Sample records for nonlinear inversion based

  1. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    PubMed Central

    Li, YuHui; Jin, FeiTeng

    2017-01-01

    The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680

  2. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  3. Book review: Nonlinear ocean waves and the inverse scattering transform

    USGS Publications Warehouse

    Geist, Eric L.

    2011-01-01

    Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts.  Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.

  4. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  5. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  6. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  7. A direct method for nonlinear ill-posed problems

    NASA Astrophysics Data System (ADS)

    Lakhal, A.

    2018-02-01

    We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.

  8. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  9. Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering

    NASA Astrophysics Data System (ADS)

    Paul, Koushik; Sarma, Amarendra K.

    2018-03-01

    We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.

  10. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  11. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  12. Inverse halftoning via robust nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Shen, Mei-Yin; Kuo, C.-C. Jay

    1999-10-01

    A new blind inverse halftoning algorithm based on a nonlinear filtering technique of low computational complexity and low memory requirement is proposed in this research. It is called blind since we do not require the knowledge of the halftone kernel. The proposed scheme performs nonlinear filtering in conjunction with edge enhancement to improve the quality of an inverse halftoned image. Distinct features of the proposed approach include: efficiently smoothing halftone patterns in large homogeneous areas, additional edge enhancement capability to recover the edge quality and an excellent PSNR performance with only local integer operations and a small memory buffer.

  13. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  14. Preliminary assessment of the robustness of dynamic inversion based flight control laws

    NASA Technical Reports Server (NTRS)

    Snell, S. A.

    1992-01-01

    Dynamic-inversion-based flight control laws present an attractive alternative to conventional gain-scheduled designs for high angle-of-attack maneuvering, where nonlinearities dominate the dynamics. Dynamic inversion is easily applied to the aircraft dynamics requiring a knowledge of the nonlinear equations of motion alone, rather than an extensive set of linearizations. However, the robustness properties of the dynamic inversion are questionable especially when considering the uncertainties involved with the aerodynamic database during post-stall flight. This paper presents a simple analysis and some preliminary results of simulations with a perturbed database. It is shown that incorporating integrators into the control loops helps to improve the performance in the presence of these perturbations.

  15. Black hole algorithm for determining model parameter in self-potential data

    NASA Astrophysics Data System (ADS)

    Sungkono; Warnana, Dwa Desa

    2018-01-01

    Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.

  16. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  17. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  18. Inverse optimal design of input-to-state stabilisation for affine nonlinear systems with input delays

    NASA Astrophysics Data System (ADS)

    Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo

    2018-03-01

    We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.

  19. Reconfigurable Flight Control Using Nonlinear Dynamic Inversion with a Special Accelerometer Implementation

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Ostroff, Aaron J.

    2000-01-01

    This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.

  20. Acoustic and elastic waveform inversion best practices

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.

  1. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  2. Neural network based adaptive control for nonlinear dynamic regimes

    NASA Astrophysics Data System (ADS)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  3. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  4. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  5. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  6. A direct application of the non-linear inverse transformation flight control system design on a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. W.; Mcneill, W. E.; Stortz, M. W.

    1993-01-01

    The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.

  7. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  8. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  9. Nonlinear functional approximation with networks using adaptive neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1992-01-01

    A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.

  10. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  11. Time-domain induced polarization - an analysis of Cole-Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion

    NASA Astrophysics Data System (ADS)

    Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2017-12-01

    The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.

  12. Inverting Monotonic Nonlinearities by Entropy Maximization

    PubMed Central

    López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261

  13. Inverting Monotonic Nonlinearities by Entropy Maximization.

    PubMed

    Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.

  14. A novel post-processing scheme for two-dimensional electrical impedance tomography based on artificial neural networks

    PubMed Central

    2017-01-01

    Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856

  15. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    NASA Astrophysics Data System (ADS)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  16. Frequency-domain full-waveform inversion with non-linear descent directions

    NASA Astrophysics Data System (ADS)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.

  17. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  18. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    NASA Astrophysics Data System (ADS)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  19. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  20. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  1. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  2. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    PubMed Central

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  3. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  5. Approximate nonlinear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-07-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.

  6. Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Jalili, Nader

    2006-03-01

    Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.

  7. NLSE: Parameter-Based Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  8. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.

  9. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  10. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  11. Nonlinear Problems in Fluid Dynamics and Inverse Scattering

    DTIC Science & Technology

    1993-05-31

    nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear

  12. Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1999-01-01

    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.

  13. Adaptive filtering with the self-organizing map: a performance comparison.

    PubMed

    Barreto, Guilherme A; Souza, Luís Gustavo M

    2006-01-01

    In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.

  14. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  15. Digital signal processing based on inverse scattering transform.

    PubMed

    Turitsyna, Elena G; Turitsyn, Sergei K

    2013-10-15

    Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal.

  16. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  17. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  18. The adaptive parallel UKF inversion method for the shape of space objects based on the ground-based photometric data

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Liu, Hao

    2018-04-01

    The space object in highly elliptical orbit is always presented as an image point on the ground-based imaging equipment so that it is difficult to resolve and identify the shape and attitude directly. In this paper a novel algorithm is presented for the estimation of spacecraft shape. The apparent magnitude model suitable for the inversion of object information such as shape and attitude is established based on the analysis of photometric characteristics. A parallel adaptive shape inversion algorithm based on UKF was designed after the achievement of dynamic equation of the nonlinear, Gaussian system involved with the influence of various dragging forces. The result of a simulation study demonstrate the viability and robustness of the new filter and its fast convergence rate. It realizes the inversion of combination shape with high accuracy, especially for the bus of cube and cylinder. Even though with sparse photometric data, it still can maintain a higher success rate of inversion.

  19. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  20. The soliton transform and a possible application to nonlinear Alfven waves in space

    NASA Technical Reports Server (NTRS)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  1. Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion

    NASA Astrophysics Data System (ADS)

    Jakobsen, M.; Wu, R. S.

    2016-12-01

    Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.

  2. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  3. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1990-09-18

    to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the

  4. Self-Inversion of the Image of a Small-Scale Opaque Object in the Process of Focusing of the Illuminating Beam in an Absorbing Medium

    NASA Astrophysics Data System (ADS)

    Bubis, E. L.; Lozhrkarev, V. V.; Stepanov, A. N.; Smirnov, A. I.; Martynov, V. O.; Mal'shakova, O. A.; Silin, D. E.; Gusev, S. A.

    2017-03-01

    We describe the process of adaptive self-inversion of an image (nonlinear switching) of smallscale opaque object, when the amplitude-modulated laser beam, which illuminates it, is focused in a weakly absorbing medium. It is shown that, despite the nonlocal character of the process, which is due to thermal nonlinearity, the brightness-inverse image is characterized by acceptable quality and a high conversion coefficient. It is shown that the coefficient of conversion of the original image to the inverse one depends on the ratio of the object dimensions and the size of the illuminating beam, and decreases sharply for relatively large objects. The obtained experimental data agree with the numerical calculations. Inversion of the images of several model objects and microdefects in a nonlinear KDP crystal is demonstrated.

  5. A comprehensive inversion approach for feedforward compensation of piezoactuator system at high frequency

    NASA Astrophysics Data System (ADS)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2016-09-01

    Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.

  6. Intelligence rules of hysteresis in the feedforward trajectory control of piezoelectrically-driven nanostagers

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Jalili, Nader

    2007-02-01

    Piezoelectrically-driven nanostagers have limited performance in a variety of feedforward and feedback positioning applications because of their nonlinear hysteretic response to input voltage. The hysteresis phenomenon is well known for its complex and multi-path behavior. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligence properties of hysteresis with the effects of non-local memories are discussed here. Through performing a set of experiments on a piezoelectrically-driven nanostager with a high resolution capacitive position sensor, it is shown that for the precise prediction of the hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of the hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the ever-present nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect, if memory units are sufficiently chosen for the inverse model.

  7. Convergence acceleration in scattering series and seismic waveform inversion using nonlinear Shanks transformation

    NASA Astrophysics Data System (ADS)

    Eftekhar, Roya; Hu, Hao; Zheng, Yingcai

    2018-06-01

    Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.

  8. Feedback control by online learning an inverse model.

    PubMed

    Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis

    2012-10-01

    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made.

  9. Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders.

    PubMed

    Warner, Graham A; Dosso, Stan E; Hannay, David E

    2017-03-01

    This paper estimates bowhead whale locations and uncertainties using nonlinear Bayesian inversion of the time-difference-of-arrival (TDOA) of low-frequency whale calls recorded on onmi-directional asynchronous recorders in the shallow waters of the northeastern Chukchi Sea, Alaska. A Y-shaped cluster of seven autonomous ocean-bottom hydrophones, separated by 0.5-9.2 km, was deployed for several months over which time their clocks drifted out of synchronization. Hundreds of recorded whale calls are manually associated between recorders. The TDOA between hydrophone pairs are calculated from filtered waveform cross correlations and depend on the whale locations, hydrophone locations, relative recorder clock offsets, and effective waveguide sound speed. A nonlinear Bayesian inversion estimates all of these parameters and their uncertainties as well as data error statistics. The problem is highly nonlinear and a linearized inversion did not produce physically realistic results. Whale location uncertainties from nonlinear inversion can be low enough to allow accurate tracking of migrating whales that vocalize repeatedly over several minutes. Estimates of clock drift rates are obtained from inversions of TDOA data over two weeks and agree with corresponding estimates obtained from long-time averaged ambient noise cross correlations. The inversion is suitable for application to large data sets of manually or automatically detected whale calls.

  10. Identification of an internal combustion engine model by nonlinear multi-input multi-output system identification. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luh, G.C.

    1994-01-01

    This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less

  11. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun

    2017-12-01

    At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.

  12. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  13. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  14. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  15. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies.

    PubMed

    Aune, Dagfinn; Lau, Rosa; Chan, Doris S M; Vieira, Rui; Greenwood, Darren C; Kampman, Ellen; Norat, Teresa

    2011-07-01

    The association between fruit and vegetable intake and colorectal cancer risk has been investigated by many studies but is controversial because of inconsistent results and weak observed associations. We summarized the evidence from cohort studies in categorical, linear, and nonlinear, dose-response meta-analyses. We searched PubMed for studies of fruit and vegetable intake and colorectal cancer risk that were published until the end of May 2010. We included 19 prospective studies that reported relative risk estimates and 95% confidence intervals (CIs) of colorectal cancer-associated with fruit and vegetable intake. Random effects models were used to estimate summary relative risks. The summary relative risk for the highest vs the lowest intake was 0.92 (95% CI: 0.86-0.99) for fruit and vegetables combined, 0.90 (95% CI: 0.83-0.98) for fruit, and 0.91 (95% CI: 0.86-0.96) for vegetables (P for heterogeneity=.24, .05, and .54, respectively). The inverse associations appeared to be restricted to colon cancer. In linear dose-response analysis, only intake of vegetables was significantly associated with colorectal cancer risk (summary relative risk=0.98; 95% CI: 0.97-0.99), per 100 g/d. However, significant inverse associations emerged in nonlinear models for fruits (Pnonlinearity<.001) and vegetables (Pnonlinearity=.001). The greatest risk reduction was observed when intake increased from very low levels of intake. There was generally little evidence of heterogeneity in the analyses and there was no evidence of small-study bias. Based on meta-analysis of prospective studies, there is a weak but statistically significant nonlinear inverse association between fruit and vegetable intake and colorectal cancer risk. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Al Janaideh, Mohammad; Aljanaideh, Omar

    2018-05-01

    Apart from the output-input hysteresis loops, the magnetostrictive actuators also exhibit asymmetry and saturation, particularly under moderate to large magnitude inputs and at relatively higher frequencies. Such nonlinear input-output characteristics could be effectively characterized by a rate-dependent Prandtl-Ishlinskii model in conjunction with a function of deadband operators. In this study, an inverse model is formulated to seek real-time compensation of rate-dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The inverse model is formulated with the inverse of the rate-dependent Prandtl-Ishlinskii model, satisfying the threshold dilation condition, with the inverse of the deadband function. The inverse model was subsequently applied to the hysteresis model as a feedforward compensator. The proposed compensator is applied as a feedforward compensator to the actuator hardware to study its potential for rate-dependent and asymmetric hysteresis loops. The experimental results are obtained under harmonic and complex harmonic inputs further revealed that the inverse compensator can substantially suppress the hysteresis and output asymmetry nonlinearities in the entire frequency range considered in the study.

  17. Probability density of spatially distributed soil moisture inferred from crosshole georadar traveltime measurements

    NASA Astrophysics Data System (ADS)

    Linde, N.; Vrugt, J. A.

    2009-04-01

    Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.

  18. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).

  19. Nonlinear PP and PS joint inversion based on the exact Zoeppritz equations: a two-stage procedure

    NASA Astrophysics Data System (ADS)

    Zhi, Lixia; Chen, Shuangquan; Song, Baoshan; Li, Xiang-yang

    2018-04-01

    S-velocity and density are very important parameters in distinguishing lithology and estimating other petrophysical properties. A reliable estimate of S-velocity and density is very difficult to obtain, even from long-offset gather data. Joint inversion of PP and PS data provides a promising strategy for stabilizing and improving the results of inversion in estimating elastic parameters and density. For 2D or 3D inversion, the trace-by-trace strategy is still the most widely used method although it often suffers from a lack of clarity because of its high efficiency, which is due to parallel computing. This paper describes a two-stage inversion method for nonlinear PP and PS joint inversion based on the exact Zoeppritz equations. There are several advantages for our proposed methods as follows: (1) Thanks to the exact Zoeppritz equation, our joint inversion method is applicable for wide angle amplitude-versus-angle inversion; (2) The use of both P- and S-wave information can further enhance the stability and accuracy of parameter estimation, especially for the S-velocity and density; (3) The two-stage inversion procedure proposed in this paper can achieve a good compromise between efficiency and precision. On the one hand, the trace-by-trace strategy used in the first stage can be processed in parallel so that it has high computational efficiency. On the other hand, to deal with the indistinctness of and undesired disturbances to the inversion results obtained from the first stage, we apply the second stage—total variation (TV) regularization. By enforcing spatial and temporal constraints, the TV regularization stage deblurs the inversion results and leads to parameter estimation with greater precision. Notably, the computation consumption of the TV regularization stage can be ignored compared to the first stage because it is solved using the fast split Bregman iterations. Numerical examples using a well log and the Marmousi II model show that the proposed joint inversion is a reliable method capable of accurately estimating the density parameter as well as P-wave velocity and S-wave velocity, even when the seismic data is noisy with signal-to-noise ratio of 5.

  20. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  1. The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow-Theory. Revision.

    DTIC Science & Technology

    1985-06-10

    The method of Levi Civita is applied to an isolated fully cavitating body at zero cavitation number and adapted to the solution of the inverse...Eigensolutions in Nonlinear Inverse Cavity-Flow Theory [Revised] Abstract: The method of Levi Civita is applied to an isolated fully cavitating body at...problem is not thought * to present much of a challenge at zero cavitation number. In this case, - the classical method of Levi Civita [7] can be

  2. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  3. Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Erdem, Arzu

    2008-08-01

    The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.

  4. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  5. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  6. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  7. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  8. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less

  9. Intrinsic nonlinearity and method of disturbed observations in inverse problems of celestial mechanics

    NASA Astrophysics Data System (ADS)

    Avdyushev, Victor A.

    2017-12-01

    Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the method of disturbed observations, we conclude that it practically should be still entirely acceptable to adequately describe the orbital uncertainty since, from a geometrical point of view, the efficiency of the method directly depends only on the nonflatness of the estimation subspace and it gets higher as the nonflatness decreases.

  10. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  11. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  12. Topics Associated with Nonlinear Evolution Equations and Inverse Scattering in Multidimensions,

    DTIC Science & Technology

    1987-03-01

    significant that these concepts can be generalized to 2 spatial plus one time dimension. Here the prototype equation is the Kadomtsev - Petviashvili (K-P...O-193 32 ? T TOPICS ASSOCIATED WITH NONLINEAR E VOLUTION EQUATIONS / AND INVERSE SCATTER! .(U) CLARKSON UNIV POTSDAM NY INST...8217 - Evolution Equations and L Inverse Scattering in Multi- dimensions by _i A ,’I Mark J. Ablowi ClrsnUiest PosaNwYr/37 LaRMFOMON* .F-5 Anwo~~~d kr /ua

  13. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  14. Induced polarization: Simulation and inversion of nonlinear mineral electrodics

    NASA Astrophysics Data System (ADS)

    Agunloye, Olu

    1983-02-01

    Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.

  15. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  16. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  18. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  19. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  20. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  1. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  2. Identification and Control of Non-Linear Time-Varying Dynamical Systems Using Artificial Neural Networks

    DTIC Science & Technology

    1992-09-01

    finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the

  3. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar

    2009-10-15

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed tomore » become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.« less

  4. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1992-01-29

    equations include the Kadomtsev - Petviashvili (K-P), Davey-Stewartson (D-S), 2+1 Toda, and Self-Dual Yang-Mills (SDYM) equations . We have uncovered a... Petviashvili Equation and Associated Constraints, M.J. Ablowitz and Javier Villaroel, Studies in Appl. Math. 85, (1991), 195-213. 12. On the Hamiltonian...nonlinear wave equations of physical significance, multidimensional inverse scattering, numer- ically induced instabilities and chaos, and forced

  5. Controlling bridging and pinching with pixel-based mask for inverse lithography

    NASA Astrophysics Data System (ADS)

    Kobelkov, Sergey; Tritchkov, Alexander; Han, JiWan

    2016-03-01

    Inverse Lithography Technology (ILT) has become a viable computational lithography candidate in recent years as it can produce mask output that results in process latitude and CD control in the fab that is hard to match with conventional OPC/SRAF insertion approaches. An approach to solving the inverse lithography problem as a nonlinear, constrained minimization problem over a domain mask pixels was suggested in the paper by Y. Granik "Fast pixel-based mask optimization for inverse lithography" in 2006. The present paper extends this method to satisfy bridging and pinching constraints imposed on print contours. Namely, there are suggested objective functions expressing penalty for constraints violations, and their minimization with gradient descent methods is considered. This approach has been tested with an ILT-based Local Printability Enhancement (LPTM) tool in an automated flow to eliminate hotspots that can be present on the full chip after conventional SRAF placement/OPC and has been applied in 14nm, 10nm node production, single and multiple-patterning flows.

  6. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    PubMed

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  7. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  8. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1997-01-01

    The first two years research work has advanced the inversion-based guidance theory for: (1) systems with non-hyperbolic internal dynamics; (2) systems with parameter jumps; (3) systems where a redesign of the output trajectory is desired; and (4) the generation of recovery guidance maneuvers.

  9. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  10. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  11. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.

  12. Efficient 3D inversions using the Richards equation

    NASA Astrophysics Data System (ADS)

    Cockett, Rowan; Heagy, Lindsey J.; Haber, Eldad

    2018-07-01

    Fluid flow in the vadose zone is governed by the Richards equation; it is parameterized by hydraulic conductivity, which is a nonlinear function of pressure head. Investigations in the vadose zone typically require characterizing distributed hydraulic properties. Water content or pressure head data may include direct measurements made from boreholes. Increasingly, proxy measurements from hydrogeophysics are being used to supply more spatially and temporally dense data sets. Inferring hydraulic parameters from such datasets requires the ability to efficiently solve and optimize the nonlinear time domain Richards equation. This is particularly important as the number of parameters to be estimated in a vadose zone inversion continues to grow. In this paper, we describe an efficient technique to invert for distributed hydraulic properties in 1D, 2D, and 3D. Our technique does not store the Jacobian matrix, but rather computes its product with a vector. Existing literature for the Richards equation inversion explicitly calculates the sensitivity matrix using finite difference or automatic differentiation, however, for large scale problems these methods are constrained by computation and/or memory. Using an implicit sensitivity algorithm enables large scale inversion problems for any distributed hydraulic parameters in the Richards equation to become tractable on modest computational resources. We provide an open source implementation of our technique based on the SimPEG framework, and show it in practice for a 3D inversion of saturated hydraulic conductivity using water content data through time.

  13. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  14. An ambiguity of information content and error in an ill-posed satellite inversion

    NASA Astrophysics Data System (ADS)

    Koner, Prabhat

    According to Rodgers (2000, stochastic approach), the averaging kernel (AK) is the representational matrix to understand the information content in a scholastic inversion. On the other hand, in deterministic approach this is referred to as model resolution matrix (MRM, Menke 1989). The analysis of AK/MRM can only give some understanding of how much regularization is imposed on the inverse problem. The trace of the AK/MRM matrix, which is the so-called degree of freedom from signal (DFS; stochastic) or degree of freedom in retrieval (DFR; deterministic). There are no physical/mathematical explanations in the literature: why the trace of the matrix is a valid form to calculate this quantity? We will present an ambiguity between information and error using a real life problem of SST retrieval from GOES13. The stochastic information content calculation is based on the linear assumption. The validity of such mathematics in satellite inversion will be questioned because it is based on the nonlinear radiative transfer and ill-conditioned inverse problems. References: Menke, W., 1989: Geophysical data analysis: discrete inverse theory. San Diego academic press. Rodgers, C.D., 2000: Inverse methods for atmospheric soundings: theory and practice. Singapore :World Scientific.

  15. Numerical simulations of induction and MWD logging tools and data inversion method with X-window interface on a UNIX workstation

    NASA Astrophysics Data System (ADS)

    Tian, Xiang-Dong

    The purpose of this research is to simulate induction and measuring-while-drilling (MWD) logs. In simulation of logs, there are two tasks. The first task, the forward modeling procedure, is to compute the logs from known formation. The second task, the inversion procedure, is to determine the unknown properties of the formation from the measured field logs. In general, the inversion procedure requires the solution of a forward model. In this study, a stable numerical method to simulate induction and MWD logs is presented. The proposed algorithm is based on a horizontal eigenmode expansion method. Vertical propagation of modes is modeled by a three-layer module. The multilayer cases are treated as a cascade of these modules. The mode tracing algorithm possesses stable characteristics that are superior to other methods. This method is applied to simulate the logs in the formations with both vertical and horizontal layers, and also used to study the groove effects of the MWD tool. The results are very good. Two-dimensional inversion of induction logs is an nonlinear problem. Nonlinear functions of the apparent conductivity are expanded into a Taylor series. After truncating the high order terms in this Taylor series, the nonlinear functions are linearized. An iterative procedure is then devised to solve the inversion problem. In each iteration, the Jacobian matrix is calculated, and a small variation computed using the least-squares method is used to modify the background medium. Finally, the inverted medium is obtained. The horizontal eigenstate method is used to solve the forward problem. It is found that a good inverted formation can be obtained by using measurements. In order to help the user simulate the induction logs conveniently, a Wellog Simulator, based on the X-window system, is developed. The application software (FORTRAN codes) embedded in the Simulator is designed to simulate the responses of the induction tools in the layered formation with dipping beds. The graphic user-interface part of the Wellog Simulator is implemented with C and Motif. Through the user interface, the user can prepare the simulation data, select the tools, simulate the logs and plot the results.

  16. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models

    PubMed Central

    Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos

    2018-01-01

    This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781

  17. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  18. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  19. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.

  20. A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Cui, C.; Wang, Y.

    2017-12-01

    Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.

  1. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  2. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  3. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    Treesearch

    Shuguang Liua; Pamela Anderson; Guoyi Zhoud; Boone Kauffman; Flint Hughes; David Schimel; Vicente Watson; Joseph Tosi

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in...

  4. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.

  5. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  6. One-dimensional optical wave turbulence: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    2012-05-01

    We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

  7. Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul

    2017-10-01

    This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.

  8. Nonlinear 1D and 2D waveform inversions of SS precursors and their applications in mantle seismic imaging

    NASA Astrophysics Data System (ADS)

    Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2016-12-01

    Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition zone.

  9. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  10. Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements.

    PubMed

    Black, Georgia; Waddington, Gordon; Adams, Roger

    2014-02-01

    25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.

  11. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials

    USGS Publications Warehouse

    Zhou, C.; Liu, L.; Lane, J.W.

    2001-01-01

    A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves

    PubMed Central

    Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.

    2017-01-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311

  13. Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves.

    PubMed

    Gopinathan, D; Venugopal, M; Roy, D; Rajendran, K; Guillas, S; Dias, F

    2017-09-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra-Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.

  14. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  15. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    PubMed

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  17. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  18. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  19. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  20. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  1. On the Use of Nonlinear Regularization in Inverse Methods for the Solar Tachocline Profile Determination

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.

    Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.

  2. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  3. Charge-based MOSFET model based on the Hermite interpolation polynomial

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt

    2017-04-01

    An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.

  4. Inverse energy cascade in three-dimensional isotropic turbulence.

    PubMed

    Biferale, Luca; Musacchio, Stefano; Toschi, Federico

    2012-04-20

    We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics.

  5. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.

  6. Appraisal of geodynamic inversion results: a data mining approach

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.

  7. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.

    2007-01-01

    The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.

  8. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  9. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward

    1991-01-01

    It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.

  10. Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,

    DTIC Science & Technology

    1986-12-01

    time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to

  11. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  12. Exact states in waveguides with periodically modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.

    2017-09-01

    We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.

  13. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  14. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  15. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  16. Object-based inversion of crosswell radar tomography data to monitor vegetable oil injection experiments

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Versteeg, Roelof J.; Casey, Clifton C.

    2004-01-01

    Crosswell radar methods can be used to dynamically image ground-water flow and mass transport associated with tracer tests, hydraulic tests, and natural physical processes, for improved characterization of preferential flow paths and complex aquifer heterogeneity. Unfortunately, because the raypath coverage of the interwell region is limited by the borehole geometry, the tomographic inverse problem is typically underdetermined, and tomograms may contain artifacts such as spurious blurring or streaking that confuse interpretation.We implement object-based inversion (using a constrained, non-linear, least-squares algorithm) to improve results from pixel-based inversion approaches that utilize regularization criteria, such as damping or smoothness. Our approach requires pre- and post-injection travel-time data. Parameterization of the image plane comprises a small number of objects rather than a large number of pixels, resulting in an overdetermined problem that reduces the need for prior information. The nature and geometry of the objects are based on hydrologic insight into aquifer characteristics, the nature of the experiment, and the planned use of the geophysical results.The object-based inversion is demonstrated using synthetic and crosswell radar field data acquired during vegetable-oil injection experiments at a site in Fridley, Minnesota. The region where oil has displaced ground water is discretized as a stack of rectangles of variable horizontal extents. The inversion provides the geometry of the affected region and an estimate of the radar slowness change for each rectangle. Applying petrophysical models to these results and porosity from neutron logs, we estimate the vegetable-oil emulsion saturation in various layers.Using synthetic- and field-data examples, object-based inversion is shown to be an effective strategy for inverting crosswell radar tomography data acquired to monitor the emplacement of vegetable-oil emulsions. A principal advantage of object-based inversion is that it yields images that hydrologists and engineers can easily interpret and use for model calibration.

  17. Robotic fish tracking method based on suboptimal interval Kalman filter

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  18. An adaptive nonlinear internal-model control for the speed control of homopolar salient-pole BLDC motor

    NASA Astrophysics Data System (ADS)

    CheshmehBeigi, Hassan Moradi

    2018-05-01

    In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.

  19. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  20. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  1. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.

    2014-03-01

    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

  2. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  3. Reflection full-waveform inversion using a modified phase misfit function

    NASA Astrophysics Data System (ADS)

    Cui, Chao; Huang, Jian-Ping; Li, Zhen-Chun; Liao, Wen-Yuan; Guan, Zhe

    2017-09-01

    Reflection full-waveform inversion (RFWI) updates the low- and highwavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.

  4. A multi-frequency receiver function inversion approach for crustal velocity structure

    NASA Astrophysics Data System (ADS)

    Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian

    2017-05-01

    In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.

  5. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  6. Iterative algorithms for a non-linear inverse problem in atmospheric lidar

    NASA Astrophysics Data System (ADS)

    Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto

    2017-08-01

    We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.

  7. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    PubMed

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  8. Monte Carlo Volcano Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  9. Nonlinear Waves.

    DTIC Science & Technology

    1988-02-01

    in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations

  10. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

  11. Shape-based ultrasound tomography using a Born model with application to high intensity focused ultrasound therapy.

    PubMed

    Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O

    2008-05-01

    A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.

  12. Compensation of significant parametric uncertainties using sliding mode online learning

    NASA Astrophysics Data System (ADS)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  13. Nonlinear inversion of resistivity sounding data for 1-D earth models using the Neighbourhood Algorithm

    NASA Astrophysics Data System (ADS)

    Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.

    2018-01-01

    To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.

  14. MAP Estimators for Piecewise Continuous Inversion

    DTIC Science & Technology

    2016-08-08

    MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP

  15. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve the spatial structure in the inverse model, which leads to better parameter estimates and improved predictions when using the inverse-conditioned realizations of parameter fields.

  16. Inverse Diffusion Curves Using Shape Optimization.

    PubMed

    Zhao, Shuang; Durand, Fredo; Zheng, Changxi

    2018-07-01

    The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.

  17. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.

  18. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    NASA Astrophysics Data System (ADS)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  19. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.

    2017-04-01

    Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.

  20. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  1. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  2. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  3. An inverse dynamics approach to face animation.

    PubMed

    Pitermann, M; Munhall, K G

    2001-09-01

    Muscle-based models of the human face produce high quality animation but rely on recorded muscle activity signals or synthetic muscle signals that are often derived by trial and error. This paper presents a dynamic inversion of a muscle-based model (Lucero and Munhall, 1999) that permits the animation to be created from kinematic recordings of facial movements. Using a nonlinear optimizer (Powell's algorithm), the inversion produces a muscle activity set for seven muscles in the lower face that minimize the root mean square error between kinematic data recorded with OPTOTRAK and the corresponding nodes of the modeled facial mesh. This inverted muscle activity is then used to animate the facial model. In three tests of the inversion, strong correlations were observed for kinematics produced from synthetic muscle activity, for OPTOTRAK kinematics recorded from a talker for whom the facial model is morphologically adapted and finally for another talker with the model morphology adapted to a different individual. The correspondence between the animation kinematics and the three-dimensional OPTOTRAK data are very good and the animation is of high quality. Because the kinematic to electromyography (EMG) inversion is ill posed, there is no relation between the actual EMG and the inverted EMG. The overall redundancy of the motor system means that many different EMG patterns can produce the same kinematic output.

  4. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  5. Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    2016-01-01

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  6. Spectra of Baroclinic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1996-01-01

    Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.

  7. Stabilization of the Inverse Laplace Transform of Multiexponential Decay through Introduction of a Second Dimension

    PubMed Central

    Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.

    2013-01-01

    We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004

  8. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Richard, Claude; Guyomar, Daniel

    2010-01-01

    The purpose of this paper is to propose a new scheme for piezoelectric energy harvesting optimization. The proposed enhancement relies on a new topology for inverting the voltage across a single capacitor with reduced losses. The increase of the inversion quality allows a much more effective energy harvesting process using the so-called synchronized switch harvesting on inductor (SSHI) nonlinear technique. It is shown that the proposed architecture, based on a 2-step inversion, increases the harvested power by a theoretical factor up to square root of 2 (i.e., 40% gain) compared with classical SSHI, allowing an increase of the harvested power by a factor greater than 1000% compared with the standard energy harvesting technique for realistic values of inversion components. The proposed circuit, using only 4 digital switches and an intermediate capacitor, is also ultra-low power, because the inversion circuit does not require any external energy and the command signals are very simple.

  9. Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide

    NASA Astrophysics Data System (ADS)

    Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan

    2012-06-01

    Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).

  10. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  11. Neural learning of constrained nonlinear transformations

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep; Zak, Michail

    1989-01-01

    Two issues that are fundamental to developing autonomous intelligent robots, namely, rudimentary learning capability and dexterous manipulation, are examined. A powerful neural learning formalism is introduced for addressing a large class of nonlinear mapping problems, including redundant manipulator inverse kinematics, commonly encountered during the design of real-time adaptive control mechanisms. Artificial neural networks with terminal attractor dynamics are used. The rapid network convergence resulting from the infinite local stability of these attractors allows the development of fast neural learning algorithms. Approaches to manipulator inverse kinematics are reviewed, the neurodynamics model is discussed, and the neural learning algorithm is presented.

  12. A theoretical Deduction from the Hubble law based on a Modified Newtonian Dynamics with field of Yukawa inverse

    NASA Astrophysics Data System (ADS)

    Falcon, N.

    2017-07-01

    At cosmic scales the dynamics of the Universe are almost exclusively prescribed by the force of gravity; however the assumption of the law of gravitation, depending on the inverse of the distance, leads to the known problems of the rotation curves of galaxies and missing mass (dark matter). The problem of the coupling of gravity to changes in scale and deviations from the law of the inverse square is an old problem (Laplace, 1805; Seeliger 1898), which has motivated alternatives to Newtonian dynamics compatible with observations. The present paper postulates a modified Newtonian dynamics by adding an inverse Yukawa potential: U(r)≡U0(M)(r-r0)e-α/r is the the potential per unit mass (in N/kg) as a function of the barionic mass that causes the field, r0 is of the order of 50h-1 Mpc and alpha is a coupling constant of the order of 2.5 h-1 Mpc. This potential is zero within the solar system, slightly attractive at interstellar distances, very attractive in galactic range and repulsive at cosmic scales. Its origin is the barionic matter, it allows to include the Milgrow MoND theory to explain the rotation curves, it is compatible with the experiments Eovos type, and allows to deduce the law of Hubble to cosmic scales, in the form H0=100h km/s Mpc≍U0(M)/c, where U0(M)≍ 4pi×6.67 10-11m/s2, is obtained from the Laplace's equation, assuming that the gravitational force is the law of the inverse of the square plus a non-linear term type Yukawa inverse. It is concluded that the modification of the law of gravity with nonlinear terms, allows to model the dynamics of the Universe on a large scale and include non-locality without dark matter. (See Falcon et al. 2014, International Journal of Astronomy and Astrophysics, 4, 551-559).

  13. Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point

    NASA Astrophysics Data System (ADS)

    Dey, Pinkee; Suslov, Sergey A.

    2016-12-01

    A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.

  14. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  15. Sustainability of transport structures - some aspects of the nonlinear reliability assessment

    NASA Astrophysics Data System (ADS)

    Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír

    2017-09-01

    Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.

  16. THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)

    EPA Science Inventory

    This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...

  17. Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics

    NASA Astrophysics Data System (ADS)

    Franck, I. M.; Koutsourelakis, P. S.

    2017-01-01

    This paper is concerned with the numerical solution of model-based, Bayesian inverse problems. We are particularly interested in cases where the cost of each likelihood evaluation (forward-model call) is expensive and the number of unknown (latent) variables is high. This is the setting in many problems in computational physics where forward models with nonlinear PDEs are used and the parameters to be calibrated involve spatio-temporarily varying coefficients, which upon discretization give rise to a high-dimensional vector of unknowns. One of the consequences of the well-documented ill-posedness of inverse problems is the possibility of multiple solutions. While such information is contained in the posterior density in Bayesian formulations, the discovery of a single mode, let alone multiple, poses a formidable computational task. The goal of the present paper is two-fold. On one hand, we propose approximate, adaptive inference strategies using mixture densities to capture multi-modal posteriors. On the other, we extend our work in [1] with regard to effective dimensionality reduction techniques that reveal low-dimensional subspaces where the posterior variance is mostly concentrated. We validate the proposed model by employing Importance Sampling which confirms that the bias introduced is small and can be efficiently corrected if the analyst wishes to do so. We demonstrate the performance of the proposed strategy in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. The discovery of multiple modes (solutions) in such problems is critical in achieving the diagnostic objectives.

  18. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  19. Movement decoupling control for two-axis fast steering mirror

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Qiao, Yongming; Lv, Tao

    2017-02-01

    Based on flexure hinge and piezoelectric actuator of two-axis fast steering mirror is a complex system with time varying, uncertain and strong coupling. It is extremely difficult to achieve high precision decoupling control with the traditional PID control method. The feedback error learning method was established an inverse hysteresis model which was based inner product dynamic neural network nonlinear and no-smooth for piezo-ceramic. In order to improve the actuator high precision, a method was proposed, which was based piezo-ceramic inverse model of two dynamic neural network adaptive control. The experiment result indicated that, compared with two neural network adaptive movement decoupling control algorithm, static relative error is reduced from 4.44% to 0.30% and coupling degree is reduced from 12.71% to 0.60%, while dynamic relative error is reduced from 13.92% to 2.85% and coupling degree is reduced from 2.63% to 1.17%.

  20. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  1. A general rough-surface inversion algorithm: Theory and application to SAR data

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  2. Determination of photophysical parameters of chlorophyll {alpha} in photosynthetic organisms using the method of nonlinear laser fluorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gostev, T S; Fadeev, V V

    2011-05-31

    We study the possibility of solving the multiparameter inverse problem of nonlinear laser fluorimetry of molecular systems with high local concentration of fluorophores (by the example of chlorophyll {alpha} molecules in photosynthetic organisms). The algorithms are proposed that allow determination of up to four photophysical parameters of chlorophyll {alpha} from the experimental fluorescence saturation curves. The uniqueness and stability of the inverse problem solution obtained using the proposed algorithms were assessed numerically. The laser spectrometer, designed in the course of carrying out the work and aimed at nonlinear laser fluorimetry in the quasi-stationary and nonstationary excitation regimes is described. Themore » algorithms, proposed in this paper, are tested on pure cultures of microalgae Chlorella pyrenoidosa and Chlamydomonas reinhardtii under different functional conditions. (optical technologies in biophysics and medicine)« less

  3. Force and Moment Approach for Achievable Dynamics Using Nonlinear Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Bacon, Barton J.

    1999-01-01

    This paper describes a general form of nonlinear dynamic inversion control for use in a generic nonlinear simulation to evaluate candidate augmented aircraft dynamics. The implementation is specifically tailored to the task of quickly assessing an aircraft's control power requirements and defining the achievable dynamic set. The achievable set is evaluated while undergoing complex mission maneuvers, and perfect tracking will be accomplished when the desired dynamics are achievable. Variables are extracted directly from the simulation model each iteration, so robustness is not an issue. Included in this paper is a description of the implementation of the forces and moments from simulation variables, the calculation of control effectiveness coefficients, methods for implementing different types of aerodynamic and thrust vectoring controls, adjustments for control effector failures, and the allocation approach used. A few examples illustrate the perfect tracking results obtained.

  4. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.

    2018-01-01

    In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.

  5. Success Stories in Control: Nonlinear Dynamic Inversion Control

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2010-01-01

    NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.

  6. Laguerre-Gaussian, Hermite-Gaussian, Bessel-Gaussian, and Finite-Energy Airy Beams Carrying Orbital Angular Momentum in Strongly Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Gu, Yuzong

    2016-12-01

    The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.

  7. A Method to Solve Interior and Exterior Camera Calibration Parameters for Image Resection

    NASA Technical Reports Server (NTRS)

    Samtaney, Ravi

    1999-01-01

    An iterative method is presented to solve the internal and external camera calibration parameters, given model target points and their images from one or more camera locations. The direct linear transform formulation was used to obtain a guess for the iterative method, and herein lies one of the strengths of the present method. In all test cases, the method converged to the correct solution. In general, an overdetermined system of nonlinear equations is solved in the least-squares sense. The iterative method presented is based on Newton-Raphson for solving systems of nonlinear algebraic equations. The Jacobian is analytically derived and the pseudo-inverse of the Jacobian is obtained by singular value decomposition.

  8. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  9. An inverse method to estimate emission rates based on nonlinear least-squares-based ensemble four-dimensional variational data assimilation with local air concentration measurements.

    PubMed

    Geng, Xiaobing; Xie, Zhenghui; Zhang, Lijun; Xu, Mei; Jia, Binghao

    2018-03-01

    An inverse source estimation method is proposed to reconstruct emission rates using local air concentration sampling data. It involves the nonlinear least squares-based ensemble four-dimensional variational data assimilation (NLS-4DVar) algorithm and a transfer coefficient matrix (TCM) created using FLEXPART, a Lagrangian atmospheric dispersion model. The method was tested by twin experiments and experiments with actual Cs-137 concentrations measured around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Emission rates can be reconstructed sequentially with the progression of a nuclear accident, which is important in the response to a nuclear emergency. With pseudo observations generated continuously, most of the emission rates were estimated accurately, except under conditions when the wind blew off land toward the sea and at extremely slow wind speeds near the FDNPP. Because of the long duration of accidents and variability in meteorological fields, monitoring networks composed of land stations only in a local area are unable to provide enough information to support an emergency response. The errors in the estimation compared to the real observations from the FDNPP nuclear accident stemmed from a shortage of observations, lack of data control, and an inadequate atmospheric dispersion model without improvement and appropriate meteorological data. The proposed method should be developed further to meet the requirements of a nuclear emergency response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.

    PubMed

    Nakamura, K; Sobirov, Z A; Matrasulov, D U; Sawada, S

    2011-08-01

    We elucidate the case in which the Ablowitz-Ladik (AL)-type discrete nonlinear Schrödinger equation (NLSE) on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a simple one-dimensional (1D) discrete chain. The strength of cubic nonlinearity is different from bond to bond, and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond. The present work is a nontrivial extension of our preceding one [Sobirov et al., Phys. Rev. E 81, 066602 (2010)] on the continuum NLSE to the discrete case. We find (1) the solution on each bond is a part of the universal (bond-independent) AL soliton solution on the 1D discrete chain, but it is multiplied by the inverse of the square root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum rule; and (3) under findings 1 and 2, there exist an infinite number of constants of motion. As a practical issue, with the use of an AL soliton injected through the incoming bond, we obtain transmission probabilities inversely proportional to the strength of nonlinearity on the outgoing bonds.

  11. Solution of underdetermined systems of equations with gridded a priori constraints.

    PubMed

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  12. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  13. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  14. 20th Annual Systems Engineering Conference, Thursday, Volume 4

    DTIC Science & Technology

    2017-10-26

    Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego

  15. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project

    NASA Astrophysics Data System (ADS)

    Polydorides, Nick; Lionheart, William R. B.

    2002-12-01

    The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.

  16. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  17. Inverse scattering transform analysis of rogue waves using local periodization procedure

    NASA Astrophysics Data System (ADS)

    Randoux, Stéphane; Suret, Pierre; El, Gennady

    2016-07-01

    The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra.

  18. Inverse scattering transform analysis of rogue waves using local periodization procedure

    PubMed Central

    Randoux, Stéphane; Suret, Pierre; El, Gennady

    2016-01-01

    The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra. PMID:27385164

  19. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1985-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  20. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1986-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  1. Nonlinear study of the parallel velocity/tearing instability using an implicit, nonlinear resistive MHD solver

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Finn, J. M.; Knoll, D. A.

    2000-10-01

    Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.

  2. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  3. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  4. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  5. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  6. Inversion of Attributes and Full Waveforms of Ground Penetrating Radar Data Using PEST

    NASA Astrophysics Data System (ADS)

    Jazayeri, S.; Kruse, S.; Esmaeili, S.

    2015-12-01

    We seek to establish a method, based on freely available software, for inverting GPR signals for the underlying physical properties (electrical permittivity, magnetic permeability, target geometries). Such a procedure should be useful for classroom instruction and for analyzing surface GPR surveys over simple targets. We explore the applicability of the PEST parameter estimation software package for GPR inversion (www.pesthomepage.org). PEST is designed to invert data sets with large numbers of parameters, and offers a variety of inversion methods. Although primarily used in hydrogeology, the code has been applied to a wide variety of physical problems. The PEST code requires forward model input; the forward model of the GPR signal is done with the GPRMax package (www.gprmax.com). The problem of extracting the physical characteristics of a subsurface anomaly from the GPR data is highly nonlinear. For synthetic models of simple targets in homogeneous backgrounds, we find PEST's nonlinear Gauss-Marquardt-Levenberg algorithm is preferred. This method requires an initial model, for which the weighted differences between model-generated data and those of the "true" synthetic model (the objective function) are calculated. In order to do this, the Jacobian matrix and the derivatives of the observation data in respect to the model parameters are computed using a finite differences method. Next, the iterative process of building new models by updating the initial values starts in order to minimize the objective function. Another measure of the goodness of the final acceptable model is the correlation coefficient which is calculated based on the method of Cooley and Naff. An accepted final model satisfies both of these conditions. Models to date show that physical properties of simple isolated targets against homogeneous backgrounds can be obtained from multiple traces from common-offset surface surveys. Ongoing work examines the inversion capabilities with more complex target geometries and heterogeneous soils.

  7. A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping

    2018-03-01

    The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.

  8. Optical wave turbulence and the condensation of light

    NASA Astrophysics Data System (ADS)

    Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania

    2009-11-01

    In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.

  9. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    NASA Astrophysics Data System (ADS)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of high-quality teleseismic events recorded at 81 stations is available, and we have high-resolution P-wave velocity model available (Diehl et al., 2009). We plan to extend the 3D shear-wave velocity inversion method to the entire Alpine domain in frame of the AlpArray project, and apply it to other areas with a dense network of broadband seismometers.

  10. Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion

    USGS Publications Warehouse

    Bannister, S.; Bryan, C.J.; Bibby, H.M.

    2004-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.

  11. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  12. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  13. A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Grunberg, D. B.

    1986-01-01

    A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.

  14. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant because it implies we can infer which plate boundaries are more coupled (seismically) for a realistic dynamic model of plates and mantle flow.

  15. Total recall in distributive associative memories

    NASA Technical Reports Server (NTRS)

    Danforth, Douglas G.

    1991-01-01

    Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.

  16. Full analogue electronic realisation of the Hodgkin-Huxley neuronal dynamics in weak-inversion CMOS.

    PubMed

    Lazaridis, E; Drakakis, E M; Barahona, M

    2007-01-01

    This paper presents a non-linear analog synthesis path towards the modeling and full implementation of the Hodgkin-Huxley neuronal dynamics in silicon. The proposed circuits have been realized in weak-inversion CMOS technology and take advantage of both log-domain and translinear transistor-level techniques.

  17. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  18. Mapping nonlinear shallow-water tides: a look at the past and future

    NASA Astrophysics Data System (ADS)

    Andersen, Ole B.; Egbert, Gary D.; Erofeeva, Svetlana Y.; Ray, Richard D.

    2006-12-01

    Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M_4 tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M_4 can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems.

  19. Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.

  20. Study of a Simulation Tool to Determine Achievable Control Dynamics and Control Power Requirements with Perfect Tracking

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.

  1. New Approaches to Coding Information using Inverse Scattering Transform

    NASA Astrophysics Data System (ADS)

    Frumin, L. L.; Gelash, A. A.; Turitsyn, S. K.

    2017-06-01

    Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N -soliton solution of the NLSE for simultaneous coding of N symbols involving 4 ×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N -soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.

  2. Nonlinear refraction and reflection travel time tomography

    USGS Publications Warehouse

    Zhang, Jiahua; ten Brink, Uri S.; Toksoz, M.N.

    1998-01-01

    We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first-arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high-velocity zone under the Catalina Ridge, but a smooth gradient zone between. Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations. Copyright 1998 by the American Geophysical Union.

  3. Experimental validation of a Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan

    2017-03-01

    Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.

  4. AKNS eigenvalue spectrum for densely spaced envelope solitary waves

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Starobor, Alexey

    2010-05-01

    The problem of the influence of one envelope soliton to the discrete eigenvalues of the associated scattering problem for the other envelope soliton, which is situated close to the first one, is discussed. Envelope solitons are exact solutions of the integrable nonlinear Schrödinger equation (NLS). Their generalizations (taking into account the background nonlinear waves [1-4] or strongly nonlinear effects [5, 6]) are possible candidates to rogue waves in the ocean. The envelope solitary waves could be in principle detected in the stochastic wave field by approaches based on the Inverse Scattering Technique in terms of ‘unstable modes' (see [1-3]), or envelope solitons [7-8]. However, densely spaced intense groups influence the spectrum of the associated scattering problem, so that the solitary trains cannot be considered alone. Here we solve the initial-value problem exactly for some simplified configurations of the wave field, representing two closely placed intense wave groups, within the frameworks of the NLS equation by virtue of the solution of the AKNS system [9]. We show that the analogues of the level splitting and the tunneling effects, known in quantum physics, exist in the context of the NLS equation, and thus may be observed in application to sea waves [10]. These effects make the detecting of single solitary wave groups surrounded by other nonlinear wave groups difficult. [1]. A.L. Islas, C.M. Schober (2005) Predicting rogue waves in random oceanic sea states. Phys. Fluids 17, 031701-1-4. [2]. A.R. Osborne, M. Onorato, M. Serio (2005) Nonlinear Fourier analysis of deep-water random surface waves: Theoretical formulation and and experimental observations of rogue waves. 14th Aha Huliko's Winter Workshop, Honolulu, Hawaii. [3]. C.M. Schober, A. Calini (2008) Rogue waves in higher order nonlinear Schrödinger models. In: Extreme Waves (Eds.: E. Pelinovsky & C. Kharif), Springer. [4]. N. Akhmediev, A. Ankiewicz, M. Taki (2009) Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675-678. [5]. A.I. Dyachenko, V.E. Zakharov (2008) On the formation of freak waves on the surface of deep water. JETP Lett. 88 (5), 307-311. [6]. A.V. Slunyaev (2009) Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676-686. [7]. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares (2005) Modeling freak waves from the North Sea. Appl. Ocean Res. 27, 12-22. [8]. A. Slunyaev (2006) Nonlinear analysis and simulations of measured freak wave time series. Eur. J. Mech. B / Fluids 25, 621-635. [9]. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur (1974) The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315. [10]. A.V. Starobor (2009) Interpretation of the inverse scattering data for the analysis of wave groups on water surface. Bachelor degree thesis. N. Novgorod State University, in Russian.

  5. Cooperative inversion of magnetotelluric and seismic data sets

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Santos, F.

    2012-04-01

    Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal

  6. Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao

    2017-10-18

    Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less

  7. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  8. Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design

    NASA Astrophysics Data System (ADS)

    Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio

    2015-10-01

    This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.

  9. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  10. The impact law of confining pressure and plastic parameter on Dilatancy of rock

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing

    2017-08-01

    Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.

  11. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  12. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  13. ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.

    1999-03-01

    ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less

  14. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  15. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  16. Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting

    NASA Astrophysics Data System (ADS)

    Cannon, A. J.; Hsieh, W. W.

    2008-02-01

    Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.

  17. Direct and accelerated parameter mapping using the unscented Kalman filter.

    PubMed

    Zhao, Li; Feng, Xue; Meyer, Craig H

    2016-05-01

    To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.

  18. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Gadjev, I.; Hoang, P.

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses$-$picosecond and below$-$of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by thismore » source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.« less

  19. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    DOE PAGES

    Sakai, Y.; Gadjev, I.; Hoang, P.; ...

    2017-06-05

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses$-$picosecond and below$-$of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by thismore » source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.« less

  20. Clinical knowledge-based inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-11-01

    Clinical IMRT treatment plans are currently made using dose-based optimization algorithms, which do not consider the nonlinear dose-volume effects for tumours and normal structures. The choice of structure specific importance factors represents an additional degree of freedom of the system and makes rigorous optimization intractable. The purpose of this work is to circumvent the two problems by developing a biologically more sensible yet clinically practical inverse planning framework. To implement this, the dose-volume status of a structure was characterized by using the effective volume in the voxel domain. A new objective function was constructed with the incorporation of the volumetric information of the system so that the figure of merit of a given IMRT plan depends not only on the dose deviation from the desired distribution but also the dose-volume status of the involved organs. The conventional importance factor of an organ was written into a product of two components: (i) a generic importance that parametrizes the relative importance of the organs in the ideal situation when the goals for all the organs are met; (ii) a dose-dependent factor that quantifies our level of clinical/dosimetric satisfaction for a given plan. The generic importance can be determined a priori, and in most circumstances, does not need adjustment, whereas the second one, which is responsible for the intractable behaviour of the trade-off seen in conventional inverse planning, was determined automatically. An inverse planning module based on the proposed formalism was implemented and applied to a prostate case and a head-neck case. A comparison with the conventional inverse planning technique indicated that, for the same target dose coverage, the critical structure sparing was substantially improved for both cases. The incorporation of clinical knowledge allows us to obtain better IMRT plans and makes it possible to auto-select the importance factors, greatly facilitating the inverse planning process. The new formalism proposed also reveals the relationship between different inverse planning schemes and gives important insight into the problem of therapeutic plan optimization. In particular, we show that the EUD-based optimization is a special case of the general inverse planning formalism described in this paper.

  1. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  2. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  3. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-05-01

    We predict nonlinear optical polarization rotation in two-dimensional massless Dirac systems including graphene and 8-P m m n borophene. When illuminated, a continuous-wave optical field leads to a nonlinear steady state of photoexcited carriers in the medium. The photoexcited population inversion and the interband coherence give rise to a finite transverse optical conductivity σx y(ω ) . This in turn leads to definitive signatures in associated Kerr and Faraday polarization rotation, which are measurable in a realistic experimental scenario.

  5. Fundamental Mechanisms of NeuroInformation Processing: Inverse Problems and Spike Processing

    DTIC Science & Technology

    2016-08-04

    platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution...example. We investigated the following nonlinear identification problem: given both the input signal u and the time sequence (tk)k2Z at the output of...from a time sequence is to be contrasted with existing methods for rate-based models in neuroscience. In such models the output of the system is taken

  6. Bayesian inversion of refraction seismic traveltime data

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test for a synthetic data set from a known model is also presented.

  7. 3D CSEM inversion based on goal-oriented adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.

  8. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  9. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Chen, Si; Hong, Young Pyo

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less

  11. Joint reconstruction of x-ray fluorescence and transmission tomography

    PubMed Central

    Di, Zichao Wendy; Chen, Si; Hong, Young Pyo; Jacobsen, Chris; Leyffer, Sven; Wild, Stefan M.

    2017-01-01

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption. PMID:28788848

  12. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI.

    PubMed

    Tan, Zhengguo; Hohage, Thorsten; Kalentev, Oleksandr; Joseph, Arun A; Wang, Xiaoqing; Voit, Dirk; Merboldt, K Dietmar; Frahm, Jens

    2017-12-01

    The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  14. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  15. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  16. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is takenmore » to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.« less

  17. An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

    PubMed Central

    Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.

    2015-01-01

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216

  18. An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials.

    PubMed

    Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J

    2015-11-08

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

  19. Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries

    NASA Astrophysics Data System (ADS)

    Startsev, Sergey Ya.

    2017-05-01

    The paper is devoted to hyperbolic (generally speaking, non-Lagrangian and nonlinear) partial differential systems possessing a full set of differential operators that map any function of one independent variable into a symmetry of the corresponding system. We demonstrate that a system has the above property if and only if this system admits a full set of formal integrals (i.e., differential operators which map symmetries into integrals of the system). As a consequence, such systems possess both direct and inverse Noether operators (in the terminology of a work by B. Fuchssteiner and A.S. Fokas who have used these terms for operators that map cosymmetries into symmetries and perform transformations in the opposite direction). Systems admitting Noether operators are not exhausted by Euler-Lagrange systems and the systems with formal integrals. In particular, a hyperbolic system admits an inverse Noether operator if a differential substitution maps this system into a system possessing an inverse Noether operator.

  20. Nonlinear decoding of a complex movie from the mammalian retina

    PubMed Central

    Deny, Stéphane; Martius, Georg

    2018-01-01

    Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463

  1. FAST TRACK PAPER: Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation

    NASA Astrophysics Data System (ADS)

    Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing

    2004-12-01

    The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.

  2. State of charge estimation in Ni-MH rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Milocco, R. H.; Castro, B. E.

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance.

  3. 2.5D transient electromagnetic inversion with OCCAM method

    NASA Astrophysics Data System (ADS)

    Li, R.; Hu, X.

    2016-12-01

    In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.

  4. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  5. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  6. Estimating the Volterra Series Transfer Function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity.

    PubMed

    Shulkind, Gal; Nazarathy, Moshe

    2012-12-17

    We present an efficient method for system identification (nonlinear channel estimation) of third order nonlinear Volterra Series Transfer Function (VSTF) characterizing the four-wave-mixing nonlinear process over a coherent OFDM fiber link. Despite the seemingly large number of degrees of freedom in the VSTF (cubic in the number of frequency points) we identified a compressed VSTF representation which does not entail loss of information. Additional slightly lossy compression may be obtained by discarding very low power VSTF coefficients associated with regions of destructive interference in the FWM phased array effect. Based on this two-staged VSTF compressed representation, we develop a robust and efficient algorithm of nonlinear system identification (optical performance monitoring) estimating the VSTF by transmission of an extended training sequence over the OFDM link, performing just a matrix-vector multiplication at the receiver by a pseudo-inverse matrix which is pre-evaluated offline. For 512 (1024) frequency samples per channel, the VSTF measurement takes less than 1 (10) msec to complete with computational complexity of one real-valued multiply-add operation per time sample. Relative to a naïve exhaustive three-tone-test, our algorithm is far more tolerant of ASE additive noise and its acquisition time is orders of magnitude faster.

  7. Automatic 3D Moment tensor inversions for southern California earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Friberg, P.; Tromp, J.

    2008-12-01

    We present a new source mechanism (moment-tensor and depth) catalog for about 150 recent southern California earthquakes with Mw ≥ 3.5. We carefully select the initial solutions from a few available earthquake catalogs as well as our own preliminary 3D moment tensor inversion results. We pick useful data windows by assessing the quality of fits between the data and synthetics using an automatic windowing package FLEXWIN (Maggi et al 2008). We compute the source Fréchet derivatives of moment-tensor elements and depth for a recent 3D southern California velocity model inverted based upon finite-frequency event kernels calculated by the adjoint methods and a nonlinear conjugate gradient technique with subspace preconditioning (Tape et al 2008). We then invert for the source mechanisms and event depths based upon the techniques introduced by Liu et al 2005. We assess the quality of this new catalog, as well as the other existing ones, by computing the 3D synthetics for the updated 3D southern California model. We also plan to implement the moment-tensor inversion methods to automatically determine the source mechanisms for earthquakes with Mw ≥ 3.5 in southern California.

  8. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    PubMed

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  9. Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lu, Zhong-Rong

    2017-05-01

    This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.

  10. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  11. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    PubMed

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  12. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID

    PubMed Central

    Elshenawy, Ahmed K.; El Singaby, M.I.

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071

  13. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  14. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    NASA Astrophysics Data System (ADS)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  15. On uncertainty quantification in hydrogeology and hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  16. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    NASA Astrophysics Data System (ADS)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  17. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  18. Algorithms for Nonlinear Least-Squares Problems

    DTIC Science & Technology

    1988-09-01

    O -,i(x) 2 , where each -,(x) is a smooth function mapping Rn to R. J - The m x n Jacobian matrix of f. ... x g - The gradient of the nonlinear least...V211f(X*)I112~ l~ l) J(xk)T J(xk) 2 + O(k - X*) For more convergence results and detailed convergence analysis for the Gauss-Newton method, see, e. g ...for a class of nonlinear least-squares problems that includes zero-residual prob- lems. The function Jt is the pseudo-inverse of Jk (see, e. g

  19. Stabilization of a system with saturating, non-monotone hysteresis and frequency dependent power losses by a PD controller

    NASA Astrophysics Data System (ADS)

    Ekanayake, D. B.; Iyer, R. V.

    2015-02-01

    We prove the closed loop stability of a PD controller for certain systems with saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve stability of the closed-loop system without an explicit inverse computation (using least squares minimization or otherwise).

  20. Uniform strongly interacting soliton gas in the frame of the Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; Agafontsev, Dmitry

    2017-04-01

    The statistical properties of many soliton systems play the key role in the fundamental studies of integrable turbulence and extreme sea wave formation. It is well known that separated solitons are stable nonlinear coherent structures moving with constant velocity. After collisions with each other they restore the original shape and only acquire an additional phase shift. However, at the moment of strong nonlinear soliton interaction (i.e. when solitons are located close) the wave field are highly complicated and should be described by the theory of inverse scattering transform (IST), which allows to integrate the KdV equation, the NLSE and many other important nonlinear models. The usual approach of studying the dynamics and statistics of soliton wave field is based on relatively rarefied gas of solitons [1,2] or restricted by only two-soliton interactions [3]. From the other hand, the exceptional role of interacting solitons and similar coherent structures - breathers in the formation of rogue waves statistics was reported in several recent papers [4,5]. In this work we study the NLSE and use the most straightforward and general way to create many soliton initial condition - the exact N-soliton formulas obtained in the theory of the IST [6]. We propose the recursive numerical scheme for Zakharov-Mikhailov variant of the dressing method [7,8] and discuss its stability with respect to increasing the number of solitons. We show that the pivoting, i.e. the finding of an appropriate order for recursive operations, has a significant impact on the numerical accuracy. We use the developed scheme to generate statistical ensembles of 32 strongly interacting solitons, i.e. solve the inverse scattering problem for the high number of discrete eigenvalues. Then we use this ensembles as initial conditions for numerical simulations in the box with periodic boundary conditions and study statics of obtained uniform strongly interacting gas of NLSE solitons. Author thanks the support of the Russian Science Foundation (Grand No. 14-22-00174) [1] D. Dutykh, E. Pelinovsky, Numerical simulation of a solitonic gas in kdv and kdv-bbm equations, Physics Letters A 378 (42) (2014) 3102-3110. [2] E. Shurgalina, E. Pelinovsky, Nonlinear dynamics of a soliton gas: Modified korteweg-de vries equation framework, Physics Letters A 380 (24) (2016) 2049-2053. [3] E. N. Pelinovsky, E. Shurgalina, A. Sergeeva, T. G. Talipova, G. El, R. H. Grimshaw, Two-soliton interaction as an elementary act of soliton turbulence in integrable systems, Physics Letters A 377 (3) (2013) 272-275 [4] J. Soto-Crespo, N. Devine, N. Akhmediev, Integrable turbulence and rogue waves: Breathers or solitons?, Physical review letters 116 (10) (2016) 103901. [5] D. S. Agafontsev, V. E. Zakharov, Integrable turbulence and formation of rogue waves, Nonlinearity 28 (8) (2015) 2791. [6] V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1) (1972) 62. [7] V. Zakharov, A. Mikhailov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys.-JETP (Engl. Transl.) 47 (6) (1978). [8] A. A. Gelash, V. E. Zakharov, Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability, Nonlinearity 27 (4) (2014) R1.

  1. Eikonal-Based Inversion of GPR Data from the Vaucluse Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; van Vorst, D.; Guglielmi, Y.; Cappa, F.; Gaffet, S.

    2009-12-01

    In this paper, we present an easy-to-implement eikonal-based travel time inversion algorithm and apply it to borehole GPR measurement data obtained from a karst aquifer located in the Vaucluse in Provence. The boreholes are situated with a fault zone deep inside the aquifer, in the Laboratoire Souterrain à Bas Bruit (LSBB). The measurements were made using 250 MHz MALA RAMAC borehole GPR antennas. The inversion formulation is unique in its application of a fast-sweeping eikonal solver (Zhao [1]) to the minimization of an objective functional that is composed of a travel time misfit and a model-based regularization [2]. The solver is robust in the presence of large velocity contrasts, efficient, easy to implement, and does not require the use of a sorting algorithm. The computation of sensitivities, which are required for the inversion process, is achieved by tracing rays backward from receiver to source following the gradient of the travel time field [2]. A user wishing to implement this algorithm can opt to avoid the ray tracing step and simply perturb the model to obtain the required sensitivities. Despite the obvious computational inefficiency of such an approach, it is acceptable for 2D problems. The relationship between travel time and the velocity profile is non-linear, requiring an iterative approach to be used. At each iteration, a set of matrix equations is solved to determine the model update. As the inversion continues, the weighting of the regularization parameter is adjusted until an appropriate data misfit is obtained. The inversion results, shown in the attached image, are consistent with previously obtained geological structure. Future work will look at improving inversion resolution and incorporating other measurement methodologies, with the goal of providing useful data for groundwater analysis. References: [1] H. Zhao, “A fast sweeping method for Eikonal equations,” Mathematics of Computation, vol. 74, no. 250, pp. 603-627, 2004. [2] D. Aldridge and D. Oldenburg, “Two-dimensional tomographic inversion with finite-difference traveltimes,” Journal of Seismic Exploration, vol. 2, pp. 257-274, 1993. Recovered Permittivity Profiles

  2. An evolutive real-time source inversion based on a linear inverse formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.

    2016-12-01

    Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source Inversion Validation project (Mai et al. 2011). A real case application is currently being explored. Our specific formulation, combined with simple prior information, as well as numerical results obtained so far, yields interesting perspectives for a real-time implementation.

  3. Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Son, J.; Medina-Cetina, Z.

    2017-12-01

    We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.

  4. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  5. Formation of rogue waves from a locally perturbed condensate.

    PubMed

    Gelash, A A

    2018-02-01

    The one-dimensional focusing nonlinear Schrödinger equation (NLSE) on an unstable condensate background is the fundamental physical model that can be applied to study the development of modulation instability (MI) and formation of rogue waves. The complete integrability of the NLSE via inverse scattering transform enables the decomposition of the initial conditions into elementary nonlinear modes: breathers and continuous spectrum waves. The small localized condensate perturbations (SLCP) that grow as a result of MI have been of fundamental interest in nonlinear physics for many years. Here, we demonstrate that Kuznetsov-Ma and superregular NLSE breathers play the key role in the dynamics of a wide class of SLCP. During the nonlinear stage of MI development, collisions of these breathers lead to the formation of rogue waves. We present new scenarios of rogue wave formation for randomly distributed breathers as well as for artificially prepared initial conditions. For the latter case, we present an analytical description based on the exact expressions found for the space-phase shifts that breathers acquire after collisions with each other. Finally, the presence of Kuznetsov-Ma and superregular breathers in arbitrary-type condensate perturbations is demonstrated by solving the Zakharov-Shabat eigenvalue problem with high numerical accuracy.

  6. Formation of rogue waves from a locally perturbed condensate

    NASA Astrophysics Data System (ADS)

    Gelash, A. Â. A.

    2018-02-01

    The one-dimensional focusing nonlinear Schrödinger equation (NLSE) on an unstable condensate background is the fundamental physical model that can be applied to study the development of modulation instability (MI) and formation of rogue waves. The complete integrability of the NLSE via inverse scattering transform enables the decomposition of the initial conditions into elementary nonlinear modes: breathers and continuous spectrum waves. The small localized condensate perturbations (SLCP) that grow as a result of MI have been of fundamental interest in nonlinear physics for many years. Here, we demonstrate that Kuznetsov-Ma and superregular NLSE breathers play the key role in the dynamics of a wide class of SLCP. During the nonlinear stage of MI development, collisions of these breathers lead to the formation of rogue waves. We present new scenarios of rogue wave formation for randomly distributed breathers as well as for artificially prepared initial conditions. For the latter case, we present an analytical description based on the exact expressions found for the space-phase shifts that breathers acquire after collisions with each other. Finally, the presence of Kuznetsov-Ma and superregular breathers in arbitrary-type condensate perturbations is demonstrated by solving the Zakharov-Shabat eigenvalue problem with high numerical accuracy.

  7. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

    NASA Technical Reports Server (NTRS)

    Xu, Feng; Deshpande, Manohar

    2012-01-01

    Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

  8. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner

    2017-07-01

    A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.

  9. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  10. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  11. Transverse effects in nonlinear optics: Toward the photon superfluid

    NASA Astrophysics Data System (ADS)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  12. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho

    NASA Astrophysics Data System (ADS)

    Uieda, Leonardo; Barbosa, Valéria C. F.

    2017-01-01

    Estimating the relief of the Moho from gravity data is a computationally intensive nonlinear inverse problem. What is more, the modelling must take the Earths curvature into account when the study area is of regional scale or greater. We present a regularized nonlinear gravity inversion method that has a low computational footprint and employs a spherical Earth approximation. To achieve this, we combine the highly efficient Bott's method with smoothness regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The computational efficiency of our method is attained by harnessing the fact that all matrices involved are sparse. The inversion results are controlled by three hyperparameters: the regularization parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate the regularization parameter using the method of hold-out cross-validation. Additionally, we estimate the density-contrast and the reference depth using knowledge of the Moho depth at certain points. We apply the proposed method to estimate the Moho depth for the South American continent using satellite gravity data and seismological data. The final Moho model is in accordance with previous gravity-derived models and seismological data. The misfit to the gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismological data are greatest in the Guyana Shield, the central Solimões and Amazonas Basins, the Paraná Basin, and the Borborema province. These differences suggest the existence of crustal or mantle density anomalies that were unaccounted for during gravity data processing.

  13. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  14. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann

    2011-11-01

    Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

  15. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  16. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  17. Is 3D true non linear traveltime tomography reasonable ?

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Virieux, J.

    2003-04-01

    The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.

  18. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2010-02-01

    The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.

  19. Drinking water composition and incidence of urinary calculus: introducing a new index.

    PubMed

    Basiri, Abbas; Shakhssalim, Nasser; Khoshdel, Ali Reza; Pakmanesh, Hamid; Radfar, Mohammad Hadi

    2011-01-01

    INTRODUCTION. We searched for a pathophysiologically based feature of major water electrolytes, which may define water quality better than the water hardness, respecting urinary calculus formation. MATERIALS AND METHODS. Utilizing a multistage stratified sampling, 2310 patients were diagnosed in the imaging centers of the provincial capitals in Iran between 2007 and 2008. These were composed of 1755 patients who were settled residents of 24 provincial capitals. Data on the regional drinking water composition, obtained from an accredited registry, and their relationships with the region's incidence of urinary calculi were evaluated by metaregression models. The stone risk index (defined as the ratio of calcium to magnesium-bicarbonate product in drinking water) was used to assess the risk of calculus formation. RESULTS. No correlation was found between the urinary calculus incidence and the amount of calcium, bicarbonate, or the total hardness of the drinking water. In contrast, water magnesium had a marginally significant nonlinear inverse relationship with the incidence of the disease in the capitals (R(2) = 26%, P = .05 for a power model). The stone risk index was associated nonlinearly with the calculus incidence (R(2) = 28.4%, P = .04). CONCLUSIONS. Urinary calculus incidence was inversely related with drinking water magnesium content. We introduced a new index constructed on the foundation of a pathophysiologically based formula; the stone risk index had a strong positive association with calculus incidence. This index can have therapeutic and preventive applications, yet to be confirmed by clinical trials.

  20. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.

    PubMed

    Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang

    2016-02-01

    The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Improving atomic force microscopy imaging by a direct inverse asymmetric PI hysteresis model.

    PubMed

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-02-03

    A modified Prandtl-Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.

  2. A Study on Multi-Swing Stability Analysis of Power System using Damping Rate Inversion

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Morii, Yuki; Oyama, Tsutomu; Hashiguchi, Takuhei; Goda, Tadahiro; Nomiyama, Fumitoshi; Kosugi, Narifumi

    In recent years, much attention is paid to the nonlinear analysis method in the field of stability analysis of power systems. Especially for the multi-swing stability analysis, the unstable limit cycle has an important meaning as a stability margin. It is required to develop a high speed calculation method of stability boundary regarding multi-swing stability because the real-time calculation of ATC is necessary to realize the flexible wheeling trades. Therefore, the authors have developed a new method which can calculate the unstable limit cycle based on damping rate inversion method. Using the unstable limit cycle, it is possible to predict the multi-swing stability at the time when the fault transmission line is reclosed. The proposed method is tested in Lorenz equation, single-machine infinite-bus system model and IEEJ WEST10 system model.

  3. Experimental evaluation of model predictive control and inverse dynamics control for spacecraft proximity and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello

    2018-03-01

    An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  5. Digital backpropagation accounting for polarization-mode dispersion.

    PubMed

    Czegledi, Cristian B; Liga, Gabriele; Lavery, Domaniç; Karlsson, Magnus; Agrell, Erik; Savory, Seb J; Bayvel, Polina

    2017-02-06

    Digital backpropagation (DBP) is a promising digital-domain technique to mitigate Kerr-induced nonlinear interference. While it successfully removes deterministic signal-signal interactions, the performance of ideal DBP is limited by stochastic effects, such as polarization-mode dispersion (PMD). In this paper, we consider an ideal full-field DBP implementation and modify it to additionally account for PMD; reversing the PMD effects in the backward propagation by passing the reverse propagated signal also through PMD sections, which concatenated equal the inverse of the PMD in the forward propagation. These PMD sections are calculated analytically at the receiver based on the total accumulated PMD of the link estimated from channel equalizers. Numerical simulations show that, accounting for nonlinear polarization-related interactions in the modified DBP algorithm, additional signal-to-noise ratio gains of 1.1 dB are obtained for transmission over 1000 km.

  6. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  7. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  8. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2018-01-01

    We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.

  10. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  11. A python framework for environmental model uncertainty analysis

    USGS Publications Warehouse

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  12. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  13. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  14. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  15. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  16. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  17. An adjoint-based simultaneous estimation method of the asthenosphere's viscosity and afterslip using a fast and scalable finite-element adjoint solver

    NASA Astrophysics Data System (ADS)

    Agata, Ryoichiro; Ichimura, Tsuyoshi; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo

    2018-04-01

    The simultaneous estimation of the asthenosphere's viscosity and coseismic slip/afterslip is expected to improve largely the consistency of the estimation results to observation data of crustal deformation collected in widely spread observation points, compared to estimations of slips only. Such an estimate can be formulated as a non-linear inverse problem of material properties of viscosity and input force that is equivalent to fault slips based on large-scale finite-element (FE) modeling of crustal deformation, in which the degree of freedom is in the order of 109. We formulated and developed a computationally efficient adjoint-based estimation method for this inverse problem, together with a fast and scalable FE solver for the associated forward and adjoint problems. In a numerical experiment that imitates the 2011 Tohoku-Oki earthquake, the advantage of the proposed method is confirmed by comparing the estimated results with those obtained using simplified estimation methods. The computational cost required for the optimization shows that the proposed method enabled the targeted estimation to be completed with moderate amount of computational resources.

  18. Joint reconstruction of x-ray fluorescence and transmission tomography

    DOE PAGES

    Di, Zichao; Chen, Si; Hong, Young Pyo; ...

    2017-05-30

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less

  19. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  20. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  1. Temperature and frequency dependent mean free paths of renormalized phonons in nonlinear lattices

    NASA Astrophysics Data System (ADS)

    Li, Nianbei; Liu, Junjie; Wu, Changqin; Li, Baowen

    2018-02-01

    Unraveling general properties of renormalized phonons are of fundamental relevance to the heat transport in the regime of strong nonlinearity. In this work, we directly study the temperature and frequency dependent mean free path (MFP) of renormalized phonons with the newly developed numerical tuning fork method. The typical 1D nonlinear lattices such as Fermi-Pasta-Ulam β lattice and {φ }4 lattice are investigated in detail. Interestingly, it is found that the MFPs are inversely proportional to the frequencies of renormalized phonons rather than the square of phonon frequencies predicted by existing phonon scattering theory.

  2. Minimal residual method provides optimal regularization parameter for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  3. Minimal residual method provides optimal regularization parameter for diffuse optical tomography.

    PubMed

    Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  4. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  5. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  6. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  7. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE PAGES

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...

    2015-08-01

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  8. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  9. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  10. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.

    PubMed

    Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C

    2015-05-13

    This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length.

  11. Nonscanning Moiré deflectometry for measurement of nonlinear refractive index and absorption coefficient of liquids.

    PubMed

    Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata

    2017-05-01

    In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4  cm2 w-1 and 1.368  cm-1, respectively.

  12. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    NASA Astrophysics Data System (ADS)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  13. Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2008-03-01

    This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.

  14. Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation

    PubMed Central

    Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush

    2010-01-01

    Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530

  15. Advanced Machine Learning Emulators of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  16. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Yangming

    2018-06-01

    High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.

  17. The KP Hierarchy and Aspects of the Painlevé Property

    NASA Astrophysics Data System (ADS)

    Strampp, W.; Langer, C.

    1990-12-01

    We are concerned with the conjecture that the Painlevé property is a necessary condition for the integrability of nonlinear equations. Following a suggestion by lietratures (1) D. V. Chudnovsky, G. V. Chudnovsky and M. Tabor, Phys. Lett. 97A (1983), 268, and 2) A. K. Pogrebkov, Inverse Problems 5 (1989), L7), our investigations will be based on the Lax-pair which we use in Sato's sense (3) E. Date, M. Jimbo, M. Kashiwara and T. Miwa in Nonlinear Integrable Systems-Classical and Quantum Theory, ed. M. Jimbo and T. Miwa (World Scientific, Singapore, 1983), p. 39, 4) M. Jimbo and T. Miwa, Publ. RIMS, Kyoto Univ. 19 (1983), 943, 5) Y. Ohta, J. Satsuma, D. Takahashi and T. Tokihiro, Prog. Theor. Phys. Suppl. No. 94 (1988), 210). Leading orders, branch points and resonances are described for the Zakharov-Shabat equations of the KP-hierarchy. The symbolic manipulation system REDUCE, in particular its factorization algorithm for polynomials, is employed for finding the resonances. It is shown that the Painlevé structures of various nonlinear equations, which have been discussed a lot in the literature, follow from our results.

  18. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3-25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  19. A conjugate gradients/trust regions algorithms for training multilayer perceptrons for nonlinear mapping

    NASA Technical Reports Server (NTRS)

    Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.

    1992-01-01

    This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.

  20. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  1. Dynamic electrical impedance imaging with the interacting multiple model scheme.

    PubMed

    Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C

    2005-04-01

    In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.

  2. Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.

    2016-12-01

    Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.

  3. Adjoint-Based Sensitivity Kernels for Glacial Isostatic Adjustment in a Laterally Varying Earth

    NASA Astrophysics Data System (ADS)

    Crawford, O.; Al-Attar, D.; Tromp, J.; Mitrovica, J. X.; Austermann, J.; Lau, H. C. P.

    2017-12-01

    We consider a new approach to both the forward and inverse problems in glacial isostatic adjustment. We present a method for forward modelling GIA in compressible and laterally heterogeneous earth models with a variety of linear and non-linear rheologies. Instead of using the so-called sea level equation, which must be solved iteratively, the forward theory we present consists of a number of coupled evolution equations that can be straightforwardly numerically integrated. We also apply the adjoint method to the inverse problem in order to calculate the derivatives of measurements of GIA with respect to the viscosity structure of the Earth. Such derivatives quantify the sensitivity of the measurements to the model. The adjoint method enables efficient calculation of continuous and laterally varying derivatives, allowing us to calculate the sensitivity of measurements of glacial isostatic adjustment to the Earth's three-dimensional viscosity structure. The derivatives have a number of applications within the inverse method. Firstly, they can be used within a gradient-based optimisation method to find a model which minimises some data misfit function. The derivatives can also be used to quantify the uncertainty in such a model and hence to provide understanding of which parts of the model are well constrained. Finally, they enable construction of measurements which provide sensitivity to a particular part of the model space. We illustrate both the forward and inverse aspects with numerical examples in a spherically symmetric earth model.

  4. Waterjet and laser etching: the nonlinear inverse problem

    NASA Astrophysics Data System (ADS)

    Bilbao-Guillerna, A.; Axinte, D. A.; Billingham, J.; Cadot, G. B. J.

    2017-07-01

    In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2-5% and 1-2% for WJM and PLA, respectively, depending on the complexity of the target surface.

  5. Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation

    NASA Astrophysics Data System (ADS)

    Shankar, Praveen

    The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network based adaptive controller. While the fixed RBF network based controller which is tuned to compensate for control surface failures fails to achieve the same performance under modeling uncertainty and disturbances, the SORBFN is able to achieve good tracking convergence under all error conditions.

  6. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    PubMed Central

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  7. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  8. Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)

    NASA Astrophysics Data System (ADS)

    Ito, Daigoro

    A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.

  9. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  10. A robust approach to measuring the detective quantum efficiency of radiographic detectors in a clinical setting

    NASA Astrophysics Data System (ADS)

    McDonald, Michael C.; Kim, H. K.; Henry, J. R.; Cunningham, I. A.

    2012-03-01

    The detective quantum efficiency (DQE) is widely accepted as a primary measure of x-ray detector performance in the scientific community. A standard method for measuring the DQE, based on IEC 62220-1, requires the system to have a linear response meaning that the detector output signals are proportional to the incident x-ray exposure. However, many systems have a non-linear response due to characteristics of the detector, or post processing of the detector signals, that cannot be disabled and may involve unknown algorithms considered proprietary by the manufacturer. For these reasons, the DQE has not been considered as a practical candidate for routine quality assurance testing in a clinical setting. In this article we described a method that can be used to measure the DQE of both linear and non-linear systems that employ only linear image processing algorithms. The method was validated on a Cesium Iodide based flat panel system that simultaneously stores a raw (linear) and processed (non-linear) image for each exposure. It was found that the resulting DQE was equivalent to a conventional standards-compliant DQE with measurement precision, and the gray-scale inversion and linear edge enhancement did not affect the DQE result. While not IEC 62220-1 compliant, it may be adequate for QA programs.

  11. The 2-D magnetotelluric inverse problem solved with optimization

    NASA Astrophysics Data System (ADS)

    van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven

    2011-02-01

    The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.

  12. Gravimetric control of active volcanic processes

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  13. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  14. Convergence analysis of surrogate-based methods for Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhang, Yuan-Xiang

    2017-12-01

    The major challenges in the Bayesian inverse problems arise from the need for repeated evaluations of the forward model, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. Many attempts at accelerating Bayesian inference have relied on surrogates for the forward model, typically constructed through repeated forward simulations that are performed in an offline phase. Although such approaches can be quite effective at reducing computation cost, there has been little analysis of the approximation on posterior inference. In this work, we prove error bounds on the Kullback-Leibler (KL) distance between the true posterior distribution and the approximation based on surrogate models. Our rigorous error analysis show that if the forward model approximation converges at certain rate in the prior-weighted L 2 norm, then the posterior distribution generated by the approximation converges to the true posterior at least two times faster in the KL sense. The error bound on the Hellinger distance is also provided. To provide concrete examples focusing on the use of the surrogate model based methods, we present an efficient technique for constructing stochastic surrogate models to accelerate the Bayesian inference approach. The Christoffel least squares algorithms, based on generalized polynomial chaos, are used to construct a polynomial approximation of the forward solution over the support of the prior distribution. The numerical strategy and the predicted convergence rates are then demonstrated on the nonlinear inverse problems, involving the inference of parameters appearing in partial differential equations.

  15. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies.

    PubMed

    Aune, Dagfinn; Norat, Teresa; Romundstad, Pål; Vatten, Lars J

    2013-11-01

    Several studies have suggested a protective effect of intake of whole grains, but not refined grains on type 2 diabetes risk, but the dose-response relationship between different types of grains and type 2 diabetes has not been established. We conducted a systematic review and meta-analysis of prospective studies of grain intake and type 2 diabetes. We searched the PubMed database for studies of grain intake and risk of type 2 diabetes, up to June 5th, 2013. Summary relative risks were calculated using a random effects model. Sixteen cohort studies were included in the analyses. The summary relative risk per 3 servings per day was 0.68 (95% CI 0.58-0.81, I(2) = 82%, n = 10) for whole grains and 0.95 (95% CI 0.88-1.04, I(2) = 53%, n = 6) for refined grains. A nonlinear association was observed for whole grains, p nonlinearity < 0.0001, but not for refined grains, p nonlinearity = 0.10. Inverse associations were observed for subtypes of whole grains including whole grain bread, whole grain cereals, wheat bran and brown rice, but these results were based on few studies, while white rice was associated with increased risk. Our meta-analysis suggests that a high whole grain intake, but not refined grains, is associated with reduced type 2 diabetes risk. However, a positive association with intake of white rice and inverse associations between several specific types of whole grains and type 2 diabetes warrant further investigations. Our results support public health recommendations to replace refined grains with whole grains and suggest that at least two servings of whole grains per day should be consumed to reduce type 2 diabetes risk.

  16. Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model

    PubMed Central

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-01-01

    A modified Prandtl–Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM. PMID:25654719

  17. X-38 Application of Dynamic Inversion Flight Control

    NASA Technical Reports Server (NTRS)

    Wacker, Roger; Munday, Steve; Merkle, Scott

    2001-01-01

    This paper summarizes the application of a nonlinear dynamic inversion (DI) flight control system (FCS) to an autonomous flight test vehicle in NASA's X-38 Project, a predecessor to the International Space Station (ISS) Crew Return Vehicle (CRV). Honeywell's Multi-Application Control-H (MACH) is a parameterized FCS design architecture including both model-based DI rate-compensation and classical P+I command-tracking. MACH was adopted by X-38 in order to shorten the design cycle time for different vehicle shapes and flight envelopes and evolving aerodynamic databases. Specific design issues and analysis results are presented for the application of MACH to the 3rd free flight (FF3) of X-38 Vehicle 132 (V132). This B-52 drop test, occurring on March 30, 2000, represents the first flight test of MACH and one of the first few known applications of DI in the primary FCS of an autonomous flight test vehicle.

  18. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    USGS Publications Warehouse

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km) layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.

  19. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  20. A k-Vector Approach to Sampling, Interpolation, and Approximation

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele; Rogers, Jonathan

    2013-12-01

    The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.

  1. Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries

    NASA Astrophysics Data System (ADS)

    Souleymanou, Abbagari; Thomas, B. Bouetou; Timoleon, C. Kofane

    2013-08-01

    The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention.

  2. Dealing with Uncertainties in Initial Orbit Determination

    NASA Technical Reports Server (NTRS)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  3. Preconditioning strategies for nonlinear conjugate gradient methods, based on quasi-Newton updates

    NASA Astrophysics Data System (ADS)

    Andrea, Caliciotti; Giovanni, Fasano; Massimo, Roma

    2016-10-01

    This paper reports two proposals of possible preconditioners for the Nonlinear Conjugate Gradient (NCG) method, in large scale unconstrained optimization. On one hand, the common idea of our preconditioners is inspired to L-BFGS quasi-Newton updates, on the other hand we aim at explicitly approximating in some sense the inverse of the Hessian matrix. Since we deal with large scale optimization problems, we propose matrix-free approaches where the preconditioners are built using symmetric low-rank updating formulae. Our distinctive new contributions rely on using information on the objective function collected as by-product of the NCG, at previous iterations. Broadly speaking, our first approach exploits the secant equation, in order to impose interpolation conditions on the objective function. In the second proposal we adopt and ad hoc modified-secant approach, in order to possibly guarantee some additional theoretical properties.

  4. New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients

    NASA Astrophysics Data System (ADS)

    Jaradat, H. M.; Syam, Muhammed; Jaradat, M. M. M.; Mustafa, Zead; Moman, S.

    2018-03-01

    In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem, rational exponential function method, tanh method, homotopy perturbation method, exp-function method, and coth method, are made. From these comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth mention that the proposed solution can solve many physical problems.

  5. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Computational microscopy: illumination coding and nonlinear optimization enables gigapixel 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Tian, Lei; Waller, Laura

    2017-05-01

    Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.

  7. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    NASA Astrophysics Data System (ADS)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  8. An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotordynamic systems

    NASA Astrophysics Data System (ADS)

    Torres Cedillo, Sergio G.; Bonello, Philip

    2016-01-01

    The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.

  9. Iterative Inverse Modeling for Reconciliation of Emission Inventories during the 2006 TexAQS Intensive Field Campaign

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Cohan, D. S.

    2009-12-01

    Substantial uncertainties in current emission inventories have been detected by the Texas Air Quality Study 2006 (TexAQS 2006) intensive field program. These emission uncertainties have caused large inaccuracies in model simulations of air quality and its responses to management strategies. To improve the quantitative understanding of the temporal, spatial, and categorized distributions of primary pollutant emissions by utilizing the corresponding measurements collected during TexAQS 2006, we implemented both the recursive Kalman filter and a batch matrix inversion 4-D data assimilation (FDDA) method in an iterative inverse modeling framework of the CMAQ-DDM model. Equipped with the decoupled direct method, CMAQ-DDM enables simultaneous calculation of the sensitivity coefficients of pollutant concentrations to emissions to be used in the inversions. Primary pollutant concentrations measured by the multiple platforms (TCEQ ground-based, NOAA WP-3D aircraft and Ronald H. Brown vessel, and UH Moody Tower) during TexAQS 2006 have been integrated for the use in the inverse modeling. Firstly pseudo-data analyses have been conducted to assess the two methods, taking a coarse spatial resolution emission inventory as a case. Model base case concentrations of isoprene and ozone at arbitrarily selected ground grid cells were perturbed to generate pseudo measurements with different assumed Gaussian uncertainties expressed by 1-sigma standard deviations. Single-species inversions have been conducted with both methods for isoprene and NOx surface emissions from eight states in the Southeastern United States by using the pseudo measurements of isoprene and ozone, respectively. Utilization of ozone pseudo data to invert for NOx emissions serves only for the purpose of method assessment. Both the Kalman filter and FDDA methods show good performance in tuning arbitrarily shifted a priori emissions to the base case “true” values within 3-4 iterations even for the nonlinear responses of ozone to NOx emissions. While the Kalman filter has better performance under the situation of very large observational uncertainties, the batch matrix FDDA method is better suited for incorporating temporally and spatially irregular data such as those measured by NOAA aircraft and ship. After validating the methods with the pseudo data, the inverse technique is applied to improve emission estimates of NOx from different source sectors and regions in the Houston metropolitan area by using NOx measurements during TexAQS 2006. EPA NEI2005-based and Texas-specified Emission Inventories for 2006 are used as the a priori emission estimates before optimization. The inversion results will be presented and discussed. Future work will conduct inverse modeling for additional species, and then perform a multi-species inversion for emissions consistency and reconciliation with secondary pollutants such as ozone.

  10. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  11. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  12. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  13. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and source parameters for the ensemble of site conditions. Elastic, equivalent linear and nonlinear simulations are implemented for the deterministic description of the base-model velocity and attenuation structures and nonlinear soil properties, to examine the variability in ground motion predictions as a function of ground motion amplitude and frequency content, and nonlinear site response methodology. The modeling site response uncertainty introduced in the broadband ground motion predictions is reported by means of the COV of site amplification, defined as the ratio of the predicted peak ground acceleration (PGA) and spectral acceleration (SA) at short and long periods to the corresponding intensity measure on the ground surface of a typical NEHRP BC boundary profile (Vs30=760m/s), for the ensemble of approximate and incremental nonlinear models implemented. A frequency index is developed to describe the frequency content of incident ground motion. In conjunction with the rock-outcrop acceleration level, this index is used to identify the site and ground motion conditions where incremental nonlinear analyses should be employed in lieu of approximate methodologies. Finally, the effects of modeling uncertainty in ground response analysis is evaluated in the estimation of site amplification factors, which are successively compared to recently published factors of the New Generation Attenuation Relations (NGA) and the currently employed Seismic Code Provisions (NEHRP).

  14. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution.

    PubMed

    Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi

    2017-08-01

    Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.

  15. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  16. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  17. Evaluation of the site effect with Heuristic Methods

    NASA Astrophysics Data System (ADS)

    Torres, N. N.; Ortiz-Aleman, C.

    2017-12-01

    The seismic site response in an area depends mainly on the local geological and topographical conditions. Estimation of variations in ground motion can lead to significant contributions on seismic hazard assessment, in order to reduce human and economic losses. Site response estimation can be posed as a parameterized inversion approach which allows separating source and path effects. The generalized inversion (Field and Jacob, 1995) represents one of the alternative methods to estimate the local seismic response, which involves solving a strongly non-linear multiparametric problem. In this work, local seismic response was estimated using global optimization methods (Genetic Algorithms and Simulated Annealing) which allowed us to increase the range of explored solutions in a nonlinear search, as compared to other conventional linear methods. By using the VEOX Network velocity records, collected from August 2007 to March 2009, source, path and site parameters corresponding to the amplitude spectra of the S wave of the velocity seismic records are estimated. We can establish that inverted parameters resulting from this simultaneous inversion approach, show excellent agreement, not only in terms of adjustment between observed and calculated spectra, but also when compared to previous work from several authors.

  18. Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.; Kuvshinov, Alexey V.

    2016-05-01

    This paper presents a methodology to sample equivalence domain (ED) in nonlinear partial differential equation (PDE)-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low-misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of magneotelluric, controlled-source electromagnetic (EM) and global EM induction data.

  19. Issues in the inverse modeling of a soil infiltration process

    NASA Astrophysics Data System (ADS)

    Kuraz, Michal; Jacka, Lukas; Leps, Matej

    2017-04-01

    This contribution addresses issues in evaluation of the soil hydraulic parameters (SHP) from the Richards equation based inverse model. The inverse model was representing single ring infiltration experiment on mountainous podzolic soil profile, and was searching for the SHP parameters of the top soil layer. Since the thickness of the top soil layer is often much lower than the depth required to embed the single ring or Guelph permeameter device, the SHPs for the top soil layer are very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the single ring infiltration process, where, especially, the initial unsteady part of the experiment is expected to provide very useful data for evaluating the retention curve parameters (excluding the residual water content) and the saturated hydraulic conductivity. The main issue, which is addressed in this contribution, is the uniqueness of the Richards equation inverse model. We tried to answer the question whether is it possible to characterize the unsteady infiltration experiment with a unique set of SHPs values, and whether are all SHP parameters vulnerable with the non-uniqueness. Which is an important issue, since we could further conclude whether the popular gradient methods are appropriate here. Further the issues in assigning the initial and boundary condition setup, the influence of spatial and temporal discretization on the values of the identified SHPs, and the convergence issues with the Richards equation nonlinear operator during automatic calibration procedure are also covered here.

  20. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  1. Observation of wave celerity evolution in the nearshore using digital video imagery

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.

    2008-12-01

    Celerity of incident waves in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of waves propagating in shallow water including the surf zone is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf zone. The breaking wave celerity is computed along a cross-shore transect from the wave crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear wave celerity computed from the measured water depths over the entire surf zone. Compared to the nonlinear shallow water wave equation (NSWE)-based celerity computed using the measured depths and wave heights, in general, the video-based celerity shows good agreements over the surf zone except the regions across the incipient wave breaking locations. In the regions across the breaker points, the observed wave celerity is even larger than the NSWE-based celerity due to the transition of wave crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear wave celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear wave celerity theory applied.

  2. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  3. Seismic waveform inversion using neural networks

    NASA Astrophysics Data System (ADS)

    De Wit, R. W.; Trampert, J.

    2012-12-01

    Full waveform tomography aims to extract all available information on Earth structure and seismic sources from seismograms. The strongly non-linear nature of this inverse problem is often addressed through simplifying assumptions for the physical theory or data selection, thus potentially neglecting valuable information. Furthermore, the assessment of the quality of the inferred model is often lacking. This calls for the development of methods that fully appreciate the non-linear nature of the inverse problem, whilst providing a quantification of the uncertainties in the final model. We propose to invert seismic waveforms in a fully non-linear way by using artificial neural networks. Neural networks can be viewed as powerful and flexible non-linear filters. They are very common in speech, handwriting and pattern recognition. Mixture Density Networks (MDN) allow us to obtain marginal posterior probability density functions (pdfs) of all model parameters, conditioned on the data. An MDN can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels. Seismograms serve as input, Earth structure parameters are the so-called targets and network training aims to learn the relationship between input and targets. The network is trained on a large synthetic data set, which we construct by drawing many random Earth models from a prior model pdf and solving the forward problem for each of these models, thus generating synthetic seismograms. As a first step, we aim to construct a 1D Earth model. Training sets are constructed using the Mineos package, which computes synthetic seismograms in a spherically symmetric non-rotating Earth by summing normal modes. We train a network on the body waveforms present in these seismograms. Once the network has been trained, it can be presented with new unseen input data, in our case the body waves in real seismograms. We thus obtain the posterior pdf which represents our final state of knowledge given the information in the training set and the real data.

  4. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    PubMed

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Inverse Scattering and Applications. Proceedings of Conference on Inverse Scattering on the Line, Held in Amherst, Massachusetts on June 7 - 13, 1990

    DTIC Science & Technology

    1990-01-01

    J. Laurie Snell S. A. Amitsur, D. J. Saltman, and 2 Proceedings of the conference on G. B. Seligman , Editors integration, topology, and geometry in...Rational constructions of modules 17 Nonlinear partial differential equations. for simple Lie algebras, George B. Joel A. Smoller, Editor Seligman 18...number theory, Michael R. Stein and Linda Keen, Editor R. Keith Dennis, Editors 65 Logic and combinatorics, Stephen G. 84 Partition problems in

  6. The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow-Theory.

    DTIC Science & Technology

    1983-01-25

    ere, side if necessary and id.ntify hv hlock number) " The method of Levi Civita is applied to an isolated fully cavitating body at zero cavitation... Levi Civita is applied to an isolated fully cavitating body at zero cavitation number and adapted to the solution of the inverse problem in which one...case, the classical method of Levi Civita [71 can be applied to an isolated •Numbers in square brackets indicate citations in the references listed below

  7. The Numerical Calculation of Traveling Wave Solutions of Nonlinear Parabolic Equations on the Line.

    DTIC Science & Technology

    1984-02-01

    kc(i~~ +’~ which can be rewrittenw W (T is) Ic (sic) - (+ Using the convolution formulas and the expression for the inverse transform of-I (se e.g...2i 2f 1 2 c) + 4f1 1- f 3] 1 We now have: f ) (0,0,4) ; (2.17) f2 3(U) (0,0,0*) x 3 -, (0,,) . 3u ’ The inverse transform of (2.15) is given by: E

  8. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  9. Estimation on nonlinear damping in second order distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.

  10. Hierarchically Parallelized Constrained Nonlinear Solvers with Automated Substructuring

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Kwang, Abel

    1994-01-01

    This paper develops a parallelizable multilevel multiple constrained nonlinear equation solver. The substructuring process is automated to yield appropriately balanced partitioning of each succeeding level. Due to the generality of the procedure,_sequential, as well as partially and fully parallel environments can be handled. This includes both single and multiprocessor assignment per individual partition. Several benchmark examples are presented. These illustrate the robustness of the procedure as well as its capability to yield significant reductions in memory utilization and calculational effort due both to updating and inversion.

  11. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  12. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  13. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  14. Calibrating the Spatiotemporal Root Density Distribution for Macroscopic Water Uptake Models Using Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Li, N.; Yue, X. Y.

    2018-03-01

    Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.

  15. Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, Elad

    2018-05-01

    A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.

  16. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s

    PubMed Central

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-01-01

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653

  17. Lax Integrability and the Peakon Problem for the Modified Camassa-Holm Equation

    NASA Astrophysics Data System (ADS)

    Chang, Xiangke; Szmigielski, Jacek

    2018-02-01

    Peakons are special weak solutions of a class of nonlinear partial differential equations modelling non-linear phenomena such as the breakdown of regularity and the onset of shocks. We show that the natural concept of weak solutions in the case of the modified Camassa-Holm equation studied in this paper is dictated by the distributional compatibility of its Lax pair and, as a result, it differs from the one proposed and used in the literature based on the concept of weak solutions used for equations of the Burgers type. Subsequently, we give a complete construction of peakon solutions satisfying the modified Camassa-Holm equation in the sense of distributions; our approach is based on solving certain inverse boundary value problem, the solution of which hinges on a combination of classical techniques of analysis involving Stieltjes' continued fractions and multi-point Padé approximations. We propose sufficient conditions needed to ensure the global existence of peakon solutions and analyze the large time asymptotic behaviour whose special features include a formation of pairs of peakons that share asymptotic speeds, as well as Toda-like sorting property.

  18. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.

    PubMed

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-04-29

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

  19. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  20. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  1. Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods

    PubMed Central

    Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.

    2012-01-01

    Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2), and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms. PMID:22531764

  2. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  3. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    USGS Publications Warehouse

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  4. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  5. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  6. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.

    PubMed

    Fisz, Jacek J

    2006-12-07

    The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.

  7. iTOUGH2 V6.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, Stefan A.

    2010-11-01

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional , multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. It performs sensitivity analysis, parameter estimation, and uncertainty propagation, analysis in geosciences and reservoir engineering and other application areas. It supports a number of different combination of fluids and components [equation-of-state (EOS) modules]. In addition, the optimization routines implemented in iTOUGH2 can also be used or sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files. This link is achieved by means of the PEST application programmingmore » interface. iTOUGH2 solves the inverse problem by minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative fee, gradient-based and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlos simulation for uncertainty propagation analysis. A detailed residual and error analysis is provided. This upgrade includes new EOS modules (specifically EOS7c, ECO2N and TMVOC), hysteretic relative permeability and capillary pressure functions and the PEST API. More details can be found at http://esd.lbl.gov/iTOUGH2 and the publications cited there. Hardware Req.: Multi-platform; Related/auxiliary software PVM (if running in parallel).« less

  8. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Chris C.; Flaska, Marek; Pozzi, Sara A.

    2016-08-14

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrixmore » condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.« less

  9. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  10. iTOUGH2 v7.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINSTERLE, STEFAN; JUNG, YOOJIN; KOWALSKY, MICHAEL

    2016-09-15

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. iTOUGH2 performs sensitivity analyses, data-worth analyses, parameter estimation, and uncertainty propagation analyses in geosciences and reservoir engineering and other application areas. iTOUGH2 supports a number of different combinations of fluids and components (equation-of-state (EOS) modules). In addition, the optimization routines implemented in iTOUGH2 can also be used for sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files using the PEST protocol. iTOUGH2 solves the inverse problem bymore » minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative-free, gradient-based, and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlo simulations for uncertainty propagation analyses. A detailed residual and error analysis is provided. This upgrade includes (a) global sensitivity analysis methods, (b) dynamic memory allocation (c) additional input features and output analyses, (d) increased forward simulation capabilities, (e) parallel execution on multicore PCs and Linux clusters, and (f) bug fixes. More details can be found at http://esd.lbl.gov/iTOUGH2.« less

  11. Simultaneous estimation of aquifer thickness, conductivity, and BC using borehole and hydrodynamic data with geostatistical inverse direct method

    NASA Astrophysics Data System (ADS)

    Gao, F.; Zhang, Y.

    2017-12-01

    A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.

  12. Collective effect of personal behavior induced preventive measures and differential rate of transmission on spread of epidemics

    NASA Astrophysics Data System (ADS)

    Sagar, Vikram; Zhao, Yi

    2017-02-01

    In the present work, the effect of personal behavior induced preventive measures is studied on the spread of epidemics over scale free networks that are characterized by the differential rate of disease transmission. The role of personal behavior induced preventive measures is parameterized in terms of variable λ, which modulates the number of concurrent contacts a node makes with the fraction of its neighboring nodes. The dynamics of the disease is described by a non-linear Susceptible Infected Susceptible model based upon the discrete time Markov Chain method. The network mean field approach is generalized to account for the effect of non-linear coupling between the aforementioned factors on the collective dynamics of nodes. The upper bound estimates of the disease outbreak threshold obtained from the mean field theory are found to be in good agreement with the corresponding non-linear stochastic model. From the results of parametric study, it is shown that the epidemic size has inverse dependence on the preventive measures (λ). It has also been shown that the increase in the average degree of the nodes lowers the time of spread and enhances the size of epidemics.

  13. Symmetric log-domain diffeomorphic Registration: a demons-based approach.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2008-01-01

    Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient.

  14. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  15. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674

  16. Spontaneously broken spacetime symmetries and the role of inessential Goldstones

    NASA Astrophysics Data System (ADS)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2017-10-01

    In contrast to internal symmetries, there is no general proof that the coset construction for spontaneously broken spacetime symmetries leads to universal dynamics. One key difference lies in the role of Goldstone bosons, which for spacetime symmetries includes a subset which are inessential for the non-linear realisation and hence can be eliminated. In this paper we address two important issues that arise when eliminating inessential Goldstones. The first concerns the elimination itself, which is often performed by imposing so-called inverse Higgs constraints. Contrary to claims in the literature, there are a series of conditions on the structure constants which must be satisfied to employ the inverse Higgs phenomenon, and we discuss which parametrisation of the coset element is the most effective in this regard. We also consider generalisations of the standard inverse Higgs constraints, which can include integrating out inessential Goldstones at low energies, and prove that under certain assumptions these give rise to identical effective field theories for the essential Goldstones. Secondly, we consider mappings between non-linear realisations that differ both in the coset element and the algebra basis. While these can always be related to each other by a point transformation, remarkably, the inverse Higgs constraints are not necessarily mapped onto each other under this transformation. We discuss the physical implications of this non-mapping, with a particular emphasis on the coset space corresponding to the spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.

  17. Joint Model and Parameter Dimension Reduction for Bayesian Inversion Applied to an Ice Sheet Flow Problem

    NASA Astrophysics Data System (ADS)

    Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.

    2016-12-01

    Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.

  18. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  19. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    NASA Astrophysics Data System (ADS)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This calibration strategy consists of a linear mapping of the original inversion results into a new conductivity spatial distribution with the coefficients of the transformation uniquely based on the statistics of the two original measurement datasets (EMI and TDR conductivities).

  20. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially important over vegetated surfaces. All the data used in this study were acquired during the 1991 Multisensor Airborne Campaign (MAC-Europe), as part of the European Field Experiment on a Desertification-threatened Area (EFEDA), carried out in Spain in June-July 1991.

  1. Nonlinear Inversion for Dynamic Rupture Parameters from the 2004 Mw6.0 Parkfield Earthquake

    NASA Astrophysics Data System (ADS)

    Jimenez, R. M.; Olsen, K. B.

    2007-12-01

    The Parkfield section of the San Andreas Fault has produced repeated moderate-size earthquakes at fairly regular intervals and is therefore an important target for investigations of rupture initiation, propagation and arrest, which could eventually lead to clues on earthquake prediction. The most recent member of the Parkfield series of earthquakes, the 2004 Mw6.0 event, produced a considerable amount of high-resolution strong motion data, and provides an ideal test bed for analysis of the dynamic rupture propagation. Here, we use a systematic nonlinear direct-search method to invert strong-ground motion data (less than 1 Hz) at 37 stations to obtain models of the slip weakening distance and spatially-varying stress drop (8 by 4 subfaults) on the (vertical) causative segment of the San Andreas fault (40 km long by 15 km wide), along with spatial-temporal coseismic slip distributions. The rupture and wave propagation modeling is performed by a three-dimensional finite-difference method with a slip- weakening friction law and the stress-glut dynamic-rupture formulation (Andrews, 1999), and the inversion is carried out by a neighborhood algorithm (Sambridge, 1999), minimizing the least-squares misfit between the calculated and observed seismograms. The dynamic rupture is nucleated artificially by lowering the yield stress in a 3 km by 3 km patch centered at the location of the hypocenter estimated from strong motion data. Outside the nucleation patch the yield stress is kept constant (5-10 MPa), and we constrain the slip-weakening distance to values less than 1 m. We compare the inversion results for two different velocity models: (1) a 3-D model based on the P-wave velocity structure by Thurber (2006), with S-wave and density relations based on Brocher (2005), and (2) a combination of two different 1-D layered velocity structures on either side of the fault, as proposed by Liu et al. (2006). Due to the non-uniqueness of the problem, the inversion provides an ensemble of equally valid rupture models that produce synthetics with comparable fit to the observed strong motion data. Our preliminary results with the smallest misfits, out of about 3000 tested rupture models, suggest an average slip-weakening distance of 19-81 cm and an average stress drop across the fault of 6.7 - 8.4 MPa. Compared to the kinematic inversion results by Liu et al. (2006) our models with the smallest misfits produce a larger maximum slip (up to about 81 cm) and smaller rupture area, but similar rupture duration (5-7s). The inversions carried out for the layered models tend to produce smaller misfit between data and synthetics as compared to the results using the 3D structure. This suggests that our 3D structure needs improvement, including the Vs-Vp and density-Vp relation. We expect further decrease in the misfit values by increasing the number of tested rupture models.

  2. Tuning Fractures With Dynamic Data

    NASA Astrophysics Data System (ADS)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is capable of dealing with strongly nonlinear problems. A series of numerical case studies with increasing complexity are set up to examine the performance of the proposed approach.

  3. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  4. OPC and PSM design using inverse lithography: a nonlinear optimization approach

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2006-03-01

    We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.

  5. Phase correction and error estimation in InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.

  6. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing

    2017-05-01

    We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the data are contaminated by noise, the objective function values of the Direct and Interp are oscillating at the beginning of the inversion, whereas that of the Search decreases consistently.

  7. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  8. Magnesium and the Risk of Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies

    PubMed Central

    Hao, Yongqiang; Li, Huiwu; Tang, Tingting; Wang, Hao; Yan, Weili; Dai, Kerong

    2013-01-01

    Background Prospective studies that have examined the association between dietary magnesium intake and serum magnesium concentrations and the risk of cardiovascular disease (CVD) events have reported conflicting findings. We undertook a meta-analysis to evaluate the association between dietary magnesium intake and serum magnesium concentrations and the risk of total CVD events. Methodology/Principal Findings We performed systematic searches on MEDLINE, EMBASE, and OVID up to February 1, 2012 without limits. Categorical, linear, and nonlinear, dose-response, heterogeneity, publication bias, subgroup, and meta-regression analysis were performed. The analysis included 532,979 participants from 19 studies (11 studies on dietary magnesium intake, 6 studies on serum magnesium concentrations, and 2 studies on both) with 19,926 CVD events. The pooled relative risks of total CVD events for the highest vs. lowest category of dietary magnesium intake and serum magnesium concentrations were 0.85 (95% confidence interval 0.78 to 0.92) and 0.77 (0.66 to 0.87), respectively. In linear dose-response analysis, only serum magnesium concentrations ranging from 1.44 to 1.8 mEq/L were significantly associated with total CVD events risk (0.91, 0.85 to 0.97) per 0.1 mEq/L (Pnonlinearity = 0.465). However, significant inverse associations emerged in nonlinear models for dietary magnesium intake (Pnonlinearity = 0.024). The greatest risk reduction occurred when intake increased from 150 to 400 mg/d. There was no evidence of publication bias. Conclusions/Significance There is a statistically significant nonlinear inverse association between dietary magnesium intake and total CVD events risk. Serum magnesium concentrations are linearly and inversely associated with the risk of total CVD events. PMID:23520480

  9. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Liu, Boda; Liang, Yan

    2017-04-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.

  10. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  11. A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.

    2016-12-01

    It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.

  12. Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.

    2008-12-01

    To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  13. A linear-encoding model explains the variability of the target morphology in regeneration

    PubMed Central

    Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael

    2014-01-01

    A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915

  14. Nonlinear wave choked inlets

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The quasi-one dimensional flow program was modified in two ways. The Runge-Kutta subroutine was replaced with a subroutine which used a modified divided difference form of the Adams Pece method and the matrix inversion routine was replaced with a pseudo inverse routine. Calculations were run using both the original and modified programs. Comparison of the calculations showed that the original Runge-Kutta routine could not detect singularity near the throat and was integrating across it. The modified version was able to detect the singularity and therefore gave more valid calculations.

  15. On a comparison of two schemes in sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Grishina, Anastasiia A.; Penenko, Alexey V.

    2017-11-01

    This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.

  16. Markov chain Monte Carlo techniques and spatial-temporal modelling for medical EIT.

    PubMed

    West, Robert M; Aykroyd, Robert G; Meng, Sha; Williams, Richard A

    2004-02-01

    Many imaging problems such as imaging with electrical impedance tomography (EIT) can be shown to be inverse problems: that is either there is no unique solution or the solution does not depend continuously on the data. As a consequence solution of inverse problems based on measured data alone is unstable, particularly if the mapping between the solution distribution and the measurements is also nonlinear as in EIT. To deliver a practical stable solution, it is necessary to make considerable use of prior information or regularization techniques. The role of a Bayesian approach is therefore of fundamental importance, especially when coupled with Markov chain Monte Carlo (MCMC) sampling to provide information about solution behaviour. Spatial smoothing is a commonly used approach to regularization. In the human thorax EIT example considered here nonlinearity increases the difficulty of imaging, using only boundary data, leading to reconstructions which are often rather too smooth. In particular, in medical imaging the resistivity distribution usually contains substantial jumps at the boundaries of different anatomical regions. With spatial smoothing these boundaries can be masked by blurring. This paper focuses on the medical application of EIT to monitor lung and cardiac function and uses explicit geometric information regarding anatomical structure and incorporates temporal correlation. Some simple properties are assumed known, or at least reliably estimated from separate studies, whereas others are estimated from the voltage measurements. This structural formulation will also allow direct estimation of clinically important quantities, such as ejection fraction and residual capacity, along with assessment of precision.

  17. An Adaptive ANOVA-based PCKF for High-Dimensional Nonlinear Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LI, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos bases in the expansion helps to capture uncertainty more accurately but increases computational cost. Bases selection is particularly importantmore » for high-dimensional stochastic problems because the number of polynomial chaos bases required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE bases are pre-set based on users’ experience. Also, for sequential data assimilation problems, the bases kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE bases for different problems and automatically adjusts the number of bases in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm is tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  18. Determination of elastic moduli from measured acoustic velocities.

    PubMed

    Brown, J Michael

    2018-06-01

    Methods are evaluated in solution of the inverse problem associated with determination of elastic moduli for crystals of arbitrary symmetry from elastic wave velocities measured in many crystallographic directions. A package of MATLAB functions provides a robust and flexible environment for analysis of ultrasonic, Brillouin, or Impulsive Stimulated Light Scattering datasets. Three inverse algorithms are considered: the gradient-based methods of Levenberg-Marquardt and Backus-Gilbert, and a non-gradient-based (Nelder-Mead) simplex approach. Several data types are considered: body wave velocities alone, surface wave velocities plus a side constraint on X-ray-diffraction-based axes compressibilities, or joint body and surface wave velocities. The numerical algorithms are validated through comparisons with prior published results and through analysis of synthetic datasets. Although all approaches succeed in finding low-misfit solutions, the Levenberg-Marquardt method consistently demonstrates effectiveness and computational efficiency. However, linearized gradient-based methods, when applied to a strongly non-linear problem, may not adequately converge to the global minimum. The simplex method, while slower, is less susceptible to being trapped in local misfit minima. A "multi-start" strategy (initiate searches from more than one initial guess) provides better assurance that global minima have been located. Numerical estimates of parameter uncertainties based on Monte Carlo simulations are compared to formal uncertainties based on covariance calculations. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  20. New nonlinear evolution equations from surface theory

    NASA Astrophysics Data System (ADS)

    Gürses, Metin; Nutku, Yavuz

    1981-07-01

    We point out that the connection between surfaces in three-dimensional flat space and the inverse scattering problem provides a systematic way for constructing new nonlinear evolution equations. In particular we study the imbedding for Guichard surfaces which gives rise to the Calapso-Guichard equations generalizing the sine-Gordon (SG) equation. Further, we investigate the geometry of surfaces and their imbedding which results in the Korteweg-deVries (KdV) equation. Then by constructing a family of applicable surfaces we obtain a generalization of the KdV equation to a compressible fluid.

  1. The relationship between phytoplankton concentration and light attenuation in ocean waters

    NASA Technical Reports Server (NTRS)

    Phinney, David A.; Yentsch, Charles S.

    1986-01-01

    The accuracy of chlorophyll estimates by ocean color algorithms is affected by the variability of particulate attenuation; the presence of dissolved organic matter; and the nonlinear inverse relationship between the attenuation coefficient, K, and chlorophyll. Data collected during the Warm Core Rings Program were used to model the downwelling light field and determine the impact of these errors. A possible mechanism for the nonlinearity of K and chlorophyll is suggested; namely, that changing substrate from nitrate-nitrogen to ammonium causes enhanced blue absorption by photosynthetic phytoplankton in oligotrophic surface waters.

  2. COMBINED DELAY AND GRAPH EMBEDDING OF EPILEPTIC DISCHARGES IN EEG REVEALS COMPLEX AND RECURRENT NONLINEAR DYNAMICS.

    PubMed

    Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K

    2015-04-01

    The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.

  3. On the integration of a class of nonlinear systems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Talyshev, Aleksandr A.

    2017-11-01

    For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.

  4. Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.

    PubMed

    Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A

    1987-11-01

    Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.

  5. A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2013-06-01

    We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.

  6. Fluid moments of the nonlinear Landau collision operator

    DOE PAGES

    Hirvijoki, E.; Lingam, M.; Pfefferle, D.; ...

    2016-08-09

    An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. In conclusion, the proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.

  7. Nonlinear symmetry breaking in photometamaterials

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Dobrykh, Dmitry A.; Slobozhanyuk, Alexey P.; Belov, Pavel A.; Lapine, Mikhail

    2018-03-01

    We design and analyze theoretically photometamaterials with each meta-atom containing both photodiode and light-emitting diode. Illumination of the photodiode by the light-emitting diode gives rise to an additional optical feedback within each unit cell, which strongly affects resonant properties and nonlinear response of the meta-atom. In particular, we demonstrate that inversion symmetry breaking occurs upon a certain threshold magnitude of the incident wave intensity resulting in an abrupt emergence of second-harmonic generation, which was not originally available, as well as in the reduced third-harmonic signal.

  8. Analysis of nonlinear internal waves observed by Landsat thematic mapper

    NASA Astrophysics Data System (ADS)

    Artale, V.; Levi, D.; Marullo, S.; Santoleri, R.

    1990-09-01

    In this work we test the compatibility between the theoretical parameters of a nonlinear wave model and the quantitative information that one can deduce from satellite-derived data. The theoretical parameters are obtained by applying an inverse problem to the solution of the Cauchy problem for the Korteweg-de Vries equation. Our results are applied to the case of internal wave patterns elaborated from two different satellite sensors at the south of Messina (the thematic mapper) and at the north of Messina (the synthetic aperture radar).

  9. Crustal structure in the southern part of Central Java based on analysis of tele-seismic receiver function using a neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Ariyanto, P.; Syuhada; Rosid, S.; Anggono, T.; Januarti, Y.

    2018-03-01

    In this study, we applied receiver functions analysis to determine the crustal thickness, the ratio of Vp/Vs and the S wave velocity in the southern part of the Central Java. We selected tele-seismic data with magnitude more than 6 (M>6) and epicenter distance 30°-90° recorded from 3 broadband stations: UGM, YOGI, and WOJI station, as part of Indonesia-Geophone Network (IA-GE). Inversions were performed using nonlinear Neighborhood Algorithm (NA). We observed Ps phase conversion on the receiver functions corresponding to Moho depth at around 36-39 km. We also observed strong negative phase arrivals at around 10-12 s which might be associated with Indo-Australian subducting slab underneath the stations. The inversion results show the presence of low velocity zone with high Vp/Vs ratio (>1.78) in the middle crust around the study area which could be related to the Merapi-Lawu Anomaly (MLA).

  10. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    PubMed

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  12. Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong

    2015-10-01

    This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.

  13. Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles

    NASA Astrophysics Data System (ADS)

    Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm

    2018-02-01

    This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.

  14. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  15. Hydromagnetic conditions near the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1995-01-01

    The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.

  16. Dynamics of the mean signal amplitude of a crystal oscillator with a nonlinear resonator and low drives

    NASA Astrophysics Data System (ADS)

    Shmaliy, Yuriy S.; Rosales, Juan

    2004-09-01

    Dynamics of the mean amplitude of oscillations of a crystal oscillator with a linear feedback is outlined for low drives when the losses (friction) of a resonator become large and nonlinear after a long storage. The drive-level-dependence (DLD) of the crystal resonator losses is assumed to change inversely to the piezoelectric current. A stochastic differential equation for the mean amplitude is derived and solved in a sense of Ito. The development and attenuation processes are learned and it is shown that attenuation finishes at some non-zero level associated with the effect termed "sleeping sickness." The critical value of the friction is calculated and the conditions are discussed to avoid attenuation. Based upon, we show in that (1) if the value of the DLD coefficient of the resonator losses ranges below the critical point, the effect occurs primarilly in a delay of self-excitation; (2) contrary, noise drives the crystal oscillator.

  17. Gaussian representation of high-intensity focused ultrasound beams.

    PubMed

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  18. InGaAs-based planar barrier diode as microwave rectifier

    NASA Astrophysics Data System (ADS)

    Farhani Zakaria, Nor; Rizal Kasjoo, Shahrir; Zailan, Zarimawaty; Mohamad Isa, Muammar; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2018-06-01

    In this report, we proposed and simulated a new planar nonlinear rectifying device fabricated using InGaAs substrate and referred to as a planar barrier diode (PBD). Using an asymmetrical inverse-arrowhead-shaped structure between the electrodes, a nonuniform depletion region is developed, which creates a triangular energy barrier in the conducting channel. This barrier is voltage dependent and can be controlled by the applied voltage across the PBD, thus resulting in nonlinear diode-like current–voltage characteristics; thus it can be used as a rectifying device. The PBD’s working principle is explained using thermionic emission theory. Furthermore, by varying the PBD’s geometric design, the asymmetry of the current–voltage characteristics can be optimized to realize superior rectification performance. By employing the optimized structural parameters, the obtained cut-off frequency of the device was approximately 270 GHz with a curvature coefficient peak of 14 V‑1 at a low DC bias voltage of 50 mV.

  19. Turbulence of Weak Gravitational Waves in the Early Universe.

    PubMed

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  20. Generation of Optical Vortices by Nonlinear Inverse Thomson Scattering at Arbitrary Angle Interactions

    NASA Astrophysics Data System (ADS)

    Taira, Yoshitaka; Katoh, Masahiro

    2018-06-01

    We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.

  1. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  2. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  3. Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khamis, E. G.; Tovbis, A.

    2016-09-01

    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.

  4. An iterative hyperelastic parameters reconstruction for breast cancer assessment

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Samani, Abbas

    2008-03-01

    In breast elastography, breast tissues usually undergo large compressions resulting in significant geometric and structural changes, and consequently nonlinear mechanical behavior. In this study, an elastography technique is presented where parameters characterizing tissue nonlinear behavior is reconstructed. Such parameters can be used for tumor tissue classification. To model the nonlinear behavior, tissues are treated as hyperelastic materials. The proposed technique uses a constrained iterative inversion method to reconstruct the tissue hyperelastic parameters. The reconstruction technique uses a nonlinear finite element (FE) model for solving the forward problem. In this research, we applied Yeoh and Polynomial models to model the tissue hyperelasticity. To mimic the breast geometry, we used a computational phantom, which comprises of a hemisphere connected to a cylinder. This phantom consists of two types of soft tissue to mimic adipose and fibroglandular tissues and a tumor. Simulation results show the feasibility of the proposed method in reconstructing the hyperelastic parameters of the tumor tissue.

  5. Using a pseudo-dynamic source inversion approach to improve earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.

    2014-12-01

    Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.

  6. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    NASA Astrophysics Data System (ADS)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C. R.

    2010-12-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model parameterizations.

  7. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    NASA Astrophysics Data System (ADS)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C.-R.

    2010-08-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model parameterizations.

  8. 3D CSEM data inversion using Newton and Halley class methods

    NASA Astrophysics Data System (ADS)

    Amaya, M.; Hansen, K. R.; Morten, J. P.

    2016-05-01

    For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those applied in this paper.

  9. Tomographic inversion of P-wave velocity and Q structures beneath the Kirishima volcanic complex, Southern Japan, based on finite difference calculations of complex traveltimes

    USGS Publications Warehouse

    Tomatsu, T.; Kumagai, H.; Dawson, P.B.

    2001-01-01

    We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.

  10. Electrochemical Impedance Imaging via the Distribution of Diffusion Times.

    PubMed

    Song, Juhyun; Bazant, Martin Z

    2018-03-16

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  11. Maximally Informative Statistics for Localization and Mapping

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.

    2001-01-01

    This paper presents an algorithm for localization and mapping for a mobile robot using monocular vision and odometry as its means of sensing. The approach uses the Variable State Dimension filtering (VSDF) framework to combine aspects of Extended Kalman filtering and nonlinear batch optimization. This paper describes two primary improvements to the VSDF. The first is to use an interpolation scheme based on Gaussian quadrature to linearize measurements rather than relying on analytic Jacobians. The second is to replace the inverse covariance matrix in the VSDF with its Cholesky factor to improve the computational complexity. Results of applying the filter to the problem of localization and mapping with omnidirectional vision are presented.

  12. Probabilistic estimation of splitting coefficients of normal modes of the Earth, and their uncertainties, using an autoregressive technique

    NASA Astrophysics Data System (ADS)

    Pachhai, S.; Masters, G.; Laske, G.

    2017-12-01

    Earth's normal-mode spectra are crucial to studying the long wavelength structure of the Earth. Such observations have been used extensively to estimate "splitting coefficients" which, in turn, can be used to determine the three-dimensional velocity and density structure. Most past studies apply a non-linear iterative inversion to estimate the splitting coefficients which requires that the earthquake source is known. However, it is challenging to know the source details, particularly for big events as used in normal-mode analyses. Additionally, the final solution of the non-linear inversion can depend on the choice of damping parameter and starting model. To circumvent the need to know the source, a two-step linear inversion has been developed and successfully applied to many mantle and core sensitive modes. The first step takes combinations of the data from a single event to produce spectra known as "receiver strips". The autoregressive nature of the receiver strips can then be used to estimate the structure coefficients without the need to know the source. Based on this approach, we recently employed a neighborhood algorithm to measure the splitting coefficients for an isolated inner-core sensitive mode (13S2). This approach explores the parameter space efficiently without any need of regularization and finds the structure coefficients which best fit the observed strips. Here, we implement a Bayesian approach to data collected for earthquakes from early 2000 and more recent. This approach combines the data (through likelihood) and prior information to provide rigorous parameter values and their uncertainties for both isolated and coupled modes. The likelihood function is derived from the inferred errors of the receiver strips which allows us to retrieve proper uncertainties. Finally, we apply model selection criteria that balance the trade-offs between fit (likelihood) and model complexity to investigate the degree and type of structure (elastic and anelastic) required to explain the data.

  13. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some iterative method. A powerful tool for proving convergence rates of Tikhonov type but also other regularization methods in Banach spaces are assumptions of the type of variational inequalities that combine conditions on solution smoothness (i.e., source conditions in the Hilbert space case) and nonlinearity of the forward operator. In Parameter choice in Banach space regularization under variational inequalities, Bernd Hofmann and Peter Mathé provide results with general error measures and especially study the question of regularization parameter choice. Daijun Jiang, Hui Feng, and Jun Zou consider an application of Banach space ideas in the context of an application problem in their paper Convergence rates of Tikhonov regularizations for parameter identifiation in a parabolic-elliptic system, namely the identification of a distributed diffusion coefficient in a coupled elliptic-parabolic system. In particular, they show convergence rates of Lp-H1 (variational) regularization for the application under consideration via the use and verification of certain source and nonlinearity conditions. In computational practice, the Lp norm with p close to one is often used as a substitute for the actually sparsity promoting L1 norm. In Norm sensitivity of sparsity regularization with respect to p, Kamil S Kazimierski, Peter Maass and Robin Strehlow consider the question of how sensitive the Tikhonov regularized solution is with respect to p. They do so by computing the derivative via the implicit function theorem, particularly at the crucial value, p=1. Another iterative regularization method in Banach space is considered by Qinian Jin and Linda Stals in Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Using a variational formulation and under some smoothness and convexity assumption on the preimage space, they extend the convergence analysis of the well-known iterative Tikhonov method for linear problems in Hilbert space to a more general Banach space framework. Systems of linear or nonlinear operators can be efficiently treated by cyclic iterations, thus several variants of gradient and Newton-type Kaczmarz methods have already been studied in the Hilbert space setting. Antonio Leitão and M Marques Alves in their paper On Landweber---Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces carry out an extension to Banach spaces for the fundamental Landweber version. The impact of perturbations in the evaluation of the forward operator and its derivative on the convergence behaviour of regularization methods is a practically and highly relevant issue. It is treated in the paper Convergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators by Shuai Lu and Jens Flemming for variational regularization of nonlinear problems in Banach spaces. In The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting, Thomas Schuster, Andreas Rieder and Frank Schöpfer extend the concept of approximate inverse to the practically and highly relevant situation of finitely many measurements and a general smooth and convex Banach space as preimage space. They devise two approaches for computing the reconstruction kernels required in the method and provide convergence and regularization results. Frank Werner and Thorsten Hohage in Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data prove convergence rates results for variational regularization with general convex regularization term and the Kullback-Leibler distance as data fidelity term by combining a new result on Poisson distributed data with a deterministic rates analysis. Finally, we would like to thank the Inverse Problems team, especially Joanna Evangelides and Chris Wileman, for their extraordinary smooth and productive cooperation, as well as Alfred K Louis for his kind support of our initiative.

  14. Extensions of the Ferry shear wave model for active linear and nonlinear microrheology

    PubMed Central

    Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.

    2009-01-01

    The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614

  15. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia

    PubMed Central

    Jack, Clifford R.; Wiste, Heather J.; Weigand, Stephen D.; Vemuri, Prashanthi; Lowe, Val J.; Kantarci, Kejal; Gunter, Jeffrey L.; Senjem, Matthew L.; Mielke, Michelle M.; Machulda, Mary M.; Roberts, Rosebud O.; Boeve, Bradley F.; Jones, David T.; Petersen, Ronald C.

    2016-01-01

    Objective: To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Methods: Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [18F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. Results: The 97 participants with AD dementia (aged 49–93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. Conclusions: In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. PMID:27421543

  16. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.

    PubMed

    Knopman, David S; Jack, Clifford R; Wiste, Heather J; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C

    2016-08-16

    To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [(18)F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. The 97 participants with AD dementia (aged 49-93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. © 2016 American Academy of Neurology.

  17. Advances in Global Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Bozdag, E.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Modrak, R. T.; Orsvuran, R.; Smith, J. A.; Komatitsch, D.; Peter, D. B.

    2017-12-01

    Information about Earth's interior comes from seismograms recorded at its surface. Seismic imaging based on spectral-element and adjoint methods has enabled assimilation of this information for the construction of 3D (an)elastic Earth models. These methods account for the physics of wave excitation and propagation by numerically solving the equations of motion, and require the execution of complex computational procedures that challenge the most advanced high-performance computing systems. Current research is petascale; future research will require exascale capabilities. The inverse problem consists of reconstructing the characteristics of the medium from -often noisy- observations. A nonlinear functional is minimized, which involves both the misfit to the measurements and a Tikhonov-type regularization term to tackle inherent ill-posedness. Achieving scalability for the inversion process on tens of thousands of multicore processors is a task that offers many research challenges. We initiated global "adjoint tomography" using 253 earthquakes and produced the first-generation model named GLAD-M15, with a transversely isotropic model parameterization. We are currently running iterations for a second-generation anisotropic model based on the same 253 events. In parallel, we continue iterations for a transversely isotropic model with a larger dataset of 1,040 events to determine higher-resolution plume and slab images. A significant part of our research has focused on eliminating I/O bottlenecks in the adjoint tomography workflow. This has led to the development of a new Adaptable Seismic Data Format based on HDF5, and post-processing tools based on the ADIOS library developed by Oak Ridge National Laboratory. We use the Ensemble Toolkit for workflow stabilization & management to automate the workflow with minimal human interaction.

  18. Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions

    NASA Astrophysics Data System (ADS)

    Park, J. J.

    2017-12-01

    Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long-running continental stations will be discussed. Park, J., and V. Levin, 2016a. doi:10.1093/gji/ggw291. Park, J., and V. Levin, 2016b. doi:10.1093/gji/ggw323. Schulte-Pelkum, V., and Mahan, K. H., 2014. doi:10.1007/s00024-014-0853-4. Shiomi, K., & Park, J., 2008. doi:10.1029/2007JB005535.

  19. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map.

    PubMed

    Long, Zhili; Wang, Rui; Fang, Jiwen; Dai, Xufei; Li, Zuohua

    2017-07-01

    Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm's convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.

  20. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

Top