Sample records for nonlinear joint transform

  1. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  2. Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes

    NASA Astrophysics Data System (ADS)

    Haist, Tobias; Tiziani, Hans J.

    1999-03-01

    An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.

  3. Improved decryption quality and security of a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2013-02-01

    Some image encryption systems based on modified double random phase encoding and joint transform correlator architecture produce low quality decrypted images and are vulnerable to a variety of attacks. In this work, we analyse the algorithm of some reported methods that optically implement the double random phase encryption in a joint transform correlator. We show that it is possible to significantly improve the quality of the decrypted image by introducing a simple nonlinear operation in the encrypted function that contains the joint power spectrum. This nonlinearity also makes the system more resistant to chosen-plaintext attacks. We additionally explore the system resistance against this type of attack when a variety of probability density functions are used to generate the two random phase masks of the encryption-decryption process. Numerical results are presented and discussed.

  4. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  5. Nonlinear optical cryptosystem based on joint Fresnel transform correlator under vector wave illumination

    NASA Astrophysics Data System (ADS)

    Xueju, Shen; Chao, Lin; Xiao, Zou; Jianjun, Cai

    2015-05-01

    We present a nonlinear optical cryptosystem with multi-dimensional keys including phase, polarization and diffraction distance. To make full use of the degrees of freedom that optical processing offers, an elaborately designed vector wave with both a space-variant phase and locally linear polarization is generated with a common-path interferometer for illumination. The joint transform correlator in the Fresnel domain, implemented with a double optical wedge, is utilized as the encryption framework which provides an additional key known as the Fresnel diffraction distance. Two nonlinear operations imposed on the recorded joint Fresnel power distribution (JFPD) by a charge coupled device (CCD) are adopted. The first one is the division of power distribution of the reference window random function which is previously proposed by researchers and can improve the quality of the decrypted image. The second one is the recording of a hybrid JFPD using a micro-polarizers array with orthogonal and random transmissive axes attached to the CCD. Then the hybrid JFPD is further scrambled by substituting random noise for partial power distribution. The two nonlinear operations break the linearity of this cryptosystem and provide ultra security. We verify our proposal using a quick response code for noise-free recovery.

  6. Annual Review of Research under the Joint Services Electronics Program. Volume 1.

    DTIC Science & Technology

    1982-12-01

    time varying nonlinear system be transformable to a controllable time -invariant linear system have been presented. * If a...Conference Papers and Abstracts 1. Hunt, L.R., and R. Su, " Control of Nonlinear Time -Varying Systems ," 20th IEEE Conf. on Decision and Control , pp. 558...being C= vector fields on I,. We give necessary and sufficient conditions for this system to be transformable to a time -invariant controllable

  7. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2018-03-01

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  8. Joint recognition and discrimination in nonlinear feature space

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1997-09-01

    A new general method for linear and nonlinear feature extraction is presented. It is novel since it provides both representation and discrimination while most other methods are concerned with only one of these issues. We call this approach the maximum representation and discrimination feature (MRDF) method and show that the Bayes classifier and the Karhunen- Loeve transform are special cases of it. We refer to our nonlinear feature extraction technique as nonlinear eigen- feature extraction. It is new since it has a closed-form solution and produces nonlinear decision surfaces with higher rank than do iterative methods. Results on synthetic databases are shown and compared with results from standard Fukunaga- Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem (discrimination) and to the classification and pose estimation of two similar objects (representation and discrimination).

  9. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  10. Simplified and refined finite element approaches for determining stresses and internal forces in geometrically nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Robinson, J. C.

    1979-01-01

    Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.

  11. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  12. Annual Review of Research Under the Joint Services Electronics Program.

    DTIC Science & Technology

    1983-12-01

    Total Number of Professionals: PI 2 RA 2 (1/2 time ) 6. Sunmmary: Our research into the theory of nonlinear control systems and appli- * cations to...known that all linear time -invariant controllable systems can be transformed to Brunovsky canonical form by a transformation consist- ing only of...estimating the impulse response ( = transfer matrix) of a discrete- time linear system x(t+l) = Fx(t) + Gu(t) y(t) = Hx(t) from a finite set of finite

  13. Variable structure control of nonlinear systems through simplified uncertain models

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  14. Nonlinear characterization of a bolted, industrial structure using a modal framework

    NASA Astrophysics Data System (ADS)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  15. Joint symbolic dynamic analysis of cardiorespiratory interactions in patients on weaning trials.

    PubMed

    Caminal, P; Giraldo, B; Zabaleta, H; Vallverdu, M; Benito, S; Ballesteros, D; Lopez-Rodriguez, L; Esteban, A; Baumert, M; Voss, A

    2005-01-01

    Assessing autonomic control provides information about patho-physiological imbalances. Measures of variability of the cardiac interbeat duration RR(n) and the variability of the breath duration TTot(n) are sensitive to those changes. The interactions between RR(n) and TTot(n) are complex and strongly non-linear. A study of joint symbolic dynamics is presented as a new short-term non-linear analysis method to investigate these interactions in patients on weaning trials. 78 patients from mechanical ventilation are studied: Group A (patients that failed to maintain spontaneous breathing and were reconnected) and Group B (patients with successful trials). Using the concept of joint symbolic dynamics, cardiac and respiratory changes were transformed into a word series, and the probability of occurrence of each word type was calculated and compared between both groups. Significant differences were found in 13 words, and the most significant pn(Wc010, r010): 0.0041 ± 0.0036 (group A) against 0.0012 ± 0.0024 (group B), p-value = 0.00001. The number of seldom occurring word types (forbidden words) also presents significant differences fwcr: 6.9 ± 6.6 against 13.5 ± 5.3, p-value = 0.00004. Joint symbolic dynamics provides an efficient non-linear representation of cardiorespiratory interactions that offers simple physiological interpretations.

  16. Nonlinear feedback method of robot control - A preliminary experimental study

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Ganguly, S.; Li, Z.; Bejczy, A. K.

    1990-01-01

    The nonlinear feedback method of robot control has been experimentally implemented on two PUMA 560 robot arms. The feasibility of the proposed controller, which was shown viable through simulation results earlier, is stressed. The servomechanism operates in task space, and the nonlinear feedback takes care of the necessary transformations to compute the necessary joint currents. A discussion is presented of the implementation with details of the experiments performed. The performance of the controller is encouraging but was limited to 100-Hz sampling frequency and to derived velocity information at the time of the experimentation. The setup of the lab, the software aspects, results, and the control hardware architecture that has recently been implemented are discussed.

  17. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    PubMed Central

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation. PMID:24757433

  18. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    PubMed

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  19. A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.

    PubMed

    Chen, D G; Pounds, J G

    1998-12-01

    The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium.

  20. A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.

    PubMed Central

    Chen, D G; Pounds, J G

    1998-01-01

    The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium. PMID:9860894

  1. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    PubMed

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  2. Annual Review of Research under the Joint Services Electronics Program,

    DTIC Science & Technology

    1981-12-01

    nonlinear system under investigation to be transformed, without approximation, into an equivalent linear system to which classical design methodologies are...employed his work in the design of an experimental helicopter autopilot which is presently under- going simulation and is expected to fly in the near...decentralized, and non -quad- duced from that which would be required ratic systems is presented. Here, one for an optimal non -linlar controller. designs a

  3. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  4. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  5. Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis.

    PubMed

    Liu, Jeng-Cheng; Cheng, Yuang-Tung; Hung, Hsien-Sen

    2018-01-19

    Direction-of-arrival (DOA) and range estimation is an important issue of sonar signal processing. In this paper, a novel approach using Hilbert-Huang transform (HHT) is proposed for joint bearing and range estimation of multiple targets based on a uniform linear array (ULA) of hydrophones. The structure of this ULA based on micro-electro-mechanical systems (MEMS) technology, and thus has attractive features of small size, high sensitivity and low cost, and is suitable for Autonomous Underwater Vehicle (AUV) operations. This proposed target localization method has the following advantages: only a single snapshot of data is needed and real-time processing is feasible. The proposed algorithm transforms a very complicated nonlinear estimation problem to a simple nearly linear one via time-frequency distribution (TFD) theory and is verified with HHT. Theoretical discussions of resolution issue are also provided to facilitate the design of a MEMS sensor with high sensitivity. Simulation results are shown to verify the effectiveness of the proposed method.

  6. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  7. Optical information-processing systems and architectures II; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.

  8. Response phase mapping of nonlinear joint dynamics using continuous scanning LDV measurement method

    NASA Astrophysics Data System (ADS)

    Di Maio, D.; Bozzo, A.; Peyret, Nicolas

    2016-06-01

    This study aims to present a novel work aimed at locating discrete nonlinearities in mechanical assemblies. The long term objective is to develop a new metric for detecting and locating nonlinearities using Scanning LDV systems (SLDV). This new metric will help to improve the modal updating, or validation, of mechanical assemblies presenting discrete and sparse nonlinearities. It is well established that SLDV systems can scan vibrating structures with high density of measurement points and produc e highly defined Operational Deflection Shapes (ODSs). This paper will present some insights on how to use response phase mapping for locating nonlinearities of a bolted flange. This type of structure presents two types of nonlinearities, which are geometr ical and frictional joints. The interest is focussed on the frictional joints and, therefore, the ability to locate which joint s are responsible for nonlinearity is seen highly valuable for the model validation activities.

  9. Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.

    PubMed

    Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin

    2016-11-01

    This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Nonlinear analysis of bonded joints with thermal effects

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Herakovich, C. T.

    1977-01-01

    Nonlinear results are presented for adhesive bonded joints. It is shown that adhesive nonlinearities are only significant in the predicted adhesive shear stresses. Adherend nonlinearities and temperature dependent properties are shown to have little effect upon the adhesive stress predictions under mechanical and thermal loadings.

  11. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Improvements to surrogate data methods for nonstationary time series.

    PubMed

    Lucio, J H; Valdés, R; Rodríguez, L R

    2012-05-01

    The method of surrogate data has been extensively applied to hypothesis testing of system linearity, when only one realization of the system, a time series, is known. Normally, surrogate data should preserve the linear stochastic structure and the amplitude distribution of the original series. Classical surrogate data methods (such as random permutation, amplitude adjusted Fourier transform, or iterative amplitude adjusted Fourier transform) are successful at preserving one or both of these features in stationary cases. However, they always produce stationary surrogates, hence existing nonstationarity could be interpreted as dynamic nonlinearity. Certain modifications have been proposed that additionally preserve some nonstationarity, at the expense of reproducing a great deal of nonlinearity. However, even those methods generally fail to preserve the trend (i.e., global nonstationarity in the mean) of the original series. This is the case of time series with unit roots in their autoregressive structure. Additionally, those methods, based on Fourier transform, either need first and last values in the original series to match, or they need to select a piece of the original series with matching ends. These conditions are often inapplicable and the resulting surrogates are adversely affected by the well-known artefact problem. In this study, we propose a simple technique that, applied within existing Fourier-transform-based methods, generates surrogate data that jointly preserve the aforementioned characteristics of the original series, including (even strong) trends. Moreover, our technique avoids the negative effects of end mismatch. Several artificial and real, stationary and nonstationary, linear and nonlinear time series are examined, in order to demonstrate the advantages of the methods. Corresponding surrogate data are produced with the classical and with the proposed methods, and the results are compared.

  13. Effects of joints in truss structures

    NASA Technical Reports Server (NTRS)

    Ikegami, R.

    1988-01-01

    The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.

  14. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints [Continuum modeling of elasto-plastic media with multiple embedded nonlinearly-compliant joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less

  15. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints [Continuum modeling of elasto-plastic media with multiple embedded nonlinearly-compliant joints

    DOE PAGES

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    2017-04-06

    Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less

  16. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    NASA Astrophysics Data System (ADS)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  17. Nonlinear Modeling of Joint Dominated Structures

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.

    1990-01-01

    The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.

  18. Assessing the performance of a motion tracking system based on optical joint transform correlation

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.

    2015-08-01

    We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.

  19. Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.

    PubMed

    Zhao, Ling; Cheng, Haiyan; Wang, Tao

    2018-02-01

    A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  1. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  2. Book review: Nonlinear ocean waves and the inverse scattering transform

    USGS Publications Warehouse

    Geist, Eric L.

    2011-01-01

    Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts.  Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.

  3. Numerical built-in method for the nonlinear JRC/JCS model in rock joint.

    PubMed

    Liu, Qunyi; Xing, Wanli; Li, Ying

    2014-01-01

    The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.

  4. Toda-Lattice Solitons in α-Helical Proteins

    NASA Astrophysics Data System (ADS)

    Yomosa, Shigeo

    1984-10-01

    We propose a theory of Toda-lattice soliton in α-helical proteins which enables us to elucidate the molecular dynamics of muscle contraction. One-dimensional chain of peptide groups jointed together by H-bonds, which stabilizes α-helical structure of proteins, can be regarded as a Toda-lattice where the potential of H-bonding interaction between peptide groups has a remarkable nonlinearity. By using the results of theoretical studies for Toda-lattice soliton and for the initial value problem, we can describe the molecular mechanism of the transformation of the chemical energy to the mechanical work in the process of the muscle contraction.

  5. Non-destructive testing techniques based on nonlinear methods for assessment of debonding in single lap joints

    NASA Astrophysics Data System (ADS)

    Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.

    2015-04-01

    Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.

  6. Investigation into image quality difference between total variation and nonlinear sparsifying transform based compressed sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Kudo, Hiroyuki

    2017-03-01

    Compressed sensing (CS) is attracting growing concerns in sparse-view computed tomography (CT) image reconstruction. The most standard approach of CS is total variation (TV) minimization. However, images reconstructed by TV usually suffer from distortions, especially in reconstruction of practical CT images, in forms of patchy artifacts, improper serrate edges and loss of image textures. Most existing CS approaches including TV achieve image quality improvement by applying linear transforms to object image, but linear transforms usually fail to take discontinuities into account, such as edges and image textures, which is considered to be the key reason for image distortions. Actually, discussions on nonlinear filter based image processing has a long history, leading us to clarify that the nonlinear filters yield better results compared to linear filters in image processing task such as denoising. Median root prior was first utilized by Alenius as nonlinear transform in CT image reconstruction, with significant gains obtained. Subsequently, Zhang developed the application of nonlocal means-based CS. A fact is gradually becoming clear that the nonlinear transform based CS has superiority in improving image quality compared with the linear transform based CS. However, it has not been clearly concluded in any previous paper within the scope of our knowledge. In this work, we investigated the image quality differences between the conventional TV minimization and nonlinear sparsifying transform based CS, as well as image quality differences among different nonlinear sparisying transform based CSs in sparse-view CT image reconstruction. Additionally, we accelerated the implementation of nonlinear sparsifying transform based CS algorithm.

  7. Quantification of cardiorespiratory interactions based on joint symbolic dynamics.

    PubMed

    Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias

    2011-10-01

    Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge.

  8. Gaussianization for fast and accurate inference from cosmological data

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2016-06-01

    We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.

  9. Estimation bias from using nonlinear Fourier plane correlators for sub-pixel image shift measurement and implications for the binary joint transform correlator

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.

    2007-09-01

    When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.

  10. Back to Normal! Gaussianizing posterior distributions for cosmological probes

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2014-05-01

    We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.

  11. Feature-extracted joint transform correlation.

    PubMed

    Alam, M S

    1995-12-10

    A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.

  12. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  13. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  14. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  15. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  16. Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings.

    PubMed

    Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D

    2009-08-03

    Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).

  17. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  18. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  19. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  20. Nonlinear dynamic range transformation in visual communication channels.

    PubMed

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  1. Nonlinear Effects in Transformation Optics-Based Metamaterial Shields for Counter Directed Energy Weapon Defense

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATERIAL SHIELDS FOR COUNTER DIRECTED...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON...and magnetization fields with respect to incident electromagnetic field intensities. As those field intensities rise, such as from a hypothetical

  2. Delineating the third age: joint models of older people's quality of life and attrition in Britain 2002-2010.

    PubMed

    Tampubolon, Gindo

    2015-07-01

    In the public mind, later life is being transformed by the emerging possibility of a flourishing third age with sustained quality of life. We draw trajectories of life quality measured using CASP-19 over eight years. We refine these trajectories by jointly modelling attrition, since older people tend to leave longitudinal studies (attrite) not at random. Growth curve models are applied to the English Longitudinal Study of Ageing waves 1 to 5. Then joint model is estimated where attrition is considered. Extensive predictors are entered including demographic attributes, social and economic status, health conditions, and behaviours. Strong non-linear age trajectory of life quality is revealed by the growth curve models where the peak is achieved in the late 60s. Then the joint model uncovers the peak somewhat later in time, and also reveals secular improvement in life quality experienced by recent cohorts. Sharp estimates for many predictors of higher levels of life quality are also found. For the first time, the trajectories of life quality in the third age are drawn and improvement across cohorts is demonstrated. The contributions are estimated for predictors amenable to intervention such as social capital. This can help in policy discussion on improving the lives of older people in the third age.

  3. Why the soliton wavelet transform is useful for nonlinear dynamic phenomena

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1992-10-01

    If signal analyses were perfect without noise and clutters, then any transform can be equally chosen to represent the signal without any loss of information. However, if the analysis using Fourier transform (FT) happens to be a nonlinear dynamic phenomenon, the effect of nonlinearity must be postponed until a later time when a complicated mode-mode coupling is attempted without the assurance of any convergence. Alternatively, there exists a new paradigm of linear transforms called wavelet transform (WT) developed for French oil explorations. Such a WT enjoys the linear superposition principle, the computational efficiency, and the signal/noise ratio enhancement for a nonsinusoidal and nonstationary signal. Our extensions to a dynamic WT and furthermore to an adaptive WT are possible due to the fact that there exists a large set of square-integrable functions that are special solutions of the nonlinear dynamic medium and could be adopted for the WT. In order to analyze nonlinear dynamics phenomena in ocean, we are naturally led to the construction of a soliton mother wavelet. This common sense of 'pay the nonlinear price now and enjoy the linearity later' is certainly useful to probe any nonlinear dynamics. Research directions in wavelets, such as adaptivity, and neural network implementations are indicated, e.g., tailoring an active sonar profile for explorations.

  4. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  5. Application of nonlinear transformations to automatic flight control

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Su, R.; Hunt, L. R.

    1984-01-01

    The theory of transformations of nonlinear systems to linear ones is applied to the design of an automatic flight controller for the UH-1H helicopter. The helicopter mathematical model is described and it is shown to satisfy the necessary and sufficient conditions for transformability. The mapping is constructed, taking the nonlinear model to canonical form. The performance of the automatic control system in a detailed simulation on the flight computer is summarized.

  6. Linear approximations of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Su, R.

    1983-01-01

    The development of a method for designing an automatic flight controller for short and vertical take off aircraft is discussed. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system called the modified tangent model was introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this the linear part (about a state space point x sub 0) of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x sub 0 yields the same modified tangent model.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seljak, Uroš, E-mail: useljak@berkeley.edu

    On large scales a nonlinear transformation of matter density field can be viewed as a biased tracer of the density field itself. A nonlinear transformation also modifies the redshift space distortions in the same limit, giving rise to a velocity bias. In models with primordial nongaussianity a nonlinear transformation generates a scale dependent bias on large scales. We derive analytic expressions for the large scale bias, the velocity bias and the redshift space distortion (RSD) parameter β, as well as the scale dependent bias from primordial nongaussianity for a general nonlinear transformation. These biases can be expressed entirely in termsmore » of the one point distribution function (PDF) of the final field and the parameters of the transformation. The analysis shows that one can view the large scale bias different from unity and primordial nongaussianity bias as a consequence of converting higher order correlations in density into 2-point correlations of its nonlinear transform. Our analysis allows one to devise nonlinear transformations with nearly arbitrary bias properties, which can be used to increase the signal in the large scale clustering limit. We apply the results to the ionizing equilibrium model of Lyman-α forest, in which Lyman-α flux F is related to the density perturbation δ via a nonlinear transformation. Velocity bias can be expressed as an average over the Lyman-α flux PDF. At z = 2.4 we predict the velocity bias of -0.1, compared to the observed value of −0.13±0.03. Bias and primordial nongaussianity bias depend on the parameters of the transformation. Measurements of bias can thus be used to constrain these parameters, and for reasonable values of the ionizing background intensity we can match the predictions to observations. Matching to the observed values we predict the ratio of primordial nongaussianity bias to bias to have the opposite sign and lower magnitude than the corresponding values for the highly biased galaxies, but this depends on the model parameters and can also vanish or change the sign.« less

  8. The soliton transform and a possible application to nonlinear Alfven waves in space

    NASA Technical Reports Server (NTRS)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  9. The Importance of Nonlinear Transformations Use in Medical Data Analysis.

    PubMed

    Shachar, Netta; Mitelpunkt, Alexis; Kozlovski, Tal; Galili, Tal; Frostig, Tzviel; Brill, Barak; Marcus-Kalish, Mira; Benjamini, Yoav

    2018-05-11

    The accumulation of data and its accessibility through easier-to-use platforms will allow data scientists and practitioners who are less sophisticated data analysts to get answers by using big data for many purposes in multiple ways. Data scientists working with medical data are aware of the importance of preprocessing, yet in many cases, the potential benefits of using nonlinear transformations is overlooked. Our aim is to present a semi-automated approach of symmetry-aiming transformations tailored for medical data analysis and its advantages. We describe 10 commonly encountered data types used in the medical field and the relevant transformations for each data type. Data from the Alzheimer's Disease Neuroimaging Initiative study, Parkinson's disease hospital cohort, and disease-simulating data were used to demonstrate the approach and its benefits. Symmetry-targeted monotone transformations were applied, and the advantages gained in variance, stability, linearity, and clustering are demonstrated. An open source application implementing the described methods was developed. Both linearity of relationships and increase of stability of variability improved after applying proper nonlinear transformation. Clustering simulated nonsymmetric data gave low agreement to the generating clusters (Rand value=0.681), while capturing the original structure after applying nonlinear transformation to symmetry (Rand value=0.986). This work presents the use of nonlinear transformations for medical data and the importance of their semi-automated choice. Using the described approach, the data analyst increases the ability to create simpler, more robust and translational models, thereby facilitating the interpretation and implementation of the analysis by medical practitioners. Applying nonlinear transformations as part of the preprocessing is essential to the quality and interpretability of results. ©Netta Shachar, Alexis Mitelpunkt, Tal Kozlovski, Tal Galili, Tzviel Frostig, Barak Brill, Mira Marcus-Kalish, Yoav Benjamini. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.05.2018.

  10. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1985-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  11. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1986-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  12. An experimentally based nonlinear viscoelastic model of joint passive moment.

    PubMed

    Esteki, A; Mansour, J M

    1996-04-01

    Previous investigations have not converged on a generally accepted model of the dissipative part of joint passive moment. To provide a basis for developing a model, a series of measurements were performed to characterize the passive moment at the metacarpophalangeal joint of the index finger. Two measurement procedures were used, one in moment relaxation over a range of fixed joint angles and the other at a series of constant joint velocities. Fung's quasi-linear viscoelastic theory motivated the development of the passive moment model. Using this approach, it was not necessary to make restrictive assumptions regarding the viscoelastic behavior of the passive moment. The generality of the formulation allowed specific functions to be chosen based on experimental data rather than finding coefficients which attempted to fit a preselected model of the data. It was shown that a nonlinear viscoelastic model described the passive stiffness. No significant frictional effects were found. Of particular importance was the nonlinear behavior of the dissipative part of the passive moment which was modeled by joint speed raised to a power less than one. This result could explain the differing findings among previous investigations, and may have important implications for control of limb movement.

  13. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  14. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Additivity of nonlinear biomass equations

    Treesearch

    Bernard R. Parresol

    2001-01-01

    Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...

  16. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less

  17. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  18. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  19. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  20. Nonlinear Bogolyubov-Valatin transformations: Two modes

    NASA Astrophysics Data System (ADS)

    Scharnhorst, K.; van Holten, J.-W.

    2011-11-01

    Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.

  1. Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies.

    PubMed

    Huang, Yangxin; Lu, Xiaosun; Chen, Jiaqing; Liang, Juan; Zangmeister, Miriam

    2017-10-27

    Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.

  2. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  3. Nonlinear adaptive control of an elastic robotic arm

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1986-01-01

    An approach to control of a class of nonlinear flexible robotic systems is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. An adaptive torquer control law is derived for controlling the joint angles. This controller includes a dynamic system in the feedback path, requires only joint angle and rate for feedback, and asymptotically decomposes the elastic dynamics into two subsystems representing the transverse vibrations of the elastic link in two orthogonal planes. To damp out the elastic vibration, a force control law using modal feedback is synthesized. The combination of the torque and force control laws accomplishes joint angle control and elastic mode stabilization.

  4. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  5. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    PubMed

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  6. Measurement Model Nonlinearity in Estimation of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Majji, Manoranjan; Junkins, J. L.; Turner, J. D.

    2012-06-01

    The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.

  7. Sensory integration of a light touch reference in human standing balance.

    PubMed

    Assländer, Lorenz; Smith, Craig P; Reynolds, Raymond F

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.

  8. Sensory integration of a light touch reference in human standing balance

    PubMed Central

    Smith, Craig P.; Reynolds, Raymond F.

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252

  9. Privacy-preserving outlier detection through random nonlinear data distortion.

    PubMed

    Bhaduri, Kanishka; Stefanski, Mark D; Srivastava, Ashok N

    2011-02-01

    Consider a scenario in which the data owner has some private or sensitive data and wants a data miner to access them for studying important patterns without revealing the sensitive information. Privacy-preserving data mining aims to solve this problem by randomly transforming the data prior to their release to the data miners. Previous works only considered the case of linear data perturbations--additive, multiplicative, or a combination of both--for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy-preserving anomaly detection from sensitive data sets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that, for specific cases, it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. The experiments conducted on real-life data sets demonstrate the effectiveness of the approach.

  10. Monotonic non-linear transformations as a tool to investigate age-related effects on brain white matter integrity: A Box-Cox investigation.

    PubMed

    Morozova, Maria; Koschutnig, Karl; Klein, Elise; Wood, Guilherme

    2016-01-15

    Non-linear effects of age on white matter integrity are ubiquitous in the brain and indicate that these effects are more pronounced in certain brain regions at specific ages. Box-Cox analysis is a technique to increase the log-likelihood of linear relationships between variables by means of monotonic non-linear transformations. Here we employ Box-Cox transformations to flexibly and parsimoniously determine the degree of non-linearity of age-related effects on white matter integrity by means of model comparisons using a voxel-wise approach. Analysis of white matter integrity in a sample of adults between 20 and 89years of age (n=88) revealed that considerable portions of the white matter in the corpus callosum, cerebellum, pallidum, brainstem, superior occipito-frontal fascicle and optic radiation show non-linear effects of age. Global analyses revealed an increase in the average non-linearity from fractional anisotropy to radial diffusivity, axial diffusivity, and mean diffusivity. These results suggest that Box-Cox transformations are a useful and flexible tool to investigate more complex non-linear effects of age on white matter integrity and extend the functionality of the Box-Cox analysis in neuroimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

  12. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  13. Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua

    2007-04-01

    We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.

  14. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, William T.

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  15. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  16. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, W.T.

    1994-05-10

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  17. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: Hybrid use of high-order harmonics and spectral sidebands

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi

    2018-03-01

    The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.

  18. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    NASA Astrophysics Data System (ADS)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  19. Annual Review of Research Under the Joint Service Electronics Program.

    DTIC Science & Technology

    1979-10-01

    Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.

  20. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  1. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  2. Moral Competence for the Joint Warfighter: The Missing Element in Defense Transformation

    DTIC Science & Technology

    2006-06-01

    warriors. Further, it argues that through a combination of benign neglect and intentional acquiescence, the Services have undermined their own ethical ...initiate a Joint Ethical Transformation Campaign to improve moral competence and ethical cultures within all of the Services...21 Demand for Moral Skill Joint Values in Joint Warfare Challenging Ethical Environment Special Trust Avoiding the Worst Possible Outcome

  3. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  4. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    PubMed Central

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  5. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  6. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  7. Nonlinear flight control design using backstepping methodology

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Trung

    The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by eliminating the pseudo control transformations. In the second part, the research focuses on nonlinear control design for flight dynamics of aircraft motion. Some assumptions on aerodynamics of the aircraft are addressed to transform full nonlinear flight dynamics into the canonical strict-feedback form. The assumptions are also analyzed, validated, and compared to show the advantages and disadvantages of the design models. With the achieved models, investigation focuses on formulating the backstepping control laws and provides an advanced control algorithm for nonlinear flight dynamics of the aircraft. Experimental and simulation studies are successfully implemented to validate the proposed control method. Advancement of nonlinear backstepping control theory and its application to nonlinear flight control are achieved in the dissertation research.

  8. Proceedings of the Conference on Moments and Signal

    NASA Astrophysics Data System (ADS)

    Purdue, P.; Solomon, H.

    1992-09-01

    The focus of this paper is (1) to describe systematic methodologies for selecting nonlinear transformations for blind equalization algorithms (and thus new types of cumulants), and (2) to give an overview of the existing blind equalization algorithms and point out their strengths as well as weaknesses. It is shown that all blind equalization algorithms belong in one of the following three categories, depending where the nonlinear transformation is being applied on the data: (1) the Bussgang algorithms, where the nonlinearity is in the output of the adaptive equalization filter; (2) the polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the input of the adaptive equalization filter; and (3) the algorithms where the nonlinearity is inside the adaptive filter, i.e., the nonlinear filter or neural network. We describe methodologies for selecting nonlinear transformations based on various optimality criteria such as MSE or MAP. We illustrate that such existing algorithms as Sato, Benveniste-Goursat, Godard or CMA, Stop-and-Go, and Donoho are indeed special cases of the Bussgang family of techniques when the nonlinearity is memoryless. We present results that demonstrate the polyspectra-based algorithms exhibit faster convergence rate than Bussgang algorithms. However, this improved performance is at the expense of more computations per iteration. We also show that blind equalizers based on nonlinear filters or neural networks are more suited for channels that have nonlinear distortions.

  9. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  10. On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Mandal, Debraj; Sharma, Devendra

    2017-03-01

    An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.

  11. ECG compression using Slantlet and lifting wavelet transform with and without normalisation

    NASA Astrophysics Data System (ADS)

    Aggarwal, Vibha; Singh Patterh, Manjeet

    2013-05-01

    This article analyses the performance of: (i) linear transform: Slantlet transform (SLT), (ii) nonlinear transform: lifting wavelet transform (LWT) and (iii) nonlinear transform (LWT) with normalisation for electrocardiogram (ECG) compression. First, an ECG signal is transformed using linear transform and nonlinear transform. The transformed coefficients (TC) are then thresholded using bisection algorithm in order to match the predefined user-specified percentage root mean square difference (UPRD) within the tolerance. Then, the binary look up table is made to store the position map for zero and nonzero coefficients (NZCs). The NZCs are quantised by Max-Lloyd quantiser followed by Arithmetic coding. The look up table is encoded by Huffman coding. The results show that the LWT gives the best result as compared to SLT evaluated in this article. This transform is then considered to evaluate the effect of normalisation before thresholding. In case of normalisation, the TC is normalised by dividing the TC by ? (where ? is number of samples) to reduce the range of TC. The normalised coefficients (NC) are then thresholded. After that the procedure is same as in case of coefficients without normalisation. The results show that the compression ratio (CR) in case of LWT with normalisation is improved as compared to that without normalisation.

  12. How joint characteristics between a piezoelectric beam and the main structure affect the performance of an energy harvester

    NASA Astrophysics Data System (ADS)

    Jahani, K.; Rafiei, M. M.; Aghazadeh, P.

    2017-09-01

    In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.

  13. Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.

    2016-12-01

    We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Effect of dowel bar looseness on measured load transfer efficiency using FWD load

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Riad, Mourad Y.

    2001-07-01

    The effect of dowel bar looseness on the joint load transfer efficiency using Falling Weight Deflectometer is the subject of this paper. The mechanism of dynamic load transfer at transverse joints of Jointed Plain Concrete Pavement is examined using nonlinear 3D finite element analysis.

  15. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    NASA Technical Reports Server (NTRS)

    Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)

    1992-01-01

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  16. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    NASA Astrophysics Data System (ADS)

    Hsu, Ken-Yuh; Liu, Hua-Kuang

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  17. Improving observational study estimates of treatment effects using joint modeling of selection effects and outcomes: the case of AAA repair.

    PubMed

    O'Malley, A James; Cotterill, Philip; Schermerhorn, Marc L; Landon, Bruce E

    2011-12-01

    When 2 treatment approaches are available, there are likely to be unmeasured confounders that influence choice of procedure, which complicates estimation of the causal effect of treatment on outcomes using observational data. To estimate the effect of endovascular (endo) versus open surgical (open) repair, including possible modification by institutional volume, on survival after treatment for abdominal aortic aneurysm, accounting for observed and unobserved confounding variables. Observational study of data from the Medicare program using a joint model of treatment selection and survival given treatment to estimate the effects of type of surgery and institutional volume on survival. We studied 61,414 eligible repairs of intact abdominal aortic aneurysms during 2001 to 2004. The outcome, perioperative death, is defined as in-hospital death or death within 30 days of operation. The key predictors are use of endo, transformed endo and open volume, and endo-volume interactions. There is strong evidence of nonrandom selection of treatment with potential confounding variables including institutional volume and procedure date, variables not typically adjusted for in clinical trials. The best fitting model included heterogeneous transformations of endo volume for endo cases and open volume for open cases as predictors. Consistent with our hypothesis, accounting for unmeasured selection reduced the mortality benefit of endo. The effect of endo versus open surgery varies nonlinearly with endo and open volume. Accounting for institutional experience and unmeasured selection enables better decision-making by physicians making treatment referrals, investigators evaluating treatments, and policy makers.

  18. Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.

    PubMed

    Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian

    2018-06-01

    In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.

  19. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar

    2009-10-15

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed tomore » become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.« less

  20. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  1. Order reduction, identification and localization studies of dynamical systems

    NASA Astrophysics Data System (ADS)

    Ma, Xianghong

    In this thesis methods are developed for performing order reduction, system identification and induction of nonlinear localization in complex mechanical dynamic systems. General techniques are proposed for constructing low-order models of linear and nonlinear mechanical systems; in addition, novel mechanical designs are considered for inducing nonlinear localization phenomena for the purpose of enhancing their dynamical performance. The thesis is in three major parts. In the first part, the transient dynamics of an impulsively loaded multi-bay truss is numerically computed by employing the Direct Global Matrix (DGM) approach. The approach is applicable to large-scale flexible structures with periodicity. Karhunen-Loeve (K-L) decomposition is used to discretize the dynamics of the truss and to create the low-order models of the truss. The leading order K-L modes are recovered by an experiment, which shows the feasibility of K-L based order reduction technique. In the second part of the thesis, nonlinear localization in dynamical systems is studied through two applications. In the seismic base isolation study, it is shown that the dynamics are sensitive to the presence of nonlinear elements and that passive motion confinement can be induced under proper design. In the coupled rod system, numerical simulation of the transient dynamics shows that a nonlinear backlash spring can induce either nonlinear localization or delocalization in the form of beat phenomena. K-L decomposition and poincare maps are utilized to study the nonlinear effects. The study shows that nonlinear localization can be induced in complex structures through backlash. In the third and final part of the thesis, a new technique based on Green!s function method is proposed to identify the dynamics of practical bolted joints. By modeling the difference between the dynamics of the bolted structure and the corresponding unbolted one, one constructs a nonparametric model for the joint dynamics. Two applications are given with a bolted beam and a truss joint in order to show the applicability of the technique.

  2. Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints

    NASA Astrophysics Data System (ADS)

    Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.

    2013-09-01

    Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.

  3. "NONLINEAR DYNAMIC SYSTEMS RESPONSE TO NON-STATIONARY EXCITATION USING THE WAVELET TRANSFORM"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPANOS, POL D.

    2006-01-15

    The objective of this research project has been the development of techniques for estimating the power spectra of stochastic processes using wavelet transform, and the development of related techniques for determining the response of linear/nonlinear systems to excitations which are described via the wavelet transform. Both of the objectives have been achieved, and the research findings have been disseminated in papers in archival journals and technical conferences.

  4. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  5. Impact of Nonlinearity of The Contact Layer Between Elements Joined in a Multi-Bolted System on Its Preload

    NASA Astrophysics Data System (ADS)

    Grzejda, R.

    2017-12-01

    The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.

  6. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  7. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  8. Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    Artyushenko, V. M.; Volovach, V. I.

    2018-01-01

    We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.

  9. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  10. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2017-10-01

    We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

  11. Optimizing BAO measurements with non-linear transformations of the Lyman-α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinkang; Font-Ribera, Andreu; Seljak, Uroš, E-mail: xinkang.wang@berkeley.edu, E-mail: afont@lbl.gov, E-mail: useljak@berkeley.edu

    2015-04-01

    We explore the effect of applying a non-linear transformation to the Lyman-α forest transmitted flux F=e{sup −τ} and the ability of analytic models to predict the resulting clustering amplitude. Both the large-scale bias of the transformed field (signal) and the amplitude of small scale fluctuations (noise) can be arbitrarily modified, but we were unable to find a transformation that increases significantly the signal-to-noise ratio on large scales using Taylor expansion up to the third order. In particular, however, we achieve a 33% improvement in signal to noise for Gaussianized field in transverse direction. On the other hand, we explore anmore » analytic model for the large-scale biasing of the Lyα forest, and present an extension of this model to describe the biasing of the transformed fields. Using hydrodynamic simulations we show that the model works best to describe the biasing with respect to velocity gradients, but is less successful in predicting the biasing with respect to large-scale density fluctuations, especially for very nonlinear transformations.« less

  12. Decision-feedback detection strategy for nonlinear frequency-division multiplexing

    NASA Astrophysics Data System (ADS)

    Civelli, Stella; Forestieri, Enrico; Secondini, Marco

    2018-04-01

    By exploiting a causality property of the nonlinear Fourier transform, a novel decision-feedback detection strategy for nonlinear frequency-division multiplexing (NFDM) systems is introduced. The performance of the proposed strategy is investigated both by simulations and by theoretical bounds and approximations, showing that it achieves a considerable performance improvement compared to previously adopted techniques in terms of Q-factor. The obtained improvement demonstrates that, by tailoring the detection strategy to the peculiar properties of the nonlinear Fourier transform, it is possible to boost the performance of NFDM systems and overcome current limitations imposed by the use of more conventional detection techniques suitable for the linear regime.

  13. A Geomorphologic Synthesis of Nonlinearity in Surface Runoff

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Gupta, Vijay K.; Waymire, Ed

    1981-06-01

    The geomorphic approach leading to a representation of an instantaneous unit hydrograph (iuh) which we developed earlier is generalized to incorporate nonlinear effects in the rainfall-runoff transformation. It is demonstrated that the nonlinearity in the transformation enters in part through the dependence of the mean holding time on the rainfall intensity. Under an assumed first approximation that this dependence is the sole source of nonlinearity an explicit quasi-linear representation results for the rainfall- runoff transformation. The kernel function of this transformation can be termed as the instantaneous response function (irf) in contradistinction to the notion of an iuh for the case of a linear rainfall-runoff transformation. The predictions from the quasi-linear theory agree very well with predictions from the kinematic wave approach for the one small basin that is analyzed. Also, for two large basins in Illinois having areas of about 1100 mi2 the predictions from the quasi-linear approach compare very well with the observed flows. A measure of nonlinearity, α naturally arises through the dependence of the mean holding time KB(i0) on the rainfall intensity i0via KB (i0) ˜ i0 -α. Computations of α for four basins show that α approaches ⅔ as basin size decreases and approaches zero as the basin size increases. A semilog plot of α versus the square root of the basin area gives a straight line. Confirmation of this relationship for other basins would be of basic importance in predicting flows from ungaged basins.

  14. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin

    2017-03-01

    After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.

  15. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  16. Transforming Effective Army Units: Best Practices and Lessons Learned

    DTIC Science & Technology

    2013-08-01

    Unlimited 106 Dorothy Young 703-545-2316 ii iii Technical Report 1326 Effective Army Units: Best Practices and Lessons Learned...SBCT units at Joint Base Lewis -McChord (JBLM), and two civilian subject matter experts on transformation from the Program Manager (PM) Stryker and...ISR Intelligence, Surveillance, Reconnaissance JBLM Joint Base Lewis -McChord JRTC Joint Readiness Training Center A-2 LNO Liaison

  17. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    NASA Technical Reports Server (NTRS)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  18. A Comparison of Filter-based Approaches for Model-based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Saha, Bhaskar; Goebel, Kai

    2012-01-01

    Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the stateparameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.

  19. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  20. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less

  1. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  2. Solution of Fifth-order Korteweg and de Vries Equation by Homotopy perturbation Transform Method using He's Polynomial

    NASA Astrophysics Data System (ADS)

    Sharma, Dinkar; Singh, Prince; Chauhan, Shubha

    2017-06-01

    In this paper, a combined form of the Laplace transform method with the homotopy perturbation method is applied to solve nonlinear fifth order Korteweg de Vries (KdV) equations. The method is known as homotopy perturbation transform method (HPTM). The nonlinear terms can be easily handled by the use of He's polynomials. Two test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM).

  3. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  4. Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw

    2017-06-01

    We study the exact first-order soliton and breather solutions of the integrable nonlinear Schrödinger equations hierarchy up to fifth order. We reveal the underlying physical mechanism which transforms a breather into a soliton. Furthermore, we show how the dynamics of the Akhmediev breathers which exist on a constant background as a result of modulation instability, is connected with solitons on a zero background. We also demonstrate that, while a first-order rogue wave can be directly transformed into a soliton, higher-order rogue wave solutions become rational two-soliton solutions with complex collisional structure on a background. Our results will have practical implications in supercontinuum generation, turbulence, and similar other complex nonlinear scenarios.

  5. Joint transform correlator optical encryption system: Extensions of the recorded encrypted signal and its inverse Fourier transform

    NASA Astrophysics Data System (ADS)

    Galizzi, Gustavo E.; Cuadrado-Laborde, Christian

    2015-10-01

    In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.

  6. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  7. Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kaza, K. R. V.

    1976-01-01

    The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.

  8. Army Space and Transformation

    DTIC Science & Technology

    2005-09-01

    Command – Space and Global Strike JFCOM Joint Forces Command JFRL Joint Forces Restricted Frequency List JIC Joint Integrating Concept JIM Joint...into the theater’s Joint Restricted Frequency List (JRFL). The ARSST trained the coalition and US soldiers on installation, use and troubleshooting

  9. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  10. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    PubMed

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  11. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures

    DOE PAGES

    Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; ...

    2015-01-20

    Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less

  12. Model-Based Estimation of Ankle Joint Stiffness

    PubMed Central

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  13. Reduced-order modeling approach for frictional stick-slip behaviors of joint interface

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Xu, Chao; Fan, Xuanhua; Wan, Qiang

    2018-03-01

    The complex frictional stick-slip behaviors of mechanical joint interface have a great effect on the dynamic properties of assembled structures. In this paper, a reduced-order modeling approach based on the constitutive Iwan model is proposed to describe the stick-slip behaviors of joint interface. An improved Iwan model is developed to describe the non-zero residual stiffness at macro-slip regime and smooth transition of joint stiffness from micro-slip to macro-slip regime, and the power-law relationship of energy dissipation during the micro-slip regime. In allusion to these nonlinear behaviors, the finite element method is used to calculate the recycle force under monolithic loading and the energy dissipation per cycle under oscillatory loading. The proposed model is then used to predict the nonlinear stick-slip behaviors of joint interface by curve-fitting to the results of finite element analysis, and the results show good agreements with the finite element analysis. A comparison with the experiment results in literature is also made. The proposed model agrees very well with the experiment results.

  14. Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization

    PubMed Central

    Lyu, Siwei; Simoncelli, Eero P.

    2011-01-01

    We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the source is nongaussian and elliptically symmetric. In this case, no invertible linear transform suffices to decompose the signal into independent components, but we show that a simple nonlinear transformation, which we call radial gaussianization (RG), is able to remove all dependencies. We then examine this methodology in the context of natural image statistics. We first show that distributions of spatially proximal bandpass filter responses are better described as elliptical than as linearly transformed independent sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either nearby pairs or blocks of bandpass filter responses is significantly greater than that achieved by ICA. Finally, we show that the RG transformation may be closely approximated by divisive normalization, which has been used to model the nonlinear response properties of visual neurons. PMID:19191599

  15. Copula-based nonlinear modeling of the law of one price for lumber products

    Treesearch

    Barry K. Goodwin; Matthew T. Holt; Gülcan Önel; Jeffrey P. Prestemon

    2018-01-01

    This paper proposes an alternative and potentially novel approach to analyzing the law of one price in a nonlinear fashion. Copula-based models that consider the joint distribution of prices separated by space are developed and applied to weekly...

  16. Face-selective regions show invariance to linear, but not to non-linear, changes in facial images.

    PubMed

    Baseler, Heidi A; Young, Andrew W; Jenkins, Rob; Mike Burton, A; Andrews, Timothy J

    2016-12-01

    Familiar face recognition is remarkably invariant across huge image differences, yet little is understood concerning how image-invariant recognition is achieved. To investigate the neural correlates of invariance, we localized the core face-responsive regions and then compared the pattern of fMR-adaptation to different stimulus transformations in each region to behavioural data demonstrating the impact of the same transformations on familiar face recognition. In Experiment 1, we compared linear transformations of size and aspect ratio to a non-linear transformation affecting only part of the face. We found that adaptation to facial identity in face-selective regions showed invariance to linear changes, but there was no invariance to non-linear changes. In Experiment 2, we measured the sensitivity to non-linear changes that fell within the normal range of variation across face images. We found no adaptation to facial identity for any of the non-linear changes in the image, including to faces that varied in different levels of caricature. These results show a compelling difference in the sensitivity to linear compared to non-linear image changes in face-selective regions of the human brain that is only partially consistent with their effect on behavioural judgements of identity. We conclude that while regions such as the FFA may well be involved in the recognition of face identity, they are more likely to contribute to some form of normalisation that underpins subsequent recognition than to form the neural substrate of recognition per se. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multispectral Image Compression for Improvement of Colorimetric and Spectral Reproducibility by Nonlinear Spectral Transform

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2006-09-01

    The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.

  18. Effect of shaping sensor data on pilot response

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.

    1990-01-01

    The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult.

  19. Distributed Constrained Optimization with Semicoordinate Transformations

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2006-01-01

    Recent work has shown how information theory extends conventional full-rationality game theory to allow bounded rational agents. The associated mathematical framework can be used to solve constrained optimization problems. This is done by translating the problem into an iterated game, where each agent controls a different variable of the problem, so that the joint probability distribution across the agents moves gives an expected value of the objective function. The dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of automated annealing, which focuses the joint distribution more and more tightly about the joint moves that optimize the objective function. We then investigate the use of "semicoordinate" variable transformations. These separate the joint state of the agents from the variables of the optimization problem, with the two connected by an onto mapping. We present experiments illustrating the ability of such transformations to facilitate optimization. We focus on the special kind of transformation in which the statistically independent states of the agents induces a mixture distribution over the optimization variables. Computer experiment illustrate this for &sat constraint satisfaction problems and for unconstrained minimization of NK functions.

  20. Transformation of nonlinear discrete-time system into the extended observer form

    NASA Astrophysics Data System (ADS)

    Kaparin, V.; Kotta, Ü.

    2018-04-01

    The paper addresses the problem of transforming discrete-time single-input single-output nonlinear state equations into the extended observer form, which, besides the input and output, also depends on a finite number of their past values. Necessary and sufficient conditions for the existence of both the extended coordinate and output transformations, solving the problem, are formulated in terms of differential one-forms, associated with the input-output equation, corresponding to the state equations. An algorithm for transformation of state equations into the extended observer form is proposed and illustrated by an example. Moreover, the considered approach is compared with the method of dynamic observer error linearisation, which likewise is intended to enlarge the class of systems transformable into an observer form.

  1. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  2. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  3. The mu-derivative and its applications to finding exact solutions of the Cahn-Hilliard, Korteveg-de Vries, and Burgers equations.

    PubMed

    Mitlin, Vlad

    2005-10-15

    A new transformation termed the mu-derivative is introduced. Applying it to the Cahn-Hilliard equation yields dynamical exact solutions. It is shown that the mu-transformed Cahn-Hilliard equation can be presented in a separable form. This transformation also yields dynamical exact solutions and separable forms for other nonlinear models such as the modified Korteveg-de Vries and the Burgers equations. The general structure of a nonlinear partial differential equation that becomes separable upon applying the mu-derivative is described.

  4. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  5. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  6. Davidenko’s Method for the Solution of Nonlinear Operator Equations.

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATION), OPERATORS(MATHEMATICS), BANACH SPACE , MAPPING (TRANSFORMATIONS), NUMERICAL METHODS AND PROCEDURES, INTEGRALS, SET THEORY, CONVERGENCE, MATRICES(MATHEMATICS)

  7. Exploring the Acoustic Nonlinearity for Monitoring Complex Aerospace Structures

    DTIC Science & Technology

    2008-02-27

    nonlinear elastic waves, embedded ultrasonics, nonlinear diagnostics, aerospace structures, structural joints. 16. SECURITY CLASSIFICATION OF: 17...sampling, 100 MHz bandwidth with noise and anti- aliasing filters, general-purpose alias-protected decimation for all sample rates and quad digital down...conversion ( DDC ) with up to 40 MHz IF bandwidth. Specified resolution of NI PXI 5142 is 14-bits with the noise floor approaching -85 dB. Such a

  8. A video coding scheme based on joint spatiotemporal and adaptive prediction.

    PubMed

    Jiang, Wenfei; Latecki, Longin Jan; Liu, Wenyu; Liang, Hui; Gorman, Ken

    2009-05-01

    We propose a video coding scheme that departs from traditional Motion Estimation/DCT frameworks and instead uses Karhunen-Loeve Transform (KLT)/Joint Spatiotemporal Prediction framework. In particular, a novel approach that performs joint spatial and temporal prediction simultaneously is introduced. It bypasses the complex H.26x interframe techniques and it is less computationally intensive. Because of the advantage of the effective joint prediction and the image-dependent color space transformation (KLT), the proposed approach is demonstrated experimentally to consistently lead to improved video quality, and in many cases to better compression rates and improved computational speed.

  9. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  10. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications☆

    PubMed Central

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-01-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517

  11. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    PubMed

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  12. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    PubMed

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (p<0.01) and adding a cognitive load (p<0.01). The CoM nonlinear metric FD was decreased due to the cognitive loads (p<0.001). The visual interference increased the FD of all joints when the task included the cognitive loads (p<0.01). The slightly positive LLE values showed weakly-chaotic behavior of the whole body. The local joint rotations indicated higher LLEs. Results indicated weakly chaotic response of the whole body. Increase in the task difficulty by adding sensory interference had difference effects on parameters. Linear and nonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  13. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  14. Experimental gaze at nonlinear phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libchaber, A.

    1988-09-20

    Experimental observations of nonlinear problems in physics are presented, including liquid crystal phase transformations, convection of mercury, and the transition to turbulence in helium gas thermal convection./aip/.

  15. Nonlinear features for classification and pose estimation of machined parts from single views

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-10-01

    A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.

  16. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.

    PubMed

    Allen, Marcus; Zhong, Qiang; Kirsch, Nicholas; Dani, Ashwin; Clark, William W; Sharma, Nitin

    2017-12-01

    Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements. The SDC estimation method uses limb dynamics, instead of limb kinematics, to estimate the limb state. Importantly, the nonlinear limb dynamic model is formulated into state-dependent matrices that facilitate the estimator design without performing a Jacobian linearization. The estimation method is experimentally demonstrated to predict knee joint angle measurements during functional electrical stimulation of the quadriceps muscle. The nonlinear knee musculoskeletal model was identified through a series of experiments. The SDC estimator was then compared with an extended kalman filter (EKF), which uses a Jacobian linearization and a rotation matrix method, which uses a kinematic model instead of the dynamic model. Each estimator's performance was evaluated against the true value of the joint angle, which was measured through a rotary encoder. The experimental results showed that the SDC estimator, the rotation matrix method, and EKF had root mean square errors of 2.70°, 2.86°, and 4.42°, respectively. Our preliminary experimental results show the new estimator's advantage over the EKF method but a slight advantage over the rotation matrix method. However, the information from the dynamic model allows the SDC method to use only one IMU to measure the knee angle compared with the rotation matrix method that uses two IMUs to estimate the angle.

  17. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  18. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  19. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  20. Designs for thermal harvesting with nonlinear coordinate transformation

    NASA Astrophysics Data System (ADS)

    Ji, Qingxiang; Fang, Guodong; Liang, Jun

    2018-04-01

    In this paper a thermal concentrating design method was proposed based on the concept of generating function without knowing the needed coordinate transformation beforehand. The thermal harvesting performance was quantitatively characterized by heat concentrating efficiency and external temperature perturbation. Nonlinear transformations of different forms were employed to design high order thermal concentrators, and corresponding harvesting performances were investigated by numerical simulations. The numerical results shows that the form of coordinate transformation directly influences the distributions of heat flows inside the concentrator, consequently, influences the thermal harvesting behaviors significantly. The concentrating performance can be actively controlled and optimized by changing the form of coordinate transformations. The analysis in this paper offers a beneficial method to flexibly tune the harvesting performance of the thermal concentrator according to the requirements of practical applications.

  1. Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices

    ERIC Educational Resources Information Center

    Adachi, Kohei

    2009-01-01

    In component analysis solutions, post-multiplying a component score matrix by a nonsingular matrix can be compensated by applying its inverse to the corresponding loading matrix. To eliminate this indeterminacy on nonsingular transformation, we propose Joint Procrustes Analysis (JPA) in which component score and loading matrices are simultaneously…

  2. Efficient numerical method of freeform lens design for arbitrary irradiance shaping

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek

    2018-05-01

    A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.

  3. Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun

    2016-07-01

    Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.

  4. Marginal versus joint Box-Cox transformation with applications to percentile curve construction for IgG subclasses and blood pressures.

    PubMed

    He, Xuming; Ng, K W; Shi, Jian

    2003-02-15

    When age-specific percentile curves are constructed for several correlated variables, the marginal method of handling one variable at a time has typically been used. We address the question, frequently asked by practitioners, of whether we can achieve efficiency gains by joint estimation. We focus on a simple but common method of Box-Cox transformation and assess the statistical impact of a joint transformation to multivariate normality on the percentile curve estimation for correlated variables. We find that there is little gain from the joint transformation for estimating percentiles around the median but a noticeable reduction in variances is possible for estimating extreme percentiles that are usually of main interest in medical and biological applications. Our study is motivated by problems in constructing percentile charts for IgG subclasses of children and for blood pressures in adult populations, both of which are discussed in the paper as examples, and yet our general findings are applicable to a wide range of other problems. Copyright 2003 John Wiley & Sons, Ltd.

  5. Fatigue Magnification Factors of Arc-Soft-Toe Bracket Joints

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Huajun; Wang, Hongqing; Wang, Shuqing; Li, Dejiang; Li, Qun; Fang, Hui

    2018-06-01

    Arc-soft-toe bracket (ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. Since macroscopic geometric factors obviously influence the stress flaws in joints, the shapes and sizes of ASTBs should represent the stress distribution around cracks in the hot spots. In this paper, we introduce a geometric magnification factor for reflecting the macroscopic geometric effects of ASTB crack features and construct a 3D finite element model to simulate the distribution of stress intensity factor (SIF) at the crack endings. Sensitivity analyses with respect to the geometric ratio H t / L b , R/ L b , L t / L b are performed, and the relations between the geometric factor and these parameters are presented. A set of parametric equations with respect to the geometric magnification factor is obtained using a curve fitting technique. A nonlinear relationship exists between the SIF and the ratio of ASTB arm to toe length. When the ratio of ASTB arm to toe length reaches a marginal value, the SIF of crack at the ASTB toe is not influenced by ASTB geometric parameters. In addition, the arc shape of the ASTB slope edge can transform the stress flowing path, which significantly affects the SIF at the ASTB toe. A proper method to reduce stress concentration is setting a slope edge arc size equal to the ASTB arm length.

  6. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  7. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints

    NASA Astrophysics Data System (ADS)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang

    2018-03-01

    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  8. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint

    PubMed Central

    Guarín, Diego L.; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196

  9. Control algorithm implementation for a redundant degree of freedom manipulator

    NASA Technical Reports Server (NTRS)

    Cohan, Steve

    1991-01-01

    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation.

  10. Stability of strongly nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoffrey; Rand, Richard

    2007-10-01

    It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom systems to be investigated by standard procedures such as harmonic balance.

  11. Cocontraction of pairs of antagonistic muscles: analytical solution for planar static nonlinear optimization approaches.

    PubMed

    Herzog, W; Binding, P

    1993-11-01

    It has been stated in the literature that static, nonlinear optimization approaches cannot predict coactivation of pairs of antagonistic muscles; however, numerical solutions of such approaches have predicted coactivation of pairs of one-joint and multijoint antagonists. Analytical support for either finding is not available in the literature for systems containing more than one degree of freedom. The purpose of this study was to investigate analytically the possibility of cocontraction of pairs of antagonistic muscles using a static nonlinear optimization approach for a multidegree-of-freedom, two-dimensional system. Analytical solutions were found using the Karush-Kuhn-Tucker conditions, which were necessary and sufficient for optimality in this problem. The results show that cocontraction of pairs of one-joint antagonistic muscles is not possible, whereas cocontraction of pairs of multijoint antagonists is. These findings suggest that cocontraction of pairs of antagonistic muscles may be an "efficient" way to accomplish many movement tasks.

  12. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients.

    PubMed

    Kedziora, D J; Ankiewicz, A; Chowdury, A; Akhmediev, N

    2015-10-01

    We present an infinite nonlinear Schrödinger equation hierarchy of integrable equations, together with the recurrence relations defining it. To demonstrate integrability, we present the Lax pairs for the whole hierarchy, specify its Darboux transformations and provide several examples of solutions. These resulting wavefunctions are given in exact analytical form. We then show that the Lax pair and Darboux transformation formalisms still apply in this scheme when the coefficients in the hierarchy depend on the propagation variable (e.g., time). This extension thus allows for the construction of complicated solutions within a greatly diversified domain of generalised nonlinear systems.

  14. Second-Order Nonlinear Optical Properties of a Dithienylethene-Indolinooxazolidine Hybrid: A Joint Experimental and Theoretical Investigation.

    PubMed

    Bondu, Flavie; Quertinmont, Jean; Rodriguez, Vincent; Pozzo, Jean-Luc; Plaquet, Aurélie; Champagne, Benoît; Castet, Frédéric

    2015-12-14

    The nonlinear optical (NLO) properties of a double photochrome molecular switch are reported for the first time by considering the four trans forms of a dithienylethene-indolinooxazolidine hybrid. The four forms are characterized by means of hyper-Rayleigh scattering (HRS) experiments and quantum chemical calculations. Experimental measurements provide evidence that the pH- and light-triggered transformations between the different forms of the hybrid are accompanied by large variations of the first hyperpolarizability, which makes this compound an effective multistate NLO switch. Quantum chemical calculations conducted at the time-dependent Hartree-Fock and time-dependent DFT levels agree with the experimental data and allow a complete rationalization of the NLO responses of the different forms. The HRS signal of the forms with an open indolinooxazolidine moiety are more than one order of magnitude larger than that measured for the other forms, whereas the open/closed status of the dithienylethene subunit barely influences the dynamic NLO properties. However, extrapolation of the NLO responses to the static limit leads to univocally distinguishable intrinsic responses for three of the various forms. This hybrid system thus acts as a highly efficient multistate NLO switch for eventual exploitation in optical memory systems with multiple storage and nondestructive readout capacity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  16. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  17. Symmetries and conservation laws of a nonlinear sigma model with gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-06-01

    We study the symmetries and invariances of a version of the action functional of the nonlinear sigma model with gravitino, as considered in Jost et al. (2017). The action is invariant under rescaled conformal transformations, super Weyl transformations, and diffeomorphisms. In particular cases the functional possesses a degenerate supersymmetry. The corresponding conservation laws lead to a geometric interpretation of the energy-momentum tensor and supercurrent as holomorphic sections of appropriate bundles.

  18. MHD stagnation-point flow over a nonlinearly shrinking sheet with suction effect

    NASA Astrophysics Data System (ADS)

    Awaludin, Izyan Syazana; Ahmad, Rokiah; Ishak, Anuar

    2018-04-01

    The stagnation point flow over a shrinking permeable sheet in the existence of magnetic field is numerically investigated in this paper. The system of partial differential equations are transformed to a nonlinear ordinary differential equation using similarity transformation and is solved numerically using the boundary value problem solver, bvp4c, in Matlab software. It is found that dual solutions exist for a certain range of the shrinking strength.

  19. Design of time-pulse coded optoelectronic neuronal elements for nonlinear transformation and integration

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2008-03-01

    In the paper the actuality of neurophysiologically motivated neuron arrays with flexibly programmable functions and operations with possibility to select required accuracy and type of nonlinear transformation and learning are shown. We consider neurons design and simulation results of multichannel spatio-time algebraic accumulation - integration of optical signals. Advantages for nonlinear transformation and summation - integration are shown. The offered circuits are simple and can have intellectual properties such as learning and adaptation. The integrator-neuron is based on CMOS current mirrors and comparators. The performance: consumable power - 100...500 μW, signal period- 0.1...1ms, input optical signals power - 0.2...20 μW time delays - less 1μs, the number of optical signals - 2...10, integration time - 10...100 of signal periods, accuracy or integration error - about 1%. Various modifications of the neuron-integrators with improved performance and for different applications are considered in the paper.

  20. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  1. On the Hilbert-Huang Transform Data Processing System Development

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Flatley, Thomas P.; Huang, Norden E.; Cornwell, Evette; Smith, Darell

    2003-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The Fourier view of nonlinear mechanics that had existed for a long time, and the associated FFT (fairly recent development), carry strong a-priori assumptions about the source data, such as linearity and of being stationary. Natural phenomena measurements are essentially nonlinear and nonstationary. A very recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT) proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using the Empirical Mode Decomposition (EMD) followed by the Hilbert Transform of the empirical decomposition data (HT), the HHT allows spectrum analysis of nonlinear and nonstationary data by using an engineering a-posteriori data processing, based on the EMD algorithm. This results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF) that can be further analyzed for spectrum interpretation by the classical Hilbert Transform. This paper describes phase one of the development of a new engineering tool, the HHT Data Processing System (HHTDPS). The HHTDPS allows applying the "T to a data vector in a fashion similar to the heritage FFT. It is a generic, low cost, high performance personal computer (PC) based system that implements the HHT computational algorithms in a user friendly, file driven environment. This paper also presents a quantitative analysis for a complex waveform data sample, a summary of technology commercialization efforts and the lessons learned from this new technology development.

  2. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    PubMed

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters

    DTIC Science & Technology

    2012-03-01

    versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach

  4. Experiment of low resistance joints for the ITER correction coil.

    PubMed

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  5. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  6. Two-dimensional linear and nonlinear Talbot effect from rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  7. Prolongation structures of nonlinear evolution equations. II

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1976-01-01

    The prolongation structure of a closed ideal of exterior differential forms is further discussed, and its use illustrated by application to an ideal (in six dimensions) representing the cubically nonlinear Schroedinger equation. The prolongation structure in this case is explicitly given, and recurrence relations derived which support the conjecture that the structure is open - i.e., does not terminate as a set of structure relations of a finite-dimensional Lie group. We introduce the use of multiple pseudopotentials to generate multiple Baecklund transformation, and derive the double Baecklund transformation. This symmetric transformation concisely expresses the (usually conjectured) theorem of permutability, which must consequently apply to all solutions irrespective of asymptotic constraints.

  8. The MSPICE simulation of a saturating transformer

    NASA Astrophysics Data System (ADS)

    Maclean, David N.

    A transformer is simulated using a nonlinear saturating magnetic model. Hysteresis and gradual smooth reduction of core permeability are achieved with standard SPICE networks and functions. The equations that define the nonlinear inductance and the MSPICE circuits used to simulate them are derived. A hierarchy of circuit complexity that is based on the structured logic design subcircuit method is used. An example of a push-pull buck regulator being operated in an unbalanced condition is given. Noise ripple on the input power cable generates a dc offset current in the transformer. The example demonstrates how avionics power equipment can be evaluated for large-signal ac, dc, and transient behavior.

  9. Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras

    NASA Astrophysics Data System (ADS)

    Grahovski, Georgi G.; Mikhailov, Alexander V.

    2013-12-01

    Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.

  10. Application of Least-Squares Adjustment Technique to Geometric Camera Calibration and Photogrammetric Flow Visualization

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq

    1997-01-01

    Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.

  11. Moments and Signal Processing: Proceedings of the Conference Held in Monterey, CA. on March 30-31 1992

    DTIC Science & Technology

    1992-08-26

    the following three categories, de- pending where the nonlinear transformation is being applied on the data : (i) the Bussgang algorithms, where the...algorithms belong to one of the following three categories, depending where the nonlinear transformation is being applied on the data : "* The Bussgang...communication systems usually require an initial training period, during which a known data sequence (i.e., training sequence) is transmitted [43], [45]. An

  12. Theoretical investigations on plasma processes in the Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.

  13. Chosen-plaintext attack on a joint transform correlator encrypting system

    NASA Astrophysics Data System (ADS)

    Barrera, John Fredy; Vargas, Carlos; Tebaldi, Myrian; Torroba, Roberto

    2010-10-01

    We demonstrate that optical encryption methods based on the joint transform correlator architecture are vulnerable to chosen-plaintext attack. An unauthorized user, who introduces three chosen plaintexts in the accessible encryption machine, can obtain the security key code mask. In this contribution, we also propose an alternative method to eliminate ambiguities that allows obtaining the right decrypting key.

  14. Modern aspects of nonlinear convection and magnetic field in flow of thixotropic nanofluid over a nonlinear stretching sheet with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-05-01

    Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.

  15. Logarithmic Transformations in Regression: Do You Transform Back Correctly?

    ERIC Educational Resources Information Center

    Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.

    2009-01-01

    The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…

  16. Effect of Stretching Combined With Ultrashort Wave Diathermy on Joint Function and Its Possible Mechanism in a Rabbit Knee Contracture Model.

    PubMed

    Zhang, Quan Bing; Zhou, Yun; Zhong, Hua Zhang; Liu, Yi

    2018-05-01

    The aim of this study was to investigate the therapeutic effect of stretching combined with ultrashort wave on joint contracture and explore its possible mechanism. Thirty-two rabbits underwent unilateral immobilization of a knee joint at full extension to cause joint contracture. At 6 wks after immobilization, the rabbits were randomly divided into the following four groups: natural recovery group, stretching treatment group, ultrashort wave treatment group, and combined treatment group. For comparison, eight control group animals of corresponding age were also examined. The effect of stretching and ultrashort wave treatment on joint contracture was assessed by measuring the joint range of motion, evaluating the collagen deposition of joint capsule and assessing the mRNA and protein levels for transforming growth factor β1 in the joint capsule. The combined treatment group led to the best recovery of joint function. The combined treatment with stretching and ultrashort wave was more effective than stretching or ultrashort wave treatment alone against the synovial thickening of suprapatellar joint capsule, the collagen deposition of anterior joint capsule, and the elevated expression of transforming growth factor β1 in the joint capsule. Stretching combined with ultrashort wave treatment was effective in improving joint range of motion, reducing the biomechanical, histological, and molecular manifestations of joint capsule fibrosis in a rabbit model of extending joint contracture.

  17. Rogue waves and unbounded solutions of the NLSE

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2017-04-01

    Since the pioneering work of Zakharov has been generally admitted that rogue waves can be studied in the framework of the Nonlinear Schrödinger Equation (NLSE). Many researchers, Akhmediev, Peregrine, Matveev among others gave different solutions to this equation that, in some way, could be linked to rogue waves and also to its more important characteristic: its unexpectedness. Janssen (2003, 2004), Onorato (2004, 2006) and Waseda (2006) linked the coefficient of the nonlinear term of the Schrödinger equation with the Benjamin-Feir index (BFI) that, we know, is a measure of the modulational instability of the waves. From this point of view the value of this coefficient of the NLSE could be known from statistics. Thus the relationship between sea states and the mechanism of generation of rogue waves could be found out. Following the well-known Lie group theory researchers have been studying the Lie point symmetries of the NLSE: the scaling transformations, Galilean transformations and phase transformations. Basically these transformations turn the NLSE into a nonlinear ordinary differential equation called Duffing equation (also called eikonal equation). There are different ways to do this, but in most of them the independent variable that could be seen as a space variable is a kind of moving frame with the time incorporated in this way. The main aim of this work is to classify solutions of the Duffing equation (periodic and nonperiodic waves and also bounded and unbounded waves) bearing in mind that the coefficient of the nonlinear term in the NLSE is left unaltered in the process of the transformation.

  18. Additivity and maximum likelihood estimation of nonlinear component biomass models

    Treesearch

    David L.R. Affleck

    2015-01-01

    Since Parresol's (2001) seminal paper on the subject, it has become common practice to develop nonlinear tree biomass equations so as to ensure compatibility among total and component predictions and to fit equations jointly using multi-step least squares (MSLS) methods. In particular, many researchers have specified total tree biomass models by aggregating the...

  19. Symmetries and exact solutions of a class of nonlocal nonlinear Schrödinger equations with self-induced parity-time-symmetric potential.

    PubMed

    Sinha, Debdeep; Ghosh, Pijush K

    2015-04-01

    A class of nonlocal nonlinear Schrödinger equations (NLSEs) is considered in an external potential with a space-time modulated coefficient of the nonlinear interaction term as well as confining and/or loss-gain terms. This is a generalization of a recently introduced integrable nonlocal NLSE with self-induced potential that is parity-time-symmetric in the corresponding stationary problem. Exact soliton solutions are obtained for the inhomogeneous and/or nonautonomous nonlocal NLSE by using similarity transformation, and the method is illustrated with a few examples. It is found that only those transformations are allowed for which the transformed spatial coordinate is odd under the parity transformation of the original one. It is shown that the nonlocal NLSE without the external potential and a (d+1)-dimensional generalization of it admits all the symmetries of the (d+1)-dimensional Schrödinger group. The conserved Noether charges associated with the time translation, dilatation, and special conformal transformation are shown to be real-valued in spite of being non-Hermitian. Finally, the dynamics of different moments are studied with an exact description of the time evolution of the "pseudowidth" of the wave packet for the special case in which the system admits a O(2,1) conformal symmetry.

  20. Solving intuitionistic fuzzy multi-objective nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Anuradha, D.; Sobana, V. E.

    2017-11-01

    This paper presents intuitionistic fuzzy multi-objective nonlinear programming problem (IFMONLPP). All the coefficients of the multi-objective nonlinear programming problem (MONLPP) and the constraints are taken to be intuitionistic fuzzy numbers (IFN). The IFMONLPP has been transformed into crisp one and solved by using Kuhn-Tucker condition. Numerical example is provided to illustrate the approach.

  1. Nonlinear functional approximation with networks using adaptive neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1992-01-01

    A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.

  2. A q-deformation of the Bogoliubov transformations

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan; Segovia, Carlos

    2018-02-01

    An approach for q-deformed Bogoliubov transformations is presented. Assuming a left-right module action together with an *-operation and deformed commutation relations, we construct a q-deformation of the nonlinear Bogoliubov transformation. Finally, we introduce a Hopf structure when q is a root of unity.

  3. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  4. A numerical study on the limitations of modal Iwan models for impulsive excitations

    NASA Astrophysics Data System (ADS)

    Lacayo, Robert M.; Deaner, Brandon J.; Allen, Matthew S.

    2017-03-01

    Structures with mechanical joints are difficult to model accurately. Even if the natural frequencies of the system remain essentially constant, the damping introduced by the joints is often observed to change dramatically with amplitude. Although models for individual joints have been employed with some success, accurately modeling a structure with many joints remains a significant obstacle. To this end, Segalman proposed a modal Iwan model, which simplifies the analysis by modeling a system with a linear superposition of weakly-nonlinear, uncoupled single degree-of-freedom systems or modes. Given a simulation model with discrete joints, one can identify the model for each mode by selectively exciting each mode one at a time and observing how the transient response decays. However, in the environment of interest several modes may be excited simultaneously, such as in an experiment when an impulse is applied at a discrete point. In this work, the modal Iwan model framework is assessed numerically to understand how well it captures the dynamic response of typical structures with joints when they are excited with impulsive forces applied at point locations. This is done by comparing the effective natural frequency and modal damping of the uncoupled modal models with those of truth models that include nonlinear modal coupling. These concepts are explored for two structures, a simple spring-mass system and a finite element model of a beam, both of which contain physical Iwan elements to model joint nonlinearity. The results show that modal Iwan models can effectively capture the variations in frequency and damping with amplitude, which, for damping, can increase by as much as two orders of magnitude in the microslip regime. However, even in the microslip regime the accuracy of a modal Iwan model is found to depend on whether the mode in question is dominant in the response; in some cases the effective damping that the uncoupled model predicts is found to be in error by tens of percent. Nonetheless, the modal model captures the response qualitatively and is still far superior to a linear model.

  5. N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Qiang; Wang, Yue

    2017-11-01

    In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.

  6. Effect of Fourier transform on the streaming in quantum lattice gas algorithms

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min

    2018-04-01

    All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.

  7. Influence of a perturbation in the Gyrator domain for a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María. S.; Pérez-Cabré, Elisabet

    2017-08-01

    We present the results of the noise and occlusion tests in the Gyrator domain (GD) for a joint transform correlator-based encryption system. This encryption system was recently proposed and it was implemented by using a fully phase nonzero-order joint transform correlator (JTC) and the Gyrator transform (GT). The decryption system was based on two successive GTs. In this paper, we make several numerical simulations in order to test the performance and robustness of the JTC-based encryption-decryption system in the GD when the encrypted image is corrupted by noise or occlusion. The encrypted image is affected by additive and multiplicative noise. We also test the effect of data loss due to partial occlusion of the encrypted information. Finally, we evaluate the performance and robustness of the encryption-decryption system in the GD by using the metric of the root mean square error (RMSE) between the original image and the decrypted image when the encrypted image is degraded by noise or modified by occlusion.

  8. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  9. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    NASA Astrophysics Data System (ADS)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  10. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  11. Nonlinear Multiscale Transformations: From Synchronization to Error Control

    DTIC Science & Technology

    2001-07-01

    transformation (plus the quantization step) has taken place, a lossless Lempel - Ziv compression algorithm is applied to reduce the size of the transformed... compressed data are all very close, however the visual quality of the reconstructed image is significantly better for the EC compression algorithm ...used in recent times in the first step of transform coding algorithms for image compression . Ideally, a multiscale transformation allows for an

  12. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  13. A computational method for comparing the behavior and possible failure of prosthetic implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, C.; Hollerbach, K.; Perfect, S.

    1995-05-01

    Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less

  14. [Compensatory joints at the pelvis (author's transl)].

    PubMed

    Schumacher, G; Weber, M

    1980-10-01

    An osteochondrosis ischio-pubica represents a "testing site" for the integrity of the pelvis not only during child age but in adults as well. If all naturally available compensatory mechanisms have been exhausted especially following a change of range of motion in the pelvis ring structure, fatigue fractures or zones in transformation in the area typical of osteochondrosis ischio-pubica may appear. These fractures or transformation zones respectively to our mind have joint character, because they are capable of temporarily replacing lost mobility of physiological joints. Healing is achieved through rest, muscular balance and a specific physiotherapy. The purpose of this muscular training is to cushion all unphysiological motions in the pelvis and to support and boost the function of those joints still well preserved.

  15. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    NASA Astrophysics Data System (ADS)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1.093 pixels, which were respectively 42.1%, 48.3%, and 54.8% better than those achieved before the nonlinear bias compensation.

  16. Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2017-11-01

    An efficient systematic procedure is provided for symbolic computation of Lie groups of equivalence transformations and generalized equivalence transformations of systems of differential equations that contain arbitrary elements (arbitrary functions and/or arbitrary constant parameters), using the software package GeM for Maple. Application of equivalence transformations to the reduction of the number of arbitrary elements in a given system of equations is discussed, and several examples are considered. The first computational example of generalized equivalence transformations where the transformation of the dependent variable involves an arbitrary constitutive function is presented. As a detailed physical example, a three-parameter family of nonlinear wave equations describing finite anti-plane shear displacements of an incompressible hyperelastic fiber-reinforced medium is considered. Equivalence transformations are computed and employed to radically simplify the model for an arbitrary fiber direction, invertibly reducing the model to a simple form that corresponds to a special fiber direction, and involves no arbitrary elements. The presented computation algorithm is applicable to wide classes of systems of differential equations containing arbitrary elements.

  17. Self-synchronization in an ensemble of nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovsky, L. A., E-mail: lev.ostrovsky@gmail.com; Galperin, Y. V.; Skirta, E. A.

    2016-06-15

    The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.

  18. Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions.

    PubMed

    Porter, Marianne E; Ewoldt, Randy H; Long, John H

    2016-09-15

    During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.

  19. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  20. Seismic performance of arch dams on non-homogeneous and discontinuous foundations (a case study: Karun 4 Dam)

    NASA Astrophysics Data System (ADS)

    Ferdousi, A.

    2017-06-01

    The present study set out to investigate the nonlinear seismic response of the dam-reservoir-rock foundation system, taking into consideration the effects of change in the material properties of discontinuous foundation. To this end, it is important to provide the proper modeling of truncated boundary conditions at the far-end of rock foundation and reservoir fluid domain and to correctly apply the in situ stresses for rock foundation. The nonlinear seismic response of an arch dam mainly depends on the opening and sliding of the dam body's contraction joints and foundation discontinuities, failure of the jointed rock and concrete materials, etc. In this paper, a time domain dynamic analysis of the 3D dam-reservoir-foundation interaction problem was performed by developing a nonlinear Finite Element program. The results of the analysis of Karun-4 Dam revealed the essential role of modeling discontinuities and boundary conditions of rock foundation under seismic excitation.

  1. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.

    PubMed

    Teli, Mohammad Nayeem; Anderson, Charles

    2009-01-01

    Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.

  2. Joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-07-01

    This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.

  3. Symmetric log-domain diffeomorphic Registration: a demons-based approach.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2008-01-01

    Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient.

  4. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  5. Some Remarks on Similarity and Soliton Solutions of Nonlinear Klein-Gordon Equation

    NASA Astrophysics Data System (ADS)

    Tajiri, Masayoshi

    1984-11-01

    The three-dimensional nonlinear Klein-Gordon [, Higgs field and Yang-Milles] (3D-KG [, H and YM]) equation is first reduced to the 2D nonlinear Schrödinger (2D-NLS) and 2D-KG [, H and YM] equations, and secondly to the 1D-NLS and 1D-KG [, H and YM] equations by similarity transformations. It is shown that similar type soliton solutions of the 3D-KG, H and YM equations, which have singularity on a plane in (x, y, z, t) space, are obtained by substituting the soliton solutions of the 1D-NLS or 1D-KG (or H) equation into the similarity transformations. The soliton solutions of the YM equation are also investigated.

  6. The ice age cycle and the deglaciations: an application of nonlinear regression modelling

    NASA Astrophysics Data System (ADS)

    Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.

    2000-03-01

    We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.

  7. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  8. Real-Time Implementation of Nonlinear Processing Functions.

    DTIC Science & Technology

    1981-08-01

    crystal devices and then to use them in a coherent optical data- processing apparatus using halftone masks custom designed at the University oi Southern...California. With the halftone mask technique, we have demonstrated logarithmic nonlinear transformation, allowing us to separate multiplicative images...improved.,_ This device allowed nonlinear functions to be implemented directly wit - out the need for specially made halftone masks. Besides

  9. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less

  10. A direct application of the non-linear inverse transformation flight control system design on a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. W.; Mcneill, W. E.; Stortz, M. W.

    1993-01-01

    The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.

  11. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  12. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA.

    PubMed

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.

  13. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA

    PubMed Central

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints. PMID:27014051

  14. Negotiating on location, timing, duration, and participant in agent-mediated joint activity-travel scheduling

    NASA Astrophysics Data System (ADS)

    Ma, Huiye; Ronald, Nicole; Arentze, Theo A.; Timmermans, Harry J. P.

    2013-10-01

    Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location, participants, and timing and take different approaches to make their decisions. In this context, joint activity participation requires negotiation among agents involved, so that conflicts among the agents can be addressed. Existing mechanisms do not fully provide a solution when utility functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in time and space as an application, we propose a novel negotiation approach, which takes into account these properties, such as continuous and discrete issues, and nonlinear and non-monotonic utility functions, by defining a concession strategy and a search mechanism. The results of experiments show that agents having these properties can negotiate efficiently. Furthermore, the negotiation procedure affects individuals’ choices of location, timing, duration, and participants.

  15. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  16. Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool

    NASA Astrophysics Data System (ADS)

    Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.

    2010-09-01

    An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.

  17. Nonlinear Convective Flows in a Laterally Heated Two-Layer System with a Temperature-Dependent Heat Release/Consumption at the Interface

    NASA Astrophysics Data System (ADS)

    Simanovskii, Ilya; Viviani, Antonio; Dubois, Frank; Queeckers, Patrick

    2018-01-01

    Nonlinear convective flows developed under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer system filling the closed cavity, have been investigated. The influence of a temperature-dependent interfacial heat release/consumption on nonlinear steady and oscillatory regimes, has been studied. It is shown that sufficiently strong temperature dependence of interfacial heat sinks and heat sources can change the sequence of bifurcations and lead to the development of specific oscillatory regimes in the system.

  18. Design and optimization of color lookup tables on a simplex topology.

    PubMed

    Monga, Vishal; Bala, Raja; Mo, Xuan

    2012-04-01

    An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.

  19. Analysis of two dimensional signals via curvelet transform

    NASA Astrophysics Data System (ADS)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

    2007-04-01

    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  20. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  1. Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana

    2017-04-01

    The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.

  2. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  3. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  4. Cosmological N -body simulations with generic hot dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  5. Cosmological N-body simulations with generic hot dark matter

    NASA Astrophysics Data System (ADS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  6. Nonlinear dynamics and control of a vibrating rectangular plate

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    1983-01-01

    The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.

  7. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  8. Numerical simulation of artificial hip joint motion based on human age factor

    NASA Astrophysics Data System (ADS)

    Ramdhani, Safarudin; Saputra, Eko; Jamari, J.

    2018-05-01

    Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.

  9. Defocusing complex short-pulse equation and its multi-dark-soliton solution.

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2016-05-01

    In this paper, we propose a complex short-pulse equation of both focusing and defocusing types, which governs the propagation of ultrashort pulses in nonlinear optical fibers. It can be viewed as an analog of the nonlinear Schrödinger (NLS) equation in the ultrashort-pulse regime. Furthermore, we construct the multi-dark-soliton solution for the defocusing complex short-pulse equation through the Darboux transformation and reciprocal (hodograph) transformation. One- and two-dark-soliton solutions are given explicitly, whose properties and dynamics are analyzed and illustrated.

  10. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  11. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  12. Defense Science Board 2005 Summer Study on Transformation: A Progress Assessment. Volume 2. Supporting Reports

    DTIC Science & Technology

    2006-04-01

    Banking Mr. Robert Luby, IBM Dr. Robert Lucky, Telcordia Technologies Mr. William Lynn, Raytheon Mr. Dave Oliver, EADS North America GOVERNMENT...MAY 2005 Central Command (CENTCOM) COL Peter Zielinski CENTCOM Office of Force Transformation (OFT) Review of COCOM Experimentation COL Richard...for Defense Analyses Mr. Patrick McCarthy, U.S. Joint Forces Command Mr. Stephen Moore, U.S. Joint Forces Command MAY 10, 2005 COL Peter Zielinski

  13. Adaptive Control via Neural Output Feedback for a Class of Nonlinear Discrete-Time Systems in a Nested Interconnected Form.

    PubMed

    Li, Dong-Juan; Li, Da-Peng

    2017-09-14

    In this paper, an adaptive output feedback control is framed for uncertain nonlinear discrete-time systems. The considered systems are a class of multi-input multioutput nonaffine nonlinear systems, and they are in the nested lower triangular form. Furthermore, the unknown dead-zone inputs are nonlinearly embedded into the systems. These properties of the systems will make it very difficult and challenging to construct a stable controller. By introducing a new diffeomorphism coordinate transformation, the controlled system is first transformed into a state-output model. By introducing a group of new variables, an input-output model is finally obtained. Based on the transformed model, the implicit function theorem is used to determine the existence of the ideal controllers and the approximators are employed to approximate the ideal controllers. By using the mean value theorem, the nonaffine functions of systems can become an affine structure but nonaffine terms still exist. The adaptation auxiliary terms are skillfully designed to cancel the effect of the dead-zone input. Based on the Lyapunov difference theorem, the boundedness of all the signals in the closed-loop system can be ensured and the tracking errors are kept in a bounded compact set. The effectiveness of the proposed technique is checked by a simulation study.

  14. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  15. Transforming wealth: using the inverse hyperbolic sine (IHS) and splines to predict youth's math achievement.

    PubMed

    Friedline, Terri; Masa, Rainier D; Chowa, Gina A N

    2015-01-01

    The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Advanced driver assistance system: Road sign identification using VIAPIX system and a correlation technique

    NASA Astrophysics Data System (ADS)

    Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.

    2017-02-01

    We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.

  18. Decoupling Identification for Serial Two-Link Two-Inertia System

    NASA Astrophysics Data System (ADS)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  19. Effect of Emplacement Material Properties on Chemical Explosion Spectra - Preliminary Analysis Using Synthetic Waveforms Near Elastic Radii

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Ezzedine, S. M.; Vorobiev, O.; Antoun, T.; Woods, M. T.

    2017-12-01

    The focus of this study is to investigate the effect of the non-linear material properties on synthetic waveforms at receivers located within the elastic region near the non-linear zone around energetic chemical explosions. The primary goal is to characterize the effect of porosity and joint properties. The joint sizes are typically small compared with the wavelength represented by the computational grid, so the calculations become time consuming to properly represent the fidelity of the calculations. In this study, we use GEODYN-L Lagrangian code, where the joints are included explicitly. We simulate a suite of synthetics for chemical explosions in granite, and varying the porosity and joint orientation. Using the generated synthetic waveforms in the elastic region, we calculate displacement spectra and compare them with homogenous medium solutions (i.e., free of porosity and joints). We are attempting to develop a set of correction factors necessary to apply in various field (emplacement) conditions so that the spectral characteristics can be compared to those predicted by the Mueller-Murphy (MM, 1971; Saikia, 2017) and other source functions (Denny and Johnson, 1991; Ford and Walter, 2013) near the elastic radii. Future investigations will include similar analysis for the nuclear explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  1. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  2. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Dun; Center for Interdisciplinary Studies, Lanzhou University, Lanzhou 730000; Zhang Yujuan

    2011-04-15

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLSmore » systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.« less

  3. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  4. Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, T.; Smith, Steven A.

    2001-01-01

    The effects of uncertainties on the strength of a single lap shear joint are explained. Probabilistic and possibilistic methods are used to account for uncertainties. Linear and geometrically nonlinear finite element analyses are used in the studies. To evaluate the strength of the joint, fracture in the adhesive and material strength failure in the strap are considered. The study shows that linear analyses yield conservative predictions for failure loads. The possibilistic approach for treating uncertainties appears to be viable for preliminary design, but with several qualifications.

  5. Rapid Slewing of Flexible Space Structures

    DTIC Science & Technology

    2015-09-01

    axis gimbal with elastic joints. The performance of the system can be enhanced by designing antenna maneuvers in which the flexible effects are...the effects of the nonlinearities so the vibrational motion can be constrained for a time-optimal slew. It is shown that by constructing an...joints. The performance of the system can be enhanced by designing antenna maneuvers in which the flexible effects are properly constrained, thus

  6. Quantification of cardiovascular and cardiorespiratory coupling during hypoxia with Joint Symbolic Dynamics.

    PubMed

    Reulecke, S; Schulz, S; Bauer, R; Witte, H; Voss, A

    2011-01-01

    Newborn mammals suffering from moderate hypoxia during or after birth are able to compensate a transitory lack of oxygen by adaptation of their vital functions. However, limited information is available about bivariate couplings of the underlying complex processes controlled by the autonomic nervous system. In this study an animal model of seven newborn piglets (2-3 days old, 1.71 ± 0.15 kg) was used. The aim of this study was to analyze the cardiovascular and cardiorespiratory interactions of autonomous nervous system during sustained hypoxia and the interrelationship of these autonomic time series after induced reoxygenation. For this purpose we applied a new high resolution version of the nonlinear method of Joint Symbolic Dynamics (JSD) for analysis of couplings between heart rate and blood pressure and respiration rate time series, respectively. This new method is characterized by using three defined symbols (JSD3) instead of two and the application of thresholds for the symbol transformation. Our results demonstrate that in contrast to the traditional JSD the comparison of cardiovascular interactions reveals only significant differences between normoxic and hypoxic conditions using JSD3 whereas for cardiorespiratory interactions significant differences were revealed by indices from both JSD2 and JSD3 due to reoxygenation. These results suggest that the application of JSD3 reveals more detailed information about cardiovascular and cardiorespiratory interactions of autonomic regulation and might be useful for monitoring of critical human newborns.

  7. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  8. Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point

    NASA Astrophysics Data System (ADS)

    Dey, Pinkee; Suslov, Sergey A.

    2016-12-01

    A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.

  9. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Román; Frieman, Joshua A.

    1999-07-01

    We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.

  10. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  11. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  12. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.

    PubMed

    Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A

    2013-11-01

    Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  13. Annual Review of Research Under the Joint Services Electronics Program.

    DTIC Science & Technology

    1978-10-01

    Electronic Science at Texas Tech University. Specific topics covered include fault analysis, Stochastic control and estimation, nonlinear control, multidimensional system theory , Optical noise, and pattern recognition.

  14. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong

    2017-07-01

    The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.

  15. Local muscle oxygen consumption related to external and joint specific power.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2016-02-01

    The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang Viet; Patra, Jagdish Chandra; Emmanuel, Sabu

    2006-12-01

    A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.

  17. Military Transformation and the Defense Industry After Next: The Defense Industrial Implications of Network-Centric Warfare

    DTIC Science & Technology

    2002-09-01

    including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson...require the acquisition of unfamiliar weapons and support systems. Joint and service visions of the military after next raise serious questions that...and the U.S. Defense Industry The U.S. military is awash in visions of transformation. There is an array of joint and service visions of what has become

  18. The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion

    PubMed Central

    Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.

    2012-01-01

    Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113

  19. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  20. Coupled Multi-physics analysis of Caprock Integrity and Fault Reactivation during CO2 Sequestration*

    NASA Astrophysics Data System (ADS)

    Newell, P.; Martinez, M. J.; Bishop, J.

    2012-12-01

    Structural/stratigraphic trapping beneath a low-permeable caprock layer is the primary trapping mechanism for long-term subsurface sequestration of CO2. Pre-existing fracture networks, injection induced fractures, and faults are of concern for possible CO2 leakage both during and after injection. In this work we model the effects of both caprock jointing and a fault on the caprock sealing integrity during various injection scenarios. The modeling effort uses a three-dimensional finite-element based coupled multiphase flow and geomechanics simulator. The joints within the caprock are idealized as equally spaced and parallel. Both the mechanical and flow behavior of the joint network are treated within an effective continuum formulation. The mechanical behavior of the joint network is linear elastic in shear and nonlinear elastic in the normal direction. The flow behavior of the joint network is treated using the classical cubic-law relating flow rate and aperture. The flow behavior is then upscaled to obtain an effective permeability. The fault is modeled as a finite-thickness layer with multiple joint sets. The joint sets within the fault region are modeled following the same mechanical and flow formulation as the joints within the caprock. Various injection schedules as well as fault and caprock jointing configurations within a proto-typical sequestration site have been investigated. The resulting leakage rates through the caprock and fault are compared to those assuming intact material. The predicted leakage rates are a strong nonlinear function of the injection rate. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Wormhole Formation in RSRM Nozzle Joint Backfill

    NASA Technical Reports Server (NTRS)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and predictions. Finally, two candidate replacement materials are being screened and "validated" using the developed test systems.

  2. Load transfer in the stiffener-to-skin joints of a pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Rastogi, Naveen

    1995-01-01

    Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.

  3. Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements

    NASA Astrophysics Data System (ADS)

    Kravets, Nina; Brasselet, Etienne

    2018-01-01

    We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort, which may foster the development of nonlinear protocols to manipulate high-dimensional optical information both in the classical and quantum regimes.

  4. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  5. Analytical solution of the nonlinear diffusion equation

    NASA Astrophysics Data System (ADS)

    Shanker Dubey, Ravi; Goswami, Pranay

    2018-05-01

    In the present paper, we derive the solution of the nonlinear fractional partial differential equations using an efficient approach based on the q -homotopy analysis transform method ( q -HATM). The fractional diffusion equations derivatives are considered in Caputo sense. The derived results are graphically demonstrated as well.

  6. Decentralized adaptive control of manipulators - Theory, simulation, and experimentation

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.

  7. Inversion Of Jacobian Matrix For Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.

  8. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  9. 630 kVA high temperature superconducting transformer

    NASA Astrophysics Data System (ADS)

    Zueger, H.

    This document describes the 630 KVA HTS transformer project made by ABB jointly with EDF and ASC. The project started April 1994 and its goal was to manufacture a real scale superconducting distribution transformer and to operate it during one year in the grid of Geneva's utility (SIG). The conclusion highlights the future perspective of HTS transformers.

  10. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimulia)

    PubMed Central

    Gottlieb, Peter K.; Vaisbuch, Yona

    2018-01-01

    The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.

  11. Inverse scattering transform analysis of rogue waves using local periodization procedure

    NASA Astrophysics Data System (ADS)

    Randoux, Stéphane; Suret, Pierre; El, Gennady

    2016-07-01

    The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra.

  12. Inverse scattering transform analysis of rogue waves using local periodization procedure

    PubMed Central

    Randoux, Stéphane; Suret, Pierre; El, Gennady

    2016-01-01

    The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra. PMID:27385164

  13. Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy

    NASA Astrophysics Data System (ADS)

    Takasaki, K.

    1990-08-01

    Symmetry properties of the space of complex (or formal) hyper-Kähler metrics are studied in the language of hyper-Kähler hierarchies. The construction of finite symmetries is analogous to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a (pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have a rather simple form. These infinitesimal transformations are extended to the Plebanski key functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra structure turns out to originate in a contact structure behind a set of symplectic structures inherent in the hyper-Kähler hierarchy. Possible relations to membrane theory are briefly discussed.

  14. On a new class of completely integrable nonlinear wave equations. I. Infinitely many conservation laws

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1985-06-01

    We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.

  15. Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Cui, Shitang; Hu, Liming; Yan, Jun

    This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.

  16. Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback

    NASA Astrophysics Data System (ADS)

    Zverev, V. V.; Rubinstein, B. Ya.

    1991-04-01

    We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.

  17. Novel actuation design of a gait trainer with shadow leg approach.

    PubMed

    Meuleman, Jos; Meuleman, Jos; van Asseldonk, Edwin H F; van der Kooij, Herman

    2013-06-01

    Robotic gait training has developed since the end of the 20(th) century, yet there is much room for improvement in the design of the robots. With the conventional exoskeleton structures, donning of patients in a gait trainer usually is a cumbersome process due to the need of joint alignments and normal walking is often hindered due to obstructed arm swing. Our goal was to design a gait training robots that overcomes these limitations. We propose a novel design in which these drawbacks are reduced to a great amount. By using a parallel structure behind the patient (shadow leg) that is connected to the patient joints with rods, little alignment is needed, the area lateral to the hip is left free, and thus arm swing is not obstructed. The construction is lightweight, because the actuators are mounted on a fixed base and the transmission of power is executed with light weight rods. An end stop in the shadow leg prevents hyper extension of the patient's knee. The relationship between motor displacement and human joint rotations is nonlinear. In this paper we derive the nonlinear relationships between motors and patient joints and verify these. calculations with a measurement. The device has been built, now tests with subjects are required to assess if subjects can indeed walk normally in the robot.

  18. Seismic performance of the typical RC beam-column joint subjected to repeated earthquakes

    NASA Astrophysics Data System (ADS)

    Hassanshahi, Omid; Majid, Taksiah A.; Lau, Tze Liang; Yousefi, Ali; Tahara, R. M. K.

    2017-10-01

    It is common that a building experience repeated earthquakes throughout its lifetime. Such earthquake is capable of creating severe damage in primary elements of the building due to accumulation of inelastic displacement from repetition. The present study focuses on the influence of repeated earthquakes on a typical Reinforced Concrete (RC) beam-column joint, especially on the maximum inelastic displacement demand and maximum residual displacement. For this purpose, the capability of nonlinear modelling in simulating the hysteretic behaviour of the prototype experimental specimen is first determined using RUAUMOKO. A nonlinear Incremental Dynamic Analysis (IDA) on the verified model is then carried out in order to estimate with maximum accuracy the ultimate load bearing capacity to progressive collapse of the RC joint under investigation. Twenty ground motions are selected, and single (C1), double (C2), and triple (C3) event of synthetic repeated earthquakes are then considered. The results show that the repeated earthquakes significantly increase the inelastic demand of the RC joint. On average, relative increment of maximum inelastic displacement demand is experienced about 28.9% and 39.4% when C2 and C3 events of repeated earthquakes are induced, respectively. Residual displacements for repeated earthquakes are also significantly higher than that for single earthquakes.

  19. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study

    PubMed Central

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  20. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  1. Nonlinear and non-Gaussian Bayesian based handwriting beautification

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2013-03-01

    A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.

  2. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    PubMed

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  3. Collective Training and Fielding Opportunities for the Objective Force Maneuver Systems at the Unit of Action Level in a Unit Manning/Unit Replacement Personnel System

    DTIC Science & Technology

    2003-04-07

    PERSON Rife, Dave RifeD@awc.carlisle.army.mil a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER International...38 WORD COUNT = 8975 39 40 ENDNOTES 1 COL Pete Zielinski , Director, Joint/Army concepts HQs TRADOC “Transformation Update” briefing slide #9, Briefing...Staff. Interviewed by author, 18 February 2003, Carlisle Barracks, PA. Zielinski , Pete, COL Director, Joint/Army concepts HQs TRADOC “Transformation

  4. Growing hair on the extremal BTZ black hole

    NASA Astrophysics Data System (ADS)

    Harms, B.; Stern, A.

    2017-06-01

    We show that the nonlinear σ-model in an asymptotically AdS3 space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear σ-model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear σ-model fields and changes the space-time metric, and it can be used to map the extremal BTZ black hole to infinitely many hairy black hole solutions.

  5. Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association

    PubMed Central

    Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You

    2017-01-01

    This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085

  6. Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.

    PubMed

    Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You

    2017-11-05

    This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.

  7. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Piezoelectric transformer structural modeling--a review.

    PubMed

    Yang, Jiashi

    2007-06-01

    A review on piezoelectric transformer structural modeling is presented. The operating principle and the basic behavior of piezoelectric transformers as governed by the linear theory of piezoelectricity are shown by a simple, theoretical analysis on a Rosen transformer based on extensional modes of a nonhomogeneous ceramic rod. Various transformers are classified according to their structural shapes, operating modes, and voltage transforming capability. Theoretical and numerical modeling results from the theory of piezoelectricity are reviewed. More advances modeling on thermal and nonlinear effects also are discussed. The article contains 167 references.

  9. Quantum state matching of qubits via measurement-induced nonlinear transformations

    NASA Astrophysics Data System (ADS)

    Kálmán, Orsolya; Kiss, Tamás

    2018-03-01

    We consider the task of deciding whether an unknown qubit state falls in a prescribed neighborhood of a reference state. We assume that several copies of the unknown state are given and apply a unitary operation pairwise on them combined with a postselection scheme conditioned on the measurement result obtained on one of the qubits of the pair. The resulting transformation is a deterministic, nonlinear, chaotic map in the Hilbert space. We derive a class of these transformations capable of orthogonalizing nonorthogonal qubit states after a few iterations. These nonlinear maps orthogonalize states which correspond to the two different convergence regions of the nonlinear map. Based on the analysis of the border (the so-called Julia set) between the two regions of convergence, we show that it is always possible to find a map capable of deciding whether an unknown state is within a neighborhood of fixed radius around a desired quantum state. We analyze which one- and two-qubit operations would physically realize the scheme. It is possible to find a single two-qubit unitary gate for each map or, alternatively, a universal special two-qubit gate together with single-qubit gates in order to carry out the task. We note that it is enough to have a single physical realization of the required gates due to the iterative nature of the scheme.

  10. Transformation of nonlinear behaviors: from bright- to dark-gap soliton in a one-dimensional photonic crystal containing a nonlinear indefinite metamaterial defect.

    PubMed

    Zhang, Wei; Chen, Yuanyuan; Hou, Peng; Shi, Jielong; Wang, Qi

    2010-12-01

    Nonlinear propagation characteristics are investigated theoretically in a one-dimensional photonic band-gap structure doped with a nonlinear indefinite metamaterial defect for five distinct frequency intervals. It is found from the electric field distribution that there exists the bright gap solitonlike when the nonlinear indefinite metamaterial defect is a cut-off medium, while the dark gap solitonlike can appear in the nonlinear never cut-off defect layer. It is also found that there exists corresponding bistable lateral shift the properties of which are strongly dependent on the permittivity and permeability of nonlinear indefinite metamaterials. Moreover, in contrast to the switch-down threshold value, the switch-up threshold value is more sensitive to the incident frequency.

  11. Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action

    PubMed Central

    Pezzulo, Giovanni; Iodice, Pierpaolo; Ferraina, Stefano; Kessler, Klaus

    2013-01-01

    The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the “re-calibration” of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors’ spatial representations and creates a “Shared Action Space” (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. PMID:24324425

  12. Influence of ultrasound on the electrical breakdown of transformer oil

    NASA Astrophysics Data System (ADS)

    Isakaev, E. Kh; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Demirov, N. A.; Akimov, P. L.

    2018-01-01

    When the transformer oil is exposed to low power ultrasonic waves (< 2 W/cm2) at initial moment the breakdown voltage of transformer oil is reduced relative to the breakdown voltage of pure oil due to degassing and the occurrence of cavitation bubbles. With the increase of sonication time the breakdown voltage also increases, nonlinearly. The experimental data indicate the possibility of using ultrasonic waves of low power for degassing of transformer oil.

  13. Automatic soldering machine

    NASA Technical Reports Server (NTRS)

    Stein, J. A.

    1974-01-01

    Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.

  14. Challenges in Promoting Joint Use Agreements: Experiences From Community Transformation Grant Awardees in North Carolina, Illinois, and Wisconsin, 2011–2014

    PubMed Central

    Baldyga, William; Hilgendorf, Amy; Walker, Jennifer Gilchrist; Hewson, Danielle; Rhew, Lori; Uskali, Amber

    2015-01-01

    Community Transformation Grant awardees in North Carolina, Illinois, and Wisconsin promoted joint use agreements (formal agreements between 2 parties for the shared use of land or facilities) as a strategy to increase access to physical activity in their states. However, awardees experienced significant barriers to establishing joint use agreements, including 1) confusion about terminology and an aversion to complex legal contracts, 2) lack of applicability to single organizations with open use policies, and 3) questionable value in nonurban areas where open lands for physical activity are often available and where the need is instead for physical activity programs and infrastructure. Furthermore, promotion of formal agreements may unintentionally reduce access by raising concerns regarding legal risks and costs associated with existing shared use of land. Thus, joint use agreements have practical limitations that should be considered when selecting among strategies to promote physical activity participation. PMID:25880770

  15. Challenges in promoting joint use agreements: experiences from Community Transformation Grant awardees in North Carolina, Illinois, and Wisconsin, 2011-2014.

    PubMed

    Stein, Anna; Baldyga, William; Hilgendorf, Amy; Walker, Jennifer Gilchrist; Hewson, Danielle; Rhew, Lori; Uskali, Amber

    2015-04-16

    Community Transformation Grant awardees in North Carolina, Illinois, and Wisconsin promoted joint use agreements (formal agreements between 2 parties for the shared use of land or facilities) as a strategy to increase access to physical activity in their states. However, awardees experienced significant barriers to establishing joint use agreements, including 1) confusion about terminology and an aversion to complex legal contracts, 2) lack of applicability to single organizations with open use policies, and 3) questionable value in nonurban areas where open lands for physical activity are often available and where the need is instead for physical activity programs and infrastructure. Furthermore, promotion of formal agreements may unintentionally reduce access by raising concerns regarding legal risks and costs associated with existing shared use of land. Thus, joint use agreements have practical limitations that should be considered when selecting among strategies to promote physical activity participation.

  16. Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations

    PubMed Central

    Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad

    2013-01-01

    Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194

  17. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  18. Organizational transformation: a model for joint optimization of culture change and evidence-based design.

    PubMed

    Hamilton, D Kirk; Orr, Robin Diane; Raboin, W Ellen

    2008-01-01

    Healthcare organizations face continuous and accelerating external change and thus must be prepared to manage their own change initiatives proactively. Given that many believe that the U.S. healthcare system is broken and most healthcare organizations are dealing with pervasive problems, some organizations may choose to seek transformational change to achieve the six aims identified by the Institute of Medicine: healthcare that is safe, effective, patient-centered, timely, efficient, and equitable. Transformational change will almost certainly involve organizational culture. Culture change may be most effective when linked to other organizational change initiatives such as organizational strategy, structure, policies, procedures, and recruiting. Significant organizational change often requires accompanying facility change. There is an interdependent relationship between facility design and organizational culture. They affect each other and both impact organizational performance. Sociotechnical theory promotes joint optimization of the social (culture) and technical (facilities) aspects of an organization to achieve sustained positive change. To achieve organizational transformation and to sustain positive change, organizations must be prepared to adopt collaborative efforts in culture change and facility design. The authors propose a model for accomplishing joint optimization of culture change and evidence-based facility design.

  19. Regular Mechanical Transformation of Rotations Into Translations: Part 1. Kinematic Analysis and Definition of the Basic Characteristics

    NASA Astrophysics Data System (ADS)

    Abadjieva, Emilia; Abadjiev, Valentin

    2017-06-01

    The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.

  20. Information security using multiple reference-based optical joint transform correlation and orthogonal code

    NASA Astrophysics Data System (ADS)

    Nazrul Islam, Mohammed; Karim, Mohammad A.; Vijayan Asari, K.

    2013-09-01

    Protecting and processing of confidential information, such as personal identification, biometrics, remains a challenging task for further research and development. A new methodology to ensure enhanced security of information in images through the use of encryption and multiplexing is proposed in this paper. We use orthogonal encoding scheme to encode multiple information independently and then combine them together to save storage space and transmission bandwidth. The encoded and multiplexed image is encrypted employing multiple reference-based joint transform correlation. The encryption key is fed into four channels which are relatively phase shifted by different amounts. The input image is introduced to all the channels and then Fourier transformed to obtain joint power spectra (JPS) signals. The resultant JPS signals are again phase-shifted and then combined to form a modified JPS signal which yields the encrypted image after having performed an inverse Fourier transformation. The proposed cryptographic system makes the confidential information absolutely inaccessible to any unauthorized intruder, while allows for the retrieval of the information to the respective authorized recipient without any distortion. The proposed technique is investigated through computer simulations under different practical conditions in order to verify its overall robustness.

  1. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    PubMed

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  2. Adaptive velocity-based six degree of freedom load control for real-time unconstrained biomechanical testing.

    PubMed

    Lawless, I M; Ding, B; Cazzolato, B S; Costi, J J

    2014-09-22

    Robotic biomechanics is a powerful tool for further developing our understanding of biological joints, tissues and their repair. Both velocity-based and hybrid force control methods have been applied to biomechanics but the complex and non-linear properties of joints have limited these to slow or stepwise loading, which may not capture the real-time behaviour of joints. This paper presents a novel force control scheme combining stiffness and velocity based methods aimed at achieving six degree of freedom unconstrained force control at physiological loading rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  4. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2018-05-01

    Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.

  6. Does Nonlinear Modeling Play a Role in Plasmid Bioprocess Monitoring Using Fourier Transform Infrared Spectra?

    PubMed

    Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M

    2017-06-01

    The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.

  7. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    NASA Astrophysics Data System (ADS)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  8. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1992-11-01

    The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.

  9. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1991-11-01

    The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.

  10. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  11. Phase-dependent ultrafast third-order optical nonlinearities in metallophthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Anil Kumar, K. V.; Dharmaprakash, S. M.; Das, Ritwick

    2016-09-01

    We present a comprehensive study on the impact of phase transformations of metallophthalocyanine thin films on their third-order nonlinear optical (NLO) properties. The metallophthalocyanine thin films are prepared by thermally evaporating the commercially available Copper(II)2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) and Zinc(II) 2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (ZnPc) powder on glass substrate. Thermal annealing causes a phase transformation which has a distinct signature in powder X-ray diffraction and UV-Vis-NIR spectroscopy. The NLO characteristics which include nonlinear refractive index n2, as well as nonlinear absorption coefficient (βeff), were measured by using a single beam Z-scan technique. An ultrashort pulsed fiber laser emitting femtosecond pulses (Δτ ≈ 250 fs) at 1064 nm central wavelength is used as a source for the Z-scan experiment. The βeff values in as prepared thin films were ascertained to be smaller as compared to the annealed one due to the smaller value of saturation intensity (Is) which, in turn, is a consequence of ground-state bleaching in the thermally unstable amorphous state of the molecule. Interestingly, the nonlinear refractive indices bear opposite sign for CuPc and ZnPc. The variations in the third-order nonlinearity in CuPc and ZnPc are discussed in terms of molecular packing and geometries of metallophthalocyanine molecules.

  12. Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2015-03-01

    Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.

  13. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  14. Designing Agent Collectives For Systems With Markovian Dynamics

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Lawson, John W.

    2004-01-01

    The Collective Intelligence (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided world utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics of an agent's utility function are observable. We investigate this transformation in simulations involving both hear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low opacity (analogous to having high signal to noise) but are not factored (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.

  15. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    PubMed

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.

  16. Optimal linear and nonlinear feature extraction based on the minimization of the increased risk of misclassification. [Bayes theorem - statistical analysis/data processing

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.

    1974-01-01

    General classes of nonlinear and linear transformations were investigated for the reduction of the dimensionality of the classification (feature) space so that, for a prescribed dimension m of this space, the increase of the misclassification risk is minimized.

  17. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  18. Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.

    PubMed

    Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario

    2013-10-21

    The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.

  19. Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential.

    PubMed

    Pérez, Alejandro; von Lilienfeld, O Anatole

    2011-08-09

    Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed.

  20. Symmetry classification of time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Naeem, I.; Khan, M. D.

    2017-01-01

    In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.

  1. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  2. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  3. Numerical modelling of nonlinear full-wave acoustic propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less

  4. On the analytical modeling of the nonlinear vibrations of pretensioned space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Belvin, W. K.

    1983-01-01

    Pretensioned structures are receiving considerable attention as candidate large space structures. A typical example is a hoop-column antenna. The large number of preloaded members requires efficient analytical methods for concept validation and design. Validation through analyses is especially important since ground testing may be limited due to gravity effects and structural size. The present investigation has the objective to present an examination of the analytical modeling of pretensioned members undergoing nonlinear vibrations. Two approximate nonlinear analysis are developed to model general structural arrangements which include beam-columns and pretensioned cables attached to a common nucleus, such as may occur at a joint of a pretensioned structure. Attention is given to structures undergoing nonlinear steady-state oscillations due to sinusoidal excitation forces. Three analyses, linear, quasi-linear, and nonlinear are conducted and applied to study the response of a relatively simple cable stiffened structure.

  5. Nonlinear Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment

    DTIC Science & Technology

    2017-12-18

    Determination on Orbital Element Representations,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.165-195, 2014. [8] R. Weisman, M. Jah...Nonlinear Filtering,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.129-164, 2014. [10] R. Weisman, M. Majji, K. Alfriend, “Analytic...Conference on Mathematics and Astronomy : A Joint Long Journey, American Institute of Physics, 10.1063/1.3506064, Madrid, Spain, 2009. [33] X.L. Xu, Y.Q

  6. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  7. Bolted joints in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1976-01-01

    All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.

  8. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  9. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity.

    PubMed

    Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M

    2011-01-01

    We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.

  10. Open Innovation and Technology Maturity Analysis

    DTIC Science & Technology

    2007-09-11

    Management Process Develop a framework which incorporates DoD Acquisition Management framework (e.g: TRLs), DoD Business Transformation strategies...Public Organizations (DoD): DoD Force Transformation : • Support the Joint Warfighting Capability of the DoD • Enable Rapid Access to Information for...Survey - 2007  Defense Transformation : Clear Leadership, Accountability, and Management Tools Are Needed to Enhance DOD’s Efforts to Transform Military

  11. Transform Methods for Precision Nonlinear Wave Models of Flexible space Structures

    DTIC Science & Technology

    1990-08-20

    developed, each of which has motivated a structural control methodology in a natural way. The Transform Element Modelling (TEM) approach uses the Laplace...IEk A L 2 = -, c G= ( C .3 a ,b ) Talng the Laplace transfor-m (neglecting initial conditions) )ields [1+tjSZ-(,s) +S ((X’S) + al2a~ pS4 (X’S) j(X’s) (04

  12. Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.

    PubMed

    Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin

    2014-09-01

    l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Radon cumulative distribution transform and its application to image classification

    PubMed Central

    Kolouri, Soheil; Park, Se Rim; Rohde, Gustavo K.

    2016-01-01

    Invertible image representation methods (transforms) are routinely employed as low-level image processing operations based on which feature extraction and recognition algorithms are developed. Most transforms in current use (e.g. Fourier, Wavelet, etc.) are linear transforms, and, by themselves, are unable to substantially simplify the representation of image classes for classification. Here we describe a nonlinear, invertible, low-level image processing transform based on combining the well known Radon transform for image data, and the 1D Cumulative Distribution Transform proposed earlier. We describe a few of the properties of this new transform, and with both theoretical and experimental results show that it can often render certain problems linearly separable in transform space. PMID:26685245

  14. Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions.

    PubMed

    Soto-Crespo, J M; Grelu, Philippe; Akhmediev, Nail

    2006-05-01

    We demonstrate the existence of stable optical light bullets in nonlinear dissipative media for both cases of normal and anomalous chromatic dispersion. The prediction is based on direct numerical simulations of the (3+1)-dimensional complex cubic-quintic Ginzburg-Landau equation. We do not impose conditions of spherical or cylindrical symmetry. Regions of existence of stable bullets are determined in the parameter space. Beyond the domain of parameters where stable bullets are found, unstable bullets can be transformed into "rockets" i.e. bullets elongated in the temporal domain. A few examples of the interaction between two optical bullets are considered using spatial and temporal interaction planes.

  15. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  16. Disclosing the temperature of columnar jointing in lavas.

    PubMed

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  17. Effects of threshold on single-target detection by using modified amplitude-modulated joint transform correlator

    NASA Astrophysics Data System (ADS)

    Kaewkasi, Pitchaya; Widjaja, Joewono; Uozumi, Jun

    2007-03-01

    Effects of threshold value on detection performance of the modified amplitude-modulated joint transform correlator are quantitatively studied using computer simulation. Fingerprint and human face images are used as test scenes in the presence of noise and a contrast difference. Simulation results demonstrate that this correlator improves detection performance for both types of image used, but moreso for human face images. Optimal detection of low-contrast human face images obscured by strong noise can be obtained by selecting an appropriate threshold value.

  18. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  19. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  20. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    PubMed

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.

  1. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  2. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.

    PubMed

    Loomba, Shally; Kaur, Harleen

    2013-12-01

    We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.

  3. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  4. Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang

    2018-06-01

    Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.

  5. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  6. A simple new filter for nonlinear high-dimensional data assimilation

    NASA Astrophysics Data System (ADS)

    Tödter, Julian; Kirchgessner, Paul; Ahrens, Bodo

    2015-04-01

    The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes' theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. This work shows how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The forecast step remains as in the ETKF. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF). The properties and performance of the proposed algorithm are investigated via a set of Lorenz experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Furthermore, localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. Finally, the novel algorithm is coupled to a large-scale ocean general circulation model. The NETF is stable, behaves reasonably and shows a good performance with a realistic ensemble size. The results confirm that, in principle, it can be applied successfully and as simple as the ETKF in high-dimensional problems without further modifications of the algorithm, even though it is only based on the particle weights. This proves that the suggested method constitutes a useful filter for nonlinear, high-dimensional data assimilation, and is able to overcome the curse of dimensionality even in deterministic systems.

  7. Modeling of Nonlinear Hydrodynamics of the Coastal Areas of the Black Sea by the Chain of the Proprietary and Open Source Models

    NASA Astrophysics Data System (ADS)

    Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim

    2014-05-01

    The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.

  8. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  9. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  10. Optimal spacecraft attitude control using collocation and nonlinear programming

    NASA Astrophysics Data System (ADS)

    Herman, A. L.; Conway, B. A.

    1992-10-01

    Direct collocation with nonlinear programming (DCNLP) is employed to find the optimal open-loop control histories for detumbling a disabled satellite. The controls are torques and forces applied to the docking arm and joint and torques applied about the body axes of the OMV. Solutions are obtained for cases in which various constraints are placed on the controls and in which the number of controls is reduced or increased from that considered in Conway and Widhalm (1986). DCLNP works well when applied to the optimal control problem of satellite attitude control. The formulation is straightforward and produces good results in a relatively small amount of time on a Cray X/MP with no a priori information about the optimal solution. The addition of joint acceleration to the controls significantly reduces the control magnitudes and optimal cost. In all cases, the torques and acclerations are modest and the optimal cost is very modest.

  11. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    PubMed

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  12. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources

    NASA Astrophysics Data System (ADS)

    Main, Philip; Mosley, Peter J.; Ding, Wei; Zhang, Lijian; Gorbach, Andrey V.

    2016-12-01

    We propose a compact, fiber-integrated architecture for photon-pair generation by parametric downconversion with unprecedented flexibility in the properties of the photons produced. Our approach is based on a thin-film lithium niobate nanowaveguide, evanescently coupled to a tapered silica microfiber. We demonstrate how controllable mode hybridization between the fiber and waveguide yields control over the joint spectrum of the photon pairs. We also investigate how independent engineering of the linear and nonlinear properties of the structure can be achieved through the addition of a tapered, proton-exchanged layer to the waveguide. This allows further refinement of the joint spectrum through custom profiling of the effective nonlinearity, drastically improving the purity of the heralded photons. We give details of a source design capable of generating heralded single photons in the telecom wavelength range with purity of at least 0.95, and we provide a feasible fabrication methodology.

  13. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  14. Use of photostress and strain gages to analyze behavior of weldments

    NASA Astrophysics Data System (ADS)

    Gambrell, S. C., Jr.

    1993-09-01

    Tensile and pure bending tests were conducted on specimens having welded joints made from 2219-T87 aluminum alloy and 2319 filler. Data were collected using photoelastic coatings and strain gages. Stress-strain relationships and contraction ratios were determined at several points in a grid covering the weld material and heat affected zone. Material behavior was nonlinear and nonuniform at all points in the grid and contraction ratios did not conform to those predicted by Chakrabarty's plasticity theory. Yielding in joints made using four new welding procedures was examined. None of the new procedures produced more uniform yielding in the joint.

  15. Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  16. Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1986-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  17. Modeling of the Nonlinear Interface in Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Curiel Sosa, J. L.

    2010-04-01

    This article presents a novel scheme for modeling of reinforced concrete. The strategy takes into account the nonlinear behavior of the concrete as well as the debonding in the interface. The proposed technique solves the kinematic and kinetic jump in the interface by performing sub-cycles over the constituents-reinforcing bar and concrete-jointly with an innovative interface constitutive law. Application to pull-out problems is performed to show the capabilities of the proposed methodology by means of comparison with available experimental data.

  18. Wavelets, non-linearity and turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    van Milligen, B. Ph.

    Introduction Linear spectral analysis tools Wavelet analysis Wavelet spectra and coherence Joint wavelet phase-frequency spectra Non-linear spectral analysis tools Wavelet bispectra and bicoherence Interpretation of the bicoherence Analysis of computer-generated data Coupled van der Pol oscillators A large eddy simulation model for two-fluid plasma turbulence A long wavelength plasma drift wave model Analysis of plasma edge turbulence from Langmuir probe data Radial coherence observed on the TJ-IU torsatron Bicoherence profile at the L/H transition on CCT Conclusions

  19. Application of Huang-Hilbert Transforms to Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2003-01-01

    The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.

  20. Analytic solution for American strangle options using Laplace-Carson transforms

    NASA Astrophysics Data System (ADS)

    Kang, Myungjoo; Jeon, Junkee; Han, Heejae; Lee, Somin

    2017-06-01

    A strangle has been important strategy for options when the trader believes there will be a large movement in the underlying asset but are uncertain of which way the movement will be. In this paper, we derive analytic formula for the price of American strangle options. American strangle options can be mathematically formulated into the free boundary problems involving two early exercise boundaries. By using Laplace-Carson Transform(LCT), we can derive the nonlinear system of equations satisfied by the transformed value of two free boundaries. We then solve this nonlinear system using Newton's method and finally get the free boundaries and option values using numerical Laplace inversion techniques. We also derive the Greeks for the American strangle options as well as the value of perpetual American strangle options. Furthermore, we present various graphs for the free boundaries and option values according to the change of parameters.

  1. An alternative approach to characterize nonlinear site effects

    USGS Publications Warehouse

    Zhang, R.R.; Hartzell, S.; Liang, J.; Hu, Y.

    2005-01-01

    This paper examines the rationale of a method of nonstationary processing and analysis, referred to as the Hilbert-Huang transform (HHT), for its application to a recording-based approach in quantifying influences of soil nonlinearity in site response. In particular, this paper first summarizes symptoms of soil nonlinearity shown in earthquake recordings, reviews the Fourier-based approach to characterizing nonlinearity, and offers justifications for the HHT in addressing nonlinearity issues. This study then uses the HHT method to analyze synthetic data and recordings from the 1964 Niigata and 2001 Nisqually earthquakes. In doing so, the HHT-based site response is defined as the ratio of marginal Hilbert amplitude spectra, alternative to the Fourier-based response that is the ratio of Fourier amplitude spectra. With the Fourier-based approach in studies of site response as a reference, this study shows that the alternative HHT-based approach is effective in characterizing soil nonlinearity and nonlinear site response.

  2. Modeling nonlinearities in MEMS oscillators.

    PubMed

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  3. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  4. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  5. Toward patient-specific articular contact mechanics

    PubMed Central

    Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.

    2015-01-01

    The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236

  6. Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Chung

    2016-02-01

    This study models a joint location, inventory and preservation decision-making problem for non-instantaneous deteriorating items under delay in payments. An outside supplier provides a credit period to the wholesaler which has a distribution system with distribution centres (DCs). The non-instantaneous deteriorating means no deterioration occurs in the earlier stage, which is very useful for items such as fresh food and fruits. This paper also considers that the deteriorating rate will decrease and the reservation cost will increase as the preservation effort increases. Therefore, how much preservation effort should be made is a crucial decision. The objective of this paper is to determine the optimal locations and number of DCs, the optimal replenishment cycle time at DCs, and the optimal preservation effort simultaneously such that the total network profit is maximised. The problem is formulated as piecewise nonlinear functions and has three different cases. Algorithms based on piecewise nonlinear optimisation are provided to solve the joint location and inventory problem for all cases. Computational analysis illustrates the solution procedures and the impacts of the related parameters on decisions and profits. The results of this study can serve as references for business managers or administrators.

  7. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less

  9. Electromagnetic nonlinear gyrokinetics with polarization drift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less

  10. Simulation program of nonlinearities applied to telecommunication systems

    NASA Technical Reports Server (NTRS)

    Thomas, C.

    1979-01-01

    In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.

  11. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  12. The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Tian, Qiang

    2005-04-01

    The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.

  13. On framing potential features of SWCNTs and MWCNTs in mixed convective flow

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.

    2018-03-01

    Our target in this research article is to elaborate the characteristics of Darcy-Forchheimer relation in carbon-water nanoliquid flow induced by impermeable stretched cylinder. Energy expression is modeled through viscous dissipation and nonlinear thermal radiation. Application of appropriate transformations yields nonlinear ODEs through nonlinear PDEs. Shooting technique is adopted for the computations of nonlinear ODEs. Importance of influential variables for velocity and thermal fields is elaborated graphically. Moreover rate of heat transfer and drag force are calculated and demonstrated through Tables. Our analysis reports that velocity is higher for ratio of rate constant and buoyancy factor when compared with porosity and volume fraction.

  14. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  15. Improving demodulation accuracy of low-coherence interferometer against spatial-frequency nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai

    2013-12-01

    We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.

  16. Some effects of nonlinear variation in the directional-stability and damping-in-yawing derivatives on the lateral stability of an airplane

    NASA Technical Reports Server (NTRS)

    Sternfield, Leonard

    1951-01-01

    A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.

  17. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  18. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  19. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Wang, Jigang

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  20. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE PAGES

    Luo, Liang; Wang, Jigang

    2016-01-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  1. Integration of Visual and Joint Information to Enable Linear Reaching Motions

    NASA Astrophysics Data System (ADS)

    Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2017-01-01

    A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.

  2. Structural, spectral and birefringence studies of semiorganic nonlinear optical single crystal: Calcium5-sulfosalicylate

    NASA Astrophysics Data System (ADS)

    Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.

    2017-11-01

    Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.

  3. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  4. Nonlinear Stochastic Flutter of a Cantilever Wing with Joint Relaxation and Random Loading

    DTIC Science & Technology

    2008-02-21

    coordinate system and B-frame is the coordinate system on the wing body and is moving with the wing. The leading segment of the vortex loop is located...composite laminates, Composite Structures, 72(1): 58-68. 38 36. Bickford, J. H. (1995). An introduction to the design and behavior of bolted joints, Third ...composite, Wear, 257(3- 4):395-407 51. Schon, J. (2004). Coefficient of friction for aluminum in contact with a carbon fiber epoxy composite. Tribology

  5. Joint level-set and spatio-temporal motion detection for cell segmentation.

    PubMed

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.

  6. The cyclic fatigue behavior of adhesive joints

    NASA Astrophysics Data System (ADS)

    Kinloch, A. J.; Toh, T.

    1995-06-01

    In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.

  7. Known-plaintext attack on a joint transform correlator encrypting system.

    PubMed

    Barrera, John Fredy; Vargas, Carlos; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Nestor

    2010-11-01

    We demonstrate in this Letter that a joint transform correlator shows vulnerability to known-plaintext attacks. An unauthorized user, who intercepts both an object and its encrypted version, can obtain the security key code mask. In this contribution, we conduct a hybrid heuristic attack scheme merge to a Gerchberg-Saxton routine to estimate the encrypting key to decode different ciphertexts encrypted with that same key. We also analyze the success of this attack for different pairs of plaintext-ciphertext used to get the encrypting code. We present simulation results for the decrypting procedure to demonstrate the validity of our analysis.

  8. Minimizing bias in biomass allometry: Model selection and log transformation of data

    Treesearch

    Joseph Mascaro; undefined undefined; Flint Hughes; Amanda Uowolo; Stefan A. Schnitzer

    2011-01-01

    Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the raditional approach of log-transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models....

  9. Auto-Origami and Soft Programmable Transformers: Simulation Studies of Liquid Crystal Elastomers and Swelling Polymer Gels

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Santangelo, Christian; Selinger, Robin

    2014-03-01

    When the underlying microstructure of an actuatable material varies in space, simple sheets can transform into complex shapes. Using nonlinear finite element elastodynamic simulations, we explore the design space of two such materials: liquid crystal elastomers and swelling polymer gels. Liquid crystal elastomers (LCE) undergo shape transformations induced by stimuli such as heating/cooling or illumination; complex deformations may be programmed by ``blueprinting'' a non-uniform director field in the sample when the polymer is cross-linked. Similarly, swellable gels can undergo shape change when they are swollen anisotropically as programmed by recently developed halftone gel lithography techniques. For each of these materials we design and test programmable motifs which give rise to complex deformation trajectories including folded structures, soft swimmers, apertures that open and close, bas relief patterns, and other shape transformations inspired by art and nature. In order to accommodate the large computational needs required to model these materials, our 3-d nonlinear finite element elastodynamics simulation algorithm is implemented in CUDA, running on a single GPU-enabled workstation.

  10. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  11. Designing Agent Collectives For Systems With Markovian Dynamics

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Lawson, John W.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The "Collective Intelligence" (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided "world" utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics, in particular scenarios where not all of the arguments of an agent's utility function are observable. We investigate this transformation in simulations involving both linear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low "opacity (analogous to having high signal to noise) but are not "factored" (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.

  12. Non-Darcy Forchheimer flow of ferromagnetic second grade fluid

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    This article discusses impacts of thermal radiation, viscous dissipation and magnetic dipole in flow of second grade fluid saturating porous medium. Porous medium is characterized by nonlinear Darcy-Forchheimer relation. Relevant nonlinear ordinary differential systems after using appropriate transformations are solved numerically. Shooting technique is implemented for the numerical treatment. Temperature, velocity, skin fraction and Nusselt number are analyzed.

  13. Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction.

    PubMed

    Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Lu, Dianchen; Farooq, Umer

    2017-10-10

    A mathematical model has been developed to examine the magneto hydrodynamic micropolar nanofluid flow with buoyancy effects. Flow analysis is carried out in the presence of nonlinear thermal radiation and dual stratification. The impact of binary chemical reaction with Arrhenius activation energy is also considered. Apposite transformations are engaged to transform nonlinear partial differential equations to differential equations with high nonlinearity. Resulting nonlinear system of differential equations is solved by differential solver method in Maple software which uses Runge-Kutta fourth and fifth order technique (RK45). To authenticate the obtained results, a comparison with the preceding article is also made. The evaluations are executed graphically for numerous prominent parameters versus velocity, micro rotation component, temperature, and concentration distributions. Tabulated numerical calculations of Nusselt and Sherwood numbers with respective well-argued discussions are also presented. Our findings illustrate that the angular velocity component declines for opposing buoyancy forces and enhances for aiding buoyancy forces by changing the micropolar parameter. It is also found that concentration profile increases for higher values of chemical reaction parameter, whereas it diminishes for growing values of solutal stratification parameter.

  14. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  15. On probability-possibility transformations

    NASA Technical Reports Server (NTRS)

    Klir, George J.; Parviz, Behzad

    1992-01-01

    Several probability-possibility transformations are compared in terms of the closeness of preserving second-order properties. The comparison is based on experimental results obtained by computer simulation. Two second-order properties are involved in this study: noninteraction of two distributions and projections of a joint distribution.

  16. Remote optoelectronic sensors for monitoring of nonlinear surfaces

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrew V.; Konyakhin, Igor A.

    2015-05-01

    Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.

  17. General mechanism for the 1 /f noise

    NASA Astrophysics Data System (ADS)

    Yadav, Avinash Chand; Ramaswamy, Ramakrishna; Dhar, Deepak

    2017-08-01

    We consider the response of a memoryless nonlinear device that acts instantaneously, converting an input signal ξ (t ) into an output η (t ) at the same time t . For input Gaussian noise with power-spectrum 1 /fα , the nonlinearity can modify the spectral index of the output to give a spectrum that varies as 1 /fα ' with α'≠α . We show that the value of α' depends on the nonlinear transformation and can be tuned continuously. This provides a general mechanism for the ubiquitous 1 /f noise found in nature.

  18. General Nonlinear Ferroelectric Model v. Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen; Robbins, Josh

    2017-03-14

    The purpose of this software is to function as a generalized ferroelectric material model. The material model is designed to work with existing finite element packages by providing updated information on material properties that are nonlinear and dependent on loading history. The two major nonlinear phenomena this model captures are domain-switching and phase transformation. The software itself does not contain potentially sensitive material information and instead provides a framework for different physical phenomena observed within ferroelectric materials. The model is calibrated to a specific ferroelectric material through input parameters provided by the user.

  19. Symbolic programming language in molecular multicenter integral problem

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan; Bouferguene, Ahmed

    It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of three-center nuclear attraction and Coulomb integrals is the most frequently encountered. As the molecular system becomes larger, computation of these integrals becomes one of the most laborious and time-consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to further development in computational studies of large molecular systems. To develop fast and accurate algorithms for the numerical evaluation of these integrals over B functions, we used nonlinear transformations for improving convergence of highly oscillatory integrals. These methods form the basis of new methods for solving various problems that were unsolvable otherwise and have many applications as well. To apply these nonlinear transformations, the integrands should satisfy linear differential equations with coefficients having asymptotic power series in the sense of Poincaré, which in their turn should satisfy some limit conditions. These differential equations are very difficult to obtain explicitly. In the case of molecular integrals, we used a symbolic programming language (MAPLE) to demonstrate that all the conditions required to apply these nonlinear transformation methods are satisfied. Differential equations are obtained explicitly, allowing us to demonstrate that the limit conditions are also satisfied.

  20. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  1. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherencemore » and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.« less

  2. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the secondmore » explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.« less

  3. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dzielski, John Edward

    1988-01-01

    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  4. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  5. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  6. Analysis of nonlinear modulation between sound and vibrations in metallic structure and its use for damage detection

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei

    2015-07-01

    Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.

  7. A novel encryption scheme for high-contrast image data in the Fresnelet domain

    PubMed Central

    Bibi, Nargis; Farwa, Shabieh; Jahngir, Adnan; Usman, Muhammad

    2018-01-01

    In this paper, a unique and more distinctive encryption algorithm is proposed. This is based on the complexity of highly nonlinear S box in Flesnelet domain. The nonlinear pattern is transformed further to enhance the confusion in the dummy data using Fresnelet technique. The security level of the encrypted image boosts using the algebra of Galois field in Fresnelet domain. At first level, the Fresnelet transform is used to propagate the given information with desired wavelength at specified distance. It decomposes given secret data into four complex subbands. These complex sub-bands are separated into two components of real subband data and imaginary subband data. At second level, the net subband data, produced at the first level, is deteriorated to non-linear diffused pattern using the unique S-box defined on the Galois field F28. In the diffusion process, the permuted image is substituted via dynamic algebraic S-box substitution. We prove through various analysis techniques that the proposed scheme enhances the cipher security level, extensively. PMID:29608609

  8. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  9. Lotka-Volterra representation of general nonlinear systems.

    PubMed

    Hernández-Bermejo, B; Fairén, V

    1997-02-01

    In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.

  10. Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Mahny, Kasseb L.; Muhammad, Taseer; Sheikholeslami, Mohsen

    2018-03-01

    The impact of magnetic field and nanoparticles on the two-phase flow of a generalized non-Newtonian Carreau fluid over permeable non-linearly stretching surface has been analyzed in the existence of all suction/injection and thermal radiation. The governing PDEs with congruous boundary condition are transformed into a system of non-linear ODEs with appropriate boundary conditions by using similarity transformation. It solved numerically by using 4th-5th order Runge-Kutta-Fehlberg method based on shooting technique. The impacts of non-dimensional controlling parameters on velocity, temperature, and nanoparticles volume concentration profiles are scrutinized with aid of graphs. The Nusselt and the Sherwood numbers are studied at the different situations of the governing parameters. The numerical computations are in excellent consent with previously reported studies. It is found that the heat transfer rate is reduced with an increment of thermal radiation parameter and on contrary of the rising of magnetic field. The opposite trend happens in the mass transfer rate.

  11. From Spiking Neuron Models to Linear-Nonlinear Models

    PubMed Central

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-01

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777

  12. From spiking neuron models to linear-nonlinear models.

    PubMed

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  13. Computational Modelling and Movement Analysis of Hip Joint with Muscles

    NASA Astrophysics Data System (ADS)

    Siswanto, W. A.; Yoon, C. C.; Salleh, S. Md.; Ngali, M. Z.; Yusup, Eliza M.

    2017-01-01

    In this study, the model of hip joint and the main muscles are modelled by finite elements. The parts included in the model are hip joint, hemi pelvis, gluteus maximus, quadratus femoris and gamellus inferior. The materials that used in these model are isotropic elastic, Mooney Rivlin and Neo-hookean. The hip resultant force of the normal gait and stair climbing are applied on the model of hip joint. The responses of displacement, stress and strain of the muscles are then recorded. FEBio non-linear solver for biomechanics is employed to conduct the simulation of the model of hip joint with muscles. The contact interfaces that used in this model are sliding contact and tied contact. From the analysis results, the gluteus maximus has the maximum displacement, stress and strain in the stair climbing. Quadratus femoris and gamellus inferior has the maximum displacement and strain in the normal gait however the maximum stress in the stair climbing. Besides that, the computational model of hip joint with muscles is produced for research and investigation platform. The model can be used as a visualization platform of hip joint.

  14. A Nonlinearity Mitigation Method for a Broadband RF Front-End in a Sensor Based on Best Delay Searching

    PubMed Central

    Zhao, Wen; Ma, Hong; Zhang, Hua; Jin, Jiang; Dai, Gang; Hu, Lin

    2017-01-01

    The cognitive radio wireless sensor network (CR-WSN) is experiencing more and more attention for its capacity to automatically extract broadband instantaneous radio environment information. Obtaining sufficient linearity and spurious-free dynamic range (SFDR) is a significant premise of guaranteeing sensing performance which, however, usually suffers from the nonlinear distortion coming from the broadband radio frequency (RF) front-end in the sensor node. Moreover, unlike other existing methods, the joint effect of non-constant group delay distortion and nonlinear distortion is discussed, and its corresponding solution is provided in this paper. After that, the nonlinearity mitigation architecture based on best delay searching is proposed. Finally, verification experiments, both on simulation signals and signals from real-world measurement, are conducted and discussed. The achieved results demonstrate that with best delay searching, nonlinear distortion can be alleviated significantly and, in this way, spectrum sensing performance is more reliable and accurate. PMID:28956860

  15. Experiments and numerical simulations of nonlinear vibration responses of an assembly with friction joints - Application on a test structure named "Harmony"

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.

    2016-03-01

    In presence of friction, the frequency response function of a metallic assembly is strongly dependent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy dissipation and local stiffness softening. These phenomena are studied both experimentally and numerically on a test structure named "Harmony". Concerning the numerical part, a classical complete methodology from the finite element and friction modeling to the prediction of the nonlinear vibrational response is implemented. The well-known Harmonic Balance Method with a specific condensation process on the nonlinear frictional elements is achieved. Also, vibration experiments are performed to validate not only the finite element model of the test structure named "Harmony" at low excitation levels but also to investigate the nonlinear behavior of the system on several excitation levels. A scanning laser vibrometer is used to measure the nonlinear behavior and the local stick-slip movement near the contacts.

  16. Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.

    2018-01-01

    Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.

  17. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  18. Investigation on the Nonlinear Control System of High-Pressure Common Rail (HPCR) System in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Cai, Le; Mao, Xiaobing; Ma, Zhexuan

    2018-02-01

    This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  19. Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.

    PubMed

    Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming

    2016-08-08

    We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.

  20. Using missing ordinal patterns to detect nonlinearity in time series data.

    PubMed

    Kulp, Christopher W; Zunino, Luciano; Osborne, Thomas; Zawadzki, Brianna

    2017-08-01

    The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity.

  1. On MHD nonlinear stretching flow of Powell-Eyring nanomaterial

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Sajjad, Rai; Muhammad, Taseer; Alsaedi, Ahmed; Ellahi, Rahmat

    This communication addresses the magnetohydrodynamic (MHD) flow of Powell-Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell-Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted.

  2. Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities.

    PubMed

    Yan, Zhenya; Konotop, V V

    2009-09-01

    It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.

  3. Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.

    2018-02-01

    We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.

  4. Dynamics and regulation of locomotion of a human swing leg as a double-pendulum considering self-impact joint constraint.

    PubMed

    Bazargan-Lari, Y; Eghtesad, M; Khoogar, A; Mohammad-Zadeh, A

    2014-09-01

    Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion. The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modeling the swing leg as a SIDP. This paper also presents the control design for a SIDP by a nonlinear model-based control method. To achieve this goal, the available data of normal human gait will be taken as the desired trajectories of the hip and knee joints. The model is characterized by the constraint that occurs at the knee joint (the lower joint of the model) in both dynamic modeling and control design. Since the system dynamics is nonlinear, the MIMO Input-Output Feedback Linearization method will be employed for control purposes. The first constraint in forward impact simulation happens at 0.5 rad where the speed of the upper link is increased to 2.5 rad/sec. and the speed of the lower link is reduced to -5 rad/sec. The subsequent constraints occur rather moderately. In the case of both backward and forward constraints simulation, the backward impact occurs at -0.5 rad and the speeds of the upper and lower links increase to 2.2 and 1.5 rad/sec., respectively. The designed controller performed suitably well and regulated the system accurately.

  5. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  6. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.

    PubMed

    Li, Li; Yu, Fajun

    2017-09-06

    We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.

  7. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    NASA Astrophysics Data System (ADS)

    Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M.

    2018-03-01

    The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs) with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs) with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  8. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  9. An in vitro simulation method for the tribological assessment of complete natural hip joints

    PubMed Central

    Fisher, John; Williams, Sophie

    2017-01-01

    The use of hip joint simulators to evaluate the tribological performance of total hip replacements is widely reported in the literature, however, in vitro simulation studies investigating the tribology of the natural hip joint are limited with heterogeneous methodologies reported. An in vitro simulation system for the complete natural hip joint, enabling the acetabulum and femoral head to be positioned with different orientations whilst maintaining the correct joint centre of rotation, was successfully developed for this study. The efficacy of the simulation system was assessed by testing complete, matched natural porcine hip joints and porcine hip hemiarthroplasty joints in a pendulum friction simulator. The results showed evidence of biphasic lubrication, with a non-linear increase in friction being observed in both groups. Lower overall mean friction factor values in the complete natural joint group that increased at a lower rate over time, suggest that the exudation of fluid and transition to solid phase lubrication occurred more slowly in the complete natural hip joint compared to the hip hemiarthroplasty joint. It is envisaged that this methodology will be used to investigate morphological risk factors for developing hip osteoarthritis, as well as the effectiveness of early interventional treatments for degenerative hip disease. PMID:28886084

  10. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  11. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exp-function method for solving fractional partial differential equations.

    PubMed

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  13. A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Baleanu, Dumitru

    2018-05-01

    By using the modified homotopy analysis transform method, we construct the analytical solutions of the space-time generalized nonlinear Schrödinger equation involving a new fractional conformable derivative in the Liouville-Caputo sense and the fractional-order derivative with the Mittag-Leffler law. Employing theoretical parameters, we present some numerical simulations and compare the solutions obtained.

  14. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kamenov, O. Y.

    2009-09-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  15. Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ``piloted'' (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-Pierre

    1991-02-01

    Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.

  16. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.

    PubMed

    Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J

    2010-10-22

    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.

  17. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukamel, Shaul

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.

  18. Freak waves in random oceanic sea states.

    PubMed

    Onorato, M; Osborne, A R; Serio, M; Bertone, S

    2001-06-18

    Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.

  19. Advanced linear and nonlinear compensations for 16QAM SC-400G unrepeatered transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chien, Hung-Chang

    2018-02-01

    Digital signal processing (DSP) with both linear equalization and nonlinear compensations are studied in this paper for the single-carrier 400G system based on 65-GBaud 16-quadrature amplitude modulation (QAM) signals. The 16-QAM signals are generated and pre-processed with pre-equalization (Pre-EQ) and Look-up-Table (LUT) based pre-distortion (Pre-DT) at the transmitter (Tx)-side. The implementation principle of training-based equalization and pre-distortion are presented here in this paper with experimental studies. At the receiver (Rx)-side, fiber-nonlinearity compensation based on digital backward propagation (DBP) are also utilized to further improve the transmission performances. With joint LUT-based Pre-DT and DBP-based post-compensation to mitigate the opto-electronic components and fiber nonlinearity impairments, we demonstrate the unrepeatered transmission of 1.6Tb/s based on 4-lane 400G single-carrier PDM-16QAM over 205-km SSMF without distributed amplifier.

  20. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  1. Joint measurement of multiple noncommuting parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiamin; Liu, Yuhong; Cui, Liang; Huo, Nan; Assad, Syed M.; Li, Xiaoying; Ou, Z. Y.

    2018-05-01

    Although quantum metrology allows us to make precision measurements beyond the standard quantum limit, it mostly works on the measurement of only one observable due to the Heisenberg uncertainty relation on the measurement precision of noncommuting observables for one system. In this paper, we study the schemes of joint measurement of multiple observables which do not commute with each other using the quantum entanglement between two systems. We focus on analyzing the performance of a SU(1,1) nonlinear interferometer on fulfilling the task of joint measurement. The results show that the information encoded in multiple noncommuting observables on an optical field can be simultaneously measured with a signal-to-noise ratio higher than the standard quantum limit, and the ultimate limit of each observable is still the Heisenberg limit. Moreover, we find a resource conservation rule for the joint measurement.

  2. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  3. An Experimental Study in Determining Energy Expenditure from Treadmill Walking using Hip-Worn Inertial Sensors

    PubMed Central

    Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.

    2011-01-01

    This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001

  4. Nonlinear association between betel quid chewing and oral cancer: Implications for prevention.

    PubMed

    Madathil, Sreenath Arekunnath; Rousseau, Marie-Claude; Wynant, Willy; Schlecht, Nicolas F; Netuveli, Gopalakrishnan; Franco, Eduardo L; Nicolau, Belinda

    2016-09-01

    Betel quid chewing is a major oral cancer risk factor and the human papillomaviruses (HPV) may play an aetiological role in these cancers. However, little is known about the shape of the dose-response relationship between the betel quid chewing habit and oral cancer risk in populations without HPV. We estimate the shape of this dose-response relationship, and discuss implications for prevention. Cases with oral squamous cell carcinoma (350) and non-cancer controls (371) were recruited from two major teaching hospitals in South India. Information on socio-demographic and behavioral factors was collected using a questionnaire and the life grid technique. The effect of daily amount of use and duration of the habit were estimated jointly as risk associated with cumulative exposure (chew-years). The shape of the dose-response curve was estimated using restricted cubic spline transformation of chew-years in a conditional logistic regression model. Risk estimates for low dose combinations of daily amount and duration of the habit were computed from flexible regression. Most (72%) oral cancer cases were betel quid chewers in contrast to only 18% of controls. A nonlinear dose-response relationship was observed; the risk increased steeply at low doses and plateaued at high exposures to betel quid (>425 chew-years). A threefold increase in risk (OR=3.92, 95%CI: 1.87-8.21) was observed for the lowest dose; equivalent to the use of one quid per day for one year. Our findings may be used to counsel people to refrain from even low betel quid chewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-order statistical equalizer for nonlinearity compensation in dispersion-managed coherent optical communications.

    PubMed

    Koike-Akino, Toshiaki; Duan, Chunjie; Parsons, Kieran; Kojima, Keisuke; Yoshida, Tsuyoshi; Sugihara, Takashi; Mizuochi, Takashi

    2012-07-02

    Fiber nonlinearity has become a major limiting factor to realize ultra-high-speed optical communications. We propose a fractionally-spaced equalizer which exploits a trained high-order statistics to deal with data-pattern dependent nonlinear impairments in fiber-optic communications. The computer simulation reveals that the proposed 3-tap equalizer improves Q-factor by more than 2 dB for long-haul transmissions of 5,230 km distance and 40 Gbps data rate. We also demonstrate that the joint use of a digital backpropagation (DBP) and the proposed equalizer offers an additional 1-2 dB performance improvement due to the channel shortening gain. A performance in high-speed transmissions of 100 Gbps and beyond is evaluated as well.

  6. Three-photon states in nonlinear crystal superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonosyan, D. A.; Kryuchkyan, G. Yu.; Institute for Physical Researches, National Academy of Sciences Ashtarak-2, 0203 Ashtarak

    2011-04-15

    It has been a longstanding goal in quantum optics to realize controllable sources generating joint multiphoton states, particularly photon triplet with arbitrary spectral characteristics. We demonstrate that such sources can be realized via cascaded parametric down-conversion (PDC) in superlattice structures of nonlinear and linear segments. We consider a scheme that involves two parametric processes--{omega}{sub 0{yields}{omega}1}+{omega}{sub 2}, {omega}{sub 2{yields}{omega}1}+{omega}{sub 1} under pulsed pump--and investigate the spontaneous creation of a photon triplet as well as the generation of high-intensity mode in intracavity three-photon splitting. We show the preparation of Greenberger-Horne-Zeilinger polarization-entangled states in cascaded type-II and type-I PDC in the framework ofmore » considering the dual-grid structure that involves two periodically poled crystals. We demonstrate the method of compensation of the dispersive effects in nonlinear segments by appropriately chosen linear dispersive segments of superlattice for preparation of the heralded joint states of two polarized photons. In the case of intracavity three-photon splitting, we concentrate on the investigation of photon-number distributions, third-order photon-number correlation function, as well as the Wigner functions. These quantities are observed both for short interaction time intervals and the over-transient regime, when dissipative effects are essential.« less

  7. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.

    PubMed

    van Dijk, W; van der Kooij, H; Koopman, B; van Asseldonk, E H F; van der Kooij, H

    2013-06-01

    To promote active participation of neurological patients during robotic gait training, controllers, such as "assist as needed" or "cooperative control", are suggested. Apart from providing support, these controllers also require that the robot should be capable of resembling natural, unsupported, walking. This means that they should have a transparent mode, where the interaction forces between the human and the robot are minimal. Traditional feedback-control algorithms do not exploit the cyclic nature of walking to improve the transparency of the robot. The purpose of this study was to improve the transparent mode of robotic devices, by developing two controllers that use the rhythmic behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-linear filters. Kernelbased non-linear filters can be used to estimate signals and their time derivatives, as a function of the gait phase. The first controller learns the motor angle, associated with a certain joint angle pattern, and acts as a feed-forward controller to improve the torque tracking (including the zero-torque mode). The second controller learns the state of the mechanical system and compensates for the dynamical effects (e.g. the acceleration of robot masses). Both controllers have been tested separately and in combination on a small subject population. Using the feedforward controller resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the knee joint. When both controllers were active simultaneously, the interaction power between the robot and the human leg was reduced by at least 40 percent at the thigh, and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the torque tracking and transparency can be improved by exploiting the predictions of adaptive frequency oscillator and kernel-based nonlinear filters.

  8. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  9. Nonlinear Optical Image Processing with Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Deiss, Ron (Technical Monitor)

    1994-01-01

    The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.

  10. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  11. Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate

    NASA Astrophysics Data System (ADS)

    Mitra, Asish

    2017-08-01

    A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.

  12. Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, M. E., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Alfimov, G. L., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Malomed, Boris A., E-mail: malomed@post.tau.ac.il

    We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate thatmore » one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.« less

  13. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  14. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan

    2016-01-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  15. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  16. The Application of Hilbert-Huang Transforms to Meteorological Datasets

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2003-01-01

    Recently a new spectral technique as been developed for the analysis of aperiodic and nonlinear signals - the Hilbert-Huang transform. This paper shows how these transforms can be used to discover synoptic and climatic features: For sea level data, the transforms capture the oceanic tides as well as large, aperiodic river outflows. In the case of solar radiation, we observe variations in the diurnal and seasonal cycles. Finally, from barographic data, the Hilbert-Huang transform reveals the passage of extratropical cyclones, fronts, and troughs. Thus, this technique can flag significant weather events such its a flood or the passage of a squall line.

  17. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression

    NASA Astrophysics Data System (ADS)

    Yin, Jianhua; Xia, Yang

    2014-12-01

    Fourier transform infrared imaging (FTIRI) combining with principal component regression (PCR) analysis were used to determine the reduction of proteoglycan (PG) in articular cartilage after the transection of the anterior cruciate ligament (ACL). A number of canine knee cartilage sections were harvested from the meniscus-covered and meniscus-uncovered medial tibial locations from the control joints, the ACL joints at three time points after the surgery, and their contralateral joints. The PG loss in the ACL cartilage was related positively to the durations after the surgery. The PG loss in the contralateral knees was less than that of the ACL knees. The PG loss in the meniscus-covered cartilage was less than that of the meniscus-uncovered tissue in both ACL and contralateral knees. The quantitative mapping of PG loss could monitor the disease progression and repair processes in arthritis.

  18. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  19. Input relegation control for gross motion of a kinematically redundant manipulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    1992-10-01

    This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less

  20. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.

Top