task in data assimilation is to identify the state of a system from an uncertain model supplemented by a stream of incomplete and noisy data. The model is typically given in form of a discretization of an Ito stochastic differential equation (SDE), x(n+1) = R(x(n))+ G W(n), where x is an m-dimensional vector and n=0,1,2,.... The m-dimensional vector function R and the m x m matrix G depend on the SDE as well as on the discretization scheme, and W is an m-dimensional vector whose elements are independent standard normal variates. The data are y(n) = h(x(n))+QV(n) where h is a k-dimensional vector function, Q is a k x k matrix and V is a vector whose components are independent standard normal variates. One can use statistics of the conditional probability density (pdf) of the state given the observations, p(n+1)=p(x(n+1)|y(1), ... , y(n+1)), to identify the state x(n+1). Particle filters approximate p(n+1) by sequential Monte Carlo and rely on the recursive formulation of the target pdf, p(n+1)∝p(x(n+1)|x(n)) p(y(n+1)|x(n+1)). The pdf p(x(n+1)|x(n)) can be read off of the model equations to be a Gaussian with mean R(x(n)) and covariance matrix Σ = GG^T, where the T denotes a transposed; the pdf p(y(n+1)|x(n+1)) is a Gaussian with mean h(x(n+1)) and covariance QQ^T. In a sampling-importance-resampling (SIR) filter one samples new values for the particles from a prior pdf and then one weighs these samples with weights determined by the observations, to yield an approximation to p(n+1). Such weighting schemes often yield small weights for many of the particles. Implicit particle filtering overcomes this problem by using the observations to generate the particles, thus focusing attention on regions of large probability. A suitable algebraic equation that depends on the model and the observations is constructed for each particle, and its solution yields high probability samples of p(n+1). In the current formulation of the implicit particle filter, the state covariance matrix Σ is assumed to be non-singular. In the present work we consider the case where the covariance Σ is singular. This happens in particular when the noise is spatially smooth and can be represented by a small number of Fourier coefficients, as is often the case in geophysical applications. We derive an implicit filter for this problem and show that it is very efficient, because the filter operates in a space whose dimension is the rank of Σ, rather than the full model dimension. We compare the implicit filter to SIR, to the Ensemble Kalman Filter and to variational methods, and also study how information from data is propagated from observed to unobserved variables. We illustrate the theory on two coupled nonlinear PDE's in one space dimension that have been used as a test-bed for geomagnetic data assimilation. We observe that the implicit filter gives good results with few (2-10) particles, while SIR requires thousands of particles for similar accuracy. We also find lower limits to the accuracy of the filter's reconstruction as a function of data availability.
NASA Astrophysics Data System (ADS)
Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.
2015-12-01
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.
A GPU-accelerated implicit meshless method for compressible flows
NASA Astrophysics Data System (ADS)
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Chacon, Luis; Knoll, Dana Alan
2015-07-31
A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G., E-mail: gchen@lanl.gov; Chacón, L.; Leibs, C.A.
2014-02-01
A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solvemore » is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.« less
NASA Astrophysics Data System (ADS)
Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-01
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-10
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Brandon; Rocha da Costa, Leandro Jose; Poirel, Dominique
Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from themore » fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.« less
Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.
NASA Astrophysics Data System (ADS)
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
Three dimensional magnetic solutions in massive gravity with (non)linear field
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Momennia, M.
2017-12-01
The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings) in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures
NASA Astrophysics Data System (ADS)
Semkin, A. O.; Sharangovich, S. N.
2018-05-01
A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.
Nonlinear elasticity in rocks: A comprehensive three-dimensional description
Lott, Martin; Remillieux, Marcel; Garnier, Vincent; ...
2017-07-17
Here we study theoretically and experimentally the mechanisms of nonlinear and nonequilibrium dynamics in geomaterials through dynamic acoustoelasticity testing. In the proposed theoretical formulation, the classical theory of nonlinear elasticity is extended to include the effects of conditioning. This formulation is adapted to the context of dynamic acoustoelasticity testing in which a low-frequency “pump” wave induces a strain field in the sample and modulates the propagation of a high-frequency “probe” wave. Experiments are conducted to validate the formulation in a long thin bar of Berea sandstone. Several configurations of the pump and probe are examined: the pump successively consists ofmore » the first longitudinal and first torsional mode of vibration of the sample while the probe is successively based on (pressure) $P$ and (shear) $S$ waves. The theoretical predictions reproduce many features of the elastic response observed experimentally, in particular, the coupling between nonlinear and nonequilibrium dynamics and the three-dimensional effects resulting from the tensorial nature of elasticity.« less
NASA Technical Reports Server (NTRS)
Powell, E. A.; Zinn, B. T.
1973-01-01
An analytical technique is developed to solve nonlinear three-dimensional, transverse and axial combustion instability problems associated with liquid-propellant rocket motors. The Method of Weighted Residuals is used to determine the nonlinear stability characteristics of a cylindrical combustor with uniform injection of propellants at one end and a conventional DeLaval nozzle at the other end. Crocco's pressure sensitive time-lag model is used to describe the unsteady combustion process. The developed model predicts the transient behavior and nonlinear wave shapes as well as limit-cycle amplitudes and frequencies typical of unstable motor operation. The limit-cycle amplitude increases with increasing sensitivity of the combustion process to pressure oscillations. For transverse instabilities, calculated pressure waveforms exhibit sharp peaks and shallow minima, and the frequency of oscillation is within a few percent of the pure acoustic mode frequency. For axial instabilities, the theory predicts a steep-fronted wave moving back and forth along the combustor.
Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting
Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart
2015-02-14
Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1990-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.
1992-01-01
Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
NASA Technical Reports Server (NTRS)
Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.
1979-01-01
A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.
Filtering of non-linear instabilities
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1978-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
NASA Technical Reports Server (NTRS)
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W
2009-03-01
The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
Three contextual frameworks for siblingships: nonlinear thinking, disposition, and phallocentrism.
Lament, Claudia
2013-01-01
This discussion of Juliet Mitchell's paper "Siblings: Thinking Theory" places her work within the context of three frameworks: nonlinear thinking, disposition, and phallocentrism. The nonlinear dimension of the developmental process demonstrates how the sibling experience is not static, but rather is subject to a natural transmogrification toward new adaptive forms and meanings that occur over the sequential progress of organizational growth. Secondly, dispositional variables tend to be overlooked in their role in how brothers and sisters engage one another, titrate closeness and separateness, and creatively live out their love, admiration, hate, envy, and rivalry with each other. Sensitivities in dispositional leanings, such as special empathic qualities, may even serve to mitigate sibling turbulence. Lastly, the phallocentricity in Western societies privileges an implicitly male perspective that envisions sibling relationships in terms of threatening competitors, as the common linguistic phrase sibling rivalry suggests. This inflection in culture disregards more-expanding qualities in object relationships and aim-giving strategies that are exchanged in sibling play. These variables are not the sole contributors to the sibling experience, but a sampling of influences both from within and outside the child that affect that experience.
Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin
2012-01-01
Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351
NASA Astrophysics Data System (ADS)
Hai, Pham Minh; Bonello, Philip
2008-12-01
The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport
NASA Astrophysics Data System (ADS)
Robinson, P. B.; Peterson, J. D. L.
2005-12-01
The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Multigrid calculation of three-dimensional viscous cascade flows
NASA Technical Reports Server (NTRS)
Arnone, A.; Liou, M.-S.; Povinelli, L. A.
1991-01-01
A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.
Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs
McFarland, James M.; Cui, Yuwei; Butts, Daniel A.
2013-01-01
The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
A mathematical model of the structure and evolution of small scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1990-01-01
A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.
Evolution of lower hybrid turbulence in the ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguli, G.; Crabtree, C.; Mithaiwala, M.
2015-11-15
Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler andmore » magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.« less
Observation of Two-Dimensional Localized Jones-Roberts Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Meyer, Nadine; Proud, Harry; Perea-Ortiz, Marisa; O'Neale, Charlotte; Baumert, Mathis; Holynski, Michael; Kronjäger, Jochen; Barontini, Giovanni; Bongs, Kai
2017-10-01
Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq
1997-01-01
Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.
Bråten, Ivar; Strømsø, Helge I
2005-12-01
More empirical work is needed to examine the dimensionality of personal epistemology and relations between those dimensions and motivational and strategic components of self-regulated learning. In particular, there is great need to investigate personal epistemology and its relation to self-regulated learning across cultures and academic contexts. Because the demarcation between personal epistemology and implicit theories of intelligence has been questioned, dimensions of personal epistemology should also be studied in relation to implicit theories of intelligence. The primary aim was to examine the dimensionality of personal epistemology and the relation between those dimensions and implicit theories of intelligence in the cultural context of Norwegian postsecondary education. A secondary aim was to examine the relative contribution of epistemological beliefs and theories of intelligence to motivational and strategic components of self-regulated learning in different academic contexts within that culture. The first sample included 178 business administration students in a traditional transmission-oriented instructional context; the second, 108 student teachers in an innovative pedagogical context. The dimensionality of the Schommer Epistemological Questionnaire was examined through factor analyses, and the resulting dimensions were examined in relation to implicit theories of intelligence. We performed multiple regression analyses, separately for the two academic contexts, to try to predict motivational (i.e. self-efficacy beliefs, mastery goal orientation, and interest) and strategic (i.e. self-regulatory strategy use) components of self-regulated learning with epistemological beliefs and implicit theories of intelligence. Considerable cross-cultural generalizability was found for the dimensionality of personal epistemology. Moreover, the dimensions of personal epistemology seemed to represent constructs separate from the construct of implicit theories of intelligence. Differences in the predictability of the epistemological dimensions were found for the two samples. For the student teachers, belief about knowledge construction and modification was a better predictor of self-regulated learning. For the business administration students, belief about the certainty of knowledge played a more important role in self-regulated learning. Epistemological beliefs predict self-regulated learning among Norwegian postsecondary students and play more important roles than implicit theories of intelligence. Relations between epistemological beliefs and self-regulated learning may vary with academic context.
Flutter, Postflutter, and Control of a Supersonic Wing Section
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2002-01-01
A number of issues related to the flutter and postflutter of two-dimensional supersonic lifting surfaces are addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications of the incorporation of a control capability on both the flutter boundary and the postflutter behavior. To this end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a treatment of the problem enables one to get a better understanding of the various factors involved in the nonlinear aeroelastic problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general investigation of nonlinear aeroelastic phenomena of three-dimensional lifting surfaces.
On a modified form of navier-stokes equations for three-dimensional flows.
Venetis, J
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
Semisupervised kernel marginal Fisher analysis for face recognition.
Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun
2013-01-01
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt
A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resultingmore » from linear interaction and the three dimensional image of is generated.« less
Geometrically nonlinear analysis of layered composite plates and shells
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1983-01-01
A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.
Weyl solitons in three-dimensional optical lattices
NASA Astrophysics Data System (ADS)
Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.
2018-04-01
Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.
NASA Astrophysics Data System (ADS)
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2018-04-01
We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.
Nonlinearly stacked low noise turbofan stator
NASA Technical Reports Server (NTRS)
Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)
2009-01-01
A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.
Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.
2018-03-01
We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, J.; Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543; Hudson, S. R.
2015-09-15
We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at themore » resonant surface.« less
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems
NASA Astrophysics Data System (ADS)
Feng, Jing-Jing; Zhang, Qi-Chang; Wang, Wei; Hao, Shu-Ying
2013-09-01
In this paper, the Padé approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, C. Kristopher; Hauck, Cory D.
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
Garrett, C. Kristopher; Hauck, Cory D.
2018-04-05
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.
Costin, Ovidiu; Luo, Guo; Tanveer, Saleh
2008-08-13
We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Three-dimensional earthquake analysis of roller-compacted concrete dams
NASA Astrophysics Data System (ADS)
Kartal, M. E.
2012-07-01
Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
NASA Astrophysics Data System (ADS)
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2015-04-01
This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
Three-dimensional modeling, estimation, and fault diagnosis of spacecraft air contaminants.
Narayan, A P; Ramirez, W F
1998-01-01
A description is given of the design and implementation of a method to track the presence of air contaminants aboard a spacecraft using an accurate physical model and of a procedure that would raise alarms when certain tolerance levels are exceeded. Because our objective is to monitor the contaminants in real time, we make use of a state estimation procedure that filters measurements from a sensor system and arrives at an optimal estimate of the state of the system. The model essentially consists of a convection-diffusion equation in three dimensions, solved implicitly using the principle of operator splitting, and uses a flowfield obtained by the solution of the Navier-Stokes equations for the cabin geometry, assuming steady-state conditions. A novel implicit Kalman filter has been used for fault detection, a procedure that is an efficient way to track the state of the system and that uses the sparse nature of the state transition matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayalakshmi, A.; Vidyavathy, B., E-mail: vidyavathybalraj@gmail.com; Peramaiyan, G.
2017-02-15
4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate [(4ACP)(4ACP).(LM)] a new organic nonlinear optical (NLO) crystal was grown by the slow evaporation method. Single crystal X-ray diffraction analysis revealed that the [(4ACP)(4ACP).(LM)] crystal belongs to monoclinic crystal system, space group P2{sub 1}/n, with a three dimensional network. Thermogravimetry (TG) and differential thermal (DT) analyses showed that [(4ACP)(4ACP).(LM)] is thermally stable up to 165 °C. The optical transmittance window and the lower cut-off wavelength of [(4ACP)(4ACP).(LM)] were found out by UV–vis–NIR spectral study. The molecular structure of [(4ACP)(4ACP).(LM)] was further confirmed by FTIR spectral studies. The relative dielectric permittivity and dielectric loss were determined asmore » function of frequency and temperature. The third order nonlinear optical property of [(4ACP)(4ACP).(LM)] was studied by the Z-scan technique using a 532 nm diode pumped CW Nd:YAG laser. Nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear susceptibility of the grown crystal were found to be 7.38×10{sup −8} cm{sup 2}/W, 0.08×10{sup −4} cm/W and 5.36×10{sup −6} esu, respectively. The laser damage threshold value is found to be 1.75 GW/cm{sup 2} - Graphical abstract: In the crystal structure of the title complex, the asymmetric unit contains one hydrogen L-malate anion, 4-(aminocarbonyl)pyridinium cation and a neutral isonicotinamide molecule. It is stabilized by intermolecular N-H…O, C-H…O and O-H…O hydrogen bonds which generate a three dimensional network.« less
Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials
NASA Astrophysics Data System (ADS)
Herbold, Eric B.
New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
Light-induced valley polarization in interacting and nonlinear Weyl semimetals
NASA Astrophysics Data System (ADS)
Bertrand, Simon; Garate, Ion; Côté, René
2017-08-01
It has been recently predicted that the interplay between Coulomb interactions and Berry curvature can produce interesting optical phenomena in topologically nontrivial two-dimensional insulators. Here, we present a theory of the interband optical absorption for three-dimensional, doped Weyl semimetals. We find that the Berry curvature, Coulomb interactions, and the nonlinearity in the single-particle energy spectrum can together enable a light-induced valley polarization. We support and supplement our numerical results with an analytical toy model calculation, which unveils topologically nontrivial Mahan excitons with nonzero vorticity.
Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations
NASA Astrophysics Data System (ADS)
Benhaiem, David; Joyce, Michael; Sicard, François
2013-03-01
One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.
Intermediate boundary conditions for LOD, ADI and approximate factorization methods
NASA Technical Reports Server (NTRS)
Leveque, R. J.
1985-01-01
A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.
NASA Astrophysics Data System (ADS)
Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.
2018-02-01
We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.
Nonlinear microscopy of collagen fibers
NASA Astrophysics Data System (ADS)
Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.
2007-02-01
We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Exponential integration algorithms applied to viscoplasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Walker, Kevin P.
1991-01-01
Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1986-01-01
An explicit-implicit and an implicit two-dimensional Navier-Stokes code along with various grid generation capabilities were developed. A series of classical benckmark cases were simulated using these codes.
Choice of implicit and explicit operators for the upwind differencing method
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Vanleer, Bram
1988-01-01
The flux-vector and flux-difference splittings of Steger-Warming, van Leer and Roe are tested in all possible combinations on the implicit and explicit operators that can be distinguished in implicit relaxation methods for the steady Euler and Navier-Stokes equations. The tests include one-dimensional inviscid nozzle flow, and two-dimensional inviscid and viscous shock reflection. Roe's splitting, as anticipated, is found to uniformly yield the most accurate results. On the other hand, an approximate Roe splitting of the implicit operator (the complete Roe splitting is too complicated for practical use) proves to be the least robust with regard to convergence to the steady state. In this respect, the Steger-Warming splitting is the most robust; it leads to convergence when combined with any of the splittings in the explicit operator, although not necessarily in the most efficient way.
NASA Astrophysics Data System (ADS)
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1982-01-01
A numerical scheme is developed for solving the time dependent, three dimensional compressible viscous flow equations to be used as an aid in the design of helicopter rotors. In order to further investigate the numerical procedure, the computer code developed to solve an approximate form of the three dimensional unsteady Navier-Stokes equations employing a linearized block implicit technique in conjunction with a QR operator scheme is tested. Results of calculations are presented for several two dimensional boundary layer flows including steady turbulent and unsteady laminar cases. A comparison of fourth order and second order solutions indicate that increased accuracy can be obtained without any significant increases in cost (run time). The results of the computations also indicate that the computer code can be applied to more complex flows such as those encountered on rotating airfoils. The geometry of a symmetric NACA four digit airfoil is considered and the appropriate geometrical properties are computed.
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
Nonlinear stability of Taylor's vortex array
NASA Technical Reports Server (NTRS)
Lin, S. P.; Tobak, M.
1987-01-01
It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.
Computational Analyses of Complex Flows with Chemical Reactions
NASA Astrophysics Data System (ADS)
Bae, Kang-Sik
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
NASA Astrophysics Data System (ADS)
Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David
2017-10-01
We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.
NASA Astrophysics Data System (ADS)
Kazmi, K. R.; Khan, F. A.
2008-01-01
In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].
Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests
NASA Astrophysics Data System (ADS)
Toth, G.; Keppens, R.; Botchev, M. A.
1998-04-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.
Numerical Investigation of Three-dimensional Instability of Standing Waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2002-11-01
We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.
Formulation of the relativistic moment implicit particle-in-cell method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Koichi; Tronci, Cesare; Zuccaro, Gianluca
2007-04-15
A new formulation is presented for the implicit moment method applied to the time-dependent relativistic Vlasov-Maxwell system. The new approach is based on a specific formulation of the implicit moment method that allows us to retain the same formalism that is valid in the classical case despite the formidable complication introduced by the nonlinear nature of the relativistic equations of motion. To demonstrate the validity of the new formulation, an implicit finite difference algorithm is developed to solve the Maxwell's equations and equations of motion. A number of benchmark problems are run: two stream instability, ion acoustic wave damping, Weibelmore » instability, and Poynting flux acceleration. The numerical results are all in agreement with analytical solutions.« less
An unconditionally stable Runge-Kutta method for unsteady flows
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1988-01-01
A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.
NASA Astrophysics Data System (ADS)
Ferrer, Esteban
2017-11-01
We present an implicit Large Eddy Simulation (iLES) h / p high order (≥2) unstructured Discontinuous Galerkin-Fourier solver with sliding meshes. The solver extends the laminar version of Ferrer and Willden, 2012 [34], to enable the simulation of turbulent flows at moderately high Reynolds numbers in the incompressible regime. This solver allows accurate flow solutions of the laminar and turbulent 3D incompressible Navier-Stokes equations on moving and static regions coupled through a high order sliding interface. The spatial discretisation is provided by the Symmetric Interior Penalty Discontinuous Galerkin (IP-DG) method in the x-y plane coupled with a purely spectral method that uses Fourier series and allows efficient computation of spanwise periodic three-dimensional flows. Since high order methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough numerical dissipation to enable under-resolved high Reynolds computations (i.e. as necessary in the iLES approach), we adapt the laminar version of the solver to increase (controllably) the dissipation and enhance the stability in under-resolved simulations. The novel stabilisation relies on increasing the penalty parameter included in the DG interior penalty (IP) formulation. The latter penalty term is included when discretising the linear viscous terms in the incompressible Navier-Stokes equations. These viscous penalty fluxes substitute the stabilising effect of non-linear fluxes, which has been the main trend in implicit LES discontinuous Galerkin approaches. The IP-DG penalty term provides energy dissipation, which is controlled by the numerical jumps at element interfaces (e.g. large in under-resolved regions) such as to stabilise under-resolved high Reynolds number flows. This dissipative term has minimal impact in well resolved regions and its implicit treatment does not restrict the use of large time steps, thus providing an efficient stabilization mechanism for iLES. The IP-DG stabilisation is complemented with a Spectral Vanishing Viscosity (SVV) method, in the z-direction, to enhance stability in the continuous Fourier space. The coupling between the numerical viscosity in the DG plane and the SVV damping, provides an efficient approach to stabilise high order methods at moderately high Reynolds numbers. We validate the formulation for three turbulent flow cases: a circular cylinder at Re = 3900, a static and pitch oscillating NACA 0012 airfoil at Re = 10000 and finally a rotating vertical-axis turbine at Re = 40000, with Reynolds based on the circular diameter, airfoil chord and turbine diameter, respectively. All our results compare favourably with published direct numerical simulations, large eddy simulations or experimental data. We conclude that the DG-Fourier high order solver, with IP-SVV stabilisation, proves to be a valuable tool to predict turbulent flows and associated statistics for both static and rotating machinery.
Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi
2018-03-01
Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
General methods for determining the linear stability of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.
1988-01-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.
General methods for determining the linear stability of coronal magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, I.J.D.; Sneyd, A.D.; McClymont, A.N.
1988-12-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak. 19 references.
Exactly energy conserving semi-implicit particle in cell formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Parallel/Vector Integration Methods for Dynamical Astronomy
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
1999-01-01
This paper reviews three recent works on the numerical methods to integrate ordinary differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-unit(PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further accelerated by balancing computational load among PUs by the technique of folding. The method is all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give a perspective on the parallelization of some implicit integrators which require multiple corrections in solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999).
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1984-01-01
The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.
Loss of Energy Concentration in Nonlinear Evolution Beam Equations
NASA Astrophysics Data System (ADS)
Garrione, Maurizio; Gazzola, Filippo
2017-12-01
Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-12-01
We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.
The nonlinear modified equation approach to analyzing finite difference schemes
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1981-01-01
The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.
NASA Astrophysics Data System (ADS)
Hayat, T.; Muhammad, Taseer; Alsaedi, A.; Alhuthali, M. S.
2015-07-01
Magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid in the presence of thermophoresis and Brownian motion effects is analyzed. Energy equation subject to nonlinear thermal radiation is taken into account. The flow is generated by a bidirectional stretching surface. Fluid is electrically conducting in the presence of a constant applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds number. Mathematical formulation is performed using boundary layer analysis. Newly proposed boundary condition requiring zero nanoparticle mass flux is employed. The governing nonlinear mathematical problems are first converted into dimensionless expressions and then solved for the series solutions of velocities, temperature and nanoparticles concentration. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Skin friction coefficients and Nusselt number are also computed and analyzed. It is found that the thermal boundary layer thickness is an increasing function of radiative effect.
A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection
NASA Technical Reports Server (NTRS)
Buell, Jeffrey C.
1988-01-01
A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
Emerging technology for transonic wind-tunnel-wall interference assessment and corrections
NASA Technical Reports Server (NTRS)
Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.
1988-01-01
Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.
Coulomb disorder in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Skinner, Brian
2015-03-01
In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
Three-dimensional cellular automata as a model of a seismic fault
NASA Astrophysics Data System (ADS)
Gálvez, G.; Muñoz, A.
2017-01-01
The Earth's crust is broken into a series of plates, whose borders are the seismic fault lines and it is where most of the earthquakes occur. This plating system can in principle be described by a set of nonlinear coupled equations describing the motion of the plates, its stresses, strains and other characteristics. Such a system of equations is very difficult to solve, and nonlinear parts leads to a chaotic behavior, which is not predictable. In 1989, Bak and Tang presented an earthquake model based on the sand pile cellular automata. The model though simple, provides similar results to those observed in actual earthquakes. In this work the cellular automata in three dimensions is proposed as a best model to approximate a seismic fault. It is noted that the three-dimensional model reproduces similar properties to those observed in real seismicity, especially, the Gutenberg-Richter law.
Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard
2014-11-17
We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels.
Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher Lockwood
1991-01-01
A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
NASA Astrophysics Data System (ADS)
Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin
2018-09-01
A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.
From local to global measurements of nonclassical nonlinear elastic effects in geomaterials
Lott, Martin; Remillieux, Marcel C.; Le Bas, Pierre-Yves; ...
2016-09-07
Here, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). Finally, after correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.
Time-Dependent Behavior of Diabase and a Nonlinear Creep Model
NASA Astrophysics Data System (ADS)
Yang, Wendong; Zhang, Qiangyong; Li, Shucai; Wang, Shugang
2014-07-01
Triaxial creep tests were performed on diabase specimens from the dam foundation of the Dagangshan hydropower station, and the typical characteristics of creep curves were analyzed. Based on the test results under different stress levels, a new nonlinear visco-elasto-plastic creep model with creep threshold and long-term strength was proposed by connecting an instantaneous elastic Hooke body, a visco-elasto-plastic Schiffman body, and a nonlinear visco-plastic body in series mode. By introducing the nonlinear visco-plastic component, this creep model can describe the typical creep behavior, which includes the primary creep stage, the secondary creep stage, and the tertiary creep stage. Three-dimensional creep equations under constant stress conditions were deduced. The yield approach index (YAI) was used as the criterion for the piecewise creep function to resolve the difficulty in determining the creep threshold value and the long-term strength. The expression of the visco-plastic component was derived in detail and the three-dimensional central difference form was given. An example was used to verify the credibility of the model. The creep parameters were identified, and the calculated curves were in good agreement with the experimental curves, indicating that the model is capable of replicating the physical processes.
Matsuda, Yoshi-Taka; Fujimura, Tomomi; Katahira, Kentaro; Okada, Masato; Ueno, Kenichi; Cheng, Kang; Okanoya, Kazuo
2013-01-01
Our understanding of facial emotion perception has been dominated by two seemingly opposing theories: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura etal., 2012). The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA) increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear) processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner. PMID:24133426
Contributions to DoD Mission Success from High Performance Computing - March 1995
1995-03-01
the flow . The physics to be considered may entail additional force fields, coupling to surface physics and microphysics, changes of phase, changes...in this program concerns the structural mechanics of bolted-on propeller blades. An important objective of the program was to determine the effects of...motion between the rotor blades and the airframe. The flow past each component is then computed using an efficient, implicit three-dimensional unsteady
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
NASA Astrophysics Data System (ADS)
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics
NASA Astrophysics Data System (ADS)
Rangan, Aaditya V.; Cai, David; Tao, Louis
2007-02-01
Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.
Peculiarities of convection and oil maturation in 3D porous medium structure.
NASA Astrophysics Data System (ADS)
Yurie Khachay, Professor; Mindubaev, Mansur
2017-04-01
An important estimation of oil source thickness productivity is to study the thermal influences of magmatic intrusions on the maturation of the organic matter. The heterogeneity of permeability distribution of the reservoir rock and respectively the convection structure provide temperature heterogeneity and different degree of maturity for the oil source material. A numerical algorithm for solving the problem of developed convection in two-dimensional and three-dimensional models of the porous medium, which consists of a system of Darcy equations, heat conduction with convection term and the continuity equation, is developed. Because of the effective values of the coefficients of thermal conductivity, heat capacity, viscosity and permeability of the medium depend from the temperature; the system of equations is nonlinear. For solution we used the dimensionless system of coordinates. For numerical solution we used the longitudinal cross-implicit scheme. The coordinates step for the 3D model had been used constant and equal to H/20, where H=1- dimensionless thickness of porous medium layer. As it is shown from the variants of numerical solution, by the stationary regime of developed convection because of the temperature heterogeneous distribution in the sedimentary reservoir the formation of oil source matter different degree of maturity is possible. That result is very significant for estimation of reservoirs oil-bearing The work was fulfilled by supporting of the Fund of UB RAS, project 1518532. Reference 1. Yurie Khachay and Mansur Mindubaev, 2016, Effect of convective transport in porous media on the conductions of organic matter maturation and generation of hydrocarbons in trap rocks complexes, Energy Procedia. 74 pp.79-83.
A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annavarapu, Chandrasekhar; Settgast, Randolph R.; Vitali, Efrem
We develop a local, implicit crack tracking approach to propagate embedded failure surfaces in three-dimensions. We build on the global crack-tracking strategy of Oliver et al. (Int J. Numer. Anal. Meth. Geomech., 2004; 28:609–632) that tracks all potential failure surfaces in a problem at once by solving a Laplace equation with anisotropic conductivity. We discuss important modifications to this algorithm with a particular emphasis on the effect of the Dirichlet boundary conditions for the Laplace equation on the resultant crack path. Algorithmic and implementational details of the proposed method are provided. Finally, several three-dimensional benchmark problems are studied and resultsmore » are compared with available literature. Lastly, the results indicate that the proposed method addresses pathological cases, exhibits better behavior in the presence of closely interacting fractures, and provides a viable strategy to robustly evolve embedded failure surfaces in 3D.« less
A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods
Annavarapu, Chandrasekhar; Settgast, Randolph R.; Vitali, Efrem; ...
2016-09-29
We develop a local, implicit crack tracking approach to propagate embedded failure surfaces in three-dimensions. We build on the global crack-tracking strategy of Oliver et al. (Int J. Numer. Anal. Meth. Geomech., 2004; 28:609–632) that tracks all potential failure surfaces in a problem at once by solving a Laplace equation with anisotropic conductivity. We discuss important modifications to this algorithm with a particular emphasis on the effect of the Dirichlet boundary conditions for the Laplace equation on the resultant crack path. Algorithmic and implementational details of the proposed method are provided. Finally, several three-dimensional benchmark problems are studied and resultsmore » are compared with available literature. Lastly, the results indicate that the proposed method addresses pathological cases, exhibits better behavior in the presence of closely interacting fractures, and provides a viable strategy to robustly evolve embedded failure surfaces in 3D.« less
NASA Astrophysics Data System (ADS)
De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.
2018-02-01
In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
Pickup Ion Distributions from Three Dimensional Neutral Exospheres
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sarantos, M.; Sittler, E. C., Jr.
2011-01-01
Pickup ions formed from ionized neutral exospheres in flowing plasmas have phase space distributions that reflect their source's spatial distributions. Phase space distributions of the ions are derived from the Vlasov equation with a delta function source using three.dimensional neutral exospheres. The ExB drift produced by plasma motion picks up the ions while the effects of magnetic field draping, mass loading, wave particle scattering, and Coulomb collisions near a planetary body are ignored. Previously, one.dimensional exospheres were treated, resulting in closed form pickup ion distributions that explicitly depend on the ratio rg/H, where rg is the ion gyroradius and H is the neutral scale height at the exobase. In general, the pickup ion distributions, based on three.dimensional neutral exospheres, cannot be written in closed form, but can be computed numerically. They continue to reflect their source's spatial distributions in an implicit way. These ion distributions and their moments are applied to several bodies, including He(+) and Na(+) at the Moon, H(+2) and CH(+4) at Titan, and H+ at Venus. The best places to use these distributions are upstream of the Moon's surface, the ionopause of Titan, and the bow shock of Venus.
Modeling of transitional flows
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1988-01-01
An effort directed at developing improved transitional models was initiated. The focus of this work was concentrated on the critical assessment of a popular existing transitional model developed by McDonald and Fish in 1972. The objective of this effort was to identify the shortcomings of the McDonald-Fish model and to use the insights gained to suggest modifications or alterations of the basic model. In order to evaluate the transitional model, a compressible boundary layer code was required. Accordingly, a two-dimensional compressible boundary layer code was developed. The program was based on a three-point fully implicit finite difference algorithm where the equations were solved in an uncoupled manner with second order extrapolation used to evaluate the non-linear coefficients. Iteration was offered as an option if the extrapolation error could not be tolerated. The differencing scheme was arranged to be second order in both spatial directions on an arbitrarily stretched mesh. A variety of boundary condition options were implemented including specification of an external pressure gradient, specification of a wall temperature distribution, and specification of an external temperature distribution. Overall the results of the initial phase of this work indicate that the McDonald-Fish model does a poor job at predicting the details of the turbulent flow structure during the transition region.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin
2011-09-01
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
MURI: Adaptive Waveform Design for Full Spectral Dominance
2011-03-11
a three- dimensional urban tracking model, based on the nonlinear measurement model (that uses the urban multipath geometry with different types of ... the time evolution of the scattering function with a high dimensional dynamic system; a multiple particle filter technique is used to sequentially...integration of space -time coding with a fixed set of beams. It complements the
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinton, Gianmarco
Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it is necessary to quantify ultrasound image quality and its sources of degradation.« less
Application of Linear and Non-Linear Harmonic Methods for Unsteady Transonic Flow
NASA Astrophysics Data System (ADS)
Gundevia, Rayomand
This thesis explores linear and non-linear computational methods for solving unsteady flow. The eventual goal is to apply these methods to two-dimensional and three-dimensional flutter predictions. In this study the quasi-one-dimensional nozzle is used as a framework for understanding these methods and their limitations. Subsonic and transonic cases are explored as the back-pressure is forced to oscillate with known amplitude and frequency. A steady harmonic approach is used to solve this unsteady problem for which perturbations are said to be small in comparison to the mean flow. The use of a linearized Euler equations (LEE) scheme is good at capturing the flow characteristics but is limited by accuracy to relatively small amplitude perturbations. The introduction of time-averaged second-order terms in the Non-Linear Harmonic (NLH) method means that a better approximation of the mean-valued solution, upon which the linearization is based, can be made. The nonlinear time-accurate Euler solutions are used for comparison and to establish the regimes of unsteadiness for which these schemes fails. The usefulness of the LEE and NLH methods lie in the gains in computational efficiency over the full equations.
Three-dimensional analysis of tubular permanent magnet machines
NASA Astrophysics Data System (ADS)
Chai, J.; Wang, J.; Howe, D.
2006-04-01
This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.
Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
NASA Astrophysics Data System (ADS)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.
2018-04-01
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
Using exact solutions to develop an implicit scheme for the baroclinic primitive equations
NASA Technical Reports Server (NTRS)
Marchesin, D.
1984-01-01
The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1992-01-01
The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
NASA Astrophysics Data System (ADS)
Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-07-01
Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ~15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ~100 μm in tumour spheroids.
A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Liao, Jun; Einstein, Daniel R.
2013-11-27
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less
Sparsity enabled cluster reduced-order models for control
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.
2018-01-01
Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Shinn, J. L.
1986-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.
Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules
NASA Astrophysics Data System (ADS)
Celik, E.; Bulut, H.; Baskonus, H. M.
2018-05-01
In this manuscript, the modified exp (- Ω (ξ )) -expansion function method is implemented to find the new solutions to the nonlinear differential equation being the transmission line model. We obtain some new solutions to this model such as complex, exponential, trigonometric and hyperbolic functions. We plot the two- and three-dimensional surfaces of each solutions obtained in this manuscript.
A Shear Deformable Shell Element for Laminated Composites
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1984-01-01
A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.
Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1984-01-01
The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
NASA Astrophysics Data System (ADS)
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
NASA Astrophysics Data System (ADS)
Vijayalakshmi, A.; Vidyavathy, B.; Peramaiyan, G.; Vinitha, G.
2017-02-01
4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate [(4ACP)(4ACP).(LM)] a new organic nonlinear optical (NLO) crystal was grown by the slow evaporation method. Single crystal X-ray diffraction analysis revealed that the [(4ACP)(4ACP).(LM)] crystal belongs to monoclinic crystal system, space group P21/n, with a three dimensional network. Thermogravimetry (TG) and differential thermal (DT) analyses showed that [(4ACP)(4ACP).(LM)] is thermally stable up to 165 °C. The optical transmittance window and the lower cut-off wavelength of [(4ACP)(4ACP).(LM)] were found out by UV-vis-NIR spectral study. The molecular structure of [(4ACP)(4ACP).(LM)] was further confirmed by FTIR spectral studies. The relative dielectric permittivity and dielectric loss were determined as function of frequency and temperature. The third order nonlinear optical property of [(4ACP)(4ACP).(LM)] was studied by the Z-scan technique using a 532 nm diode pumped CW Nd:YAG laser. Nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear susceptibility of the grown crystal were found to be 7.38×10-8 cm2/W, 0.08×10-4 cm/W and 5.36×10-6 esu, respectively. The laser damage threshold value is found to be 1.75 GW/cm2
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Analytical Finite Element Simulation Model for Structural Crashworthiness Prediction
DOT National Transportation Integrated Search
1974-02-01
The analytical development and appropriate derivations are presented for a simulation model of vehicle crashworthiness prediction. Incremental equations governing the nonlinear elasto-plastic dynamic response of three-dimensional frame structures are...
A hybrid approach for nonlinear computational aeroacoustics predictions
NASA Astrophysics Data System (ADS)
Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.
2017-01-01
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1986-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
2013-01-01
Gravity Wave. A slice of the potential temperature perturbation (at y=50 km) after 700 s for 30× 30× 5 elements with 4th-order polynomials . The contour...CONSTANTINESCU ‡ Key words. cloud-resolving model; compressible flow; element-based Galerkin methods; Euler; global model; IMEX; Lagrange; Legendre ...methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia- gravity waves. These
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
NASA Technical Reports Server (NTRS)
Stevens-Rayburn, D. R.; Mengel, J. G.; Harris, I.; Mayr, H. G.
1989-01-01
A three-dimensional spectral model for the Venusion thermosphere is presented which uses spherical harmonics to represent the horizontal variations in longitude and latitude and which uses Fourier harmonics to represent the LT variations due to atmospheric rotation. A differencing scheme with tridiagonal block elimination is used to perform the height integration. Quadratic nonlinearities are taken into account. In the second part, numerical results obtained with the model are shown to reproduce the observed broad daytime maxima in CO2 and CO and the significantly larger values at dawn than at dusk. It is found that the diurnal variations in He are most sensitive to thermospheric superrotation, and that, given a globally uniform atmosphere as input, larger heating rates yield a larger temperature contrast between day and night.
NASA Astrophysics Data System (ADS)
Jiang, Zhen-Hua; Yan, Chao; Yu, Jian
2013-08-01
Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-11
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-01
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
2015-08-01
primarily concerned with the results of a three-dimensional elasto– plastic finite element contact analysis of a typical aluminium fatigue test coupon...determine the nonlinear three-dimensional elasto–plastic contact stress distributions around a circular hole in an aluminium plate that is fitted...Australian Air Force (RAAF) airframes. An aluminium -alloy fatigue test coupon (see Figure 1) has been designed and applied in support of the validation of
Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1979-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
NASA Technical Reports Server (NTRS)
Atkins, Harold
1991-01-01
A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.
User's manual for three-dimensional analysis of propeller flow fields
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Kutler, P.
1983-01-01
A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
On the solution of evolution equations based on multigrid and explicit iterative methods
NASA Astrophysics Data System (ADS)
Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.
2015-08-01
Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.
Multithreaded implicitly dealiased convolutions
NASA Astrophysics Data System (ADS)
Roberts, Malcolm; Bowman, John C.
2018-03-01
Implicit dealiasing is a method for computing in-place linear convolutions via fast Fourier transforms that decouples work memory from input data. It offers easier memory management and, for long one-dimensional input sequences, greater efficiency than conventional zero-padding. Furthermore, for convolutions of multidimensional data, the segregation of data and work buffers can be exploited to reduce memory usage and execution time significantly. This is accomplished by processing and discarding data as it is generated, allowing work memory to be reused, for greater data locality and performance. A multithreaded implementation of implicit dealiasing that accepts an arbitrary number of input and output vectors and a general multiplication operator is presented, along with an improved one-dimensional Hermitian convolution that avoids the loop dependency inherent in previous work. An alternate data format that can accommodate a Nyquist mode and enhance cache efficiency is also proposed.
Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model
NASA Technical Reports Server (NTRS)
Martin, J. E.; Meiburg, E.
1996-01-01
The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.
A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taverniers, Søren; Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu
2017-02-01
Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement ofmore » path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.« less
Nonlinear data assimilation using synchronization in a particle filter
NASA Astrophysics Data System (ADS)
Rodrigues-Pinheiro, Flavia; Van Leeuwen, Peter Jan
2017-04-01
Current data assimilation methods still face problems in strongly nonlinear cases. A promising solution is a particle filter, which provides a representation of the model probability density function by a discrete set of particles. However, the basic particle filter does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. A potential choice of proposal density might come from the synchronisation theory, in which one tries to synchronise the model with the true evolution of a system using one-way coupling via the observations. In practice, an extra term is added to the model equations that damps growth of instabilities on the synchronisation manifold. When only part of the system is observed synchronization can be achieved via a time embedding, similar to smoothers in data assimilation. In this work, two new ideas are tested. First, ensemble-based time embedding, similar to an ensemble smoother or 4DEnsVar is used on each particle, avoiding the need for tangent-linear models and adjoint calculations. Tests were performed using Lorenz96 model for 20, 100 and 1000-dimension systems. Results show state-averaged synchronisation errors smaller than observation errors even in partly observed systems, suggesting that the scheme is a promising tool to steer model states to the truth. Next, we combine these efficient particles using an extension of the Implicit Equal-Weights Particle Filter, a particle filter that ensures equal weights for all particles, avoiding filter degeneracy by construction. Promising results will be shown on low- and high-dimensional Lorenz96 models, and the pros and cons of these new ideas will be discussed.
Adaptive Implicit Non-Equilibrium Radiation Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby; Wang, Zhen; Berrill, Mark A
2013-01-01
We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Alternating direction implicit methods for parabolic equations with a mixed derivative
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1980-01-01
Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a mixed derivative are constructed by using the class of all A(0)-stable linear two-step methods in conjunction with the method of approximate factorization. The mixed derivative is treated with an explicit two-step method which is compatible with an implicit A(0)-stable method. The parameter space for which the resulting ADI schemes are second-order accurate and unconditionally stable is determined. Some numerical examples are given.
Alternating direction implicit methods for parabolic equations with a mixed derivative
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1979-01-01
Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a mixed derivative are constructed by using the class of all A sub 0-stable linear two-step methods in conjunction with the method of approximation factorization. The mixed derivative is treated with an explicit two-step method which is compatible with an implicit A sub 0-stable method. The parameter space for which the resulting ADI schemes are second order accurate and unconditionally stable is determined. Some numerical examples are given.
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
Applications of an exponential finite difference technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.; Keith, T.G. Jr.
1988-07-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
Parallel computation of three-dimensional aeroelastic fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sadeghi, Mani
This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.
NASA Astrophysics Data System (ADS)
Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan
2018-03-01
In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.
NASA Astrophysics Data System (ADS)
Yang, Haijian; Sun, Shuyu; Yang, Chao
2017-03-01
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
NASA Astrophysics Data System (ADS)
Geng, Weihua; Zhao, Shan
2017-12-01
We present a new Matched Interface and Boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green's function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton's method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady
1990-01-01
A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.
Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 3: Programmer's reference
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.
PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady
1990-01-01
A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.
Application of adaptive gridding to magnetohydrodynamic flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, D.D.; Lotatti, I.; Satyanarayana, P.
1996-12-31
The numerical simulation of the primitive, three-dimensional, time-dependent, resistive MHD equations on an unstructured, adaptive poloidal mesh using the TRIM code has been reported previously. The toroidal coordinate is approximated pseudo-spectrally with finite Fourier series and Fast-Fourier Transforms. The finite-volume algorithm preserves the magnetic field as solenoidal to round-off error, and also conserves mass, energy, and magnetic flux exactly. A semi-implicit method is used to allow for large time steps on the unstructured mesh. This is important for tokamak calculations where the relevant time scale is determined by the poloidal Alfven time. This also allows the viscosity to be treatedmore » implicitly. A conjugate-gradient method with pre-conditioning is used for matrix inversion. Applications to the growth and saturation of ideal instabilities in several toroidal fusion systems has been demonstrated. Recently we have concentrated on the details of the mesh adaption algorithm used in TRIM. We present several two-dimensional results relating to the use of grid adaptivity to track the evolution of hydrodynamic and MHD structures. Examples of plasma guns, opening switches, and supersonic flow over a magnetized sphere are presented. Issues relating to mesh adaption criteria are discussed.« less
On equations of motion of a nonlinear hydroelastic structure
NASA Astrophysics Data System (ADS)
Plotnikov, P. I.; Kuznetsov, I. V.
2008-07-01
Formal derivation of equations of a nonlinear hydroelastic structure, which is a volume of an ideal incompressible fluid covered by a shell, is proposed. The study is based on two assumptions. The first assumption implies that the energy stored in the shell is completely determined by the mean curvature and by the elementary area. In a three-dimensional case, the energy stored in the shell is chosen in the form of the Willmore functional. In a two-dimensional case, a more generic form of the functional can be considered. The second assumption implies that the equations of motionhave a Hamiltonian structure and can be obtained from the Lagrangian variational principle. In a two-dimensional case, a condition for the hydroelastic structure is derived, which relates the external pressure and the curvature of the elastic shell.
A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model
Chacon, Luis; Stanier, Adam John
2016-12-01
Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
NASA Technical Reports Server (NTRS)
Rudolph, T. H.; Perala, R. A.
1983-01-01
The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.
When linear stability does not exclude nonlinear instability
Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.
2015-05-29
We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less
Fully Implicit, Nonlinear 3D Extended Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Chacon, Luis; Knoll, Dana
2003-10-01
Extended magnetohydrodynamics (XMHD) includes nonideal effects such as nonlinear, anisotropic transport and two-fluid (Hall) effects. XMHD supports multiple, separate time scales that make explicit time differencing approaches extremely inefficient. While a fully implicit implementation promises efficiency without sacrificing numerical accuracy,(D. A. Knoll et al., phJ. Comput. Phys.) 185 (2), 583-611 (2003) the nonlinear nature of the XMHD system and the numerical stiffness associated with the fast waves make this endeavor difficult. Newton-Krylov methods are, however, ideally suited for such a task. These synergistically combine Newton's method for nonlinear convergence, and Krylov techniques to solve the associated Jacobian (linear) systems. Krylov methods can be implemented Jacobian-free and can be preconditioned for efficiency. Successful preconditioning strategies have been developed for 2D incompressible resistive(L. Chacón et al., phJ. Comput. Phys). 178 (1), 15- 36 (2002) and Hall(L. Chacón and D. A. Knoll, phJ. Comput. Phys.), 188 (2), 573-592 (2003) MHD models. These are based on ``physics-based'' ideas, in which knowledge of the physics is exploited to derive well-conditioned (diagonally-dominant) approximations to the original system that are amenable to optimal solver technologies (multigrid). In this work, we will describe the status of the extension of the 2D preconditioning ideas for a 3D compressible, single-fluid XMHD model.
Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.
Dai, Shi-Lu; Wang, Cong; Wang, Min
2014-01-01
This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.
Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM
NASA Technical Reports Server (NTRS)
Martin, Thomas J.; Dulikravich, George S.
1993-01-01
A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.
From N=4 Galilean superparticle to three-dimensional non-relativistic N=4 superfields
NASA Astrophysics Data System (ADS)
Fedoruk, Sergey; Ivanov, Evgeny; Lukierski, Jerzy
2018-05-01
We consider the general N=4 , d = 3 Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for N=4 three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic κ-gauge transformations. The quantization of the model gives rise to the collection of free N=4 , d = 3 Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic N=4 supersymmetric theories.
NASA Technical Reports Server (NTRS)
Keil, J.
1985-01-01
Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.
ERIC Educational Resources Information Center
Mohanty, R. K.; Arora, Urvashi
2002-01-01
Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…
Computational Fluid Dynamics: Algorithms and Supercomputers
1988-03-01
1985. 1.2. Pulliam, T., and Steger, J. , Implicit Finite Difference Simulations of Three Dimensional Compressible Flow, AIAA Journal , Vol. 18, No. 2...approaches infinity, assuming N is bounded. The question as to actual performance when M is finite and N varies, is a different matter. (Note: the CYBER...PARTICLE-IN-CELL 9i% 3.b7 j.48 WEATHER FORECAST 98% 3.77 3.55 SEISMIC MIGRATION 98% 3.85 3.45 MONTE CARLO 99% 3.85 3.75 LATTICE GAUGE 100% 4.00 3.77
Aspects and applications of patched grid calculations
NASA Technical Reports Server (NTRS)
Walters, R. W.; Switzer, G. F.; Thomas, J. L.
1986-01-01
Patched grid calculations within the framework of an implicit, flux-vector split upwind/relaxation algorithm for the Euler equations are presented. The effect of a metric-discontinuous interface on the convergence rate of the algorithm is discussed along with the spatial accuracy of the solution and the effect of curvature along an interface. Results are presented and discussed for the free-stream problem, shock reflection problem, supersonic inlet with a 5 degree ramp, aerodynamically choked inlet, and three-dimensional analytic forebody.
1994-01-01
length scales mensional hydrofoil and tip vortex flow around a F circulation three dimensional hydrofoil. The simulated mean v molecular viscosity flow...Unstructured Grid for Free Surface Flow Simulations , by T. Hino, L. Martinelli, and A. Jameson 173 "A Semi-Implicit Semi-Lagrangian Finite Element Model...Haussling Solid-Fluid Juncture Boundary Layer and Wake with Waves, by J.E. Choi and F. Stern 215 Direct Numerical and Large-Eddy Simulations of Turbulent
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less
A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics
NASA Astrophysics Data System (ADS)
Rawy, E. K.
2018-06-01
We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
NASA Technical Reports Server (NTRS)
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
Nonlinear Analysis and Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1996-01-01
The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2009-08-17
The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.
A method for reducing the order of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.
1984-06-01
An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.
Nonlinear analysis of structures. [within framework of finite element method
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H.; Pifko, A.; Levy, A.
1974-01-01
The development of nonlinear analysis techniques within the framework of the finite-element method is reported. Although the emphasis is concerned with those nonlinearities associated with material behavior, a general treatment of geometric nonlinearity, alone or in combination with plasticity is included, and applications presented for a class of problems categorized as axisymmetric shells of revolution. The scope of the nonlinear analysis capabilities includes: (1) a membrane stress analysis, (2) bending and membrane stress analysis, (3) analysis of thick and thin axisymmetric bodies of revolution, (4) a general three dimensional analysis, and (5) analysis of laminated composites. Applications of the methods are made to a number of sample structures. Correlation with available analytic or experimental data range from good to excellent.
Percolation analysis of nonlinear structures in scale-free two-dimensional simulations
NASA Technical Reports Server (NTRS)
Dominik, Kurt G.; Shandarin, Sergei F.
1992-01-01
Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1996-01-01
Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.
Hybrid upwind discretization of nonlinear two-phase flow with gravity
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.
Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin
2018-05-02
Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.
Mallory, Kristina; Van Gorder, Robert A
2015-07-01
Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials.
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...
2018-04-17
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Implicit Wiener series analysis of epileptic seizure recordings.
Barbero, Alvaro; Franz, Matthias; van Drongelen, Wim; Dorronsoro, José R; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2009-01-01
Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of non-linearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.
Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles
NASA Astrophysics Data System (ADS)
Zhang, Jun; Simeonov, Anthony; Yip, Michael C.
2018-03-01
Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.