Two Mathematical Models of Nonlinear Vibrations
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Bayard, David; Spanos, John; Breckenridge, William
2007-01-01
Two innovative mathematical models of nonlinear vibrations, and methods of applying them, have been conceived as byproducts of an effort to develop a Kalman filter for highly precise estimation of bending motions of a large truss structure deployed in outer space from a space-shuttle payload bay. These models are also applicable to modeling and analysis of vibrations in other engineering disciplines, on Earth as well as in outer space.
Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie
2015-09-01
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity
The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.
Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin
2016-07-01
Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.
The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.
Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin
2016-07-01
Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data. PMID:27262423
A Linearization Approach for Rational Nonlinear Models in Mathematical Physics
NASA Astrophysics Data System (ADS)
Robert, A. Van Gorder
2012-04-01
In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the δ expansion method (created to deal with problems in Quantum Field Theory) which will enable both the linearization and perturbation expansion of such equations. Such a method allows for one to quickly obtain the order zero perturbation theory in terms of certain special functions which are governed by linear equations. Higher order perturbation theories can then be obtained in terms of such special functions. One benefit to such a method is that it may be applied even to models without small physical parameters, as the perturbation is given in terms of the degree of nonlinearity, rather than any physical parameter. As an application, we discuss a method of linearizing the six Painlevé equations by an application of the method. In addition to highlighting the benefits of the method, we discuss certain shortcomings of the method.
Mathematical modeling of multiresonance problems in nonlinear optics
NASA Astrophysics Data System (ADS)
Byrne, Julie A.
2000-10-01
We have explored asymptotic and exact solution methods for equations modeling multi-resonant interactions of light with optical media. For two-level media that are inhomogeneously broadened, we find small amplitude asymptotic solutions using the method of multiple scales. For Λ-type three level media, in which the ground state of the two level atom has two degenerated ground sublevels, we employ the inverse scattering transform to find exact solutions and then use parametrizations to plot the solutions on simple manifolds such as spheres and ellipses. We have used the method of multiple scales on completely integrable two-level Maxwell-Bloch system in order to find the leading order behavior of ``small'' solutions. The solution technique we have employed involves computing the small-amplitude expansion on the equations and also directly on the Lax Pair at every step of the calculation to ensure that integrability is retained. Thus, the ``secularity condition,'' which eliminates the growing terms and produces the successive approximate equations in the method of multiple scales, must also satisfy the compatibility condition of the Lax pair at each level of approximation. In the limit of low intensity, the electric field becomes a sum of plane waves with small and slowly-modulated amplitudes. These amplitudes are described by the nonlinear Schrodinger equations. We have calculated solutions of the three-level Maxwell- Bloch equations in the ``Lambda'' configuration that represent the switching of light polarization in a nonlinear resonant optically active medium. These are special solutions of soliton type, and correspond to the physical setup in which initially only one of the two less energetic atomic quantum levels in the optical medium is populated by electrons. In order to display the physical properties of the polarization switching solutions, we used the Stokes' sphere representation from optics to display the polarization of light. We also used the Euler
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1994-01-01
The principal investigator, together with two post-doctoral fellows, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals, propagation through random nonlinear media, cross polarization instabilities and optical shocks for propagation along nonlinear optical fibers, and the dynamics of bistable optical switches coupled through both diffusion and diffraction. In the first project the extremely strong nonlinear response of a CW laser beam in a nematic liquid crystal medium produced striking undulation and filamentation of the CW beam which was observed experimentally and explained theoretically. In the second project the interaction of randomness with nonlinearity was investigated, as well as an effective randomness due to the simultaneous presence of many nonlinear instabilities. In the polarization problems theoretical hyperbolic structure (instabilities and homoclinic orbits) in the coupled nonlinear Schroedinger (NLS) equations was identified and used to explain cross polarization instabilities in both the focusing and defocusing cases, as well as to describe optical shocking phenomena. For the coupled bistable optical switches, a numerical code was carefully developed in two spatial and one temporal dimensions. The code was used to study the decay of temporal transients to 'on-off' steady states in a geometry which includes forward and backward longitudinal propagation, together with one dimensional transverse coupling of both electromagnetic diffraction and carrier diffusion.
Nonlinear-programming mathematical modeling of coal blending for power plant
Tang Longhua; Zhou Junhu; Yao Qiang; Cao Xinyu; Wu Xiaorong; Cao Daoqing; Yin Chungen; Cen Kefa
1997-12-31
At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized in the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.
NASA Astrophysics Data System (ADS)
Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.
2015-11-01
The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.
Mathematical Modeling and Control of Nonlinear Oscillators with Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Bendame, Mohamed
Shape memory alloys (SMAs) belong to an interesting type of materials that have attracted the attention of scientists and engineers over the last few decades. They have some interesting properties that made them the subject of extensive research to find the best ways to utilize them in different engineering, biomedical, and scientific applications. In this thesis, we develop a mathematical model and analyze the behavior of SMAs by considering a one degree of freedom nonlinear oscillator consisting of a mass connected to a fixed frame through a viscous damping and a shape memory alloy device. Due to the nonlinear and dissipative nature of shape memory alloys, optimal control and Lyapunov stability theories are used to design a controller to stabilize the response of the one degree of freedom nonlinear oscillator. Since SMAs exist in two phases, martensite and austenite, and their phase transformations are dependent on stress and temperature, this work is presented in two parts. The first part deals with the nonlinear oscillator system in its two separate phases by considering a temperature where the SMA exists in only one of the phases. A model for each phase is developed based on Landau-Ginzburg-Devonshire theory that defines the free energy in a polynomial form enabling us to describe the SMAs shape memory effect and pseudoelasticity. However, due to the phenomenon of hysteresis in SMAs, the response of the nonlinear oscillator with a SMA element, in either phase, is chaotic and unstable. In order to stabilize the chaotic behavior, an optimal linear quadratic regulator controller is designed around a stable equilibrium for the martensitic and the austenitic phases. The closed-loop response for each phase is then simulated and computational results are presented. The second part of the thesis deals with the entire system in its dynamics by combining the two phases and taking into account the effect of temperature on the response of the system. Governing equations
Nonlinear Gompertz Curve Models of Achievement Gaps in Mathematics and Reading
ERIC Educational Resources Information Center
Cameron, Claire E.; Grimm, Kevin J.; Steele, Joel S.; Castro-Schilo, Laura; Grissmer, David W.
2015-01-01
This study examined achievement trajectories in mathematics and reading from school entry through the end of middle school with linear and nonlinear growth curves in 2 large longitudinal data sets (National Longitudinal Study of Youth--Children and Young Adults and Early Childhood Longitudinal Study--Kindergarten Cohort [ECLS-K]). The S-shaped…
Mathematical models of hysteresis
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Mathematical Modeling and Nonlinear Dynamical Analysis of Cell Growth in Response to Antibiotics
NASA Astrophysics Data System (ADS)
Jin, Suoqin; Niu, Lili; Wang, Gang; Zou, Xiufen
2015-06-01
This study is devoted to the revelation of the dynamical mechanisms of cell growth in response to antibiotics. We establish a mathematical model of ordinary differential equations for an antibiotic-resistant growth system with one positive feedback loop. We perform a dynamical analysis of the behavior of this model system. We present adequate sets of conditions that can guarantee the existence and stability of biologically-reasonable steady states. Using bifurcation analysis and numerical simulation, we show that the relative growth rate, which is defined as the ratio of the cell growth rate to the basal cell growth rate in the absence of antibiotics, can exhibit bistable behavior in an extensive range of parameters that correspond to a growth state and a nongrowth state in biology. We discover that both antibiotic and antibiotic resistance genes can cooperatively enhance bistability, whereas the cooperative coefficient of feedback can contribute to the onset of bistability. These results would contribute to a better understanding of not only the evolution of antibiotics but also the emergence of drug resistance in other diseases.
ERIC Educational Resources Information Center
Scheidt, Douglas M.
1995-01-01
Reviews three functions of the "Scientist" software package useful for the social sciences: nonlinear curve fitting, parameter estimation, and data/regression plotting. Social scientists are likely to find limitations and unfamiliar procedures in "Scientist". Its value lies in its visual presentation of data and regression curves and the…
Mathematical Models for Elastic Structures
NASA Astrophysics Data System (ADS)
Villaggio, Piero
1997-10-01
During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.
PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)
NASA Astrophysics Data System (ADS)
Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.
2014-03-01
Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph
ERIC Educational Resources Information Center
Esteley, Cristina; Villarreal, Monica; Alagia, Humberto
2004-01-01
This research report presents a study of the work of agronomy majors in which an extension of linear models to non-linear contexts can be observed. By linear models we mean the model y=a.x+b, some particular representations of direct proportionality and the diagram for the rule of three. Its presence and persistence in different types of problems…
NASA Technical Reports Server (NTRS)
Glukharev, K. K.; Morozova, N. I.; Potemkin, B. A.; Solovyev, V. S.; Frolov, K. V.
1973-01-01
A mathematical model of the human body was constructed, under the action of harmonic vibrations, in the 2.5-7 Hz frequency range. In this frequency range, the model of the human body as a vibrating system, with concentrated parameters is considered. Vertical movements of the seat and vertical components of vibrations of the human body are investigated.
Mathematical Models of Gene Regulation
NASA Astrophysics Data System (ADS)
Mackey, Michael C.
2004-03-01
This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.
Mathematical Modelling Approach in Mathematics Education
ERIC Educational Resources Information Center
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
NASA Technical Reports Server (NTRS)
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
The Nature of Mathematical Modeling
NASA Astrophysics Data System (ADS)
Gershenfeld, Neil
2011-06-01
Preface; 1. Introduction; Part I. Analytical Models: 2. Ordinary differential and difference equations; 3. Partial differential equations; 4. Variational principles; 5. Random systems; Part II. Numerical Models: 6. Finite differences: ordinary difference equations; 7. Finite differences: partial differential equations; 8. Finite elements; 9. Cellular automata and lattice gases; Part III. Observational Models: 10. Function fitting; 11. Transforms; 12. Architectures; 13. Optimization and search; 14. Clustering and density estimation; 15. Filtering and state estimation; 16. Linear and nonlinear time series; Appendix 1. Graphical and mathematical software; Appendix 2. Network programming; Appendix 3. Benchmarking; Appendix 4. Problem solutions; Bibliography.
ERIC Educational Resources Information Center
Fox, William
2012-01-01
The purpose of our modeling effort is to predict future outcomes. We assume the data collected are both accurate and relatively precise. For our oscillating data, we examined several mathematical modeling forms for predictions. We also examined both ignoring the oscillations as an important feature and including the oscillations as an important…
Mathematical Modelling: A New Approach to Teaching Applied Mathematics.
ERIC Educational Resources Information Center
Burghes, D. N.; Borrie, M. S.
1979-01-01
Describes the advantages of mathematical modeling approach in teaching applied mathematics and gives many suggestions for suitable material which illustrates the links between real problems and mathematics. (GA)
Mathematical models of bipolar disorder
NASA Astrophysics Data System (ADS)
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
Physical and mathematical cochlear models
NASA Astrophysics Data System (ADS)
Lim, Kian-Meng
2000-10-01
The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical model of sarcoidosis
Hao, Wenrui; Crouser, Elliott D.; Friedman, Avner
2014-01-01
Sarcoidosis is a disease involving abnormal collection of inflammatory cells forming nodules, called granulomas. Such granulomas occur in the lung and the mediastinal lymph nodes, in the heart, and in other vital and nonvital organs. The origin of the disease is unknown, and there are only limited clinical data on lung tissue of patients. No current model of sarcoidosis exists. In this paper we develop a mathematical model on the dynamics of the disease in the lung and use patients’ lung tissue data to validate the model. The model is used to explore potential treatments. PMID:25349384
Moll-Navarro, M J; Merino, M; Casabó, V G; Nácher, A; Polache, A
1996-11-01
Previous studies showed that the in situ absorption of baclofen in rat jejunum was inhibited by beta-alanine, a nonessential amino acid, and therefore mediated, at least in part, by some beta-amino acid carrier. In this paper a similar study was undertaken using taurine, a sulfonic beta-amino acid, in order to evaluate its effect and to establish a general inhibition model. To achieve this goal, remaining concentrations of inhibitor were also measured and incorporated into the model. Previously, kinetic absorption in situ parameters for taurine in free solution were obtained: Vm = 27.73 +/- 9.99 mM h-1, K(m) = 8.06 +/- 2.82 mM, Ka (passive difussion component) = 0.40 +/- 0.28 h-1. Isotonic solutions containing 0.5 mM baclofen with starting taurine concentrations ranging from 0 to 100 mM were perfused in rat jejunum, and the remaining concentrations of both compounds were measured. The apparent rate pseudoconstant of the drug clearly decreased as the remaining taurine concentration increased. The interaction can be described as a complete competitive inhibition plus a second component, K, noninhibited, K = 0.58 (+/- 0.03) h-1, Ki = 20.62 (+/- 4.04) mM, Vmi = 28.12 (+/- 6.12) mM h-1, Kmi = 11.71 (+/- 2.53) mM, Kai = 0.47 (+/- 0.10) h-1. A residual absorption of baclofen in the presence of high taurine concentrations was observed, which should be attributed to another transport system not associated with the taurine carrier. In order to elucidate whether or not taurine and beta-alanine carriers are two separate entities that baclofen can use for absorption, further experiments using beta-alanine and taurine together as inhibitors (baclofen, 0.5 mM; beta-alanine, 50 mM, and taurine, 50 mM) were developed. Results indicated that baclofen and both amino acids share the same carrier in the intestinal absorption process. We have completed studies using leucine, taurine, and GABA together as inhibitors of drug absorption. An isotonic perfusion solution of 0.5 mM baclofen in
Authenticity of Mathematical Modeling
ERIC Educational Resources Information Center
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Mathematical modelling of cucumber (cucumis sativus) drying
NASA Astrophysics Data System (ADS)
Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.
2014-07-01
This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.
Generalized Nonlinear Yule Models
NASA Astrophysics Data System (ADS)
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-10-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
A Primer for Mathematical Modeling
ERIC Educational Resources Information Center
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
Mathematical Modelling in European Education
ERIC Educational Resources Information Center
Ferri, Rita Borromeo
2013-01-01
Teaching and learning of mathematical modelling has become a key competence within school curricula and educational standards in many countries of the world. The term mathematical modelling, its meaning, and how it can be implemented in mathematics lessons have been intensively discussed during several Conferences of the European Society for…
Mathematical Modeling: Convoying Merchant Ships
ERIC Educational Resources Information Center
Mathews, Susann M.
2004-01-01
This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…
Ganser, G.; Christie, I.
1995-02-15
In sections 2-4 the authors present the fundamental mathematical model and the important features they have discovered during the last three years. The model presented in section 2 is typical of the set of equations studied by researchers in the past. However, a novel approach is taken here by the introduction of a stream function for the total mass flux. This is done because the differences and similarities between the one-dimensional and two-dimensional models emerge very clearly in this setting. The mathematical model is a quasilinear hyperbolic-elliptic system of partial differential equations. In one dimension the hyperbolic and elliptic parts decouple and in two dimensions they do not. As shocks and free boundaries are expected to play an important part, the authors also develop the jump conditions for the model in section 2.
NASA Astrophysics Data System (ADS)
Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood
An analytical approach based on the compatibility concept is employed to solve a nonlinear reaction-diffusion model arising in mathematical biology. The solution process makes it extremely easy to obtain a relatively accurate closed-form solution of the model. The pencil-and-paper solution procedure can be extended to other class of nonlinear problems of similar kind.
Mathematical model for bone mineralization
Komarova, Svetlana V.; Safranek, Lee; Gopalakrishnan, Jay; Ou, Miao-jung Yvonne; McKee, Marc D.; Murshed, Monzur; Rauch, Frank; Zuhr, Erica
2015-01-01
Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology. PMID:26347868
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
ERIC Educational Resources Information Center
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
Explorations in Elementary Mathematical Modeling
ERIC Educational Resources Information Center
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Purpura, David J; Logan, Jessica A R
2015-12-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities.
Identifying nonlinear biomechanical models by multicriteria analysis
NASA Astrophysics Data System (ADS)
Srdjevic, Zorica; Cveticanin, Livija
2012-02-01
In this study, the methodology developed by Srdjevic and Cveticanin (International Journal of Industrial Ergonomics 34 (2004) 307-318) for the nonbiased (objective) parameter identification of the linear biomechanical model exposed to vertical vibrations is extended to the identification of n-degree of freedom (DOF) nonlinear biomechanical models. The dynamic performance of the n-DOF nonlinear model is described in terms of response functions in the frequency domain, such as the driving-point mechanical impedance and seat-to-head transmissibility function. For randomly generated parameters of the model, nonlinear equations of motion are solved using the Runge-Kutta method. The appropriate data transformation from the time-to-frequency domain is performed by a discrete Fourier transformation. Squared deviations of the response functions from the target values are used as the model performance evaluation criteria, thus shifting the problem into the multicriteria framework. The objective weights of criteria are obtained by applying the Shannon entropy concept. The suggested methodology is programmed in Pascal and tested on a 4-DOF nonlinear lumped parameter biomechanical model. The identification process over the 2000 generated sets of parameters lasts less than 20 s. The model response obtained with the imbedded identified parameters correlates well with the target values, therefore, justifying the use of the underlying concept and the mathematical instruments and numerical tools applied. It should be noted that the identified nonlinear model has an improved accuracy of the biomechanical response compared to the accuracy of a linear model.
Mathematical Modeling of Diverse Phenomena
NASA Technical Reports Server (NTRS)
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Mathematical Models of Waiting Time.
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
1990-01-01
Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)
Mathew, Shibin; Bartels, John; Banerjee, Ipsita; Vodovotz, Yoram
2014-10-01
The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the ODE model for different levels of simulated LPS challenges using a global sensitivity approach called Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient parametric Monte Carlo samples to generate the variance-based Sobol' global sensitivity indices, and found that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak representing healthy response and the higher peak representing sustained inflammation. Damage was minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6 resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the NO-mediated anti-inflammatory responses. These observations suggest that the host's health status during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory stimulus
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
ERIC Educational Resources Information Center
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
Aircraft engine mathematical model - linear system approach
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ
2016-06-01
This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Interaction Terms in Nonlinear Models
Karaca-Mandic, Pinar; Norton, Edward C; Dowd, Bryan
2012-01-01
Objectives To explain the use of interaction terms in nonlinear models. Study Design We discuss the motivation for including interaction terms in multivariate analyses. We then explain how the straightforward interpretation of interaction terms in linear models changes in nonlinear models, using graphs and equations. We extend the basic results from logit and probit to difference-in-differences models, models with higher powers of explanatory variables, other nonlinear models (including log transformation and ordered models), and panel data models. Empirical Application We show how to calculate and interpret interaction effects using a publicly available Stata data set with a binary outcome. Stata 11 has added several features which make those calculations easier. LIMDEP code also is provided. Conclusions It is important to understand why interaction terms are included in nonlinear models in order to be clear about their substantive interpretation. PMID:22091735
A mathematical model of the CH-53 helicopter
NASA Technical Reports Server (NTRS)
Sturgeon, W. R.; Phillips, J. D.
1980-01-01
A mathematical model suitable for real time simulation of the CH-53 helicopter is presented. This model, which is based on modified nonlinear classical rotor theory and nonlinear fuselage aerodynamics, will be used to support terminal-area guidance and navigation studies on a fixed-base simulator. Validation is achieved by comparing the model response with that of a similar aircraft and by a qualitative comparison of the handling characteristics made by experienced pilots.
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro
2016-01-01
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively. PMID:26886551
Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro
2016-01-01
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
ERIC Educational Resources Information Center
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
The mathematics of non-linear metrics for nested networks
NASA Astrophysics Data System (ADS)
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
Using Covariation Reasoning to Support Mathematical Modeling
ERIC Educational Resources Information Center
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
Quantization of the nonlinear sigma model revisited
NASA Astrophysics Data System (ADS)
Nguyen, Timothy
2016-08-01
We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
Mathematical circulatory system model
NASA Technical Reports Server (NTRS)
Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)
2010-01-01
A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Mathematical Modeling in the Undergraduate Curriculum
ERIC Educational Resources Information Center
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
ERIC Educational Resources Information Center
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
Mathematical Models for Somite Formation
Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.
2009-01-01
Somitogenesis is the process of division of the anterior–posterior vertebrate embryonic axis into similar morphological units known as somites. These segments generate the prepattern which guides formation of the vertebrae, ribs and other associated features of the body trunk. In this work, we review and discuss a series of mathematical models which account for different stages of somite formation. We begin by presenting current experimental information and mechanisms explaining somite formation, highlighting features which will be included in the models. For each model we outline the mathematical basis, show results of numerical simulations, discuss their successes and shortcomings and avenues for future exploration. We conclude with a brief discussion of the state of modeling in the field and current challenges which need to be overcome in order to further our understanding in this area. PMID:18023728
Mathematical Modeling of the Auditory Periphery.
NASA Astrophysics Data System (ADS)
Koshigoe, Shozo
The auditory periphery is conventionally divided into three parts, namely, the outer, middle, and inner ear (or cochlea). Mathematical modeling of the auditory periphery has been used for increasing our understanding of its mechanics via the simulation of experimental results, and for estimating unknown parameters. The various techniques used in this study for modeling the auditory periphery are: (1) Green function methods for investigation of the external ear directional filter functions; (2) finite difference methods in cochlear mechanical model calculations; (3) dispersion relation tests of the consistency of model calculations; (4) dispersion relation checks of experimental cochlear response data for approximate consistency with the implications of causality, linearity, time translation invariance, and minimum phase behavior; (5) dispersion relation tests of the stability of the linear cochlear models with active elements; (6) the introduction of viscosity effects in cochlear mechanics in order to account for data on the low frequency cochlear input impedance; and (7) the incorporation of a non-linear feedback outer-hair-cell model into a cochlear model in order to account for the physiological and psychological data (such as spontaneous and induced acoustic emissions from human ears and their active non-linear interactions with external stimuli).
Nonlinear Modeling by Assembling Piecewise Linear Models
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Fibrin polymerization as a phase transition wave: A mathematical model
NASA Astrophysics Data System (ADS)
Lobanov, A. I.
2016-06-01
A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.
Mathematical modeling of the instability of viscous fluid films
NASA Astrophysics Data System (ADS)
Prokudina, L. A.
2016-08-01
Nonlinear mathematical model of free surface fluid film is presents. Increment, frequency, phase velocity for thin layers of viscous liquids at low Reynolds numbers are calculated. The instability region is found. Optimal flow regimes of films of water and alcohol, corresponding to the maximum values of increment, are calculated.
NASA Technical Reports Server (NTRS)
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
ERIC Educational Resources Information Center
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization
NASA Astrophysics Data System (ADS)
Aravind Kumar, K.; Ali, S. F.; Arockiarajan, A.
2015-11-01
Piezomagnetoelastic energy harvesters are one among the widely explored configurations to improve the broadband characteristics of vibration energy harvesters. Such nonlinear harvesters follow a Moon beam model with two magnets at the base and one at the tip of the beam. The present article develops a geometric nonlinear mathematical model for the broadband piezomagnetoelastic energy harvester. The electromechanical coupling and the nonlinear magnetic potential equations are developed from the dimensional system parameters to describe the nonlinear dynamics exhibited by the system. The developed model is capable of characterizing the monostable, bistable and tristable operating regimes of the piezomagnetoelastic energy harvester, which are not explicit in the Duffing representation of the system. Bifurcations and attractor motions are analyzed as nonlinear functions of the distance between base magnets and the field strength of the tip magnet. The model is further used to characterize the potential wells and stable states, with due focus on the performance of the system in broadband energy harvesting.
Mathematical models of diabetes progression.
De Gaetano, Andrea; Hardy, Thomas; Beck, Benoit; Abu-Raddad, Eyas; Palumbo, Pasquale; Bue-Valleskey, Juliana; Pørksen, Niels
2008-12-01
Few attempts have been made to model mathematically the progression of type 2 diabetes. A realistic representation of the long-term physiological adaptation to developing insulin resistance is necessary for effectively designing clinical trials and evaluating diabetes prevention or disease modification therapies. Writing a good model for diabetes progression is difficult because the long time span of the disease makes experimental verification of modeling hypotheses extremely awkward. In this context, it is of primary importance that the assumptions underlying the model equations properly reflect established physiology and that the mathematical formulation of the model give rise only to physically plausible behavior of the solutions. In the present work, a model of the pancreatic islet compensation is formulated, its physiological assumptions are presented, some fundamental qualitative characteristics of its solutions are established, the numerical values assigned to its parameters are extensively discussed (also with reference to available cross-sectional epidemiologic data), and its performance over the span of a lifetime is simulated under various conditions, including worsening insulin resistance and primary replication defects. The differences with respect to two previously proposed models of diabetes progression are highlighted, and therefore, the model is proposed as a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals. Model simulations can be run from the authors' web page.
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Mathematical model of the SH-3G helicopter
NASA Technical Reports Server (NTRS)
Phillips, J. D.
1982-01-01
A mathematical model of the Sikorsky SH-3G helicopter based on classical nonlinear, quasi-steady rotor theory was developed. The model was validated statically and dynamically by comparison with Navy flight-test data. The model incorporates ad hoc revisions which address the ideal assumptions of classical rotor theory and improve the static trim characteristics to provide a more realistic simulation, while retaining the simplicity of the classical model.
Mathematical modeling of kidney transport.
Layton, Anita T
2013-01-01
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation
Christov, Ivan; Christov, C. I.; Jordan, P. M.
2014-12-18
This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.
Mathematical Model for Mapping Students' Cognitive Capability
ERIC Educational Resources Information Center
Tambunan, Hardi
2016-01-01
The quality mapping of educational unit program is important issue in education in Indonesia today in an effort to improve the quality of education. The objective of this study is to make a mathematical model to find out the map of students' capability in mathematics. It has been made a mathematical model to be used in the mapping of students'…
Identifying approximate linear models for simple nonlinear systems
NASA Technical Reports Server (NTRS)
Horta, L. G.; Juang, J.-N.
1985-01-01
This paper addresses the identification (realization) of approximate linear models from response data for certain nonlinear dynamic systems. Response characteristics for several typical nonlinear joints are analyzed mathematically and represented by series expansions. The parameters of the series expansion are then compared with the modal parameters of a linear model identified by the Eigensystem Realization Algorithm. The agreement of the identified model and the analytically derived representation is excellent for the cases studied. Also laboratory data from a model which exhibited stiffening behavior was analyzed using the Eigensystem Realization algorithm and Fast Fourier Transform. The laboratory experiment demonstrated the ability of the technique to recover the model characteristics using real data.
Spatiotemporal drought forecasting using nonlinear models
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Loukas, Athanasios
2010-05-01
Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with
Mathematical modeling of glycerol biotransformation
NASA Astrophysics Data System (ADS)
Popova-Krumova, Petya; Yankova, Sofia; Ilieva, Biliana
2013-12-01
A method for mathematical modeling of glycerol biotransformation by Klebsiella oxytoca is presented. Glycerol is a renewable resource for it is formed as a by-product during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value (1, 3-Propanediol; 2, 3-Butanediol). The kinetic model of this process consists of many equations and parameters. The minimization of the least square function will be used for model parameters identification. In cases of parameters identification in multiparameter models the minimization of the least square function is very difficult because it is multiextremal. This is the main problem in the multiextremal function minimization which will be solved on the base a hierarchical approach, using a polynomial approximation of the experimental data.
Mathematical model for gyroscope effects
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2015-05-01
Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).
Mathematical modeling of cold cap
Pokorny, Richard; Hrma, Pavel R.
2012-10-13
The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.
A Generative Model of Mathematics Learning
ERIC Educational Resources Information Center
Wittrock, M. C.
1974-01-01
The learning of mathematics is presented as a cognitive process rather than as a behavioristic one. A generative model of mathematics learning is described. Learning with understanding can occur with discovery or reception treatments. Relevant empirical research is discussed and implications for teaching mathematics as a generative process are…
On Fences, Forms and Mathematical Modeling
ERIC Educational Resources Information Center
Lege, Jerry
2009-01-01
The white picket fence is an integral component of the iconic American townscape. But, for mathematics students, it can be a mathematical challenge. Picket fences in a variety of styles serve as excellent sources to model constant, step, absolute value, and sinusoidal functions. "Principles and Standards for School Mathematics" (NCTM 2000)…
Mathematical Modeling in the Secondary School Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank, Ed.; Hartzler, J. S., Ed.
Over the past 10 years, national conferences and committees investigating the state of American mathematics education have advocated an increased emphasis on problem solving and mathematical modeling situations in the secondary school curriculum. However, little effort has been made to prepare secondary school teachers to use mathematical modeling…
A model of nonlinear electrodynamics
Kruglov, S.I.
2015-02-15
A new model of nonlinear electrodynamics with two parameters is investigated. We also consider a model with one dimensional parameter. It was shown that the electric field of a point-like charge is not singular at the origin and there is the finiteness of the static electric energy of point-like charged particle. We obtain the canonical and symmetrical Belinfante energy–momentum tensors and dilatation currents. It is demonstrated that the dilatation symmetry and dual symmetry are broken in the models suggested. We have calculated the static electric energy of point-like particles.
Mathematical model for classification of EEG signals
NASA Astrophysics Data System (ADS)
Ortiz, Victor H.; Tapia, Juan J.
2015-09-01
A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.
Nonlinear Statistical Modeling of Speech
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Ma, T.; May, D.; Lazarou, G.; Picone, J.
2009-12-01
Contemporary approaches to speech and speaker recognition decompose the problem into four components: feature extraction, acoustic modeling, language modeling and search. Statistical signal processing is an integral part of each of these components, and Bayes Rule is used to merge these components into a single optimal choice. Acoustic models typically use hidden Markov models based on Gaussian mixture models for state output probabilities. This popular approach suffers from an inherent assumption of linearity in speech signal dynamics. Language models often employ a variety of maximum entropy techniques, but can employ many of the same statistical techniques used for acoustic models. In this paper, we focus on introducing nonlinear statistical models to the feature extraction and acoustic modeling problems as a first step towards speech and speaker recognition systems based on notions of chaos and strange attractors. Our goal in this work is to improve the generalization and robustness properties of a speech recognition system. Three nonlinear invariants are proposed for feature extraction: Lyapunov exponents, correlation fractal dimension, and correlation entropy. We demonstrate an 11% relative improvement on speech recorded under noise-free conditions, but show a comparable degradation occurs for mismatched training conditions on noisy speech. We conjecture that the degradation is due to difficulties in estimating invariants reliably from noisy data. To circumvent these problems, we introduce two dynamic models to the acoustic modeling problem: (1) a linear dynamic model (LDM) that uses a state space-like formulation to explicitly model the evolution of hidden states using an autoregressive process, and (2) a data-dependent mixture of autoregressive (MixAR) models. Results show that LDM and MixAR models can achieve comparable performance with HMM systems while using significantly fewer parameters. Currently we are developing Bayesian parameter estimation and
Mathematical Modeling of Electronic Devices and Circuits
NASA Astrophysics Data System (ADS)
Singh, B. P.; Singh, Meena; Roy, Sanjay Kumar
2010-11-01
The necessity of modeling lies in the nature of technology and its advancement. The modeling minimizes time and cost of the process involved. The mathematical model provides an insight into the behavior of the physical system that reduces the problem to its essential characteristics. The floating admittance matrix (FAM) approach is an elegant method of mathematical modeling of electronic devices and circuits.
Mathematical model for contemplative amoeboid locomotion.
Ueda, Kei-Ichi; Takagi, Seiji; Nishiura, Yasumasa; Nakagaki, Toshiyuki
2011-02-01
It has recently been reported that even single-celled organisms appear to be "indecisive" or "contemplative" when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here, we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of contemplative behavior.
Mathematical model for contemplative amoeboid locomotion
NASA Astrophysics Data System (ADS)
Ueda, Kei-Ichi; Takagi, Seiji; Nishiura, Yasumasa; Nakagaki, Toshiyuki
2011-02-01
It has recently been reported that even single-celled organisms appear to be “indecisive” or “contemplative” when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here, we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of contemplative behavior.
A Model for Teaching College Remedial Mathematics.
ERIC Educational Resources Information Center
Friedman, Mordechai
1986-01-01
A model for teaching college remedial mathematics is presented, with information on the background, the development of the model, and the model itself, as well as a discussion of how the model is used. (MNS)
The Activity System of School-Teaching Mathematics and Mathematical Modelling.
ERIC Educational Resources Information Center
Julie, Cyril
2002-01-01
Focuses on the activity system of school-teaching mathematics and the impact of mathematical modeling. Describes the Applications of and Modeling in School Mathematics Project (AMSMAP) which investigates teachers' mathematical modeling and its relationship to a hypothesized school mathematical modeling activity system. Discusses the notion of an…
Mathematical model of an air-filled alpha stirling refrigerator
NASA Astrophysics Data System (ADS)
McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir
2013-10-01
This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.
Mathematical models for exotic wakes
NASA Astrophysics Data System (ADS)
Basu, Saikat; Stremler, Mark
2014-11-01
Vortex wakes are a common occurrence in the environment around us; the most famous example being the von Kármán vortex street with two vortices being shed by the bluff body in each cycle. However, frequently there can be many other more exotic wake configurations with different vortex arrangements, based on the flow parameters and the bluff body dimensions and/or its oscillation characteristics. Some examples include wakes with periodic shedding of three vortices (`P+S' mode) and four vortices (symmetric `2P' mode, staggered `2P' mode, `2C' mode). We present mathematical models for such wakes assuming two-dimensional potential flows with embedded point vortices. The spatial alignment of the vortices is inspired by the experimentally observed wakes. The idealized system follows a Hamiltonian formalism. Model-based analysis reveals a rich dynamics pertaining to the relative vortex motion in the mid-wake region. Downstream evolution of the vortices, as predicted from the model results, also show good correspondence with wake-shedding experiments performed on flowing soap films.
Mathematical modeling of DNA's transcription process for the cancer study
NASA Astrophysics Data System (ADS)
Morales-Peñaloza, A.; Meza-López, C. D.; Godina-Nava, J. J.
2012-10-01
The cancer is a phenomenon caused by an anomaly in the DNA's transcription process, therefore it is necessary to known how such anomaly is generated in order to implement alternative therapies to combat it. We propose to use mathematical modeling to treat the problem. Is implemented a simulation of the process of transcription and are studied the transport properties in the heterogeneous case using nonlinear dynamics.
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
2016-01-01
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research. PMID:27557541
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
2016-01-01
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.
Constructing a Model of Mathematical Literacy.
ERIC Educational Resources Information Center
Pugalee, David K.
1999-01-01
Discusses briefly the call for mathematical literacy and the need for a model that articulates the fluid and dynamic nature of this form of literacy. Presents such a model which uses two concentric circles, one depicting the four processes of mathematical literacy (representing, manipulating, reasoning, and problem solving) and enablers that…
Mathematical Modelling as a Professional Task
ERIC Educational Resources Information Center
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Scaffolding Mathematical Modelling with a Solution Plan
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Mathematical modeling in soil science
NASA Astrophysics Data System (ADS)
Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel
2015-04-01
Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
Rival approaches to mathematical modelling in immunology
NASA Astrophysics Data System (ADS)
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
Variational modelling of nonlinear water waves
NASA Astrophysics Data System (ADS)
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Cheng, Kung-Shan; Dewhirst, Mark W.; Stauffer, Paul F.; Das, Shiva
2010-01-01
Purpose: A nonlinear system reconstruction can theoretically provide timely system reconstruction when designing a real-time image-guided adaptive control for multisource heating for hyperthermia. This clinical need motivates an analysis of the essential mathematical characteristics and constraints of such an approach. Methods: The implicit function theorem (IFT), the Karush–Kuhn–Tucker (KKT) necessary condition of optimality, and the Tikhonov–Phillips regularization (TPR) were used to analyze and determine the requirements of the optimal system reconstruction. Two mutually exclusive generic approaches were analyzed to reconstruct the physical system: The traditional full reconstruction and the recently suggested partial reconstruction. Rigorous mathematical analysis based on IFT, KKT, and TPR was provided for all four possible nonlinear reconstructions: (1) Nonlinear noiseless full reconstruction, (2) nonlinear noisy full reconstruction, (3) nonlinear noiseless partial reconstruction, and (4) nonlinear noisy partial reconstruction, when a class of nonlinear formulations of system reconstruction is employed. Results: Effective numerical algorithms for solving each of the aforementioned four nonlinear reconstructions were introduced and formal derivations and analyses were provided. The analyses revealed the necessity of adding regularization when partial reconstruction is used. Regularization provides the theoretical support for one to uniquely reconstruct the optimal system. It also helps alleviate the negative influences of unavoidable measurement noise. Both theoretical analysis and numerical examples showed the importance of having a good initial guess for accomplishing nonlinear system reconstruction. Conclusions: Regularization is mandatory for partial reconstruction to make it well posed. The Tikhonov–Phillips regularized Gauss–Newton algorithm has nice theoretical performance for partial reconstruction of systems with and without noise. The
ERIC Educational Resources Information Center
Purpura, David J.; Logan, Jessica A. R.
2015-01-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability.…
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
A Seminar in Mathematical Model-Building.
ERIC Educational Resources Information Center
Smith, David A.
1979-01-01
A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)
Mathematical modeling of radio systems and devices
NASA Astrophysics Data System (ADS)
Borisov, Iu. P.; Tsvetnov, V. V.
Methods for developing mathematical models of radio systems and devices are presented with emphasis on the functional approach to the modeling of radio systems. In particular, attention is given to the formal description of radio systems, computer-aided modeling of radio systems, a classification of methods of radio system modeling, and methods of mathematical description of signals and noise. Specific methods discussed include the carrier method, the complex envelope method, the method of statistical equivalents, and the information parameter method.
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
Neural network modeling of nonlinear systems based on Volterra series extension of a linear model
NASA Technical Reports Server (NTRS)
Soloway, Donald I.; Bialasiewicz, Jan T.
1992-01-01
A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.
Mathematical Existence Results for the Doi-Edwards Polymer Model
NASA Astrophysics Data System (ADS)
Chupin, Laurent
2016-07-01
In this paper, we present some mathematical results on the Doi-Edwards model describing the dynamics of flexible polymers in melts and concentrated solutions. This model, developed in the late 1970s, has been used and extensively tested in modeling and simulation of polymer flows. From a mathematical point of view, the Doi-Edwards model consists in a strong coupling between the Navier-Stokes equations and a highly nonlinear constitutive law. The aim of this article is to provide a rigorous proof of the well-posedness of the Doi-Edwards model, namely that it has a unique regular solution. We also prove, which is generally much more difficult for flows of viscoelastic type, that the solution is global in time in the two dimensional case, without any restriction on the smallness of the data.
Mathematical Models for Library Systems Analysis.
ERIC Educational Resources Information Center
Leimkuhler, F. F.
1967-01-01
The paper reviews the research on design and operation of research libraries sponsored by the Purdue University Libraries and the Purdue School of Industrial Engineering. The use of mathematical models in library operations research is discussed. Among the mathematical methods discussed are marginal analysis or cost minimization, computer…
Mathematical Programming Models in Educational Planning.
ERIC Educational Resources Information Center
McNamara, James F.
This document begins by defining and discussing educational planning. A brief overview of mathematical programing with an explanation of the general linear programing model is then provided. Some recent applications of mathematical programing techniques to educational planning problems are reviewed, and their implications for educational research…
Mathematical Modelling in the Early School Years
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2005-01-01
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the "Butter Beans Problem" and the "Airplane Problem"). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data,…
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1973-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric
2007-10-07
The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.
Mathematical Model Development and Simulation Support
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Tobbe, Patrick A.
2000-01-01
This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.
Cooking Potatoes: Experimentation and Mathematical Modeling.
ERIC Educational Resources Information Center
Chen, Xiao Dong
2002-01-01
Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)
Mathematical models of behavior of individual animals.
Tsibulsky, Vladimir L; Norman, Andrew B
2007-01-01
This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.
Automatic mathematical modeling for space application
NASA Technical Reports Server (NTRS)
Wang, Caroline K.
1987-01-01
A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.
Mathematical model of one-man air revitalization system
NASA Technical Reports Server (NTRS)
1976-01-01
A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.
Mathematical model of depolarization mechanism of conducted vasoreactivity
NASA Astrophysics Data System (ADS)
Neganova, Anastasiia Y.; Stiukhina, Elena S.; Postnov, Dmitry E.
2015-03-01
We address the problem of conducted vasodilation, the phenomenon which is also known as functional hyperemia. Specifically, we test the mechanism of nondecremental propagation of electric signals along endothelial cell layer recently hypothesized by Figueroa et al. By means of functional modeling we focus on possible nonlinear mechanisms that can underlie such regenerative pulse transmission (RPT). Since endothelial cells (EC) are generally known as electrically inexcitable, the possible role of ECs in RPT mechanisms is not evident. By means of mathematical modeling we check the dynamical self-consistency of Figueroa's hypothesis, as well as estimate the possible contribution of specific ionic currents to the suggested RPT mechanism.
A 6DOF mathematical model of parachute in Mars EDL
NASA Astrophysics Data System (ADS)
Shen, Ganghui; Xia, Yuanqing; Sun, Haoran
2015-04-01
The base of the dynamics characteristic research on the parachute and vehicle system is to establish a dynamics model, during the parachute descent phase, which can accurately display the relationship among the velocity, altitude and attitude angles as well as the variation of time. This paper starts with a new tracking law - ADRC in Mars entry guidance, which affects the initial states of the parachute deployment point and determines precision landing capability. Then, the influence of unsteady resistance to the parachute in Martian air is considered as the added mass, and a 6DOF nonlinear mathematical model of the parachute and vehicle system is established.
Nonlinear model for building-soil systems
McCallen, D.B.; Romstad, K.M.
1994-05-01
A finite-element based, numerical analysis methodology has been developed for the nonlinear analysis of building-soil systems. The methodology utilizes a reduced-order, nonlinear continuum model to represent the building, and the soil is represented with a simple nonlinear two-dimensional plane strain finite element. The foundation of the building is idealized as a rigid block and the interface between the soil and the foundation is modeled with an interface contract element. The objectives of the current paper are to provide the theoretical development of the system model, with particular emphasis on the modeling of the foundation-soil contact, and to demonstrate the special-purpose finite-element program that has been developed for nonlinear analysis of the building-soil system. Examples are included that compare the results obtained with the special-purpose program with the results of a general-purpose nonlinear finite-element program.
Nonlinear Dynamic Model Explains The Solar Dynamic
NASA Astrophysics Data System (ADS)
Kuman, Maria
Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
Bakshi, S; de Lange, E C; van der Graaf, P H; Danhof, M; Peletier, L A
2016-07-01
In this tutorial, we introduce basic concepts in dynamical systems analysis, such as phase-planes, stability, and bifurcation theory, useful for dissecting the behavior of complex and nonlinear models. A precursor-pool model with positive feedback is used to demonstrate the power of mathematical analysis. This model is nonlinear and exhibits multiple steady states, the stability of which is analyzed. The analysis offers insight into model behavior and suggests useful parameter regions, which simulations alone could not. PMID:27405001
Bakshi, S; de Lange, E C; van der Graaf, P H; Danhof, M; Peletier, L A
2016-07-01
In this tutorial, we introduce basic concepts in dynamical systems analysis, such as phase-planes, stability, and bifurcation theory, useful for dissecting the behavior of complex and nonlinear models. A precursor-pool model with positive feedback is used to demonstrate the power of mathematical analysis. This model is nonlinear and exhibits multiple steady states, the stability of which is analyzed. The analysis offers insight into model behavior and suggests useful parameter regions, which simulations alone could not.
Bakshi, S; de Lange, EC; Danhof, M; Peletier, LA
2016-01-01
In this tutorial, we introduce basic concepts in dynamical systems analysis, such as phase‐planes, stability, and bifurcation theory, useful for dissecting the behavior of complex and nonlinear models. A precursor‐pool model with positive feedback is used to demonstrate the power of mathematical analysis. This model is nonlinear and exhibits multiple steady states, the stability of which is analyzed. The analysis offers insight into model behavior and suggests useful parameter regions, which simulations alone could not. PMID:27405001
Mathematical biodynamic feedthrough model applied to rotorcraft.
Venrooij, Joost; Mulder, Mark; Abbink, David A; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H
2014-07-01
Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models. The model structure was systematically constructed using asymptote modeling, a procedure described in detail in this paper. The resulting model can easily be implemented in many typical rotorcraft BDFT studies, using the provided model parameters. The model's performance was validated in both the frequency and time domain. Furthermore, it was compared with several recent BDFT models. The results show that the proposed mathematical model performs better than typical black box models and is easier to parameterize and implement than a recent physical model.
Mathematical modeling for a thermionic-AMTEC cascade system
Lodhi, M.A.; Schuller, M.; Hausgen, P.
1996-03-01
A mathematical modeling of a system consisting of a cascade of a thermionic energy conversion (TIEC) device and an alkali metal thermal to electrical conversion (AMTEC) device has been performed. The TIEC is heated by electron bombardment which converts heat partially into electricity and rejects the remaining. The AMTEC utilizes this reject heat of the TIEC. A mathematical thermal model of the cascade converter has been developed to analyze effects of key parameters such as power level, heat fluxes, temperatures, cascade geometry, etc. In this effort, a 9-node system of nonlinear simultaneous equations has been constructed which is solved by MATHCAD predicting the temperatures of the principal components and the heat flow. Through this study, a better understanding of the thermal coupling of the two converters was gained which helps to produce a more efficient cascade. {copyright} {ital 1996 American Institute of Physics.}
Tutorial: Mathematical Modeling of Library Systems.
ERIC Educational Resources Information Center
Rouse, William B.
1979-01-01
Discusses the purpose of mathematical models and reviews the phases of the modeling process--defining performance, representing the problem, predicting performance, estimating parameters, defining optimization criterion, determining solution, and implementing results. Reviews of book-use, resource allocation, and library network models are…
Mathematical Modelling with 9-Year-Olds
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2005-01-01
This paper reports on the mathematical modelling of four classes of 4th-grade children as they worked on a modelling problem involving the selection of an Australian swimming team for the 2004 Olympics. The problem was implemented during the second year of the children's participation in a 3-year longitudinal program of modelling experiences…
Mathematical Models of Tuberculosis Reactivation and Relapse
Wallis, Robert S.
2016-01-01
The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiologic mechanism of tuberculosis in patients treated with tumor necrosis factor blockers, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic. PMID:27242697
A mathematical model for voigt poro-visco-plastic deformation
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2002-03-01
A mathematical model for poro-visco-plastic compaction and pressure solution in porous sediments has been formulated using the Voigt-type rheological constitutive relation as derived from experimental data. The governing equations reduce to a nonlinear hyperbolic heat conduction equation in the case of slow deformation where permeability is relatively high and the pore fluid pressure is nearly hydrostatic, while travelling wave exists in the opposite limit where overpressuring occurs and the pore fluid pressure is almost quasi-lithostatic. Full numerical simulation using a finite element method agree well with the approximate analytical solutions.
ERIC Educational Resources Information Center
Ciltas, Alper; Isik, Ahmet
2013-01-01
The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…
Mitter, S.K.
1980-06-01
The main thesis of this paper is that there are striking similarities between the mathematical problems of stochastic system theory, notably linear and non-linear filtering theory, and mathematical developments underlying quantum mechanics and quantum field theory. Thus the mathematical developments of the past thirty years in functional analysis, lie groups and lie algebras, group representations, and probabilistic methods of quantum theory can serve as a guide and indicator to search for an appropriate theory of stochastic systems. In the current state of development of linear and non-linear filtering theory, it is best to proceed by 'analogy' and with care, since 'unitarity' which plays such an important part in quantum mechanics and quantum field theory is not necessarily relevant to linear and non-linear filtering theory. The partial differential equations that arise in quantum theory are generally wave equations, whereas the partial differential equations arising in filtering theory are stochastic parabolic equations. Nevertheless the possibility of passing to a wave equation by appropriate analytic continuation from the parabolic equation, reminiscent of the current program in euclidean field theory, should not be overlooked.
Battery electrochemical nonlinear/dynamic SPICE model
Glass, M.C.
1996-12-31
An Integrated Battery Model has been produced which accurately represents DC nonlinear battery behavior together with transient dynamics. The NiH{sub 2} battery model begins with a given continuous-function electrochemical math model. The math model for the battery consists of the sum of two electrochemical process DC currents, which are a function of the battery terminal voltage. This paper describes procedures for realizing a voltage-source SPICE model which implements the electrochemical equations using behavioral sources. The model merges the essentially DC non-linear behavior of the electrochemical model, together with the empirical AC dynamic terminal impedance from measured data. Thus the model integrates the short-term linear impedance behavior, with the long-term nonlinear DC resistance behavior. The long-duration non-Faradaic capacitive behavior of the battery is represented by a time constant. Outputs of the model include battery voltage/current, state-of-charge, and charge-current efficiency.
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Fractional non-linear modelling of ultracapacitors
NASA Astrophysics Data System (ADS)
Bertrand, Nicolas; Sabatier, Jocelyn; Briat, Olivier; Vinassa, Jean-Michel
2010-05-01
In this paper, it is demonstrated that an ultracapacitor exhibits a non-linear behaviour in relation to the operating voltage. A set of fractional order linear systems resulting from a frequency analysis of the ultracapacitor at various operating points is first obtained. Then, a non-linear model is deduced from the linear systems set, so that its Taylor linearization around the considered operating points (for the frequency analysis), produces the linear system set. The resulting non-linear model is validated on a Hybrid Electric Vehicle (HEV) application.
Comprehensive Mathematical Model Of Real Fluids
NASA Technical Reports Server (NTRS)
Anderson, Peter G.
1996-01-01
Mathematical model of thermodynamic properties of water, steam, and liquid and gaseous hydrogen and oxygen developed for use in computational simulations of flows of mass and heat in main engine of space shuttle. Similar models developed for other fluids and applications. Based on HBMS equation of state.
Mathematical model for predicting human vertebral fracture
NASA Technical Reports Server (NTRS)
Benedict, J. V.
1973-01-01
Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.
Mathematical modeling relevant to closed artificial ecosystems
DeAngelis, D.L.
2003-01-01
The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.
Modeling of active and passive nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Colestock, Patrick L.; Reiten, Matthew T.; O'Hara, John F.
2012-11-01
We develop general results for nonlinear metamaterials based on simple circuit models that reflect the elementary nonlinear behavior of the medium. In particular, we consider both active and passive nonlinearities which can lead to gain, harmonic generation and a variety of nonlinear waves depending on circuit parameters and signal amplitude. We show that the medium can exhibit a phase transition to a synchronized state and derive conditions for the transformation based on a widely used multiple time scale approach that leads to the well-known Complex Ginzburg-Landau equation. Further, we examine the variety of nonlinear waves that can exist in such systems, and we present numerical results for both active and passive metamaterial cases.
Mathematical modeling of molecular diffusion through mucus
Cu, Yen; Saltzman, W. Mark
2008-01-01
The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488
Cheviakov, A F; Ganghoffer, J-F
2016-05-01
The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures. PMID:26410196
Cheviakov, A F; Ganghoffer, J-F
2016-05-01
The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures.
Mathematical modeling as a tool for investigating cell cycle control networks.
Sible, Jill C; Tyson, John J
2007-02-01
Although not a traditional experimental "method," mathematical modeling can provide a powerful approach for investigating complex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one modeling approach based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations. We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for mathematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects in order to gain a systems-level perspective for complex control systems. PMID:17189866
Application of a nonlinear slug test model
McElwee, C.D.
2001-01-01
Knowledge of the hydraulic conductivity distribution is of utmost importance in understanding the dynamics of an aquifer and in planning the consequences of any action taken upon that aquifer. Slug tests have been used extensively to measure hydraulic conductivity in the last 50 years since Hvorslev's (1951) work. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been implemented in this work. The nonlinear model has three parameters: ??, which is related primarily to radius changes in the water column; A, which is related to the nonlinear head losses; and K, the hydraulic conductivity. An additional parameter has been added representing the initial velocity of the water column at slug initiation and is incorporated into an analytical solution to generate the first time step before a sequential numerical solution generates the remainder of the time solution. Corrections are made to the model output for acceleration before it is compared to the experimental data. Sensitivity analysis and least squares fitting are used to estimate the aquifer parameters and produce some diagnostic results, which indicate the accuracy of the fit. Finally, an example of field data has been presented to illustrate the application of the model to data sets that exhibit nonlinear behavior. Multiple slug tests should be taken at a given location to test for nonlinear effects and to determine repeatability.
Lewis, Jennifer
2012-10-15
This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Clinical Trials: Spline Modeling is Wonderful for Nonlinear Effects.
Cleophas, Ton J
2016-01-01
Traditionally, nonlinear relationships like the smooth shapes of airplanes, boats, and motor cars were constructed from scale models using stretched thin wooden strips, otherwise called splines. In the past decades, mechanical spline methods have been replaced with their mathematical counterparts. The objective of the study was to study whether spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial and also to study whether it can detect patterns in a trial that are relevant but go unobserved with simpler regression models. A clinical trial assessing the effect of quantity of care on quality of care was used as an example. Spline curves consistent of 4 or 5 cubic functions were applied. SPSS statistical software was used for analysis. The spline curves of our data outperformed the traditional curves because (1) unlike the traditional curves, they did not miss the top quality of care given in either subgroup, (2) unlike the traditional curves, they, rightly, did not produce sinusoidal patterns, and (3) unlike the traditional curves, they provided a virtually 100% match of the original values. We conclude that (1) spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial; (2) spline modeling can detect patterns in a trial that are relevant but may go unobserved with simpler regression models; (3) in clinical research, spline modeling has great potential given the presence of many nonlinear effects in this field of research and given its sophisticated mathematical refinement to fit any nonlinear effect in the mostly accurate way; and (4) spline modeling should enable to improve making predictions from clinical research for the benefit of health decisions and health care. We hope that this brief introduction to spline modeling will stimulate clinical investigators to start using this wonderful method.
The (Mathematical) Modeling Process in Biosciences
Torres, Nestor V.; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063
Nonlinear modeling of MEMS piezoelectric energy harvesters
NASA Astrophysics Data System (ADS)
Wang, Y. C.; Huang, T. W.; Shu, Y. C.; Lin, S. C.; Wu, W. J.
2016-04-01
This article presents the modeling of nonlinear response of micro piezoelectric energy harvesters under amplified base excitation. The micro transducer is a composite cantilever beam made of the PZT thick film deposited on the stainless-steel substrate. The model is developed based on the Euler-Bernoulli beam theory considering geometric and inertia nonlinearities, and the reduced formulation is derived based on the Hamiltonian variational principle. The harmonic balance method is used to simulate the nonlinear frequency response under various magnitudes of excitation and electric loads. The hardening type of nonlinearity is predicted and is found to be in good agreement with experiment. However, the softening response is also observed in different samples fabricated under different conditions. Such disagreement is under investigation.
Topological approximation of the nonlinear Anderson model.
Milovanov, Alexander V; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t→+∞. The second moment of the associated probability distribution grows with time as a power law ∝ t^{α}, with the exponent α=1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Topological approximation of the nonlinear Anderson model
NASA Astrophysics Data System (ADS)
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Introduction to mathematical models and methods
Siddiqi, A. H.; Manchanda, P.
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
Identification of the noise using mathematical modelling
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav
2016-03-01
In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.
Outlier robust nonlinear mixed model estimation.
Williams, James D; Birch, Jeffrey B; Abdel-Salam, Abdel-Salam G
2015-04-15
In standard analyses of data well-modeled by a nonlinear mixed model, an aberrant observation, either within a cluster, or an entire cluster itself, can greatly distort parameter estimates and subsequent standard errors. Consequently, inferences about the parameters are misleading. This paper proposes an outlier robust method based on linearization to estimate fixed effects parameters and variance components in the nonlinear mixed model. An example is given using the four-parameter logistic model and bioassay data, comparing the robust parameter estimates with the nonrobust estimates given by SAS(®).
Mathematical Modeling of Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
Melatonin in Epilepsy: A New Mathematical Model of Diurnal Secretion
Kijonka, Marek; Pęcka, Marcin; Sokół, Maria
2016-01-01
Purpose. The main objective of the study was to create a mathematical model that describes the melatonin circadian secretion and, then the functionality of the model was tested by a comparison of the melatonin secretions in children with and without epilepsy. Material and Methods. The patients were divided into the epilepsy group (EG, n = 52) and the comparison group (CG, n = 30). The melatonin level was assessed by a radioimmunoassay method. The diurnal melatonin secretion was described using a nonlinear least squares method. Spearman's rank correlation coefficient was chosen to estimate the dependence of the acquired data. The model reproduces blood concentration profiles and its parameters were statistically analyzed using the Mann-Whitney-Wilcoxon test and logistic regression. Results. The correlation analysis performed for the EG and CG groups showed moderate correlations between age and the melatonin secretion model parameters. Patients with epilepsy are characterized by an increased phase shift of melatonin release. PMID:27478439
Melatonin in Epilepsy: A New Mathematical Model of Diurnal Secretion.
Paprocka, Justyna; Kijonka, Marek; Pęcka, Marcin; Sokół, Maria
2016-01-01
Purpose. The main objective of the study was to create a mathematical model that describes the melatonin circadian secretion and, then the functionality of the model was tested by a comparison of the melatonin secretions in children with and without epilepsy. Material and Methods. The patients were divided into the epilepsy group (EG, n = 52) and the comparison group (CG, n = 30). The melatonin level was assessed by a radioimmunoassay method. The diurnal melatonin secretion was described using a nonlinear least squares method. Spearman's rank correlation coefficient was chosen to estimate the dependence of the acquired data. The model reproduces blood concentration profiles and its parameters were statistically analyzed using the Mann-Whitney-Wilcoxon test and logistic regression. Results. The correlation analysis performed for the EG and CG groups showed moderate correlations between age and the melatonin secretion model parameters. Patients with epilepsy are characterized by an increased phase shift of melatonin release. PMID:27478439
Some mathematical tools for a modeller's workbench
NASA Technical Reports Server (NTRS)
Cohen, E.
1984-01-01
The development of a mathematical software tools in workbench environment to model related objects more straightforward is outlined. A computer model from informal drawings and a plastic model of a helicopter is discussed. Lofting was the predominant, characteristic modelling technique. Ships and airplane designs use lofting as a technique because they have defined surfaces, (hulls and fuselages) from vertical station cuts perpendicular to the vertical center plane defining the major axis of reflective symmetry. A turbine blade from a jet engine was modelled in this way. The aerodynamic portion and the root comes from different paradigms. The union of these two parts into a coherent model is shown.
A mathematical model of lung parenchyma.
Karakaplan, A D; Bieniek, M P; Skalak, R
1980-05-01
The geometry of the proposed model of the parenchyma of a mammalian lung reproduces a cluster of alveoli arranged around a lowest-level air duct. The alveolar walls are assumed to be nonlinear elastic membranes, whose properties are described in terms of a strain energy function which reflects the hardening character of the stress-strain curve. The effect of the surfactant is included in terms of a variable (area-dependent) surface tension. Analyses of various mechanical processes in the parenchyma are performed with the aid of the finite element method, with the geometric and physical nonlinearities of the problem taken into account. PMID:6893348
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
Mathematical challenges in glacier modeling (Invited)
NASA Astrophysics Data System (ADS)
jouvet, G.
2013-12-01
Many of Earth's glaciers are currently shrinking and it is expected that this trend will continue as global warming progresses. To virtually reproduce the evolution of glaciers and finally to predict their future, one needs to couple models of different disciplines and scales. Indeed, the slow motion of ice is described by fluid mechanics equations while the daily snow precipitations and melting are described by hydrological and climatic models. Less visible, applied mathematics are essential to run such a coupling at two different levels: by solving numerically the underlying equations and by seeking parameters using optimisation methods. This talk aims to make visible the role of mathematics in this area. I will first present a short educational film I have made for the "Mathematics of Planet Earth 2013", which is an introduction to the topic. To go further, solving the mechanical model of ice poses several mathematical challenges due to the complexity of the equations and geometries of glaciers. Then, I will describe some strategies to deal with such difficulties and design robust simulation tools. Finally, I will present some simulations of the largest glacier of the European Alps, the Aletsch glacier. As a less unexpected application, I will show how these results allowed us to make a major advance in a police investigation started in 1926.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure
NASA Astrophysics Data System (ADS)
Smith, Erick; Haarer, Shawn; Confrey, Jere
Although reform efforts in mathematics education have called for more diverse views of mathematics, there have been few studies of how mathematics is used and takes form in practices outside of mathematics itself. Thus legitimate diverse models have largely been missing in education. This study attempts to broaden our understanding of mathematics by investigating how applied mathematicians and biologists, working together to construct dynamic population models, understand these models within the framework of their perspective practices, that is how these models take on a role as ''boundary objects'' between the two practices. By coming to understand how these models function within the practice of biology, the paper suggests that mathematics educators have the opportunity both to reevaluate their own assumptions about modeling and to build an understanding of the dialectic process necessary for these models to develop an epistemological basis that is shared across practices. Investigating this dialectic process is both important and missing in most mathematical classrooms.1
Probability bounds analysis for nonlinear population ecology models.
Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A
2015-09-01
Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals.
A data driven nonlinear stochastic model for blood glucose dynamics.
Zhang, Yan; Holt, Tim A; Khovanova, Natalia
2016-03-01
The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles.
Mathematical model for citric acid fermentation.
Hu, J; Wu, P
1993-01-01
The kinetics for biomass proliferation, medium consumption and citric acid production in the course of citric acid fermentation were studied, and the mathematical models describing the course of citric acid fermentation were obtained in this paper. Based on the statistical data of experiment, the model was verified, and the model parameters were estimated with the results of the experiment. The results showed that the curves obtained by model calculation fitted with the ones determined by the experiments well, and the models described correctly the course of the citric acid fermentation. This is important for computer application to control the course of fermentation and realize the optimum of fermentation process.
Mathematical models of malaria - a review
2011-01-01
Mathematical models have been used to provide an explicit framework for understanding malaria transmission dynamics in human population for over 100 years. With the disease still thriving and threatening to be a major source of death and disability due to changed environmental and socio-economic conditions, it is necessary to make a critical assessment of the existing models, and study their evolution and efficacy in describing the host-parasite biology. In this article, starting from the basic Ross model, the key mathematical models and their underlying features, based on their specific contributions in the understanding of spread and transmission of malaria have been discussed. The first aim of this article is to develop, starting from the basic models, a hierarchical structure of a range of deterministic models of different levels of complexity. The second objective is to elaborate, using some of the representative mathematical models, the evolution of modelling strategies to describe malaria incidence by including the critical features of host-vector-parasite interactions. Emphasis is more on the evolution of the deterministic differential equation based epidemiological compartment models with a brief discussion on data based statistical models. In this comprehensive survey, the approach has been to summarize the modelling activity in this area so that it helps reach a wider range of researchers working on epidemiology, transmission, and other aspects of malaria. This may facilitate the mathematicians to further develop suitable models in this direction relevant to the present scenario, and help the biologists and public health personnel to adopt better understanding of the modelling strategies to control the disease PMID:21777413
An Improved (G'/G)-expansion Method for Solving Nonlinear PDEs in Mathematical Physics
NASA Astrophysics Data System (ADS)
Zayed, Elsayed M. E.; Al-Joudi, Shorog
2010-09-01
In the present article, we construct the traveling wave solutions of the (1+1)-dimensional coupled Hirota-Satsuma-KdV equations and the (1+1)-dimensional variant coupled Boussinesq system of equations by using an improved (G'/G)-expansion method, where G satisfies the second order linear ordinary differential equation. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.
An Improved ((G'/G))-expansion Method for Solving Nonlinear PDEs in Mathematical Physics
Zayed, Elsayed M. E.; Al-Joudi, Shorog
2010-09-30
In the present article, we construct the traveling wave solutions of the (1+1)-dimensional coupled Hirota-Satsuma-KdV equations and the (1+1)-dimensional variant coupled Boussinesq system of equations by using an improved ((G'/G))-expansion method, where G satisfies the second order linear ordinary differential equation. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.
Mathematical modeling the radiation effects on humoral immunity
NASA Astrophysics Data System (ADS)
Smirnova, O. A.
A mathematical model of humoral immune response in nonirradiated and irradiated mammals is developed. It is based on conventional theories and experimental facts in this field. The model is a system of nonlinear differential equations which describe the dynamics of concentrations of antibody and antigen molecules, immunocompetent B lymphocytes, and the rest blood lymphocytes, as well as the bone-marrow lymphocyte precursors. The interaction of antigen molecules with antibodies and with antibody-like receptors on immunocompetent cells is also incorporated. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of plague microbe) in nonirradiated mammals (CBA mice). It describes the peculiarities of the humoral immune response in CBA mice exposed to acute radiation before or after introducing antigen. The model predicts an adaptation of humoral immune system to low dose rate chronic irradiation in the result of which the intensity of immune response relaxes to a new, lower than normal, stable level. The mechanisms of this phenomenon are revealed. The results obtained show that the developed model, after the appropriate identification, can be used to predict the effects of acute and low-level long-term irradiation on the system of humoral immunity in humans. Employment of the mathematical model identified in the proper way should be important in estimating the radiation risk for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.
Mathematical Modelling of Turbidity Currents
NASA Astrophysics Data System (ADS)
Fay, G. L.; Fowler, A.; Howell, P.
2011-12-01
A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.
Voters' Fickleness:. a Mathematical Model
NASA Astrophysics Data System (ADS)
Boccara, Nino
This paper presents a spatial agent-based model in order to study the evolution of voters' choice during the campaign of a two-candidate election. Each agent, represented by a point inside a two-dimensional square, is under the influence of its neighboring agents, located at a Euclidean distance less than or equal to d, and under the equal influence of both candidates seeking to win its support. Moreover, each agent located at time t at a given point moves at the next timestep to a randomly selected neighboring location distributed normally around its position at time t. Besides their location in space, agents are characterized by their level of awareness, a real a ∈ [0, 1], and their opinion ω ∈ {-1, 0, +1}, where -1 and +1 represent the respective intentions to cast a ballot in favor of one of the two candidates while 0 indicates either disinterest or refusal to vote. The essential purpose of the paper is qualitative; its aim is to show that voters' fickleness is strongly correlated to the level of voters' awareness and the efficiency of candidates' propaganda.
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Evaluation of nonlinearity and validity of nonlinear modeling for complex time series
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2007-10-01
Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank
1991-01-01
Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)
Mathematical Modeling for Preservice Teachers: A Problem from Anesthesiology.
ERIC Educational Resources Information Center
Lingefjard, Thomas
2002-01-01
Addresses the observed actions of prospective Swedish mathematics teachers as they worked with a modeling situation. Explores prospective teachers' preparation to teach in grades 4-12 during a course of mathematical modeling. Focuses on preservice teachers' understanding of modeling and how they relate mathematical models to the real world.…
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
Computing Linear Mathematical Models Of Aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.
1991-01-01
Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.
Development of Mathematical Models to Estimate Animal Performance and Feed Biological Values
Technology Transfer Automated Retrieval System (TEKTRAN)
Mathematical modeling in nutrition is important because the human mind is able to formulate concepts and hypothesis but lack the ability to track quantitative relationships of complex, nonlinear, and dynamic systems. It provides us with a tool to analyze huge amounts of data and information about nu...
Nonlinear aerodynamic modeling using multivariate orthogonal functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate orthogonal functions based on the data. Each orthogonal function retained in the model was decomposed into an expansion of ordinary polynomials in the independent variables, so that the final model could be interpreted as selectively retained terms from a multivariable power series expansion. A predicted squared-error metric was used to determine the orthogonal functions to be retained in the model; analytical derivatives were easily computed. The approach was demonstrated on the Z-body axis aerodynamic force coefficient (Cz) wind tunnel data for an F-18 research vehicle which came from a tabular wind tunnel and covered the entire subsonic flight envelope. For a realistic case, the analytical model predicted experimental values of Cz very well. The modeling technique is shown to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The polynomial model has good predictive capability, global validity, and analytical differentiability.
Editorial: Mathematical modelling of infectious diseases.
Fenton, Andy
2016-06-01
The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species. PMID:27027318
Building Mathematical Models of Simple Harmonic and Damped Motion.
ERIC Educational Resources Information Center
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
ERIC Educational Resources Information Center
Lim, L. L.; Tso, T. -Y.; Lin, F. L.
2009-01-01
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…
ERIC Educational Resources Information Center
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
ERIC Educational Resources Information Center
Jurow, A. Susan
2004-01-01
Generalizing or making claims that extend beyond particular situations is a central mathematical practice and a focus of classroom mathematics instruction. This study examines how aspects of generality are produced through the situated activities of a group of middle school mathematics students working on an 8-week population-modeling project. The…
Mathematical modelling of leprosy and its control.
Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik
2015-03-01
Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital. PMID:25765193
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise
2013-01-01
1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.
Mathematical Model For Deposition Of Soot
NASA Technical Reports Server (NTRS)
Makel, Darby B.
1991-01-01
Semiempirical mathematical model predicts deposition of soot in tubular gas generator in which hydrocarbon fuel burned in very-fuel-rich mixture with pure oxygen. Developed in response to concern over deposition of soot in gas generators and turbomachinery of rocket engines. Also of interest in terrestrial applications involving fuel-rich combustion or analogous process; e.g., purposeful deposition of soot to manufacture carbon black pigments.
Nonlinear ARMA models for the D(st) index and their physical interpretation
NASA Technical Reports Server (NTRS)
Vassiliadis, D.; Klimas, A. J.; Baker, D. N.
1996-01-01
Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.
Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2004-01-01
A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.
Basic Perforator Flap Hemodynamic Mathematical Model
Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.
2016-01-01
Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations. PMID:27579238
Mathematical model for estimation of meteoroid dark flight trajectory
NASA Astrophysics Data System (ADS)
Vinnikov, V. V.; Gritsevich, M. I.; Turchak, L. I.
2016-10-01
This paper is concerned with mathematical model for numerical simulation of meteoroid dynamics. The simulations of bolide ballistics are carried out via hard sphere approximation. System of differential equations for movement and heat transfer is solved in Lagrange variables via Runge-Kutta methods. The drag force of atmospheric air is computed via Henderson formula, valid for wide ranges of Reynolds and Mach numbers. The parameters of surrounding gas are obtained from standard atmosphere model. The impact pressure is computed taking into account entropy jump through bow head shockwave and consequent isentropic deceleration of the flow in the vicinity of streamlined sphere. Meteoroid fragmentation is modeled as sequential division of parent body into two parts using random weighting coefficient for parent mass. The condition for fragmentation event occur when the hemisphere-averaged value of impact pressure exceeds the threshold of relative body strength, which nonlinearly depends on ration of initial meteoroid mass to current mass of considered fragment. To compute trajectory divergence for newly-formed splinters we introduce the repulsive force, dependent on impact pressure, cross sectional areas of mutually repulsing bodies and distances between them. The set of mathematical models is implemented as the program complex. Preliminary computational results show that fragmentation altitude, terminal velocities and maximum splinter masses are in good agreement with corresponding observations and measurements.
Mathematical Models and the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Mazur, James E.
2006-01-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…
Mathematical models of breast and ovarian cancers.
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-07-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1975-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.
Nonlinear Submodels Of Orthogonal Linear Models
ERIC Educational Resources Information Center
Bechtel, Gordon G.
1973-01-01
It is the purpose of this paper to suggest the orthogonal analysis of variance as a device for simplifying either the analytic or iterative problem of finding LS (least squares) estimates for the parameters of particular nonlinear models. (Author/RK)
Nonlinear Modeling of Joint Dominated Structures
NASA Technical Reports Server (NTRS)
Chapman, J. M.
1990-01-01
The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.
Nonlinear GARCH model and 1 / f noise
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
Nonlinear model of elastic field sources
NASA Astrophysics Data System (ADS)
Lev, B. I.; Zagorodny, A. G.
2016-09-01
A general concept of the long-range elastic interactions in continuous medium is proposed. The interaction is determined as a consequence of symmetry breaking of the elastic field distribution produced by the topological defect as isolated inclusions. It is proposed to treat topological defects as the source of elastic field that can be described in terms of this field. The source is considered as a nonlinear object which determines the effective charge of the field at large distances in the linear theory. The models of the nonlinear source are proposed.
Mathematical analysis of a muscle architecture model.
Navallas, Javier; Malanda, Armando; Gila, Luis; Rodríguez, Javier; Rodríguez, Ignacio
2009-01-01
Modeling of muscle architecture, which aims to recreate mathematically the physiological structure of the muscle fibers and motor units, is a powerful tool for understanding and modeling the mechanical and electrical behavior of the muscle. Most of the published models are presented in the form of algorithms, without mathematical analysis of mechanisms or outcomes of the model. Through the study of the muscle architecture model proposed by Stashuk, we present the analytical tools needed to better understand these models. We provide a statistical description for the spatial relations between motor units and muscle fibers. We are particularly concerned with two physiological quantities: the motor unit fiber number, which we expect to be proportional to the motor unit territory area; and the motor unit fiber density, which we expect to be constant for all motor units. Our results indicate that the Stashuk model is in good agreement with the physiological evidence in terms of the expectations outlined above. However, the resulting variance is very high. In addition, a considerable 'edge effect' is present in the outer zone of the muscle cross-section, making the properties of the motor units dependent on their location. This effect is relevant when motor unit territories and muscle cross-section are of similar size.
Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model.
Altmann, Yoann; Dobigeon, Nicolas; Tourneret, Jean-Yves
2013-04-01
This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.
Optimization approaches to nonlinear model predictive control
Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)
1991-01-01
With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.
Nonlinear kinetic modeling of stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Benisti, Didier
2011-10-01
Despite its importance for many applications, such as or Raman amplification or inertial confinement fusion, deriving a nonlinear estimate of Raman reflectivity in a plasma has remained quite a challenge for decades. This is mainly due to the nonlinear modification of the electron distribution function induced by the plasma wave (EPW), which, in turn, modifies the propagation of this wave. In this paper is derived an envelope equation for the EPW valid in 3D and which accounts for the nonlinear change of its collisionless (Landau-like) damping rate, group velocity, coupling to the electromagnetic drive, frequency and wave number. Our theoretical predictions for each of these terms are carefully compared against results from Vlasov simulations of stimulated Raman scattering (SRS), as well as with other theories. Moreover, our envelope model shows to be as accurate as a Vlasov code in predicting Raman threshold in 1D. Making comparisons with experimental results nevertheless requires including transverse dimensions and letting Raman start from noise. To this end, we performed a completely new derivation of the electrostatic fluctuations in a plasma, which accounts nonlinear effects. Moreover, based on our Multi-D simulations of Raman scattering with our envelope code BRAMA, we discuss the effect on SRS of wave front bowing, transverse detrapping and of a completely new defocussing effect due to the local change in the direction of the EPW group velocity induced by the nonlinear decrease of Landau damping.
A Review of Mathematical Models for Leukemia and Lymphoma
Clapp, Geoffrey; Levy, Doron
2014-01-01
Recently, there has been significant activity in the mathematical community, aimed at developing quantitative tools for studying leukemia and lymphoma. Mathematical models have been applied to evaluate existing therapies and to suggest novel therapies. This article reviews the recent contributions of mathematical modeling to leukemia and lymphoma research. These developments suggest that mathematical modeling has great potential in this field. Collaboration between mathematicians, clinicians, and experimentalists can significantly improve leukemia and lymphoma therapy. PMID:26744598
Nonlinear Dynamic Causal Models for fMRI
Stephan, Klaas Enno; Kasper, Lars; Harrison, Lee M.; Daunizeau, Jean; den Ouden, Hanneke E.M.; Breakspear, Michael; Friston, Karl J.
2009-01-01
Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1→V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both
Mathematical models of human african trypanosomiasis epidemiology.
Rock, Kat S; Stone, Chris M; Hastings, Ian M; Keeling, Matt J; Torr, Steve J; Chitnis, Nakul
2015-03-01
Human African trypanosomiasis (HAT), commonly called sleeping sickness, is caused by Trypanosoma spp. and transmitted by tsetse flies (Glossina spp.). HAT is usually fatal if untreated and transmission occurs in foci across sub-Saharan Africa. Mathematical modelling of HAT began in the 1980s with extensions of the Ross-Macdonald malaria model and has since consisted, with a few exceptions, of similar deterministic compartmental models. These models have captured the main features of HAT epidemiology and provided insight on the effectiveness of the two main control interventions (treatment of humans and tsetse fly control) in eliminating transmission. However, most existing models have overestimated prevalence of infection and ignored transient dynamics. There is a need for properly validated models, evolving with improved data collection, that can provide quantitative predictions to help guide control and elimination strategies for HAT.
Mathematical modeling of deformation during hot rolling
Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.
1994-12-31
The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.
Mathematical and computational models of plasma flows
NASA Astrophysics Data System (ADS)
Brushlinsky, K. V.
Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.
Mathematical model on a desalination process
Al-Samawi, A.A. )
1994-05-01
Mathematical models on the desalination of brackish water using EDR process are formulated. The product desalinated water variable is hypothesized as being dependent upon the following independent variables: total dissolved solids of the feed water, total dissolved solids of the product water, the rate of feed water, the temperature of feed water, the number of stages of membranes, and the energy consumption. The final model which is selected on statistical basis is considered appropriated for both prediction purposes and for the purpose of quantifying the separate effects of each significant variable upon the rate of production of desalted water variable. Results of the analysis are reported herein. 6 refs., 4 figs., 5 tabs.
The development of a mathematical model of a hybrid airship
NASA Astrophysics Data System (ADS)
Abdul Ghaffar, Alia Farhana
The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.
ERIC Educational Resources Information Center
Smith, Erick; Haarer, Shawn; Confrey, Jere
1997-01-01
Provides details of a study that attempts to broaden the understanding of mathematics by investigating how applied mathematicians and biologists collaborate in developing dynamic population models. (DDR)
Declarative representation of uncertainty in mathematical models.
Miller, Andrew K; Britten, Randall D; Nielsen, Poul M F
2012-01-01
An important aspect of multi-scale modelling is the ability to represent mathematical models in forms that can be exchanged between modellers and tools. While the development of languages like CellML and SBML have provided standardised declarative exchange formats for mathematical models, independent of the algorithm to be applied to the model, to date these standards have not provided a clear mechanism for describing parameter uncertainty. Parameter uncertainty is an inherent feature of many real systems. This uncertainty can result from a number of situations, such as: when measurements include inherent error; when parameters have unknown values and so are replaced by a probability distribution by the modeller; when a model is of an individual from a population, and parameters have unknown values for the individual, but the distribution for the population is known. We present and demonstrate an approach by which uncertainty can be described declaratively in CellML models, by utilising the extension mechanisms provided in CellML. Parameter uncertainty can be described declaratively in terms of either a univariate continuous probability density function or multiple realisations of one variable or several (typically non-independent) variables. We additionally present an extension to SED-ML (the Simulation Experiment Description Markup Language) to describe sampling sensitivity analysis simulation experiments. We demonstrate the usability of the approach by encoding a sample model in the uncertainty markup language, and by developing a software implementation of the uncertainty specification (including the SED-ML extension for sampling sensitivty analyses) in an existing CellML software library, the CellML API implementation. We used the software implementation to run sampling sensitivity analyses over the model to demonstrate that it is possible to run useful simulations on models with uncertainty encoded in this form.
Declarative Representation of Uncertainty in Mathematical Models
Miller, Andrew K.; Britten, Randall D.; Nielsen, Poul M. F.
2012-01-01
An important aspect of multi-scale modelling is the ability to represent mathematical models in forms that can be exchanged between modellers and tools. While the development of languages like CellML and SBML have provided standardised declarative exchange formats for mathematical models, independent of the algorithm to be applied to the model, to date these standards have not provided a clear mechanism for describing parameter uncertainty. Parameter uncertainty is an inherent feature of many real systems. This uncertainty can result from a number of situations, such as: when measurements include inherent error; when parameters have unknown values and so are replaced by a probability distribution by the modeller; when a model is of an individual from a population, and parameters have unknown values for the individual, but the distribution for the population is known. We present and demonstrate an approach by which uncertainty can be described declaratively in CellML models, by utilising the extension mechanisms provided in CellML. Parameter uncertainty can be described declaratively in terms of either a univariate continuous probability density function or multiple realisations of one variable or several (typically non-independent) variables. We additionally present an extension to SED-ML (the Simulation Experiment Description Markup Language) to describe sampling sensitivity analysis simulation experiments. We demonstrate the usability of the approach by encoding a sample model in the uncertainty markup language, and by developing a software implementation of the uncertainty specification (including the SED-ML extension for sampling sensitivty analyses) in an existing CellML software library, the CellML API implementation. We used the software implementation to run sampling sensitivity analyses over the model to demonstrate that it is possible to run useful simulations on models with uncertainty encoded in this form. PMID:22802941
Nonlinear Walecka models and point-coupling relativistic models
Lourenco, O.; Amaral, R. L. P. G.; Dutra, M.; Delfino, A.
2009-10-15
We study hadronic nonlinear point-coupling (NLPC) models which reproduce numerically the binding energy, the incompressibility, and the nucleon effective mass at the nuclear matter saturation obtained by different nonlinear Walecka (NLW) models. We have investigated their behaviors as functions of the nuclear matter density to observe how they deviate from known NLW models. In our study we present a meson-exchange modified nonlinear Walecka model (MNLW) which exactly underlies a nonlinear point-coupling model (NLPC) presenting third- and fourth-order scalar density self-couplings. A discussion about naive dimensional analysis (NDA) and naturalness is also provided for a large class of NLW and NLPC models. At finite temperature, critical and flash parameters of both approaches are presented.
Assessment of Primary 5 Students' Mathematical Modelling Competencies
ERIC Educational Resources Information Center
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
ERIC Educational Resources Information Center
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Mathematical model of testing of pipeline integrity by thermal fields
Vaganova, Nataliia
2014-11-18
Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.
Input-output analysis of mathematical models of ecosystems
Antonios, M.N.
1982-01-01
Necessary and sufficient conditions for the convergence of the solutions of linear and nonlinear time varying compartmental models described by systems of differential equations are reviewed. For continuous and discrete models, the concept of environ analysis is extended to advanced linear systems and for the first time to systems with time varying coefficient matrices A(t) and (A(t))/sup T/. Output and input environ partitioning flow and storage matrices for a two trophic level aquatic system are derived in the form of integral equations. As a step towards the important goal of controlling the eutrophication phenomenon, two phytoplankton population models in natural waters are presented. In the first model, a non-linear function general enough to include the effects of feeding saturation intraspecific consumer interference, and eutrophication phenomenon is used to present the transfer of material or energy from phytoplankton to zooplankton populations. The model using this grazing rate function is subjected to equilibrium and stability analysis to ascertain its mathematical implications. It is shown that, for a certain range of one of the parameters in this function all equilibrium points of the system become stable even with nutrient enrichment. In the second model, dynamics of both nitrogen and phosphorus cycles are combined. The influence of direct human control added to different aquatic models is studied in detail. Optimal control theory is used to obtain optimal strategies for the control of these models with several cost functions. It is found that the control program in each problem depends on the model considered and on the function to be optimized.
Simplified Model of Nonlinear Landau Damping
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Non-compact nonlinear sigma models
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
2016-09-01
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical modeling of the coating process.
Toschkoff, Gregor; Khinast, Johannes G
2013-12-01
Coating of tablets is a common unit operation in the pharmaceutical industry. In most cases, the final product must meet strict quality requirements; to meet them, a detailed understanding of the coating process is required. To this end, numerous experiment studies have been performed. However, to acquire a mechanistic understanding, experimental data must be interpreted in the light of mathematical models. In recent years, a combination of analytical modeling and computational simulations enabled deeper insights into the nature of the coating process. This paper presents an overview of modeling and simulation approaches of the coating process, covering various relevant aspects from scale-up considerations to coating mass uniformity investigations and models for drop atomization. The most important analytical and computational concepts are presented and the findings are compared.
Mathematical modelling of hepatic lipid metabolism.
Pratt, Adrian C; Wattis, Jonathan A D; Salter, Andrew M
2015-04-01
The aim of this paper is to develop a mathematical model capable of simulating the metabolic response to a variety of mixed meals in fed and fasted conditions with particular emphasis placed on the hepatic triglyceride element of the model. Model validation is carried out using experimental data for the ingestion of three mixed composition meals over a 24-h period. Comparison with experimental data suggests the model predicts key plasma lipids accurately given a prescribed insulin profile. One counter-intuitive observation to arise from simulations is that liver triglyceride initially decreases when a high fat meal is ingested, a phenomenon potentially explained by the carbohydrate portion of the meal raising plasma insulin.
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
NASA Astrophysics Data System (ADS)
Yan, Jun; Li, Bo; Guo, Gang; Zeng, Yonghua; Zhang, Meijun
2013-11-01
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters structures. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system
Nonlinear traveling wave solution for the MJO skeleton model
NASA Astrophysics Data System (ADS)
Chen, S.; Stechmann, S. N.
2014-12-01
Recently, a minimal dynamical model is presented for capturing MJO's fundamental features. The model is a nonlinear oscillator model for the MJO skeleton and it involves interactions between convection, moisture and circulation. I will present the exact nonlinear traveling wave solutions for the model based on its energy conservation. The exact nonlinear solution provides for an explicit comparison of features between linear and nonlinear waves such as dispersion relations and traveling wave speeds. Moreover, the nonlinear solutions, compared with the linear ones, produce a narrow region of active convection and a wider region of suppressed convection. These predictions offer nonlinear MJO features that could potentially be targets of observational investigations.
A Generic Nonlinear Aerodynamic Model for Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2014-01-01
A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Mathematical modeling of human brain physiological data
NASA Astrophysics Data System (ADS)
Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.
2013-12-01
Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
[A planar nonlinear model of the human spine].
Nolte, L P; Pingel, T H
1991-12-01
In this study the derivation of a two-dimensional mathematical model of the human lumbar spine and its approximate solution using the method of finite elements is described. The computer model LUSP (Lumbar Spine) serves as a basis for studying the kinematic and load-bearing behaviour of the lumbar spine. The underlying working hypothesis is that the smallest spinal unit, the so called functional spinal unit (Junghanns, reflects the basic characteristic behaviour of the musclefree spine. On the basis of Lagrange's virtual work principle the nonlinear static and dynamic equations of motion for a sagitally symmetrical spine model of comprising rigid bodies, springs, beams and dampers are derived. The finite element method is used as an appropriate approximation scheme. Intensive research was conducted to provide the necessary geometrical and material input data. Special attention was paid to achieving a realistic description of the nonlinear stress-strain relationships for the soft tissue involved. A database-type preprocessor and a graphics-oriented postprocessor are made for convenient handling of the input and output data. The efficiency of the present computer model is demonstrated by means of an orthopaedic-biomechanical study on degenerative phenomena in so-called juxta-fused lumbosacral motion segments.
Nonlinear Krönig-Penney model.
Li, WeiDong; Smerzi, A
2004-01-01
We study the nonlinear Schrödinger equation with a periodic delta-function potential. This realizes a nonlinear Krönig-Penney model, with physical applications in the context of trapped Bose-Einstein condensate alkaly gases and in the transmission of signals in optical fibers. We find analytical solutions of zero-current Bloch states. Such wave functions have the same periodicity of the potential, and, in the linear limit, reduce to the Bloch functions of the Krönig-Penney model. We also find classes of solutions having a periodicity different from that of the external potential. We calculate the chemical potential of such states and compare it with the linear excitation spectrum.
Modified Nonlinear Model of Arcsin-Electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Simple nonlinear models suggest variable star universality
NASA Astrophysics Data System (ADS)
Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.
2016-02-01
Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.
Mathematical models of tumor heterogeneity and drug resistance
NASA Astrophysics Data System (ADS)
Greene, James
In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of
A Mathematical Model of Idiopathic Pulmonary Fibrosis
Hao, Wenrui; Marsh, Clay; Friedman, Avner
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology, and life expectancy of 3-5 years after diagnosis. The incidence rate in the United States is estimated as high as 15 per 100,000 persons per year. The disease is characterized by repeated injury to the alveolar epithelium, resulting in inflammation and deregulated repair, leading to scarring of the lung tissue, resulting in progressive dyspnea and hypoxemia. The disease has no cure, although new drugs are in clinical trials and two agents have been approved for use by the FDA. In the present paper we develop a mathematical model based on the interactions among cells and proteins that are involved in the progression of the disease. The model simulations are shown to be in agreement with available lung tissue data of human patients. The model can be used to explore the efficacy of potential drugs. PMID:26348490
A mathematical model of leptin resistance.
Jacquier, Marine; Soula, Hédi A; Crauste, Fabien
2015-09-01
Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in rodents, the model includes the dynamics of leptin, leptin receptors and the regulation of food intake and body weight. It displays two stable equilibria, one representing a healthy state and the other one an obese and leptin resistant state. We show that a constant leptin injection can lead to leptin resistance and that a temporal variation in some parameter values influencing food intake can induce a change of equilibrium and a pathway to leptin resistance and obesity.
Nonlinear models in 2 + epsilon dimensions
Friedan, D.H.
1980-08-01
The general nonlinear scalar model is studied at asymptotically low temperature near two dimensions. The low-temperature expansion is renormalized, and effective algorithms are derived for calculation to all orders in the renormalized expansion. The renormalization group coefficients are calculated in the two-loop approximation, and topological properties of the renormalization group equations are investigated. Special attention is paid to the infrared instabilities of the fixed points, since they provide the continuum limits of the model. The model consists of a scalar field phi on Euclidean 2 + epsilon space whose values phi(x) lie in a finite-dimensional differentiable manifold. 4 figures.
Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
Modelling ocean carbon cycle with a nonlinear convolution model
NASA Astrophysics Data System (ADS)
Kheshgi, Haroon S.; White, Benjamin S.
1996-02-01
A nonlinear convolution integral is developed to model the response of the ocean carbon sink to changes in the atmospheric concentration of CO2. This model can accurately represent the atmospheric response of complex ocean carbon cycle models in which the nonlinear behavior stems from the nonlinear dependence of CO2 solubility in seawater on CO2 partial pressure, which is often represented by the buffer factor. The kernel of the nonlinear convolution model can be constructed from a response of such a complex model to an arbitrary change in CO2 emissions, along with the functional dependence of the buffer factor. Once the convolution kernel has been constructed, either analytically or from a model experiment, the convolution representation can be used to estimate responses of the ocean carbon sink to other changes in the atmospheric concentration of CO2. Thus the method can be used, e.g., to explore alternative emissions scenarios for assessments of climate change. A derivation for the nonlinear convolution integral model is given, and the model is used to reproduce the response of two carbon cycle models: a one-dimensional diffusive ocean model, and a three-dimensional ocean-general-circulation tracer model.
Model reduction of systems with localized nonlinearities.
Segalman, Daniel Joseph
2006-03-01
An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.
Mathematical modelling of eukaryotic DNA replication.
Hyrien, Olivier; Goldar, Arach
2010-01-01
Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process. PMID:20205354
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
Building Mathematics Achievement Models in Four Countries Using TIMSS 2003
ERIC Educational Resources Information Center
Wang, Ze; Osterlind, Steven J.; Bergin, David A.
2012-01-01
Using the Trends in International Mathematics and Science Study 2003 data, this study built mathematics achievement models of 8th graders in four countries: the USA, Russia, Singapore and South Africa. These 4 countries represent the full spectrum of mathematics achievement. In addition, they represent 4 continents, and they include 2 countries…
Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra
ERIC Educational Resources Information Center
Jung, Hyunyi; Mintos, Alexia; Newton, Jill
2015-01-01
This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…
Computer-Assisted Mathematics--A Model Approach.
ERIC Educational Resources Information Center
Bitter, Gary G.
1987-01-01
Discussion of need for improved mathematics education of preservice teachers focuses on a model program, the Mathematics Fitness Project, that includes a computer-generated testing system, management system, and remediation system. Use of the system to improve mathematics skills and attitudes of college students and post high school adults is…
Nonlinear Responses of a Nonlinear Cochlear Model with the Function of AN Outer Hair Cell Model
NASA Astrophysics Data System (ADS)
Murakami, Y.; Unoki, M.
2009-02-01
To investigate how outer hair cells (OHCs) produce compressive nonlinearity in both the cochlear I/O function and tuning curve for a single tone, we present a nonlinear cochlear model with a nonlinear OHC model. In modeling cochlea filtering, we modeled somatic motility as a function of OHCs and the interaction between the basilar membrane and somatic motility through the tectorial membrane as mechanoelectrical transducer networks. The parameter values of the model were set to the estimates for human data. Signal frequencies of 0.125, 0.25, 0.5, 1, 2, 3, 4, and 6 kHz were used in the simulations of cochlear filtering. The results revealed that this model can account for the compressive nonlinearity in both the I/O functions and tuning curves of a cochlea obtained from the experiments. They also suggest that the somatic motility depending on the transducer currents produces nonlinearities in the I/O functions and tuning curves of cochlea.
Mathematical model of acoustic speech production with mobile walls of the vocal tract
NASA Astrophysics Data System (ADS)
Lyubimov, N. A.; Zakharov, E. V.
2016-03-01
A mathematical speech production model is considered that describes acoustic oscillation propagation in a vocal tract with mobile walls. The wave field function satisfies the Helmholtz equation with boundary conditions of the third kind (impedance type). The impedance mode corresponds to a threeparameter pendulum oscillation model. The experimental research demonstrates the nonlinear character of how the mobility of the vocal tract walls influence the spectral envelope of a speech signal.
Missing the Promise of Mathematical Modeling
ERIC Educational Resources Information Center
Meyer, Dan
2015-01-01
The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…
Middle School Mathematics Clinic: A Theoretical Model.
ERIC Educational Resources Information Center
Gore, Ethel V.
This paper describes a middle school mathematics clinic in the District of Columbia Public Schools, which was designed to aid students in the transition from mathematics in the primary grades to high school mathematics courses. It is intended to provide the low achiever with effective diagnostic and corrective instruction by the best trained…
Mathematical modeling of a rotary hearth calciner
Meisingset, H.C.; Balchen, J.G.; Fernandez, R.
1996-10-01
Calcination of petroleum coke is a thermal process where green petroleum coke is heat-treated to a pre-determined temperature. During heat treatment the associated moisture is removed and the volatile combustible matter (VCM) is released. The VCM is burned in the gas phase giving the energy to sustain the process. In addition, structural changes take place. The combination of the final calcination temperature and the residence time determine the final real density of the calcined coke. Depending on its further use, different real density requirements may arise. It is important to control the dynamics of the calcination process so that the specified final quality is achieved. A dynamic mathematical model of a Rotary Hearth Calciner is presented. The model is based on physicochemical laws involving the most important phenomena taking place and the relevant calcination parameters. The temperature profile in the coke bed is predicted which in terms is related to the real density of the coke.
Mathematical model of renal interstitial fibrosis
Hao, Wenrui; Rovin, Brad H.; Friedman, Avner
2014-01-01
Lupus nephritis (LN) is an autoimmune disease that occurs when autoantibodies complex with self-antigen and form immune complexes that accumulate in the glomeruli. These immune complexes initiate an inflammatory response resulting in glomerular injury. LN often concomitantly affects the tubulointerstitial compartment of the kidney, leading first to interstitial inflammation and subsequently to interstitial fibrosis and atrophy of the renal tubules if not appropriately treated. Presently the only way to assess interstitial inflammation and fibrosis is through kidney biopsy, which is invasive and cannot be repeated frequently. Hence, monitoring of disease progression and response to therapy is suboptimal. In this paper we describe a mathematical model of the progress from tubulointerstitial inflammation to fibrosis. We demonstrate how the model can be used to monitor treatments for interstitial fibrosis in LN with drugs currently being developed or used for nonrenal fibrosis. PMID:25225370
Mathematical modeling of a thermovoltaic cell
NASA Technical Reports Server (NTRS)
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
Nonlinear trading models through Sharpe Ratio maximization.
Choey, M; Weigend, A S
1997-08-01
While many trading strategies are based on price prediction, traders in financial markets are typically interested in optimizing risk-adjusted performance such as the Sharpe Ratio, rather than the price predictions themselves. This paper introduces an approach which generates a nonlinear strategy that explicitly maximizes the Sharpe Ratio. It is expressed as a neural network model whose output is the position size between a risky and a risk-free asset. The iterative parameter update rules are derived and compared to alternative approaches. The resulting trading strategy is evaluated and analyzed on both computer-generated data and real world data (DAX, the daily German equity index). Trading based on Sharpe Ratio maximization compares favorably to both profit optimization and probability matching (through cross-entropy optimization). The results show that the goal of optimizing out-of-sample risk-adjusted profit can indeed be achieved with this nonlinear approach.
Nonlinear dynamical model of human gait.
West, Bruce J; Scafetta, Nicola
2003-05-01
We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way. PMID:12786188
Nonlinear dynamical model of human gait
NASA Astrophysics Data System (ADS)
West, Bruce J.; Scafetta, Nicola
2003-05-01
We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.
Mathematical modeling of acid-base physiology
Occhipinti, Rossana; Boron, Walter F.
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697
Mathematical modeling of acid-base physiology.
Occhipinti, Rossana; Boron, Walter F
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis.
Generalized mathematical models in design optimization
NASA Technical Reports Server (NTRS)
Papalambros, Panos Y.; Rao, J. R. Jagannatha
1989-01-01
The theory of optimality conditions of extremal problems can be extended to problems continuously deformed by an input vector. The connection between the sensitivity, well-posedness, stability and approximation of optimization problems is steadily emerging. The authors believe that the important realization here is that the underlying basis of all such work is still the study of point-to-set maps and of small perturbations, yet what has been identified previously as being just related to solution procedures is now being extended to study modeling itself in its own right. Many important studies related to the theoretical issues of parametric programming and large deformation in nonlinear programming have been reported in the last few years, and the challenge now seems to be in devising effective computational tools for solving these generalized design optimization models.
Incorporating neurophysiological concepts in mathematical thermoregulation models
NASA Astrophysics Data System (ADS)
Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.
2014-01-01
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.
Incorporating neurophysiological concepts in mathematical thermoregulation models.
Kingma, Boris R M; Vosselman, M J; Frijns, A J H; van Steenhoven, A A; van Marken Lichtenbelt, W D
2014-01-01
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.
Mathematical Model of Evolution of Brain Parcellation.
Ferrante, Daniel D; Wei, Yi; Koulakov, Alexei A
2016-01-01
We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859
Mathematical Model of Evolution of Brain Parcellation
Ferrante, Daniel D.; Wei, Yi; Koulakov, Alexei A.
2016-01-01
We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859
Mathematical model of tumor-immune surveillance.
Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de
2016-09-01
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches.
Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes
Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; Allen, Matthew S.
2015-09-15
Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinear normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.
UH-60A Black Hawk engineering simulation program. Volume 1: Mathematical model
NASA Technical Reports Server (NTRS)
Howlett, J. J.
1981-01-01
A nonlinear mathematical model of the UR-60A Black Hawk helicopter was developed. This mathematical model, which was based on the Sikorsky General Helicopter (Gen Hel) Flight Dynamics Simulation, provides NASA with an engineering simulation for performance and handling qualities evaluations. This mathematical model is total systems definition of the Black Hawk helicopter represented at a uniform level of sophistication considered necessary for handling qualities evaluations. The model is a total force, large angle representation in six rigid body degrees of freedom. Rotor blade flapping, lagging, and hub rotational degrees of freedom are also represented. In addition to the basic helicopter modules, supportive modules were defined for the landing interface, power unit, ground effects, and gust penetration. Information defining the cockpit environment relevant to pilot in the loop simulation is presented.
Nonlinear Growth Models in M"plus" and SAS
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam
2009-01-01
Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear mixed-effects…
Modelling of nonlinear filtering Poisson time series
NASA Astrophysics Data System (ADS)
Bochkarev, Vladimir V.; Belashova, Inna A.
2016-08-01
In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when the values of a time series have a normal distribution. However, if the distribution is not normal, good results can be expected using the maximum likelihood estimations. The filtration is studied according to the criterion of maximum likelihood by the example of Poisson time series. For direct optimisation of the likelihood function, different stochastic (genetic algorithms, annealing method) and deterministic optimization algorithms are used. Testing of the algorithm using both simulated series and empirical data (series of rare words frequencies according to the Google Books Ngram data were used) showed that filtering based on the criterion of maximum likelihood has a great advantage over well-known algorithms for the case of Poisson series. Also, the most perspective methods of optimisation were selected for this problem.
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
ERIC Educational Resources Information Center
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
A Proposal for Improving Students' Mathematical Attitude Based on Mathematical Modelling
ERIC Educational Resources Information Center
Falsetti, Marcela C.; Rodriguez, Mabel A.
2005-01-01
On the occasion of having to design an introductory course of mathematics for the University (UNGS, Buenos Aires, Argentina) we took into account the perspective of mathematical modelling. In this article we present the theoretical framework that we elaborated on to design our course. This framework allowed us to adapt the generic perspectives of…
Mathematical modelling of autothermal thermophilic aerobic digesters.
Gomez, J; de Gracia, M; Ayesa, E; Garcia-Heras, J L
2007-03-01
This paper presents a new mathematical model for Autothermal Thermophilic Aerobic Digesters. The reactor has been modelled as two completely mixed volumes to separately predict the behaviour of the liquid and gaseous phases as well as the interrelation between them. The model includes biochemical transformations based on the standard Activated Sludge Models of IWA, as well as physico-chemical transformations associated with the chemical equilibria and the mass transfer between the liquid and the gaseous phases similar to those proposed in the ADM1 of IWA. An energy balance has also been included in the model in order to predict the temperature of the system. This thermal balance takes into account all those biochemical and physico-chemical transformations that entail the most relevant heat interchanges. Reactor performance has been explored by simulation in two different scenarios: in the first where it acts as the initial stage in a Dual system, and in the second where it acts as a single-stage treatment. Each scenario enabled the identification of the relevance of the different parameters. PMID:17258787
Mathematical Modeling of the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Mathematical analysis of epidemiological models with heterogeneity
Van Ark, J.W.
1992-01-01
For many diseases in human populations the disease shows dissimilar characteristics in separate subgroups of the population; for example, the probability of disease transmission for gonorrhea or AIDS is much higher from male to female than from female to male. There is reason to construct and analyze epidemiological models which allow this heterogeneity of population, and to use these models to run computer simulations of the disease to predict the incidence and prevalence of the disease. In the models considered here the heterogeneous population is separated into subpopulations whose internal and external interactions are homogeneous in the sense that each person in the population can be assumed to have all average actions for the people of that subpopulation. The first model considered is an SIRS models; i.e., the Susceptible can become Infected, and if so he eventually Recovers with temporary immunity, and after a period of time becomes Susceptible again. Special cases allow for permanent immunity or other variations. This model is analyzed and threshold conditions are given which determine whether the disease dies out or persists. A deterministic model is presented; this model is constructed using difference equations, and it has been used in computer simulations for the AIDS epidemic in the homosexual population in San Francisco. The homogeneous version and the heterogeneous version of the differential-equations and difference-equations versions of the deterministic model are analyzed mathematically. In the analysis, equilibria are identified and threshold conditions are set forth for the disease to die out if the disease is below the threshold so that the disease-free equilibrium is globally asymptotically stable. Above the threshold the disease persists so that the disease-free equilibrium is unstable and there is a unique endemic equilibrium.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise
Model of anisotropic nonlinearity in self-defocusing photorefractive media.
Barsi, C; Fleischer, J W
2015-09-21
We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA. PMID:25387532
Mathematical modeling of near-critical convection
Cox, B.L.; Pruess, K.; McKibbin, R.
1988-01-01
Fluid and heat flow at temperatures approaching or exceeding that at the critical point (374ºC for pure water, higher for saline fluids) may be encountered in deep zones of geothermal systems and above cooling intrusives. Laboratory experiments have demonstrated strong enhancements in heat transfer at near-critical conditions (Dunn and Hardee, 1981). We have developed special numerical techniques for modeling porous flow at near-critical conditions, which can handle the extreme non-linearities in water properties near the critical point. Our numerical experiments show strong enhancements of convective heat transfer at near-critical conditions; however, the heat transfer rates obtained in the numerical simulations are considerably smaller than those seen in the laboratory experiments by Dunn and Hardee. We discuss possible reasons for this discrepancy and develop suggestions for additional laboratory experiments.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model
NASA Astrophysics Data System (ADS)
Schulte, Horst; Georg, Soren
2014-06-01
A nonlinear model-based control concept for wind turbines with hydrostatic transmission is proposed. The complete mathematical model of a wind turbine drive train with variable displacement pump and variable displacement motor is presented. The controller design takes into consideration the nonlinearity of the aerodynamic maps and hydrostatic drive train by an convex combination of state space controller with measurable generator speed and hydraulic motor displacement as scheduling parameters. The objectives are the set point control of generator speed and tracking control of the rotor speed to reach the maximum power according to the power curve in the partial-load region.
Mathematical modeling plasma transport in tokamaks
Quiang, Ji
1995-12-31
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse. PMID:20030966
Mathematical modelling of animate and intentional motion.
Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees
2003-01-01
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374
Mathematical Model for the Mineralization of Bone
NASA Technical Reports Server (NTRS)
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
Mathematical Model for the Mineralization of Bone
NASA Technical Reports Server (NTRS)
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
PREFACE: Physics-Based Mathematical Models for Nanotechnology
NASA Astrophysics Data System (ADS)
Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten
2008-03-01
in the cross-disciplinary research area: low-dimensional semiconductor nanostructures. Since the main properties of two-dimensional heterostructures (such as quantum wells) are now quite well understood, there has been a consistently growing interest in the mathematical physics community to further dimensionality reduction of semiconductor structures. Experimental achievements in realizing one-dimensional and quasi-zero-dimensional heterostructures have opened new opportunities for theory and applications of such low-dimensional semiconductor nanostructures. One of the most important implications of this process has been a critical re-examining of assumptions under which traditional quantum mechanical models have been derived in this field. Indeed, the formation of LDSNs, in particular quantum dots, is a competition between the surface energy in the structure and strain energy. However, current models for bandstructure calculations use quite a simplified analysis of strain relaxation effects, although such effects are in the heart of nanostructure formation. By now, it has been understood that traditional models in this field may not be adequate for modeling realistic objects based on LDSNs due to neglecting many effects that may profoundly influence optoelectronic properties of the nanostructures. Among such effects are electromechanical effects, including strain relaxation, piezoelectric effect, spontaneous polarization, and higher order nonlinear effects. Up to date, major efforts have been concentrated on the analysis of idealized, isolated quantum dots, while a typical self-assembled semiconductor quantum dot nanostructure is an array (or a molecule) of many individual quantum dots sitting on the same `substrate' known as the wetting layer. Each such dot contains several hundred thousand atoms. In order to account for quantum effects accurately in a situation like that, attempts can be made to apply ab initio or atomistic methodologies, but then one would face a
Bayesian sensitivity analysis of a nonlinear finite element model
NASA Astrophysics Data System (ADS)
Becker, W.; Oakley, J. E.; Surace, C.; Gili, P.; Rowson, J.; Worden, K.
2012-10-01
A major problem in uncertainty and sensitivity analysis is that the computational cost of propagating probabilistic uncertainty through large nonlinear models can be prohibitive when using conventional methods (such as Monte Carlo methods). A powerful solution to this problem is to use an emulator, which is a mathematical representation of the model built from a small set of model runs at specified points in input space. Such emulators are massively cheaper to run and can be used to mimic the "true" model, with the result that uncertainty analysis and sensitivity analysis can be performed for a greatly reduced computational cost. The work here investigates the use of an emulator known as a Gaussian process (GP), which is an advanced probabilistic form of regression. The GP is particularly suited to uncertainty analysis since it is able to emulate a wide class of models, and accounts for its own emulation uncertainty. Additionally, uncertainty and sensitivity measures can be estimated analytically, given certain assumptions. The GP approach is explained in detail here, and a case study of a finite element model of an airship is used to demonstrate the method. It is concluded that the GP is a very attractive way of performing uncertainty and sensitivity analysis on large models, provided that the dimensionality is not too high.
Explicit BCJ numerators of nonlinear simga model
NASA Astrophysics Data System (ADS)
Du, Yi-Jian; Fu, Chih-Hao
2016-09-01
In this paper, we investigate the color-kinematics duality in nonlinear sigma model (NLSM). We present explicit polynomial expressions for the kinematic numerators (BCJ numerators). The calculation is done separately in two parametrization schemes of the theory using Kawai-Lewellen-Tye relation inspired technique, both lead to polynomial numerators. We summarize the calculation in each case into a set of rules that generates BCJ numerators for all multilplicities. In Cayley parametrization we find the numerator is described by a particularly simple formula solely in terms of momentum kernel.
NASA Astrophysics Data System (ADS)
Rébillat, Marc; Hennequin, Romain; Corteel, Étienne; Katz, Brian F. G.
2011-02-01
In a number of vibration applications, systems under study are slightly nonlinear. It is thus of great importance to have a way to model and to measure these nonlinearities in the frequency range of use. Cascade of Hammerstein models conveniently allows one to describe a large class of nonlinearities. A simple method based on a phase property of exponential sine sweeps is proposed to identify the structural elements of such a model from only one measured response of the system. Mathematical foundations and practical implementation of the method are discussed. The method is afterwards validated on simulated and real systems. Vibrating devices such as acoustical transducers are well approximated by cascade of Hammerstein models. The harmonic distortion generated by those transducers can be predicted by the model over the entire audio frequency range for any desired input amplitude. Agreement with more time consuming classical distortion measurement methods was found to be good.
Mathematical model insights into arsenic detoxification
2011-01-01
Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs), which then undergoes hepatic methylation to methylarsonic acid (MMAs) and a second methylation to dimethylarsinic acid (DMAs). Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic methyltransferase has been
Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes
Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; Allen, Matthew S.
2015-09-15
Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
On Mathematical Modeling Of Quantum Systems
NASA Astrophysics Data System (ADS)
Achuthan, P.; Narayanankutty, Karuppath
2009-07-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Modelling of Force Convection in a Two-Phase Thermosyphon in Conjugate Formulation
NASA Astrophysics Data System (ADS)
Nurpeiis, Atlant; Nee, Alexander
2016-02-01
A nonlinear non-stationary problem of the conductive-convective heat transfer is addressed (under forced convection conditions) in the thermosyphon of rectangular cross-section. The thermal energy supply is carried out through the lower horizontal border. The mathematical model is formulated in dimensionless variables of "velocity vorticity vector - current function - temperature". The current and temperature distribution lines are obtained, illustrating the effect of the Reynolds number on the thermodynamic structures formation in the analyzed object.
Mathematical Modeling of Electrochemical Flow Capacitors
Hoyt, NC; Wainright, JS; Savinell, RF
2015-01-13
Electrochemical flow capacitors (EFCs) for grid-scale energy storage are a new technology that is beginning to receive interest. Prediction of the expected performance of such systems is important as modeling can be a useful avenue in the search for design improvements. Models based off of circuit analogues exist to predict EFC performance, but these suffer from deficiencies (e.g. a multitude of fitting constants that are required and the ability to analyze only one spatial direction at a time). In this paper mathematical models based off of three-dimensional macroscopic balances (similar to models for porous electrodes) are reported. Unlike existing three-dimensional porous electrode-based approaches for modeling slurry electrodes, advection (i.e., transport associated with bulk fluid motion) of the overpotential is included in order to account for the surface charge at the interface between flowing particles and the electrolyte. Doing so leads to the presence of overpotential boundary layers that control the performance of EFCs. These models were used to predict the charging behavior of an EFC under both flowing and non-flowing conditions. Agreement with experimental data was good, including proper prediction of the steady-state current that is achieved during charging of a flowing EFC. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
Competition and natural selection in a mathematical model of cancer.
Nagy, John D
2004-07-01
A malignant tumor is a dynamic amalgamation of various cell phenotypes, both cancerous (parenchyma) and healthy (stroma). These diverse cells compete over resources as well as cooperate to maintain tumor viability. Therefore, tumors are both an ecological community and an integrated tissue. An understanding of how natural selection operates in this unique ecological context should expose unappreciated vulnerabilities shared by all cancers. In this study I address natural selection's role in tumor evolution by developing and exploring a mathematical model of a heterogenous primary neoplasm. The model is a system of nonlinear ordinary differential equations tracking the mass of up to two different parenchyma cell types, the mass of vascular endothelial cells from which new tumor blood vessels are built and the total length of tumor microvessels. Results predict the possibility of a hypertumor-a focus of aggressively reproducing parenchyma cells that invade and destroy part or all of the tumor, perhaps before it becomes a clinical entity. If this phenomenon occurs, then we should see examples of tumors that develop an aggressive histology but are paradoxically prone to extinction. Neuroblastoma, a common childhood cancer, may sometimes fit this pattern. In addition, this model suggests that parenchyma cell diversity can be maintained by a tissue-like integration of cells specialized to provide different services.
New Soliton and Periodic Solutions for Two Nonlinear Physical Models
NASA Astrophysics Data System (ADS)
Chun, Changbum; Sakthivel, Rathinasamy
2010-12-01
In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary and periodic solutions for the Burgers-Kadomtsev-Petviashvili and Vakhnenko equations with distinct physical structures. The results reveal that the exp-function method is very effective and powerful for solving nonlinear evolution equations in mathematical physics.
NASA Astrophysics Data System (ADS)
Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat
2016-08-01
We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.
Modelling Mathematical Argumentation: The Importance of Qualification
ERIC Educational Resources Information Center
Inglis, Matthew; Mejia-Ramos, Juan; Simpson, Adrian
2007-01-01
In recent years several mathematics education researchers have attempted to analyse students' arguments using a restricted form of Toulmina's ["The Uses of Argument," Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students,…
Mathematics Teacher TPACK Standards and Development Model
ERIC Educational Resources Information Center
Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis
2009-01-01
What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…
Modelling Mathematical Reasoning in Physics Education
ERIC Educational Resources Information Center
Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche
2012-01-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…
Some Models of Mathematics Teachers' Centres.
ERIC Educational Resources Information Center
Seiferth, Berniece B.
There are two types of teacher centres in Great Britain, multi-purpose centres designed for all subjects of the curriculum, and topical centres which deal specifically with one area of subject matter such as mathematics, English, etc. In this paper, the five mathematics centres in London are analyzed for purpose, materials available, and…
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Nonlinear modeling of chaotic time series: Theory and applications
NASA Astrophysics Data System (ADS)
Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.
We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.
Nonlinear modeling of chaotic time series: Theory and applications
Casdagli, M.; Eubank, S.; Farmer, J.D.; Gibson, J. Santa Fe Inst., NM ); Des Jardins, D.; Hunter, N.; Theiler, J. )
1990-01-01
We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.
iSTEM: Promoting Fifth Graders' Mathematical Modeling
ERIC Educational Resources Information Center
Yanik, H. Bahadir; Karabas, Celil
2014-01-01
Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…
Students' Approaches to Learning a New Mathematical Model
ERIC Educational Resources Information Center
Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy
2013-01-01
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…
Mathematical Manipulative Models: In Defense of "Beanbag Biology"
ERIC Educational Resources Information Center
Jungck, John R.; Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…
Visual Modeling as a Motivation for Studying Mathematics and Art
ERIC Educational Resources Information Center
Sendova, Evgenia; Grkovska, Slavica
2005-01-01
The paper deals with the possibility of enriching the curriculum in mathematics, informatics and art by means of visual modeling of abstract paintings. The authors share their belief that in building a computer model of a construct, one gains deeper insight into the construct, and is motivated to elaborate one's knowledge in mathematics and…
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise
Modelling a nonlinear MTFDE from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-06-01
The main interest of this work is to compute a approximate solution of equations with equal delay and advance which often appear in models from applied sciences. In this article, we consider a special case of a nonlinear forward-backward which models the vibration of some elastics tissues in physiology, just as the vocal fold mucosa. The oscillation as superficial wave propagating through the tissues in the direction of the flow is described by the considered equation. The approximation of solution is obtained using a non regular mesh instead a regular one as presented in [1] where is adapted an numerical scheme based on algorithms introduced in [2, 3] using collocation, finite element method, method of steps and Newton's method3 are used.
Nonlinear models for estimating GSFC travel requirements
NASA Technical Reports Server (NTRS)
Buffalano, C.; Hagan, F. J.
1974-01-01
A methodology is presented for estimating travel requirements for a particular period of time. Travel models were generated using nonlinear regression analysis techniques on a data base of FY-72 and FY-73 information from 79 GSFC projects. Although the subject matter relates to GSFX activities, the type of analysis used and the manner of selecting the relevant variables would be of interest to other NASA centers, government agencies, private corporations and, in general, any organization with a significant travel budget. Models were developed for each of six types of activity: flight projects (in-house and out-of-house), experiments on non-GSFC projects, international projects, ART/SRT, data analysis, advanced studies, tracking and data, and indirects.
Disturbed nonlinear multispecies models in ecology.
Summers, D; Wu, Z Y; Sabin, G C
1991-05-01
We analyze a disturbed form of the general Lotka-Volterra model of an ecosystem with m interacting species. The disturbances act on the intrinsic growth rates of the species and are assumed to be bounded but otherwise unknown. We employ a Lyapunov technique and the concept of "reachable set" from control theory to estimate the set of all possible population densities that are attainable as a result of the disturbances. To calculate estimates for this reachable set, a number of numerical methods that entail the solution to one or more global optimization problems are developed. Specific examples involving two, three, and four species are solved. We also derive an explicit analytical expression that represents an estimate for the reachable set in the m-dimensional case. The estimate is conservative but can be evaluated without carrying out any optimization procedure. We show that methods developed in this paper can be applied to certain other types of nonlinear ecosystem models.
Mathematical modeling of biomass fuels formation process.
Gaska, Krzysztof; Wandrasz, Andrzej J
2008-01-01
The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.
Natural image classification in nonlinear network model
NASA Astrophysics Data System (ADS)
Azhar, Hanif; Iftekharuddin, Khan; Kozma, Robert; Admala, Abhinav
2005-08-01
We study the non-linear behavior of the KIII model for natural image classification. The KIII model is designed to be a dynamic computational model that simulates the sensory cortex. The KIII model has been explored for rudimentary pattern recognition and classification in noisy environment. We extend the study of KIII models in understanding whether self-organized neural populations can be exploited into perceptual and memory producing systems such as in natural image classification. Our goal is to obtain a quantitative index on how well the KIII model behaves when it is assigned the task to identify and distinguish one class of natural image from the other based on color and texture features. For twenty training data, twenty validation data and eighty test data set for four image classes, we obtain 80% correct classification using the KIII. We compare a standard non linear neural network tools such as back propagation for the classification of the same set of natural images and obtain 65% correct classification. We conclude that dynamic neural computational models such as KIII may be suitable candidates for natural image classification.
A mathematical model of a computational problem solving system
NASA Astrophysics Data System (ADS)
Aris, Teh Noranis Mohd; Nazeer, Shahrin Azuan
2015-05-01
This paper presents a mathematical model based on fuzzy logic for a computational problem solving system. The fuzzy logic uses truth degrees as a mathematical model to represent vague algorithm. The fuzzy logic mathematical model consists of fuzzy solution and fuzzy optimization modules. The algorithm is evaluated based on a software metrics calculation that produces the fuzzy set membership. The fuzzy solution mathematical model is integrated in the fuzzy inference engine that predicts various solutions to computational problems. The solution is extracted from a fuzzy rule base. Then, the solutions are evaluated based on a software metrics calculation that produces the level of fuzzy set membership. The fuzzy optimization mathematical model is integrated in the recommendation generation engine that generate the optimize solution.
Mathematical Modeling and Sensitivity Analysis of Acid Deposition
NASA Astrophysics Data System (ADS)
Cho, Seog-Yeon
Atmospheric processes influencing acid deposition are investigated by using mathematical model and sensitivity analysis. Sensitivity analysis techniques including Green's function analysis, constraint sensitivities, and lumped sensitivities are applied to temporal problems describing gas and liquid phase chemistry and to space-time problems describing pollutant transport and deposition. The sensitivity analysis techniques are used to; (1) investigate the chemical and physical processes related to acid depositions and (2) evaluate the linearity hypothesis, and source and receptor relationships. Results from analysis of the chemistry processes show that the relationship between SO(,2) concentration and the amount of sulfate produced is linear in gas phase but it may be nonlinear in liquid phase when there exists an excess amount of SO(,2) compared to H(,2)O(,2). Under the simulated conditions, the deviation of linearity between ambient sulfur present and the amount of sulfur deposited after 2 hours, is less than 10% in a convective storm situation when the liquid phase chemistry, gas phases chemistry, and cloud processes are considered simultaneously. Efficient ways of sensitivity analysis of time-space problems are also developed and used to evaluate the source and receptor relationships in an Eulerian transport, chemistry, removal model.
Microwave heating and joining of ceramic cylinders: A mathematical model
NASA Technical Reports Server (NTRS)
Booty, Michael R.; Kriegsmann, Gregory A.
1994-01-01
A thin cylindrical ceramic sample is placed in a single mode microwave applicator in such a way that the electric field strength is allowed to vary along its axis. The sample can either be a single rod or two rods butted together. We present a simple mathematical model which describes the microwave heating process. It is built on the assumption that the Biot number of the material is small, and that the electric field is known and uniform throughout the cylinder's cross-section. The model takes the form of a nonlinear parabolic equation of reaction-diffusion type, with a spatially varying reaction term that corresponds to the spatial variation of the electromagnetic field strength in the waveguide. The equation is analyzed and a solution is found which develops a hot spot near the center of the cylindrical sample and which then propagates outwards until it stabilizes. The propagation and stabilization phenomenon concentrates the microwave energy in a localized region about the center where elevated temperatures may be desirable.
Nonlinear time reversal of classical waves: experiment and model.
Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M
2013-12-01
We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.
A theory of drug tolerance and dependence II: the mathematical model.
Peper, Abraham
2004-08-21
The preceding paper presented a model of drug tolerance and dependence. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behaviour to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The present paper discusses the mathematical model in terms of its design. The model is a nonlinear, learning feedback system, fully satisfying control theoretical principles. It accepts any form of the stimulus-the drug intake-and describes how the physiological processes involved affect the distribution of the drug through the body and the stability of the regulation loop. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes. PMID:15246786
A theory of drug tolerance and dependence II: the mathematical model.
Peper, Abraham
2004-08-21
The preceding paper presented a model of drug tolerance and dependence. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behaviour to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The present paper discusses the mathematical model in terms of its design. The model is a nonlinear, learning feedback system, fully satisfying control theoretical principles. It accepts any form of the stimulus-the drug intake-and describes how the physiological processes involved affect the distribution of the drug through the body and the stability of the regulation loop. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes.
Nonlinear Analysis and Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1996-01-01
The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.
Mathematical modeling and simulation of seated stability.
Tanaka, Martin L; Ross, Shane D; Nussbaum, Maury A
2010-03-22
Various methods have been used to quantify the kinematic variability or stability of the human spine. However, each of these methods evaluates dynamic behavior within the stable region of state space. In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was developed for a human sitting on an unstable seat apparatus (i.e., the "wobble chair"). Forward dynamic simulations were used to compute trajectories based on the initial state. From these trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to partition the state space into regions of qualitatively different behavior. We found that ridges formed at the boundary between regions of stability and failure (i.e., falling). The location of the basin of stability found using the FTLE field matched well with the basin of stability determined by an alternative method. In addition, an equilibrium manifold was found, which describes a set of equilibrium configurations that act as a low dimensional attractor in the controlled system. These simulations are a first step in developing a method to locate state space boundaries for torso stability. Identifying these boundaries may provide a framework for assessing factors that contribute to health risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight, and distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries in other biomechanical applications.
A Mathematical Model for Suppression Subtractive Hybridization
Gadgil, Chetan; Rink, Anette; Beattie, Craig
2002-01-01
Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assessing the effect of various parameters to facilitate its optimization. We derive an equation for the probability that a particular differentially expressed species is successfully isolated and use this to quantify the effect of the following parameters related to the cDNA sample: (a) mRNA abundance; (b) partial sequence complementarity to other species; and (3) degree of differential expression. We also evaluate the effect of parameters related to the process, including: (a) reaction times; and (b) extent of driver excess used in the two hybridization reactions. The optimum set of process parameters for successful isolation of differentially expressed species depends on transcript abundance. We show that the reaction conditions have a significant effect on the occurrence of false-positives and formulate strategies to isolate specific subsets of differentially expressed genes. We also quantify the effect of non-specific hybridization on the false-positive results and present strategies for spiking cDNA sequences to address this problem. PMID:18629052
A mathematical model of the growth of uterine myomas.
Chen, C Y; Ward, J P
2014-12-01
Uterine myomas or fibroids are common, benign smooth muscle tumours that can grow to 10 cm or more in diameter and are routinely removed surgically. They are typically slow- growing, well-vascularised, spherical tumours that, on a macro-scale, are a structurally uniform, hard elastic material. We present a multi-phase mathematical model of a fully vascularised myoma growing within a surrounding elastic tissue. Adopting a continuum approach, the model assumes the conservation of mass and momentum of four phases, namely cells/collagen, extracellular fluid, arterial and venous phases. The cell/collagen phase is treated as a poro-elastic material, based on a linear stress-strain relationship, and Darcy's law is applied to describe flow in the extracellular fluid and the two vascular phases. The supply of extracellular fluid is dependent on the capillary flow rate and mean capillary pressure expressed in terms of the arterial and venous pressures. Cell growth and division is limited to the myoma domain and dependent on the local stress in the material. The resulting model consists of a system of nonlinear partial differential equations with two moving boundaries. Numerical solutions of the model successfully reproduce qualitatively the clinically observed three-phase "fast-slow-fast" growth profile that is typical for myomas. The results suggest that this growth profile requires stress-induced resistance to growth by the surrounding tissue and a switch-like cell growth response to stress. Analysis of large-time solutions reveal that while there is a functioning vasculature throughout the myoma, exponential growth results, otherwise power-law growth is predicted. An extensive survey of the effect of parameters on model solutions is also presented, and in particular, the enhanced growth caused by factors such as oestrogen is predicted by the model.
Mathematical Modeling as a Tool for Investigating Cell Cycle Control Networks
Sible, Jill C.; Tyson, John J.
2007-01-01
Although not a traditional experimental “method,” mathematical modeling can provide a powerful approach for investigating complex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one approach to modeling the cell cycle based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations (ODEs). We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for mathematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects to gain a systems-level perspective for complex control systems such as those governing the eukaryotic cell cycle. PMID:17189866
Helping Students Become Better Mathematical Modelers: Pseudosteady-State Approximations.
ERIC Educational Resources Information Center
Bunge, Annette L.; Miller, Ronald L.
1997-01-01
Undergraduate and graduate students are often confused about several aspects of modeling physical systems. Describes an approach to address these issues using a single physical transport problem that can be analyzed with multiple mathematical models. (DKM)
ERIC Educational Resources Information Center
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Model-size reduction for the non-linear dynamic analysis of quasi-symmetric structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
A numerical technique is developed to reduce the size of models describing the nonlinear dynamic response of quasi-symmetric structures (i.e., structures with unsymmetric geometry). The response vectors of the structure are approximated by a linear combination of the symmetric and antisymmetric vectors at each time step. The mathematical formulation and numerical implementation of the method are described in detail, and results for a shallow laminated anisotropic panel of quadrilateral planform are presented in graphs and normalized contour plots.
Triangular springs for modeling nonlinear membranes.
Delingette, Hervé
2008-01-01
This paper provides a formal connexion between springs and continuum mechanics in the context of one-dimensional and two-dimensional elasticity. In a first stage, the equivalence between tensile springs and the finite element discretization of stretching energy on planar curves is established. Furthermore, when considering a quadratic strain function of stretch, we introduce a new type of springs called tensile biquadratic springs. In a second stage, we extend this equivalence to non-linear membranes (St Venant-Kirchhoff materials) on triangular meshes leading to triangular biquadratic and quadratic springs. Those tensile and angular springs produce isotropic deformations parameterized by Young modulus and Poisson ratios on unstructured meshes in an efficient and simple way. For a specific choice of the Poisson ratio, 0.3, we show that regular spring-mass models may be used realistically to simulate a membrane behavior. Finally, the different spring formulations are tested in pure traction and cloth simulation experiments.
Nonlinear statistical modeling and model discovery for cardiorespiratory data
NASA Astrophysics Data System (ADS)
Luchinsky, D. G.; Millonas, M. M.; Smelyanskiy, V. N.; Pershakova, A.; Stefanovska, A.; McClintock, P. V. E.
2005-08-01
We present a Bayesian dynamical inference method for characterizing cardiorespiratory (CR) dynamics in humans by inverse modeling from blood pressure time-series data. The technique is applicable to a broad range of stochastic dynamical models and can be implemented without severe computational demands. A simple nonlinear dynamical model is found that describes a measured blood pressure time series in the primary frequency band of the CR dynamics. The accuracy of the method is investigated using model-generated data with parameters close to the parameters inferred in the experiment. The connection of the inferred model to a well-known beat-to-beat model of the baroreflex is discussed.
Typhoid transmission: a historical perspective on mathematical model development.
Bakach, Iurii; Just, Matthew R; Gambhir, Manoj; Fung, Isaac Chun-Hai
2015-11-01
Mathematical models of typhoid transmission were first developed nearly half a century ago. To facilitate a better understanding of the historical development of this field, we reviewed mathematical models of typhoid and summarized their structures and limitations. Eleven models, published in 1971 to 2014, were reviewed. While models of typhoid vaccination are well developed, we highlight the need to better incorporate water, sanitation and hygiene interventions into models of typhoid and other foodborne and waterborne diseases. Mathematical modeling is a powerful tool to test and compare different intervention strategies which is important in the world of limited resources. By working collaboratively, epidemiologists and mathematicians should build better mathematical models of typhoid transmission, including pharmaceutical and non-pharmaceutical interventions, which will be useful in epidemiological and public health practice.
Optimization of Nonlinear Dose- and Concentration-Response Models Utilizing Evolutionary Computation
Beam, Andrew L.; Motsinger-Reif, Alison A.
2011-01-01
An essential part of toxicity and chemical screening is assessing the concentrated related effects of a test article. Most often this concentration-response is a nonlinear, necessitating sophisticated regression methodologies. The parameters derived from curve fitting are essential in determining a test article’s potency (EC50) and efficacy (Emax) and variations in model fit may lead to different conclusions about an article’s performance and safety. Previous approaches have leveraged advanced statistical and mathematical techniques to implement nonlinear least squares (NLS) for obtaining the parameters defining such a curve. These approaches, while mathematically rigorous, suffer from initial value sensitivity, computational intensity, and rely on complex and intricate computational and numerical techniques. However if there is a known mathematical model that can reliably predict the data, then nonlinear regression may be equally viewed as parameter optimization. In this context, one may utilize proven techniques from machine learning, such as evolutionary algorithms, which are robust, powerful, and require far less computational framework to optimize the defining parameters. In the current study we present a new method that uses such techniques, Evolutionary Algorithm Dose Response Modeling (EADRM), and demonstrate its effectiveness compared to more conventional methods on both real and simulated data. PMID:22013401
Physical vs. Mathematical Models in Rock Mechanics
NASA Astrophysics Data System (ADS)
Morozov, I. B.; Deng, W.
2013-12-01
One of the less noted challenges in understanding the mechanical behavior of rocks at both in situ and lab conditions is the character of theoretical approaches being used. Currently, the emphasis is made on spatial averaging theories (homogenization and numerical models of microstructure), empirical models for temporal behavior (material memory, compliance functions and complex moduli), and mathematical transforms (Laplace and Fourier) used to infer the Q-factors and 'relaxation mechanisms'. In geophysical applications, we have to rely on such approaches for very broad spatial and temporal scales which are not available in experiments. However, the above models often make insufficient use of physics and utilize, for example, the simplified 'correspondence principle' instead of the laws of viscosity and friction. As a result, the commonly-used time- and frequency dependent (visco)elastic moduli represent apparent properties related to the measurement procedures and not necessarily to material properties. Predictions made from such models may therefore be inaccurate or incorrect when extrapolated beyond the lab scales. To overcome the above challenge, we need to utilize the methods of micro- and macroscopic mechanics and thermodynamics known in theoretical physics. This description is rigorous and accurate, uses only partial differential equations, and allows straightforward numerical implementations. One important observation from the physical approach is that the analysis should always be done for the specific geometry and parameters of the experiment. Here, we illustrate these methods on axial deformations of a cylindrical rock sample in the lab. A uniform, isotropic elastic rock with a thermoelastic effect is considered in four types of experiments: 1) axial extension with free transverse boundary, 2) pure axial extension with constrained transverse boundary, 3) pure bulk expansion, and 4) axial loading harmonically varying with time. In each of these cases, an
A Mathematical Model of Quorum Sensing Induced Biofilm Detachment
Emerenini, Blessing O.; Hense, Burkhard A.; Kuttler, Christina; Eberl, Hermann J.
2015-01-01
Background Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. Method To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Results Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony. PMID:26197231
An Assessment Model for Proof Comprehension in Undergraduate Mathematics
ERIC Educational Resources Information Center
Mejia-Ramos, Juan Pablo; Fuller, Evan; Weber, Keith; Rhoads, Kathryn; Samkoff, Aron
2012-01-01
Although proof comprehension is fundamental in advanced undergraduate mathematics courses, there has been limited research on what it means to understand a mathematical proof at this level and how such understanding can be assessed. In this paper, we address these issues by presenting a multidimensional model for assessing proof comprehension in…
Mathematical Modeling, Sense Making, and the Common Core State Standards
ERIC Educational Resources Information Center
Schoenfeld, Alan H.
2013-01-01
On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…
Bridging the Gap Between Common Sense and Mathematical Models
ERIC Educational Resources Information Center
Press, Laurence
1975-01-01
Describes a four-phase method of helping students who are mathematically unsophisticated and have difficulty relating their common sense, English-language understanding of a system to an abstract, mathematical description. The approach uses interactive simulation models. (Author/IRT)
Using Spreadsheets to Teach Aspects of Biology Involving Mathematical Models
ERIC Educational Resources Information Center
Carlton, Kevin; Nicholls, Mike; Ponsonby, David
2004-01-01
Some aspects of biology, for example the Hardy-Weinberg simulation of population genetics or modelling heat flow in lizards, have an undeniable mathematical basis. Students can find the level of mathematical skill required to deal with such concepts to be an insurmountable hurdle to understanding. If not used effectively, spreadsheet models…
Teaching Writing and Communication in a Mathematical Modeling Course
ERIC Educational Resources Information Center
Linhart, Jean Marie
2014-01-01
Writing and communication are essential skills for success in the workplace or in graduate school, yet writing and communication are often the last thing that instructors think about incorporating into a mathematics course. A mathematical modeling course provides a natural environment for writing assignments. This article is an analysis of the…
Mathematics in the Biology Classroom: A Model of Interdisciplinary Education
ERIC Educational Resources Information Center
Hodgson, Ted; Keck, Robert; Patterson, Richard; Maki, Dan
2005-01-01
This article describes an interdisciplinary course that develops essential mathematical modeling skills within an introductory biology setting. The course embodies recent recommendations regarding the need for interdisciplinary, inquiry-based mathematical preparation of undergraduates in the biological sciences. Evaluation indicates that the…
Application of CFD techniques toward the validation of nonlinear aerodynamic models
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Katz, J.
1985-01-01
Applications of computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gas dynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.
Application of CFD techniques toward the validation of nonlinear aerodynamic models
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Katz, J.
1985-01-01
Applications of Computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gasdynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.
Application of nonlinear time series models to driven systems
Hunter, N.F. Jr.
1990-01-01
In our laboratory we have been engaged in an effort to model nonlinear systems using time series methods. Our objectives have been, first, to understand how the time series response of a nonlinear system unfolds as a function of the underlying state variables, second, to model the evolution of the state variables, and finally, to predict nonlinear system responses. We hope to address the relationship between model parameters and system parameters in the near future. Control of nonlinear systems based on experimentally derived parameters is also a planned topic of future research. 28 refs., 15 figs., 2 tabs.
Mathematical Modeling and Simulation of Seated Stability
Tanaka, Martin L.; Ross, Shane D.; Nussbaum, Maury A.
2009-01-01
Various methods have been used to quantify the kinematic variability or stability of the human spine. However, each of these methods evaluates dynamic behavior within the stable region of state space. In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was developed for a human sitting on an unstable seat apparatus (i.e., the “wobble chair”). Forward dynamic simulations were used to compute trajectories based on the initial state. From these trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to partition the state space into regions of qualitatively different behavior. We found that ridges formed at the boundary between regions of stability and failure (i.e., falling). The location of the basin of stability found using the FTLE field matched well with the basin of stability determined by an alternative method. In addition, an equilibrium manifold was found, which describes a set of equilibrium configurations that act as a low dimensional attractor in the controlled system. These simulations are a first step in developing a method to locate state space boundaries for torso stability. Identifying these boundaries may provide a framework for assessing factors that contribute to health risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight and distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries in other biomechanical applications. PMID:20018288
Bond models in linear and nonlinear optics
NASA Astrophysics Data System (ADS)
Aspnes, D. E.
2015-08-01
Bond models, also known as polarizable-point or mechanical models, have a long history in optics, starting with the Clausius-Mossotti relation but more accurately originating with Ewald's largely forgotten work in 1912. These models describe macroscopic phenomena such as dielectric functions and nonlinear-optical (NLO) susceptibilities in terms of the physics that takes place in real space, in real time, on the atomic scale. Their strengths lie in the insights that they provide and the questions that they raise, aspects that are often obscured by quantum-mechanical treatments. Statics versions were used extensively in the late 1960's and early 1970's to correlate NLO susceptibilities among bulk materials. Interest in NLO applications revived with the 2002 work of Powell et al., who showed that a fully anisotropic version reduced by more than a factor of 2 the relatively large number of parameters necessary to describe secondharmonic- generation (SHG) data for Si(111)/SiO2 interfaces. Attention now is focused on the exact physical meaning of these parameters, and to the extent that they represent actual physical quantities.
A nonlinear model for rotating cool stars
NASA Astrophysics Data System (ADS)
Barnes, Sydney A.
2011-08-01
A simple nonlinear model is introduced here to describe the rotational evolution of main sequence cool (FGKM) stars. It is formulated only in terms of the ratio of a star's rotation period, P, to its convective turnover timescale, τ, and two dimensionless constants which are specified using solar- and open cluster data. The model explains the origin of the two sequences, C/fast and I/slow, of rotating stars observed in open cluster color-period diagrams, and describes their evolution from C-type to I-type through the rotational gap, g, separating them. It explains why intermediate-mass open cluster stars have the longest periods, while higher- and lower-mass cool stars have shorter periods. It provides an exact expression for the age of a rotating cool star in terms of P and τ, thereby generalizing gyrochronology. The possible range of initial periods is shown to contribute upto 128 Myr to the gyro age errors of solar mass field stars. A transformation to color-period space shows how this model explains some detailed features in the color-period diagrams of open clusters, including the shapes and widths of the sequences, and the observed number density of stars across these diagrams.
Mathematical modeling of efficient protocols to control glioma growth.
Branco, J R; Ferreira, J A; de Oliveira, Paula
2014-09-01
In this paper we propose a mathematical model to describe the evolution of glioma cells taking into account the viscoelastic properties of brain tissue. The mathematical model is established considering that the glioma cells are of two phenotypes: migratory and proliferative. The evolution of the migratory cells is described by a diffusion-reaction equation of non Fickian type deduced considering a mass conservation law with a non Fickian migratory mass flux. The evolution of the proliferative cells is described by a reaction equation. A stability analysis that leads to the design of efficient protocols is presented. Numerical simulations that illustrate the behavior of the mathematical model are included.
Mathematics of tsunami: modelling and identification
NASA Astrophysics Data System (ADS)
Krivorotko, Olga; Kabanikhin, Sergey
2015-04-01
Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
a Discrete Mathematical Model to Simulate Malware Spreading
NASA Astrophysics Data System (ADS)
Del Rey, A. Martin; Sánchez, G. Rodriguez
2012-10-01
With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.
Fitting Partially Nonlinear Random Coefficient Models as SEMs
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Cudeck, Robert; du Toit, Stephen H. C.
2006-01-01
The nonlinear random coefficient model has become increasingly popular as a method for describing individual differences in longitudinal research. Although promising, the nonlinear model it is not utilized as often as it might be because software options are still somewhat limited. In this article we show that a specialized version of the model…
Nonlinear lower hybrid modeling in tokamak plasmas
Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Nonlinear q -voter model with inflexible zealots
NASA Astrophysics Data System (ADS)
Mobilia, Mauro
2015-07-01
We study the dynamics of the nonlinear q -voter model with inflexible zealots in a finite well-mixed population. In this system, each individual supports one of two parties and is either a susceptible voter or an inflexible zealot. At each time step, a susceptible adopts the opinion of a neighbor if this belongs to a group of q ≥2 neighbors all in the same state, whereas inflexible zealots never change their opinion. In the presence of zealots of both parties, the model is characterized by a fluctuating stationary state and, below a zealotry density threshold, the distribution of opinions is bimodal. After a characteristic time, most susceptibles become supporters of the party having more zealots and the opinion distribution is asymmetric. When the number of zealots of both parties is the same, the opinion distribution is symmetric and, in the long run, susceptibles endlessly swing from the state where they all support one party to the opposite state. Above the zealotry density threshold, when there is an unequal number of zealots of each type, the probability distribution is single-peaked and non-Gaussian. These properties are investigated analytically and with stochastic simulations. We also study the mean time to reach a consensus when zealots support only one party.
[Mathematical model of value of population].
Sha, J; Wang, S
1983-09-29
The authors define the value of population as an economic concept and present mathematical formulas for calculating this value. Included in this theoretical discussion are different kinds of surplus value of population and the social significance of population value. PMID:12279805
Making Insulation Decisions through Mathematical Modeling
ERIC Educational Resources Information Center
Yanik, H. Bahadir; Memis, Yasin
2014-01-01
Engaging students in studies about conservation and sustainability can support their understanding of making environmental conscious decisions to conserve Earth. This article aims to contribute these efforts and direct students' attention to how they can use mathematics to make environmental decisions. Contributors to iSTEM: Integrating…
Modeling Students' Interest in Mathematics Homework
ERIC Educational Resources Information Center
Xu, Jianzhong; Yuan, Ruiping; Xu, Brian; Xu, Melinda
2016-01-01
The authors examine the factors influencing mathematics homework interest for Chinese students and compare the findings with a recent study involving U.S. students. The findings from multilevel analyses revealed that some predictors for homework interest functioned similarly (e.g., affective attitude toward homework, learning-oriented reasons,…
Lattice Boltzmann model for nonlinear convection-diffusion equations.
Shi, Baochang; Guo, Zhaoli
2009-01-01
A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.
Mathematical approaches to modeling of cortical spreading depression
NASA Astrophysics Data System (ADS)
Miura, Robert M.; Huang, Huaxiong; Wylie, Jonathan J.
2013-12-01
Migraine with aura (MwA) is a debilitating disease that afflicts about 25%-30% of migraine sufferers. During MwA, a visual illusion propagates in the visual field, then disappears, and is followed by a sustained headache. MwA was conjectured by Lashley to be related to some neurological phenomenon. A few years later, Leão observed electrophysiological waves in the brain that are now known as cortical spreading depression (CSD). CSD waves were soon conjectured to be the neurological phenomenon underlying MwA that had been suggested by Lashley. However, the confirmation of the link between MwA and CSD was not made until 2001 by Hadjikhani et al. [Proc. Natl. Acad. Sci. U.S.A. 98, 4687-4692 (2001)] using functional MRI techniques. Despite the fact that CSD has been studied continuously since its discovery in 1944, our detailed understandings of the interactions between the mechanisms underlying CSD waves have remained elusive. The connection between MwA and CSD makes the understanding of CSD even more compelling and urgent. In addition to all of the information gleaned from the many experimental studies on CSD since its discovery, mathematical modeling studies provide a general and in some sense more precise alternative method for exploring a variety of mechanisms, which may be important to develop a comprehensive picture of the diverse mechanisms leading to CSD wave instigation and propagation. Some of the mechanisms that are believed to be important include ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Discrete and continuum models of CSD consist of coupled nonlinear differential equations for the ion concentrations. In this review of the current quantitative understanding of CSD, we focus on these modeling paradigms and various mechanisms that are felt to be important for CSD.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2016-02-01
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials
Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan
2007-03-15
A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models.
Mechanical-mathematical modeling for landslide process
NASA Astrophysics Data System (ADS)
Svalova, V.
2009-04-01
500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.
Classical and Weak Solutions for Two Models in Mathematical Finance
NASA Astrophysics Data System (ADS)
Gyulov, Tihomir B.; Valkov, Radoslav L.
2011-12-01
We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.
Nonlinear ultrasound modelling and validation of fatigue damage
NASA Astrophysics Data System (ADS)
Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.
2015-05-01
Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.
A Nonlinear Discrete Dynamical Model for Transcriptional Regulation: Construction and Properties
Goutsias, John; Kim, Seungchan
2004-01-01
Transcriptional regulation is a fundamental mechanism of living cells, which allows them to determine their actions and properties, by selectively choosing which proteins to express and by dynamically controlling the amounts of those proteins. In this article, we revisit the problem of mathematically modeling transcriptional regulation. First, we adopt a biologically motivated continuous model for gene transcription and mRNA translation, based on first-order rate equations, coupled with a set of nonlinear equations that model cis-regulation. Then, we view the processes of transcription and translation as being discrete, which, together with the need to use computational techniques for large-scale analysis and simulation, motivates us to model transcriptional regulation by means of a nonlinear discrete dynamical system. Classical arguments from chemical kinetics allow us to specify the nonlinearities underlying cis-regulation and to include both activators and repressors as well as the notion of regulatory modules in our formulation. We show that the steady-state behavior of the proposed discrete dynamical system is identical to that of the continuous model. We discuss several aspects of our model, related to homeostatic and epigenetic regulation as well as to Boolean networks, and elaborate on their significance. Simulations of transcriptional regulation of a hypothetical metabolic pathway illustrate several properties of our model, and demonstrate that a nonlinear discrete dynamical system may be effectively used to model transcriptional regulation in a biologically relevant way. PMID:15041638
NASA Astrophysics Data System (ADS)
Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua
2014-11-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.
Friction and nonlinear dynamics
NASA Astrophysics Data System (ADS)
Manini, N.; Braun, O. M.; Tosatti, E.; Guerra, R.; Vanossi, A.
2016-07-01
The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction.
Modeling of Nonlinear Beat Signals of TAE's
NASA Astrophysics Data System (ADS)
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-03-01
Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core
A mathematical model on the closing and opening mechanism for venus flytrap.
Yang, Ruoting; Lenaghan, Scott C; Zhang, Mingjun; Xia, Lijin
2010-08-01
This paper investigates the opening and closing mechanism for the Venus Flytrap (Dionaea muscipula). A mathematical model has been proposed to explain how the flytrap transitions between open, semi-closed, and closed states. The model accounts for the charge accumulation of action potentials, which generated by mechanical stimulation of the sensitive trigger hairs on the lobes of the flytrap. Though many studies have been reported for the Venus flytrap opening and closing mechanism, this paper attempts to explain the mechanism from nonlinear dynamics and control perspective.
Some Aspects of Mathematical Model of Collaborative Learning
ERIC Educational Resources Information Center
Nakamura, Yasuyuki; Yasutake, Koichi; Yamakawa, Osamu
2012-01-01
There are some mathematical learning models of collaborative learning, with which we can learn how students obtain knowledge and we expect to design effective education. We put together those models and classify into three categories; model by differential equations, so-called Ising spin and a stochastic process equation. Some of the models do not…
Academic Libraries as a Context for Teaching Mathematical Modeling
ERIC Educational Resources Information Center
Warwick, Jon
2008-01-01
The teaching of mathematical modeling to undergraduate students requires that students are given ample opportunity to develop their own models and experience first-hand the process of model building. Finding an appropriate context within which modeling can be undertaken is not a simple task as it needs to be readily understandable and seen as…
Cheng, Teddy M; Savkin, Andrey V; Celler, Branko G; Su, Steven W; Wang, Lu
2008-11-01
The first objective of this paper is to introduce a nonlinear system to model the heart rate (HR) response during and after treadmill walking exercise. The model is a feedback interconnected system that has components to describe the central and peripheral local responses to exercise and their interactions. The parameters of the model were experimentally identified from subjects walking on a treadmill at different speeds. The stability of the obtained nonlinear model was mathematically proven. The modeling results demonstrate that the proposed model can be useful in examining the cardiovascular response to exercise. Based on the nonlinear model, the second objective is to present a computer-controlled treadmill system for the regulation of HR during treadmill exercise. The proposed nonlinear controller consists of feedforward and feedback components. The designed control system was experimentally verified and the results demonstrated that the proposed computer-controlled treadmill system regulated the HR of the experimental subjects according to two different exercising HR profiles, indicating that it can play an important role in the design of exercise protocols for individuals.
Non-linear dynamic modeling of an automobile hydraulic active suspension system
NASA Astrophysics Data System (ADS)
Mrad, R. Ben; Levitt, J. A.; Fassois, S. D.
1994-09-01
Motived by the strong need for realistically describing the dynamical behaviour of automotive systems through adequate mathematical models, a computer-stimulation-suitable non-linear quarter-car model of a hydraulic active suspension system is developed. Unlike previously available linear models characterised by idealised actuator and component behaviour, the developed model accounts for the dynamics of the main system components, including the suspension bushing, pump, accumulator, power and bypass valves, and hydraulic actuator, while also incorporating preliminary versions of the system controllers. Significant system characteristics, such as non-linear pressure-flow relationships, fluid compressibility, pump and valve non-linearities, leakages, as well as Coulomb friction, are also explicitly accounted for, and the underpinning assumptions are discussed. Simulation results obtained by exercising the model provide insight into the system behavior, illustrate the importance of the actuator/component dynamics and their associated non-linearities and reveal the inadequacy of the idealised linear models in capturing the system behaviour, demonstrate specific effects of valve leakage and fluid bulk modulus, are in qualitative agreement with experimental measurements, and stress the need for proper control law design and tuning. The developed model is particularly suitable for analysis, design, control law optimisation, and diagnostic strategies development.
Critical behavior of a class of nonlinear stochastic models of diffusion of information
NASA Astrophysics Data System (ADS)
Sharma, C. L.; Pathria, R. K.; Karmeshu
1982-12-01
A theoretical analysis based on the concepts and techniques of statistical physics is carried out for two nonlinear models of diffusion of information-one in a closed population and the other in an open one. Owing to interpersonal contacts among the members of the population, the models exhibit a cooperative behavior when a certain parameter of the problem approaches a critical value. Mathematical similarities in the behavior of the two models, in the vicinity of the critical point, are so impelling that one is tempted to investigate the corresponding behavior of a generalized model, which can be done by carrying out a systematic system-size expansion of the master equation of the process and thereby deriving a nonlinear Fokker-Planck equation for the relevant probability distribution. This establishes a broader class of systems displaying identical behavior in the critical region and also elucidates the role played by fluctuations in bringing about the cooperative phenomenon.
NASA Astrophysics Data System (ADS)
Song, Pengchao
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
ERIC Educational Resources Information Center
Michelsen, Claus
2015-01-01
Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students' achievement and attitude in both physics and mathematics. But although there…
A Nonlinear Mixed Effects Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2009-01-01
The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be…
Linear and Nonlinear Thinking: A Multidimensional Model and Measure
ERIC Educational Resources Information Center
Groves, Kevin S.; Vance, Charles M.
2015-01-01
Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…
Evaluation of Limb Load Asymmetry Using Two New Mathematical Models
Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.
2015-01-01
Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372
Modeling hybrid stars with an SU(3) nonlinear {sigma} model
Negreiros, Rodrigo; Dexheimer, V. A.; Schramm, S.
2010-09-15
We study the behavior of hybrid stars by using an extended hadronic and quark SU(3) nonlinear sigma model. The degrees of freedom change naturally, in this model, from hadrons to quarks as the density/temperature increases. At zero temperature, we reproduce massive neutron stars, which contain cores of hybrid matter of 2 km for the nonrotating case and 1.18 and 0.87 km, in the equatorial and polar directions, respectively, for stars that rotate at the Kepler frequency (physical cases lie in between). The cooling of such stars is also analyzed.
A mathematical model of the class D converter for compact fluorescent ballasts
Nerone, L.R.
1995-11-01
The time-harmonic analysis is often used to design the class D converter. Since the Q of the resonant network is often low, this analysis, in the form of the sinusoidal approximation, begins to lose accuracy. This paper explores an improved method of designing compact fluorescent ballasts via the square wave approximation (SWA), where the time domain equations are solved for the general case of arbitrary Q, duty ratio, and frequency. A precise mathematical model of the Class D converter is developed that predicts the currents and voltages of the converter and these solutions are compared with computer simulation. Nonlinear programming (NLP) is introduced as a means to design the ballast for the lowest conduction losses. The equations developed in the mathematical model are formulated into a NLP format that includes the self-oscillating case.
Mathematical Modeling of the Induced Mutation Process in Bacterial Cells
NASA Astrophysics Data System (ADS)
Belov, Oleg V.; Krasavin, Evgeny A.; Parkhomenko, Alexander Yu.
2010-01-01
A mathematical model of the ultraviolet (UV) irradiation-induced mutation process in bacterial cells Escherichia coli is developed. Using mathematical approaches, the whole chain of events is tracked from a cell exposure to the damaging factor to mutation formation in the DNA chain. An account of the key special features of the regulation of this genetic network allows predicting the effects induced by the cell exposure to certain UV energy fluence.
Mathematical modeling and physical reality in noncovalent interactions.
Politzer, Peter; Murray, Jane S; Clark, Timothy
2015-03-01
The Hellmann-Feynman theorem provides a straightforward interpretation of noncovalent bonding in terms of Coulombic interactions, which encompass polarization (and accordingly include dispersion). Exchange, Pauli repulsion, orbitals, etc., are part of the mathematics of obtaining the system's wave function and subsequently its electronic density. They do not correspond to physical forces. Charge transfer, in the context of noncovalent interactions, is equivalent to polarization. The key point is that mathematical models must not be confused with physical reality. PMID:25697332
Mathematical Modeling and the Redesign of a Teaching Ambulatory Clinic
ERIC Educational Resources Information Center
Baker, Duke H.; Mamlin, Joseph
1976-01-01
Mathematical modeling was utilized in the planning and decision-making process involved in reorganizing a teaching clinic to effect continuity of care. The model interrelated physicians, time, and space, facilitating value judgments and decisions. The reorganization was successful and the outcomes remarkably similar to model predictions.…
Mathematical Modelling in Physics and Engineering--Part 2.
ERIC Educational Resources Information Center
Oke, K. H.; Jones, A. L.
1982-01-01
Mathematical modelling and an example used with undergraduates were presented in part 1 (v17, n5, p212-18, 1982). A second example, Power from Windmills, is provided which has considerable potential for development both as a model and as a series of modelling experiences of increasing difficulty for students with different backgrounds. (Author/JN)
An Introduction to Mathematical Modelling for Ecologists and Environmental Scientists.
ERIC Educational Resources Information Center
Smith, I. R.; Henderson-Sellers, B.
1981-01-01
Describes the basic philosophy, nomenclature, and techniques used in mathematical modelling to enable biologists, engineers, land managers, and others to understand the concepts and usefulness of models. Contrasts conceptual and empirical approaches, using ecosystem models as an example of the former. (DC)
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
A Review on Mathematical Modeling for Textile Processes
NASA Astrophysics Data System (ADS)
Chattopadhyay, R.
2015-10-01
Mathematical model is a powerful tool in engineering for studying variety of problems related to design and development of products and processes, optimization of manufacturing process, understanding a phenomenon and predicting product's behaviour in actual use. An insight of the process and use of appropriate mathematical tools are necessary for developing models. In the present paper, a review of types of model, procedure followed in developing them and their limitations have been discussed. Modeling techniques being used in few textile processes available in the literature have been cited as examples.
A mathematical model for evolution and SETI.
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
A Mathematical Model for Evolution and SETI
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
A mathematical model for evolution and SETI.
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation. PMID:22139521
A mathematical model of a single main rotor helicopter for piloted simulation
NASA Technical Reports Server (NTRS)
Talbot, P. D.; Tinling, B. E.; Decker, W. A.; Chen, R. T. N.
1982-01-01
A mathematical model, suitable for piloted simulation of the flying qualities of helicopters, is a nonlinear, total force and moment model of a single main rotor helicopter. The model has ten degrees of freedom: six rigid body, three rotor flapping, and the rotor rotational degrees of freedom. The rotor model assumes rigid blades with rotor forces and moments radially integrated and summed about the azimuth. The fuselage aerodynamic model uses a detailed representation over a nominal angle of attack and sideslip range of + or - 15 deg., as well as a simplified curve fit at large angles of attack or sideslip. Stabilizing surface aerodynamics are modeled with a lift curve slope between stall limits and a general curve fit for large angles of attack. A generalized stability and control augmentation system is described. Additional computer subroutines provide options for a simplified engine/governor model, atmospheric turbulence, and a linearized six degree of freedom dynamic model for stability and control analysis.
Visualization of nonlinear kernel models in neuroimaging by sensitivity maps.
Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard; Hansen, Lars Kai
2011-04-01
There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification models. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We show that the performance of linear models is reduced for certain scan labelings/categorizations in this data set, while the nonlinear models provide more flexibility. We show that the sensitivity map can be used to visualize nonlinear versions of kernel logistic regression, the kernel Fisher discriminant, and the SVM, and conclude that the sensitivity map is a versatile and computationally efficient tool for visualization of nonlinear kernel models in neuroimaging.
A Nonlinear Viscoelastic Model for Ceramics at High Temperatures
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.
2002-01-01
High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.
Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps
NASA Astrophysics Data System (ADS)
Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin
2016-11-01
In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 < 1, the disease may die out, and when R¯0 > 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.
The Concept of Model. What is Remarkable in Mathematical Models
NASA Astrophysics Data System (ADS)
Bezruchko, Boris P.; Smirnov, Dmitry A.
Dictionaries tell us that the word "model" originates from the Latin word "modulus" which means "measure, template, norm". This term was used in proceedings on civil engineering several centuries BC. Currently, it relates to an enormously wide range of material objects, symbolic structures and ideal images ranging from models of clothes, small copies of ships and aeroplanes, different pictures and plots to mathematical equations and computational algorithms. Starting to define the concept of "model", we would like to remind about the difficulty to give strict definitions of basic concepts. Thus, when university professors define "oscillations" and "waves" in their lectures on this subject, it is common for many of them to repeat the joke of Russian academician L.I. Mandel'shtam, who illustrated the problem with the example of the term "heap": How many objects, and of which kind, deserve such a name? As well, he compared strict definitions at the beginning of studying any topic to "swaddling oneself with barbed wire". Among classical examples of impossibility to give exhaustive formulations, one can mention the terms "bald spot", "forest", etc. Therefore, we will not consider variety of existing definitions of "model" and "modelling" in detail. Any of them relates to the purposes and subjective preferences of an author and is valid in a certain sense. However, it is restricted since it ignores some objects or properties that deserve attention from other points of view.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Mathematical model of layered metallurgical furnaces and units
NASA Astrophysics Data System (ADS)
Shvydkiy, V. S.; Spirin, N. A.; Lavrov, V. V.
2016-09-01
The basic approaches to mathematical modeling of the layered steel furnaces and units are considered. It is noted that the particular importance have the knowledge about the mechanisms and physical nature of processes of the charge column movement and the gas flow in the moving layer, as well as regularities of development of heat- and mass-transfer in them. The statement and mathematical description of the problem solution targeting the potential gas flow in the layered unit of an arbitrary profile are presented. On the basis of the proposed mathematical model the software implementation of information-modeling system of BF gas dynamics is carried out. The results of the computer modeling of BF non-isothermal gas dynamics with regard to the cohesion zone, gas dynamics of the combustion zone and calculation of hot-blast stoves are provided
An agent-based mathematical model about carp aggregation
NASA Astrophysics Data System (ADS)
Liang, Yu; Wu, Chao
2005-05-01
This work presents an agent-based mathematical model to simulate the aggregation of carp, a harmful fish in North America. The referred mathematical model is derived from the following assumptions: (1) instead of the consensus among every carps involved in the aggregation, the aggregation of carp is completely a random and spontaneous physical behavior of numerous of independent carp; (2) carp aggregation is a collective effect of inter-carp and carp-environment interaction; (3) the inter-carp interaction can be derived from the statistical analytics about large-scale observed data. The proposed mathematical model is mainly based on empirical inter-carp force field, whose effect is featured with repulsion, parallel orientation, attraction, out-of-perception zone, and blind. Based on above mathematical model, the aggregation behavior of carp is formulated and preliminary simulation results about the aggregation of small number of carps within simple environment are provided. Further experiment-based validation about the mathematical model will be made in our future work.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
A mathematical simulation model of the CH-47B helicopter, volume 2
NASA Technical Reports Server (NTRS)
Weber, J. M.; Liu, T. Y.; Chung, W.
1984-01-01
A nonlinear simulation model of the CH-47B helicopter, was adapted for use in a simulation facility. The model represents the specific configuration of the variable stability CH-47B helicopter. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations, steady state flapping dynamics and included in the model of the option for simulation of external suspension, slung load equations of motion. Validation of the model was accomplished by static and dynamic data from the original Boeing Vertol mathematical model and flight test data. The model is appropriate for use in real time piloted simulation and is implemented on the ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec.
Nonlinear damping model for flexible structures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Zang, Weijian
1990-01-01
The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
Redundancy management of electrohydraulic servoactuators by mathematical model referencing
NASA Technical Reports Server (NTRS)
Campbell, R. A.
1971-01-01
A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.
Dependability breakeven point mathematical model for production - quality strategy support
NASA Astrophysics Data System (ADS)
Vilcu, Adrian; Verzea, Ion; Chaib, Rachid
2016-08-01
This paper connects the field of dependability system with the production-quality strategies through a new mathematical model based on breakeven points. The novelties consist in the identification of the parameters of dependability system which, in safety control, represents the degree to which an item is capable of performing its required function at any randomly chosen time during its specified operating period disregarding non-operation related influences, as well as the analysis of the production-quality strategies, defining a mathematical model based on a new concept - dependability breakeven points, model validation on datasets and shows the practical applicability of this new approach.
Submodels of model of nonlinear diffusion in the inhomogeneous medium involving absorption
Chirkunov, Yu. A.
2015-10-15
We study the five-parameter model, describing the process of nonlinear diffusion in an inhomogeneous medium in the presence of absorption, for which the differential equation of the model admits a continuous Lie group of transformations, acting on the set of its solutions. We found six submodels of the original model of nonlinear diffusion, with different symmetry properties. Of these six submodels, the five submodels with transient absorption, for which the absorption coefficient depends on time according to a power law, represent the greatest interest with a mathematical point of view and with the point of view of physical applications. For each of these nonlinear submodels, we obtained formulas for producing new solutions that contain arbitrary constants, and we found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found in an explicit form or are reduced to finding the solution of nonlinear integral equations. The presence of the arbitrary constants in the integral equations that determine these solutions provide new opportunities for analytical and numerical study of boundary value problems for the received submodels and, thus, for the original model of nonlinear diffusion. For the received invariant submodels, we studied diffusion processes for which at the initial moment of the time at a fixed point is specified as a concentration and its gradient or as a concentration and its velocity. Solving of boundary value problems describing these processes is reduced to the solving of nonlinear integral equations. We established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields and propagation of heat in inhomogeneous medium, and also to study a turbulence (Leith model, differential
Nonlinear dynamical model and response of avian cranial kinesis.
Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence
2006-05-01
All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial
Nonlinear dynamical model and response of avian cranial kinesis.
Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence
2006-05-01
All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
Nonlinear signal processing using neural networks: Prediction and system modelling
Lapedes, A.; Farber, R.
1987-06-01
The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.
Applicability of mathematical modeling to problems of environmental physiology
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.
The Singing Wineglass: An Exercise in Mathematical Modelling
ERIC Educational Resources Information Center
Voges, E. L.; Joubert, S. V.
2008-01-01
Lecturers in mathematical modelling courses are always on the lookout for new examples to illustrate the modelling process. A physical phenomenon, documented as early as the nineteenth century, was recalled: when a wineglass "sings", waves are visible on the surface of the wine. These surface waves are used as an exercise in mathematical…
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities. PMID:23072615
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
Metaphors and Models in Translation between College and Workplace Mathematics
ERIC Educational Resources Information Center
Williams, Julian; Wake, Geoff
2007-01-01
We report a study of repairs in communication between workers and visiting outsiders (students, researchers or teachers). We show how cultural models such as metaphors and mathematical models facilitated explanations and repair work in inquiry and pedagogical dialogues. We extend previous theorisations of metaphor by Black; Lakoff and Johnson;…
Mitochondrial DNA damage and efficiency of ATP biosynthesis: mathematical model.
Beregovskaya, N; Maiboroda, R
1995-01-21
The role of mitochondrial DNA (mtDNA) damage in ageing processes and in malignant transformation of a cell is discussed. A mathematical model of the mtDNA population in a cell and in tissue is constructed. The model describes the effects of mtDNA damages accumulated during ageing and some features of malignant transformation and regeneration.
PARCC Model Content Frameworks: Mathematics--Grades 3-11
ERIC Educational Resources Information Center
Partnership for Assessment of Readiness for College and Careers (NJ1), 2011
2011-01-01
As part of its proposal to the U.S. Department of Education, the Partnership for Assessment of Readiness for College and Careers (PARCC) committed to developing model content frameworks for mathematics to serve as a bridge between the Common Core State Standards and the PARCC assessments. The PARCC Model Content Frameworks were developed through a…
Teaching Mathematical Modelling: Demonstrating Enrichment and Elaboration
ERIC Educational Resources Information Center
Warwick, Jon
2015-01-01
This paper uses a series of models to illustrate one of the fundamental processes of model building--that of enrichment and elaboration. The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework. The process encourages students to think about the…
Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model
NASA Astrophysics Data System (ADS)
Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.
2016-08-01
We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.
Bayesian Nonlinear Model Selection for Gene Regulatory Networks
Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran
2015-01-01
Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759
Assessment of gait nonlinear dynamics by inhomogeneous point-process models.
Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo
2014-01-01
Point-process linear models of stride intervals have been recently proven to provide a unique characterization of human gait dynamics through instantaneous time domain features. In this study we propose novel instantaneous measures characterizing nonlinear gait dynamics using a quadratic autoregressive inhomogeneous point-process model recently devised for the instantaneous assessment of physiological, natural, and physical discrete dynamical systems. Our mathematical framework accounts for long-term information given by the past events of non-stationary non-Gaussian time series, expressed by a Laguerre expansion of the Wiener-Volterra terms. Here, we present a study of gait variability from data gathered from physionet.org, including 15 recordings from young and elderly healthy volunteers, and patients with Parkinson's disease. Results show that our instantaneous polyspectral characterization provides an informative tracking of the inherent nonlinear dynamics of human gait, which is significantly affected by aging and locomotor disabilities.
Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model
Longhi, Stefano
2007-05-01
The decay dynamics of a nonlinear impurity mode embedded in a linear structured continuum is theoretically investigated in the framework of a nonlinear Fano-Anderson model. A gradient flow dynamics for the survival probability is derived in the Van Hove ({lambda}{sup 2}t) limit by a multiple-scale asymptotic analysis, and the role of nonlinearity on the decay law is discussed. In particular, it is shown that the existence of bound states embedded in the continuum acts as transient trapping states which slow down the decay. The dynamical behavior predicted in the {lambda}{sup 2}t limit is studied in detail for a simple tight-binding one-dimensional lattice model, which may describe electron or photon transport in condensed matter or photonic systems. Numerical simulations of the underlying equations confirm, in particular, the trapping effect in the decay process due to bound states embedded in the continuum.
Mathematical models of regulatory mechanisms of sleep-wake rhythms.
Nakao, M; Karashima, A; Katayama, N
2007-05-01
Studies of regulatory mechanisms of sleep-wake rhythms have benefited greatly from mathematical modeling. There are two major frameworks of modeling: one integrates homeostatic and circadian regulations and the other consists of multiple interacting oscillators. In this article, model constructions based on these respective frameworks and their characteristics are reviewed. The two-process model and the multioscillator model are explained in detail. An appropriate mathematical abstraction is also shown to provide a viewpoint unifying the model structures, which might seem to be distinct. Recently acquired knowledge of neural regulatory mechanisms of sleep-wake rhythm has prompted modeling at the neural network level. Such a detailed model is also reviewed, and could be used to explore a possible neural mechanism underlying a pathological state of sleep-wake rhythm. PMID:17364138
Modeling eBook acceptance: A study on mathematics teachers
NASA Astrophysics Data System (ADS)
Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad
2014-12-01
The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.
A full body mathematical model of an oil palm harvester
NASA Astrophysics Data System (ADS)
Tumit, NP; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh Y., M.; Arumugam, Manohar; Ismail I., A.; Abdul Hafiz A., R.
2015-09-01
The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. This paper is an extension model of previous biomechanical model representing a harvester movement during harvesting a Fresh Fruit Bunch (FFB) from a palm oil tree. The ten segment model consists of foot, leg, trunk, the head and the arms segment. Finally, the inverse dynamic equations are represented in a matrix form.
Mathematically modelling proportions of Japanese populations by industry
NASA Astrophysics Data System (ADS)
Hirata, Yoshito
2016-10-01
I propose a mathematical model for temporal changes of proportions for industrial sectors. I prove that the model keeps the proportions for the primary, the secondary, and the tertiary sectors between 0 and 100% and preserves their total as 100%. The model fits the Japanese historical data between 1950 and 2005 for the population proportions by industry very well. The model also predicts that the proportion for the secondary industry becomes negligible and becomes less than 1% at least around 2080.
Mathematical modelling of undrained clay behavior
NASA Technical Reports Server (NTRS)
Prevost, J. H.; Noeg, K.
1976-01-01
The proposed general analytical model describes the anisotropic, elastoplastic, path-dependent, stress-strain properties of inviscid saturated clays under undrained conditions. Model parameters are determined by using results from strain-controlled simple shear tests on a saturated clay. The model's accuracy is evaluated by applying it to predict the results of other tests on the same clay, including monotonic and cyclic loading. The model explains the very anisotropic shear strength behavior observed for weak marine clays.
Mathematical models of magnetite desliming for automated quality control systems
NASA Astrophysics Data System (ADS)
Olevska, Yu.; Mishchenko, V.; Olevskyi, V.
2016-10-01
The aim of the study is to provide multifactor mathematical models suitable for use in automatic control systems of desliming process. For this purpose we described the motion of a two-phase environment regard to the shape the desliming machine and technological parameters of the enrichment process. We created the method for preparation of dependences of the enrichment process quality from the technological and design parameters. To automate the process we constructed mathematical models to justify intensive technological modes and optimal parameters for design of desliming machine.
Asymmetrical passive intermodulation distortions of memristors with mathematical behavior models
NASA Astrophysics Data System (ADS)
Wu, Yongle; Jin, Qiuyan; Wang, Weimin; Liu, Yuanan
2016-10-01
A rigorous mathematical explanation and accurate numerical prediction for asymmetrical passive intermodulation (PIM) distortions of memristors are investigated in this article. This theoretical explanation is based on behavior models of memristors representing the interrelation between terminated voltages and currents. The simulated single-tone and two-tone signal spectrums for extremely low-frequency (Hz) and microwave (GHz) applications verify our proposed mathematical approach and the new discovery of asymmetrical PIM distortions. This presented method provides an innovative choice to model and simulate the external performance of circuits and systems with asymmetrical PIM distortions in the future.
Mathematical modelling in the computer-aided process planning
NASA Astrophysics Data System (ADS)
Mitin, S.; Bochkarev, P.
2016-04-01
This paper presents new approaches to organization of manufacturing preparation and mathematical models related to development of the computer-aided multi product process planning (CAMPP) system. CAMPP system has some peculiarities compared to the existing computer-aided process planning (CAPP) systems: fully formalized developing of the machining operations; a capacity to create and to formalize the interrelationships among design, process planning and process implementation; procedures for consideration of the real manufacturing conditions. The paper describes the structure of the CAMPP system and shows the mathematical models and methods to formalize the design procedures.
A mathematical look at a physical power prediction model
Landberg, L.
1997-12-31
This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.
Mathematical model in controlling dengue transmission with sterile mosquito strategies
NASA Astrophysics Data System (ADS)
Aldila, D.; Nuraini, N.; Soewono, E.
2015-09-01
In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems. PMID:26783508
Mathematical modeling and the neuroscience of metaphor
NASA Astrophysics Data System (ADS)
Rising, Hawley K., III
2008-02-01
We look at a characterization of metaphor from cognitive linguistics, extracting the salient features of metaphorical processing. We examine the neurobiology of dendrites, specifically spike timing-dependent plasticity (STDP), and the modulation of backpropagating action potentials (bAPs), to generate a neuropil-centric model of cortical processing based on signal timing and reverberation between regions. We show how this model supports the basic features of metaphorical processing previously extracted. Finally, we model this system using a combination of euclidean, projective, and hyperbolic geometries, and show how the resulting model accounts for this processing, and relates to other neural network models
A nonlinear viscoelastic - plastic model for electrorheological fluids
NASA Astrophysics Data System (ADS)
Kamath, Gopalakrishna M.; Wereley, Norman M.
1997-06-01
A nonlinear dynamic model is presented that characterizes electrorheological material behavior in terms of its shear stress versus shear strain behavior. The ER fluid model is essentially a nonlinear combination of linear shear flow mechanisms. These linear shear flow mechanisms, a three-parameter viscoelastic fluid element and a viscous fluid element, are used to describe shear flow behavior in the pre-yield and the post-yield regimes, respectively. In order to capture the material behavior in the transition through the yield point, a nonlinear combination of these linear shear flow mechanisms is used. The model, which relates the shear strain input to the shear stress output, is represented by a simple network that consists of two parallel linear mechanisms whose outputs are combined using nonlinear weighting functions. The weighting functions are dependent on the strain rate in the material. A system identification technique is developed to estimate the model parameters from experimental data, which consists of shear stress versus shear strain hysteresis loops at different levels of electric field. The results of this system identification approach indicate that the model parameters are smooth monotonic functions of the electric field. The experimental hysteresis loops are reconstructed using the estimated model parameters and the results show that the model accurately predicts material response. It is shown that the Coulomb friction-like behavior at high field strengths, which is characteristic of ER fluids, can be captured by this nonlinear mechanism-based model.
An applied mathematics perspective on stochastic modelling for climate.
Majda, Andrew J; Franzke, Christian; Khouider, Boualem
2008-07-28
Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here. PMID:18445572
An Efficient Algorithm for Some Highly Nonlinear Fractional PDEs in Mathematical Physics
Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2014-01-01
In this paper, a fractional complex transform (FCT) is used to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and subsequently Reduced Differential Transform Method (RDTM) is applied on the transformed system of linear and nonlinear time-fractional PDEs. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs and hence can be extended to other complex problems of diversified nonlinear nature. PMID:25525804
Hossein-Zadeh, Navid Ghavi
2016-08-01
The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes. PMID:27600968
Hossein-Zadeh, Navid Ghavi
2016-08-01
The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.
Computer modeling of batteries from non-linear circuit elements
NASA Technical Reports Server (NTRS)
Waaben, S.; Federico, J.; Moskowitz, I.
1983-01-01
A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.
Mathematical analysis and modeling of motion direction selectivity in the retina.
Escobar, María-José; Pezo, Danilo; Orio, Patricio
2013-11-01
Motion detection is one of the most important and primitive computations performed by our visual system. Specifically in the retina, ganglion cells producing motion direction-selective responses have been addressed by different disciplines, such as mathematics, neurophysiology and computational modeling, since the beginnings of vision science. Although a number of studies have analyzed theoretical and mathematical considerations for such responses, a clear picture of the underlying cellular mechanisms is only recently emerging. In general, motion direction selectivity is based on a non-linear asymmetric computation inside a receptive field differentiating cell responses between preferred and null direction stimuli. To what extent can biological findings match these considerations? In this review, we outline theoretical and mathematical studies of motion direction selectivity, aiming to map the properties of the models onto the neural circuitry and synaptic connectivity found in the retina. Additionally, we review several compartmental models that have tried to fill this gap. Finally, we discuss the remaining challenges that computational models will have to tackle in order to fully understand the retinal motion direction-selective circuitry.
On correct mathematical models of ecological LSS of high closure
NASA Astrophysics Data System (ADS)
Bartsev, S. I.
Usually mathematical models of natural ecological systems are implicitly based on the assumption of stoichiometrically rigid metabolism In most cases such assumption is applicable but in the case of ecological systems of high closure it can cause errors of forecast For completely closed ecological system the assumption of rigid metabolism results in completely incorrect forecast Since CELSS for long-duration missions have to be of high closure then using adequate mathematical description is of great importance for successfulness of a space mission Possible variants of non-rigid metabolism applicable to different type of biological components of CELSS are considered in the paper It is shown non-rigid models of metabolism not only eliminate incorrectness of mathematical description but as well allow to obtain more adequate estimation of stability of closed ecological systems
NASA Astrophysics Data System (ADS)
Lasukov, V. V.; Rozhkova, S. V.; Abdrashitova, M. O.; Il'kin, E. E.; Novoselov, V. V.
2016-01-01
The nonlinear dynamics of the regular growth of the population of an aggregation of the Lemaitre-Friedmann primordial atoms has been investigated. It is analytically shown that there exists an asymptotic limit to the growth of the population of an aggregation of primordial atoms / galaxies. The nonlinear model, developed in this paper, of the information factor of the evolution of these primordial atoms can find wide application in biology, biological electronics, synthetic biology, in the mathematical history of the driving force of the noosphere, in cosmology, and in other areas of science and technology.
Numerical modelling of nonlinear full-wave acoustic propagation
Velasco-Segura, Roberto Rendón, Pablo L.
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Mathematical modeling of the human knee joint
Ricafort, Juliet
1996-05-01
A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.
Mathematical modeling of lithium iodine discharge data
Kim, J.S.; Brennen, K.R.
1980-01-01
An improved numerical model has been developed to project the capacities of Li/I/sub 2/ cardiac pacemaker batteries. The model uses accelerated rate discharge data, collected over a two year period, to project the capacities of batteries that will not be depleted in the field for approximately 8 years. Inclusion of new terms to account for self-discharge results in increased accuracy in this new model. Self-discharge is shown to be a small loss in the batteries modeled. 3 refs.
Spatio-temporal dynamics of a three interacting species mathematical model inspired in physics
NASA Astrophysics Data System (ADS)
Sánchez-Garduño, Faustino; Breña-Medina, Víctor F.
2008-02-01
In this paper we study both, analytically and numerically, the spatio-temporal dynamics of a three interacting species mathematical model. The populations take the form of pollinators, a plant and herbivores; the model consists of three nonlinear reaction-diffusion-advection equations. In view of considering the full model, as a previous step we firstly analyze a mutualistic interaction (pollinator-plant), later on a predator-prey (plant-herbivore) interaction model is studied and finally, we consider the full model. In all cases, the purely temporal dynamics is given; meanwhile for the spatio-temporal dynamics, we use numerical simulations, corresponding to those parameter values for which we obtain interesting temporal dynamics.
Undergraduate Research: Mathematical Modeling of Mortgages
ERIC Educational Resources Information Center
Choi, Youngna; Spero, Steven
2010-01-01
In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…
A Mathematical Model for Segmenting ECG Signals
NASA Astrophysics Data System (ADS)
Feier, Horea; Roşu, Doina; Falniţǎ, Lucian; Roşu, Şerban; Pater, Liana
2010-09-01
This paper deals with the behavior of the modulus of the continuous wavelet transform (CWT) for some known mother wavelets like the Morlet wavelet and the Mexican Hat. By exploiting these properties, the models presented can behave as a segmentation/ recognition signal processing tool by modeling the temporal structure of the observed surface ECG.
A mathematical model of intestinal oedema formation.
Young, Jennifer; Rivière, Béatrice; Cox, Charles S; Uray, Karen
2014-03-01
Intestinal oedema is a medical condition referring to the build-up of excess fluid in the interstitial spaces of the intestinal wall tissue. Intestinal oedema is known to produce a decrease in intestinal transit caused by a decrease in smooth muscle contractility, which can lead to numerous medical problems for the patient. Interstitial volume regulation has thus far been modelled with ordinary differential equations, or with a partial differential equation system where volume changes depend only on the current pressure and not on updated tissue stress. In this work, we present a computational, partial differential equation model of intestinal oedema formation that overcomes the limitations of past work to present a comprehensive model of the phenomenon. This model includes mass and momentum balance equations which give a time evolution of the interstitial pressure, intestinal volume changes and stress. The model also accounts for the spatially varying mechanical properties of the intestinal tissue and the inhomogeneous distribution of fluid-leaking capillaries that create oedema. The intestinal wall is modelled as a multi-layered, deforming, poroelastic medium, and the system of equations is solved using a discontinuous Galerkin method. To validate the model, simulation results are compared with results from four experimental scenarios. A sensitivity analysis is also provided. The model is able to capture the final submucosal interstitial pressure and total fluid volume change for all four experimental cases, and provide further insight into the distribution of these quantities across the intestinal wall.
Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.
Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław
2015-07-22
A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform. PMID:26120897
Molecular modeling: An open invitation for applied mathematics
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
Energy transfer in nonlinear network models of proteins
NASA Astrophysics Data System (ADS)
Piazza, F.; Sanejouand, Y.-H.
2009-12-01
We investigate how nonlinearity and topological disorder affect the energy relaxation of local kicks in coarse-grained network models of proteins. We find that nonlinearity promotes long-range, coherent transfer of substantial energy to specific functional sites, while depressing transfer to generic locations. In some cases, transfer is mediated by the self-localization of discrete breathers at distant locations from the kick, acting as efficient energy-accumulating centers.
Mathematical Modeling Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1994-01-01
Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.
Cancer evolution: mathematical models and computational inference.
Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.
Cancer Evolution: Mathematical Models and Computational Inference
Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804
Batzel, Jerry; Baselli, Giuseppe; Mukkamala, Ramakrishna; Chon, Ki H
2009-04-13
Cardiovascular (CV) regulation is the result of a number of very complex control interactions. As computational power increases and new methods for collecting experimental data emerge, the potential for exploring these interactions through modelling increases as does the potential for clinical application of such models. Understanding these interactions requires the application of a diverse set of modelling techniques. Several recent mathematical modelling techniques will be described in this review paper. Starting from Granger's causality, the problem of closed-loop identification is recalled. The main aspects of linear identification and of grey-box modelling tailored to CV regulation analysis are summarized as well as basic concepts and trends for nonlinear extensions. Sensitivity analysis is presented and discussed as a potent tool for model validation and refinement. The integration of methods and models is fostered for a further physiological comprehension and for the development of more potent and robust diagnostic tools.
Mathematical analysis and numerical simulation of a model of morphogenesis.
Muñoz, Ana I; Tello, José Ignacio
2011-10-01
We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
Automatic mathematical modeling for real time simulation system
NASA Technical Reports Server (NTRS)
Wang, Caroline; Purinton, Steve
1988-01-01
A methodology for automatic mathematical modeling and generating simulation models is described. The models will be verified by running in a test environment using standard profiles with the results compared against known results. The major objective is to create a user friendly environment for engineers to design, maintain, and verify their model and also automatically convert the mathematical model into conventional code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine Simulation. It is written in LISP and MACSYMA and runs on a Symbolic 3670 Lisp Machine. The program provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. It contains an initial set of component process elements for the Space Shuttle Main Engine Simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. The system is then able to automatically generate the model and FORTRAN code. The future goal which is under construction is to download the FORTRAN code to VAX/VMS system for conventional computation. The SSME mathematical model will be verified in a test environment and the solution compared with the real data profile. The use of artificial intelligence techniques has shown that the process of the simulation modeling can be simplified.
Generation of linear dynamic models from a digital nonlinear simulation
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Krosel, S. M.
1979-01-01
The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Modeling of Nonlinear Elastic Tissues for Surgical Simulation
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2010-01-01
Realistic modeling of the interaction between surgical instruments and human organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed linear elastic behavior for modeling tissues, even though human soft tissues generally possess nonlinear properties. For a nonlinear model, the well-known Poynting effect developed during shearing of the tissue results in normal forces not seen in a linear elastic model. Using constitutive equations of nonlinear tissue models together with experiments, we show that the Poynting effect results in differences in force magnitude larger than the absolute human perception threshold for force discrimination in some tissues (e.g. myocardial tissues) but not in others (e.g. brain tissue simulants). PMID:20503126
Modeling of nonlinear longitudinal instability in solid rocket motors
NASA Astrophysics Data System (ADS)
Baum, Joseph D.; Levine, Jay N.
A comprehensive model of nonlinear longitudinal combustion instability in solid rocket motors has been developed. The two primary elements of this stability analysis are a finite difference solution of the two phase flow in the combustion chamber and a coupled solution of the nonlinear transient propellant burning rate. A new combination finite difference scheme gives the analysis the ability to treat the type of multiple travelling shock wave instabilities that are frequently observed in reduced smoke tactical solid rocket motors. Models for predicting the behavior of both gas ejection and solid ejecta pulses were developed and incorporated into the analysis. Extensive comparisons between model predictions and experimental data from pulsed solid rocket motor firings have been carried out. The nonlinear instability analysis was found to be capable of predicting the complete range of nonlinear behavior observed in actual motor firing data. Good agreement between measured and predicted initial pulse amplitude, pulse evolution, limit cycle amplitude and mean pressure shift was obtained. This investigation has also provided new insight into the nature of nonlinear pulse triggered instability and the factors which influence its occurrence and severity. This new instability analysis should significantly enhance our capability to design tactical solid rocket motors that are free from troublesome and expensive nonlinear combusion instability problems.
Physical and Mathematical Modeling in Experimental Papers.
Möbius, Wolfram; Laan, Liedewij
2015-12-17
An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations.
A Mathematical Model for Railway Control Systems
NASA Technical Reports Server (NTRS)
Hoover, D. N.
1996-01-01
We present a general method for modeling safety aspects of railway control systems. Using our modeling method, one can progressively refine an abstract railway safety model, sucessively adding layers of detail about how a real system actually operates, while maintaining a safety property that refines the original abstract safety property. This method supports a top-down approach to specification of railway control systems and to proof of a variety of safety-related properties. We demonstrate our method by proving safety of the classical block control system.
Physical and Mathematical Modeling in Experimental Papers.
Möbius, Wolfram; Laan, Liedewij
2015-12-17
An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations. PMID:26687351
A Mathematical Model of the Thermo-Anemometric Flowmeter.
Korobiichuk, Igor; Bezvesilna, Olena; Ilchenko, Andriі; Shadura, Valentina; Nowicki, Michał; Szewczyk, Roman
2015-01-01
A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed.
A Versatile Nonlinear Method for Predictive Modeling
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Yao, Weigang
2015-01-01
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
System and mathematical modeling of quadrotor dynamics
NASA Astrophysics Data System (ADS)
Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.
2015-05-01
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
Discrete mathematical physics and particle modeling
NASA Astrophysics Data System (ADS)
Greenspan, D.
The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.
Some mathematical models of intermolecular autophosphorylation.
Doherty, Kevin; Meere, Martin; Piiroinen, Petri T
2015-04-01
Intermolecular autophosphorylation refers to the process whereby a molecule of an enzyme phosphorylates another molecule of the same enzyme. The enzyme thereby catalyses its own phosphorylation. In the present paper, we develop two generic models of intermolecular autophosphorylation that also include dephosphorylation by a phosphatase of constant concentration. The first of these, a solely time-dependent model, is written as one ordinary differential equation that relies upon mass-action and Michaelis-Menten kinetics. Beginning with the enzyme in its dephosphorylated state, it predicts a lag before the enzyme becomes significantly phosphorylated, for suitable parameter values. It also predicts that there exists a threshold concentration for the phosphorylation of enzyme and that for suitable parameter values, a continuous or discontinuous switch in the phosphorylation of enzyme are possible. The model developed here has the advantage that it is relatively easy to analyse compared with most existing models for autophosphorylation and can qualitatively describe many different systems. We also extend our time-dependent model of autophosphorylation to include a spatial dependence, as well as localised binding reactions. This spatio-temporal model consists of a system of partial differential equations that describe a soluble autophosphorylating enzyme in a spherical geometry. We use the spatio-temporal model to describe the phosphorylation of an enzyme throughout the cell due to an increase in local concentration by binding. Using physically realistic values for model parameters, our results provide a proof-of-concept of the process of activation by local concentration and suggest that, in the presence of a phosphatase, this activation can be irreversible.
Mathematical Model For Engineering Analysis And Optimization
NASA Technical Reports Server (NTRS)
Sobieski, Jaroslaw
1992-01-01
Computational support for engineering design process reveals behavior of designed system in response to external stimuli; and finds out how behavior modified by changing physical attributes of system. System-sensitivity analysis combined with extrapolation forms model of design complementary to model of behavior, capable of direct simulation of effects of changes in design variables. Algorithms developed for this method applicable to design of large engineering systems, especially those consisting of several subsystems involving many disciplines.
The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study
ERIC Educational Resources Information Center
Mischo, Christoph; Maaß, Katja
2013-01-01
This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…
Mathematical modeling of clearing liquid drop diffusion after intradermal injection
NASA Astrophysics Data System (ADS)
Stolnitz, Mikhail M.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.
2007-05-01
The mathematical model of clearing agent diffusion after intradermal injection has been developed. Skin was presented as multilayer medium, but one layer with proper boundary conditions is considered. Analytical solution of the boundary problem for small and large time intervals is obtained.
Mathematical model of single-photon emission computed tomography
Clough, A.V.
1986-01-01
Single-photon emission computed tomography (SPECT) is a nuclear-medicine imaging technique that has been shown to provide clinically useful images of radionuclide distributions within the body. The problem of quantitative determination of tomographic activity images from a projection data set leads to a mathematical inverse problem which is formulated as an integral equation. The solution of this problem then depends on an accurate mathematical model as well as a reliable and efficient inversion algorithm. The effects of attenuation and Compton scatter within the body have been incorporated into the model in the hopes of providing a more physically realistic mathematical model. The attenuated Radon transform is the mathematical basis of SPECT. In this work, the case of constant attenuation is reviewed and a new proof of the Tretiak-Metz algorithm is presented. A space-domain version of the inverse attenuated Radon transform is derived. A special case of this transform that is applicable when the object is rotationally symmetric, and attenuated Abel transform is derived, and its inverse is found. A numerical algorithm for the implementation of the inverse attenuated Radon transform with constant attenuation is described and computer simulations are performed to demonstrate the results of the inversion procedure. With the use of the single-scatter approximation and an energy-windowed detector, the effects of Compton scatter are incorporated into the model. The data are then taken to be the sum of primary photons and single-scattered photons.
Optimization of a new mathematical model for bacterial growth
Technology Transfer Automated Retrieval System (TEKTRAN)
The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...